
Resource-Light Acquisition of Inflectional Paradigms

Radoslav Klíč1 and Jirka Hana2

1 Geneea Analytics, Velkopřevorské nám. 1, 118 00 Praha 1
radoslav.klic@gmail.com

2 MFF UK, Malostranské nám. 25, 118 00 Praha 1
jirka.hana@gmail.com

Abstract: This paper presents a resource-light acquisition
of morphological paradigms and lexicon for fusional lan-
guages. It builds upon Paramor [10], an unsupervised sys-
tem, by extending it: (1) to accept a small seed of man-
ually provided word inflections with marked morpheme
boundary; (2) to handle basic allomorphic changes ac-
quiring the rules from the seed and/or from previously
acquired paradigms. The algorithm has been tested on
Czech and Slovene tagged corpora and has shown in-
creased F-measure in comparison with the Paramor base-
line.

1 Introduction

Morphological analysis is used in many computer appli-
cations ranging from web search to machine translation.
As Hajič [6] shows, for languages with high inflection, a
morphological analyzer is an essential part of a successful
tagger.

Modern morphological analysers based on supervised
machine learning and/or hand-written rules achieve very
high accuracy. However, the standard way to create them
for a particular language requires substantial amount of
time, money and linguistic expertise. For example, the
Czech analyzer by [7] uses a manually created lexicon
with 300,000+ entries. As a result, most of the world lan-
guages and dialects have no realistic prospect for morpho-
logical analyzers created in this way.

Various techniques have been suggested to overcome
this problem, including unsupervised methods acquiring
morphological information from an unannotated corpus.
While completely unsupervised systems are scientifically
interesting, shedding light on areas such as child language
acquisition or general learneability, for many practical ap-
plications their precision is still too low. They also com-
pletely ignore linguistic knowledge accumulated over sev-
eral millennia, often failing to discover rules that can be
found in basic grammar books.

Lightly-supervised systems aim to improve upon the ac-
curacy of unsupervised system by using a limited amount
of resources. One of such systems for fusional languages
is described in the paper.

Using a reference grammar, it is relatively easy to pro-
vide information about inflectional endings, possibly or-
ganized into paradigms. In some languages, an analyzer
built on such information would have an acceptable accu-

racy (e.g., in English, most words ending in ed are past/-
passive verbs, and most words ending in est are superlative
adjectives). However, in many languages, the number of
homonymous endings is simply too high for such system
to be useful. For example, the ending a has about 19 dif-
ferent meanings in Czech [4].

Thus our goal is to discover inflectional paradigms each
with a list of words declining according to it, in other
words we discover a list of paradigms and a lexicon. But
we do not attempt to assign morphological categories to
any of the forms. For example, given an English corpus
the program should discover that talk, talks, talking, talked
are the forms of the same word, and that work, push, pull,
miss,. . . decline according to the same pattern. How-
ever, it will not label talked as a past tense and not even
as a verb.

This kind of shallow morphological analysis has appli-
cations in information retrieval (IR), for example search
engines. For the most of the queries, users aren’t inter-
ested only in particular word forms they entered but also
in their inflected forms. In highly inflectional languages,
such as Czech, dealing with morphology in IR is a neces-
sity. Moreover, it can also be used as a basis for a stan-
dard morphological analyzer after labeling endings with
morphological tags and adding information about closed-
class/irregular words.

As the basis of our system, we chose Paramor [10],
an algorithm for unsupervised induction of inflection
paradigms and morphemic segmentation. We extended it
to handle basic phonological/graphemic alternations and
to accept seeding paradigm-lexicon information.

The rest of this paper is organized as follows: First, we
discuss related work on unsupervised and semi-supervised
learning. Then follows a section about baseline Paramor
model. After that, we motivate and describe our extension
to it. Finally, we report results of experiments on Czech
and Slovene.

2 Previous Work

Perhaps the best known unsupervised morphological anal-
ysers are Goldsmith’s Linguistica [5] and Morfessor [1, 2,
3] family of algorithms.

Goldsmith uses minimum description length
(MDL; [14]) approach to find the morphology model
which allows the most compact corpus representation.

