Combinatory Categorial Grammar

Pavel Kalvoda

April 22, 2014

Pavel Kalvoda CCG April 22, 2014 1 / 37

Overview

- The formalism
 - Categories
 - Slash-typing
 - Application & composition
 - Combinatory principles
- OpenCCG demo
- Bounded constructions
- Other miscellaneous phenomena
 - Intonation
 - Scrambling
- 5 Implementation & applications

Pavel Kalvoda CCG April 22, 2014 2 / 37

A note on terminology

Combinatory means combinational, related to combination, being able to combine or be combined, as in 'combinatory logic'.

Pavel Kalvoda CCG April 22, 2014 3 / 37

Categories & (Pure) Categorial Grammar

Phrase-structure grammar

Rules

(1)
$$S \rightarrow NP VP$$

(2)
$$NP \rightarrow A N \mid N$$

(3)
$$VP \rightarrow V NP$$

Terminals

- (a) $A \rightarrow living$
- (b) $N \rightarrow people \mid food$
- (c) $V \rightarrow \text{need}$

Categorial Grammar

Application rules

$$(>)$$
 X/Y Y \Rightarrow X

(<)
$$Y X \setminus Y \Rightarrow X$$

Terminals & categories

living :=
$$NP/N$$

people
$$:= N$$

$$food := NP$$

$$need := (S \setminus NP)/NP$$

4 / 37

Phrase-structure grammar derivation tree

Pavel Kalvoda CCG April 22, 2014 5 / 37

Categorial grammar derivation

$$\frac{\frac{\textit{living}}{\textit{NP}/\textit{N}} \frac{\textit{people}}{\textit{N}}}{\textit{NP}} > \frac{\frac{\textit{need}}{(S \backslash \textit{NP})/\textit{NP}} \frac{\textit{food}}{\textit{NP}}}{S \backslash \textit{NP}} > \frac{S \backslash \textit{NP}}{S}$$

Pavel Kalvoda CCG April 22, 2014 6 / 37

Categories & (Pure) Categorial Grammar

- Categories describe syntactical & grammatical properties of constituents
- They are referred to as 'syntactic types'
- There are two kinds of types
 - Functional types A, V
 - Atomic types N, NP
- The choice is arbitrary, but "verbs are functions" is a well established concept

	Phrase-structure	Categorial
Rules	Explicit	Generic
Derivation	Terminals & nonterminals	Categories only
Expression-type association	Part of grammar	In corpus

Table : Phrase-structure grammars vs Categorial grammars

Another example: Transitive and intransitive verbs

Transitive verbs

 $(S\NP)/NP$

$$\frac{John}{NP} \qquad \frac{\frac{likes}{(S \backslash NP)/NP} \qquad \frac{potatoes}{NP}}{S \backslash NP} >$$

Intransitive verbs

S\NP

$$\frac{\begin{array}{ccc} John & sleeps \\ \hline NP & S \setminus NP \end{array}}{S} <$$

From CG to CCG

"Pure CG (Ajdukiewicz 1935, Bar-Hillel 1953) limits syntactic combination to rules of functional application of functions to arguments to the right or