J. Yaghob (Ed.): ITAT 2015 pp. 66–72
Charles University in Prague, Prague, 2015

His Linguistica software returns a set of signatures which
roughly correspond to paradigms.

Unlike Linguistica, Morfessor splits words into mor-
phemes in a hierarchical fashion. This makes it more suit-
able to agglutinative languages, such as Finnish or Turk-
ish, with a large number of morphemes per word. A prob-
abilistic model is used to tag each morph as a prefix, suffix
or stem. Kohonen et al. [9] improve the results of Morfes-
sor by providing a small set (1000+ for English, 100+ for
Finish) of correctly segmented words. While the precision
slightly drops, the recall is significantly improved for both
languages. Tepper and Xia [17] use handwritten rewrite
rules to improve Morfessor’s performance by recognising
allomorphic variations.

The approaches by Yarowsky and Wicentowski [18] and
Schone and Jurafsky [15] aim at combining different in-
formation sources (e.g., corpus frequencies, edit distance
similarity, or context similarity) to obtain better analysis,
especially for irregular inflection.

A system requiring significantly more human supervi-
sion is presented by Oflazer et al. [13]. This system takes
manually entered paradigm specification as an input and
generates a finite-state analyser. The user is then presented
with words in a corpus which are not accepted by the anal-
yser, but close to an accepted form. Then the user may
adjust the specification and the analyser is iteratively im-
proved.

Feldman and Hana [8, 4] build a system which relies
on a manually specified list of paradigms, basic phonol-
ogy and closed-class words and use a raw corpus to auto-
matically acquire lexicon. For each form, all hypothetical
lexical entries consistent with the information about the
endings are created. Then competing entries are compared
and only those supported by the highest number of forms
are retained. Most of the remaining entries are still non-
existent; however, in the majority of cases, they licence
the same inflections as the correct entries, differing only
in rare inflections.

3 Paramor

Our approach builds upon Paramor [10, 11, 12], an-
other unsupervised approach for discovery of inflectional
paradigms.

Due to data sparsity, not all inflections of a word are
found in a corpus. Therefore Paramor does not attempt to
reconstruct full paradigms, but instead works with partial
paradigms, called schemes. A scheme contains a set of
c(andidate)-suffixes and a set of c(andidate)-stems inflect-
ing according to this scheme. The corpus must contain the
concatenation of every c-stem with every c-suffix in the
same scheme. Thus, a scheme is uniquely defined by its
c-suffix set. Several schemes might correspond to a single
morphological paradigm, because different stems belong-
ing to the paradigm occur in the corpus in different set of
inflections.

The algorithm to acquire schemes has several steps:

1. Initialization: It first considers all possible segmenta-
tions of forms into candidate stems and endings.

2. Bottom-up Search: It builds schemes by adding end-
ings that share a large number of associated stems.

3. Scheme clustering: Similar schemes (as measured by
cosine similarity) are merged.

4. Pruning: Schemes proposing frequent morpheme
boundaries not consistent with boundaries proposed
by a character entropy measure are discarded.

Paramor works with types and not tokens. Thus it is not
using any information about the frequency or context of
forms. Below, we describe some of the steps in more de-
tail.

3.1 Bottom-up Search

In this phase, Paramor performs a bottom-up search of the
scheme lattice. It starts with schemes containing exactly
one c-suffix. For each of them, Paramor ascends the lat-
tice, adding one c-suffix at a time until a stopping criterion
is met. C-suffix selected for adding is the one with the
biggest c-stem ratio. (Adding a c-suffix to a scheme re-
duces number of the stems and the suffix reducing it the
least is selected. C-stem ratio is ratio between number of
stems in the candidate higher-level scheme and the current
scheme.) When the highest possible c-stem ratio falls un-
der 0.25, the search stops. It is possible to reach the same
scheme from multiple searches. For example, a search
starting from the scheme (-s) can continue by adding (-ing)
and end by adding (-ed), thus creating a scheme (-s, -ing,
-ed). Another search starting from (-ed) can continue by
adding (-s) and then by adding (-ing), creating a redundant
scheme. Such duplicates are discarded.

3.2 Scheme Clustering

Resulting schemes are then subjected to agglomerative
bottom-up clustering to group together schemes which
are partially covering the same linguistic paradigm. For
example, if the first phase generated schemes (-s, -ing)
and (-ing, -ed), the clustering phase should put them in
the same scheme cluster. To determine proximity of two
scheme clusters, sets of words generated by the clusters
are measured by cosine similarity.1 A scheme cluster gen-
erates a set of words which is the union of sets generated
by the schemes it contains (not a Cartesian product of all
stems and suffixes throughout the schemes). In order to
be merged, clusters must satisfy some conditions, e.g. for
any two suffixes in the cluster, there must be a stem in the
cluster which can combine with both of them.

1proximity(X ,Y) = |X∩Y |√
|X ||Y |

Resource-Light Acquisition of Inflectional Paradigms 67

Manual
seed

Word clusters

Corpus

deep stems

more starting
schemes

keep some clusters
from discarding

Stem-suffix map

Bottom-up search

Scheme clustering

Induction of
stem-change rules

Paramor

Figure 1: Altered Paramor’s pipeline (our alterations are
in dashed boxes and outside the Paramor box).

3.3 Pruning

After the clustering phase, there are still too many clusters
remaining and pruning is necessary. In the first pruning
step, clusters which generate only small number of words
are discarded. Then clusters modelling morpheme bound-
aries inconsistent with letter entropy are dropped.

4 Our Approach

4.1 Overview

We have modified the individual steps in Paramor’s
pipeline in order to use (1) a manually provided seed of
inflected words divided into stems and suffixes; and (2) to
take into account basic allomorphy of stems. Figure 1
shows phases of Paramor on the left with dashed boxes
representing our alterations.

In the bottom-up search phase and the scheme clus-
ter filtering phase, we use manually provided examples
of valid suffixes and their grouping to sub-paradigms to
steer Paramor towards creating more adequate schemes
and scheme clusters. The data may also contain allomor-
phic stems, which we use to induce simple stem rewrite
rules. Using these rules, some of the allomorphic stems in
the corpus can be discovered and used to find more com-
plete schemes.

Note that the Paramor algorithm is based on several
heuristics with many parameters whose values were set ex-
perimentally. We used the same settings. Moreover, when
we applied similar heuristics in our modifications, we used
analogical parameter values.

4.2 Scheme Seeding

The manual seed contains a simple list of inflected words
with marked morpheme boundary. A simple example in
English would be:

talk+0, talk+s, talk+ed, talk+ing
stop+0, stop+s, stopp+ed, stopp+ing
chat+0, chat+s, chatt+ed, chatt+ing

This can be written in an abbreviated form as:

talk, stop/stopp, chat/chatt + 0, s / ed, ing

The data are used to enhance Paramor’s accuracy in dis-
covering the correct schemes and scheme clusters in the
following way:

1. In the bottom-up search, Paramor starts with single-
suffix schemes. We added a 2-suffix scheme to the
starting scheme set for every suffix pair from the
manual data belonging to the same inflection. Note
that we cannot simply add a scheme containing all
the suffixes of the whole paradigm as many of the
forms will not be present in the corpus.

2. Scheme clusters containing suffixes similar to some
of the manually entered suffix sets are protected from
the second phase of the cluster pruning. More pre-
cisely, a cluster is protected if at least half of its
schemes share at least two suffixes with a particular
manual suffix set.

4.3 Allomorphy

Many morphemes have several contextually dependent
realizations, so-called allomorphs due to phonological/-
graphemic changes or irregularities. For example, con-
sider the declension of the Czech word matka ‘mother’ in
Table 1. It exhibits stem-final consonant change (palatali-
sation of k to c) triggered by the dative and local singular
ending, and epenthesis (insertion of -e-) in the bare stem
genitive plural.

Case Singular Plural
nom matk+a matk+y
gen matk+y matek+0
dat matc+e matk+ám
acc matk+u matk+y
voc matk+o matk+y
loc matc+e matk+ách
inst matk+ou matk+ami

Table 1: Declension of the word matka “mother”. Chang-
ing part of the stem is in bold.

Paramor ignores allomorphy completely (and so do Lin-
guistica and Morfessor). There are at least two reasons

68 R. Klíč, J. Hana

to handle allomorphy. First, linguistically, it makes more
sense to analyze winning as win+ing than as winn+ing or
win+ning. For many applications, such as information re-
trieval, it is helpful to know that two morphs are variants of
the same morpheme. Second, ignoring allomorphy makes
the data appear more complicated and noisier than they ac-
tually are. Thus, the process of learning morpheme bound-
aries or paradigms is harder and less successful.

This latter problem might manifests itself in Paramor’s
bottom-up search phase: a linguistically correct suffix trig-
gering a stem change might be discarded, because Paramor
would not consider stem allomorphs to be variants of the
same stem and c-stem ratio may drop significantly. Further
more, incorrect c-suffixes may be selected.

For example, suppose there are 5 English verbs in the
corpus: talk, hop, stop, knit, chat, together with their -s
(talks, hops, stops, knits, chats) and -ing (talking, hop-
ping, stopping, knitting, chatting) forms. Let’s assume
we already have a scheme {0, s} with 5 stems. Unfor-
tunately, a simple ing suffix (without stem-final consonant
doubling) combines with one out the 5 stems only, there-
fore adding ing to the scheme would decrease the number
of its stems to 1, leaving only talk in the scheme.

However, for most languages the full specification of
rules constraining allomorphy is not available, or at least
is not precise enough. Therefore, we automatically induce
a limited number of simple rules from the seed examples
and/or from the scheme clusters obtained from the previ-
ous run of algorithm. Such rules both over and undergen-
erate, but nevertheless they do improve the accuracy of the
whole system. For languages, where formally specified
allomorphic rules are available, they can be used directly
along the lines of Tepper and Xia [17, 16]. For now, we
consider only stem final changes, namely vowel epenthesis
(e.g., matk-a – matek-0) and alternation of the final conso-
nant (e.g., matk-a – matc-e). The extension to other pro-
cesses such as root vowel change (e.g., English foot – feet)
is quite straightforward, but we leave it for future work.

Stem change rule induction and application. Formally,
the process can be described as follows. From every pair
of stem allomorphs in the manual input, sδ1,sδ2, where s
is their longest common initial substring,2 with suffix sets
f1, f2 we generate a rule ∗δ1 → ∗δ2 / (f1, f2) and also
a reverse rule ∗δ2 → ∗δ1 / (f2, f1). Notation ∗δ1 → ∗δ2
/ (f1, f2) means “transform a stem xδ1 into xδ2 if the fol-
lowing conditions hold:”

1. xδ2 is a c-stem present in the corpus.

2. C-suffix set f x
1 (from the corpus) of the c-stem xδ1

contains at least one of the suffixes from f1 and con-
tains no suffix from f2.

3. C-suffix set f x
2 of the c-stem xδ2 contains at least one

of the suffixes from f2 and contains no suffix from f1.
2should δ1 or δ2 be 0, one final character is removed from s and

prepended to δ1 and δ2

Induced rules are applied after the initialisation phase. So-
called deep stems are generated from the c-stems. A deep
stem is defined as a set of surface stems.

To obtain a deep stem for a c-stem t, operation of expan-
sion is applied. Expansion works as a breadth-first search
using a queue initialised with t and keeping track of the
set D of already generated variants. While the queue is not
empty, the first member is removed and its variants found
by application of all the rules. (Result of applying a rule is
non-empty only if the rule is applicable and its right hand
side is present in the corpus.) Variants which haven’t been
generated so far are added to the back of the queue and to
D. When the queue is emptied, D becomes the deep stem
associated with t and all other members of D.

Bottom-up search and all the following phases of
Paramor algorithm are then using the deep stems instead
of the surface ones.

Stem change rule induction from scheme clusters. In
addition to deriving allomorphic rules from the manual
seed, we also use a heuristic for detecting stem allomor-
phy in the scheme clusters obtained from the previous run
of the algorithm. Stem allomorphy increases the sparsity
problem and might prevent Paramor from finding some
paradigms. However, if the stem changes are systematic
and frequent, Paramor does create the appropriate scheme
clusters. However, it considers the changing part of the
stem to be a part of suffix.

As an example, consider again the declension of the
Czech word matka “mother” in Table 1. Paramor’s scheme
cluster with suffixes ce, ek, ka, kami, kou, ku, ky, kách, kám
has correctly discovered 9 of 10 paradigm’s suffixes,3 but
fused together with parts of the stem. Presence of such
scheme cluster in the result is a hint that there may be a c/k
alteration and epenthesis in the language.

First phase of the algorithm for deciding whether a
scheme cluster with a c-suffix set f is interesting in this
respect is following:

1. If f contains a c-suffix without a consonant, return
false.

2. cc = count of unique initial consonants found in
c-suffixes in f .

3. If cc > 2 return false. (Morpheme boundary probably
incorrectly shifted to the left.)

4. If cc = 1 and f doesn’t contain any c-suffix start-
ing with a vowel, return false. (No final consonant
change, no epenthesis.)

5. Return true.

If a scheme cluster passes this test, each of its stems’ sub-
paradigms is examined. Subparadigm for stem s consists
of s and fs – all the c-suffixes from f with which s forms

3Except for vocative case singular, which is rarely used.

Resource-Light Acquisition of Inflectional Paradigms 69

a word in the corpus. For example, let’s have a stem s =
mat with fs = {ce, ek, ka, ku, ky}. Now, the morpheme
boundary is shifted so that it is immediately to the right
from the first consonant of the original c-suffixes. In our
example, we get 3 stem variants: matk + a, u, y, matc
+ e, matek + 0. To reduce falsely detected phonological
changes, we check each stem variant’s suffix set whether
it contains at least one of the c-suffixes that Paramor has
already discovered in other scheme clusters. If the condi-
tion holds, rules the with same syntax as the manual data
are created. For example, matk / matc / matek + a, u, y
/ e / 0. All generated rules are gathered in a file and can
be used in the same way as the manual seed or just for the
induction of phonological rules.

5 Experiments and Results

We tested our approach on Czech and Slovene lemma-
tised corpora. For Czech, we used two differently sized
subsets of the PDT 1 corpus. The first, marked as cz1,
contains 11k types belonging to 6k lemmas. The sec-
ond, cz2, has 27k types and 13k lemmas and is a su-
perset of cz1. The purpose of having two Czech cor-
pora was to observe the effect of data size on perfor-
mance of the algorithm. The Slovene corpus si is a subset
of the jos100k corpus V2.0 (http://nl.ijs.si/jos/
jos100k-en.html) with 27k types and 15.5k lemmas.

The manual seed consisted of inflections of 18 lem-
mas for Czech and inflections of 9 lemmas for Slovene.
In both cases, examples of nouns, adjectives and verbs
were provided. They were obtained from a basic grammar
overview. For Czech, we also added information about the
only two inflectional prefixes (negative prefix ne and su-
perlative prefix nej). The decision which prefixes to con-
sider inflectional and which not is to a certain degree an ar-
bitrary decision (e.g., it can be argued that ne is a clitic and
not a prefix), therefore it makes sense to provide such in-
formation manually. (Prefixes were implemented by a spe-
cial form of stem transformation rules introduced in sec-
tion 4.3 which create deep stems consisting of a stem with
and without given prefix.)

5.1 Evaluation Method

We evaluated the experiments only on types at least 6 char-
acters long which Paramor uses for learning. That means
8.5k types and 4500 lemmas for cz1, 21k types and 10k
lemmas for cz2 and 21k types and 12k lemmas for si.

Since corpora we used do not have morpheme bound-
aries marked, we could not use the same evaluation
method as authors of Paramor and Morfessor – measuring
the precision and recall of placing morpheme boundaries.
On the other hand, corpora are lemmatised and we can
evaluate whether types grouped to paradigms by the algo-
rithm correspond to sets of types belonging to the same
lemma.

We use the following terminology in this section:
a word group is a set of words returned by our system,
a word paradigm is a set of words from the corpus sharing
the same lemma. Both word groups and word paradigms
are divisions of corpus into disjoint sets of words. An au-
toseed is a seed generated by the heuristic described in
Section 4.3.

Since Paramor only produces schemes and scheme clus-
ters, we need an additional step to obtain word groups.
We generated the word groups by bottom-up clustering
of words using the paradigm distance which is designed
to group together words generated by similar sets of
scheme clusters. To compute paradigm distance for two
words w1, w2, we find the set of all scheme clusters which
generate w1 and compute cosine similarity to the analogi-
cal set for w2

4. In the simplest case, two forms of a lemma
will be generated just by one scheme cluster and there-
fore get distance 1. For a more complicated example, let’s
take two Czech words: otrávení “poisoned masc. anim.
nom. pl.” and otrávený “poisoned masc. anim. nom.
sg.”. The first one was generated by scheme clusters 33
and 41, both with otráv as a stem. The second word was
generated by scheme cluster 41 with otráv as a stem and
by scheme cluster 45 with otráven as stem. That means
that only scheme cluster 41 generates both words and their
paradigm distance is 1√

2×2
= 0.5.

Precision and recall of the word groups can be com-
puted in the following way: To compute precision, start
with p = 0. For each word group, find a word paradigm
with the largest intersection. Add the intersection size to p.
Precision = p / total number of words. For computing re-
call, start with r = 0. For each word paradigm, find a word
group with the largest intersection. Add the intersection
size to r. Recall = r / total number of words. F1 is the
standard balanced F-score.

5.2 Results

Results of the experiments are presented in Tables 2 – 4.
We used the following experiment settings:

1. no seed – the baseline, Paramor was run without any
seeding

2. man. seed – manual seed was used

3. autoseed – autoseed was used for induction of the
stem change rules

4. both seeds – Paramor run with manual seed, stem
change rules were induced from manual and au-
toseed.

5. seed + pref. – manual seed was used together with
additional rules for two Czech inflectional prefixes,
otherwise same as 2.

4We also have to check whether w1 and w2 have the same stem, so,
in fact we are comparing sets of pairs 〈scheme cluster, c-stem〉, to make
sure only words sharing c-stems are grouped together.

70 R. Klíč, J. Hana

6. both seeds + pref – manual seed was used together
with additional rules for two Czech inflectional pre-
fixes, otherwise same as 4.

Experiment Precision Recall F1
no seed 97.87 84.61 90.76
man. seed 97.96 87.52 92.44
autoseed 98.19 84.58 90.88
both seeds 97.96 87.52 92.44
seed + pref. 97.84 89.40 93.43
both seeds + pref. 97.84 89.40 93.43

Table 2: Results for the cz1 corpus.

Experiment Precision Recall F1
no seed 97.36 87.02 91.90
man. seed 97.04 89.30 93.01
autoseed 97.30 87.72 92.26
both seeds 96.78 89.30 92.89
seed + pref. 96.68 92.35 94.46
both seeds + pref. 96.31 92.49 94.36

Table 3: Results for the cz2 corpus.

Experiment Precision Recall F1
no seed 95.70 93.00 94.33
man. seed 95.62 94.44 95.02
autoseed 95.69 93.13 94.40
both seeds 95.56 94.76 95.16

Table 4: Results for the si corpus.

As can be seen from the results, the extra manual infor-
mation indeed does help the accuracy of clustering words
belonging to the same paradigms. What is not shown by
the numbers is that more of the morpheme boundaries
make linguistic sense because basic stem allomorphy is
accounted for.

6 Conclusion

We have shown that providing very little of easily obtain-
able information can improve the result of a purely un-
supervised system. In the near future, we are planning to
model a wider range of allomorphic alternations, try larger
(but still easy to obtain) seeds and finally test the results on
more languages.

References

[1] Creutz, M., Lagus. K.: Unsupervised discovery of mor-
phemes. In: Proceedings of the ACL-02 Workshop on Mor-
phological and Phonological Learning, Vol. 6, MPL ’02,
21–30, Stroudsburg, PA, USA, 2002, Association for Com-
putational Linguistics

[2] Creutz, M., Lagus, K.: Inducing the morphological lexi-
con of a natural language from unannotated text. In: Pro-
ceedings of the International and Interdisciplinary Confer-
ence on Adaptive Knowledge Representation and Reason-
ing (AKRR’05), 106–113, Finland, Espoo, 2005

[3] Creutz, M., Lagus, K.: Unsupervised models for mor-
pheme segmentation and morphology learning. ACM
Trans. Speech Lang. Process. 4 (3) (February 2007), 1–34

[4] Feldman, A., Hana, J.: A resource-light approach to
morpho-syntactic tagging. Rodopi, Amsterdam/New York,
NY, 2010

[5] Goldsmith, J. A.: Unsupervised learning of the morphol-
ogy of a natural language. Computational Linguistics 27(2)
(2001), 153–198

[6] Hajič, J.: Morphological tagging: data vs. dictionaries. In:
Proceedings of ANLP-NAACL Conference, 94–101, Seat-
tle, Washington, USA, 2000

[7] Hajič, J.: Disambiguation of rich inflection: computa-
tional morphology of Czech. Karolinum, Charles Univer-
sity Press, Praha, 2004

[8] Hana, J., Feldman, A., Brew, C.: A resource-light approach
to Russian morphology: Tagging Russian using Czech re-
sources. In: Dekang Lin and Dekai Wu, (eds.), Proceedings
of EMNLP 2004, 222–229, Barcelona, Spain, July 2004,
Association for Computational Linguistics

[9] Kohonen, O., Virpioja, S., Lagus, K.: Semi-supervised
learning of concatenative morphology. In: Proceedings
of the 11th Meeting of the ACL Special Interest Group
on Computational Morphology and Phonology, SIGMOR-
PHON’10, 78–86, Stroudsburg, PA, USA, 2010, Associa-
tion for Computational Linguistics

[10] Monson, C.: ParaMor: from paradigm structure to nat-
ural language morphology induction. PhD thesis, Lan-
guage Technologies Institute, School of Computer Science,
Carnegie Mellon University, 2009

[11] Monson, C., Carbonell, J., Lavie, A., Levin, L.: ParaMor:
minimally supervised induction of paradigm structure and
morphological analysis. In: Proceedings of Ninth Meeting
of the ACL Special Interest Group in Computational Mor-
phology and Phonology, 117–125, Prague, Czech Repub-
lic, June 2007, Association for Computational Linguistics

[12] Monson, C., Carbonell, J. G., Lavie, A., Levin, L. S.:
Paramor: finding paradigms across morphology. In: Ad-
vances in Multilingual and Multimodal Information Re-
trieval, 8th Workshop of the Cross-Language Evaluation
Forum, CLEF 2007, Budapest, Hungary, September 19-21,
2007, Revised Selected Papers, 900–907, 2007.

[13] Oflazer, K., Nirenburg, S., McShane, M.: Bootstrapping
morphological analyzers by combining human elicitation
and machine learning. Computational Linguistics 27(1)
(2001), 59–85

[14] Rissanen, J.: Stochastic complexity in statistical inquiry.
World Scientific Publishing Co, Singapore, 1989.

Resource-Light Acquisition of Inflectional Paradigms 71

[15] Schone, P., Jurafsky, D.: Knowledge-free induction of
inflectional morphologies. In: Proceedings of the North
American Chapter of the Association for Computational
Linguistics, 183–191, 2001.

[16] Tepper, M., Xia, F.: A hybrid approach to the induction of
underlying morphology. In: Proceedings of the Third Inter-
national Joint Conference on Natural Language Processing
(IJCNLP-2008), Hyderabad, India, Jan 7-12, 17–24, 2008.

[17] Tepper, M., Xia, F.: Inducing morphemes using light
knowledge. ACM Trans. Asian Lang. Inf. Process. 9 (3)
(March 2010), 1–38

[18] Yarowsky, D., Wicentowski, R.: Minimally supervised
morphological analysis by multimodal alignment. In: Pro-
ceedings of the 38th Meeting of the Association for Com-
putational Linguistics, 207–216, 2000

72 R. Klíč, J. Hana

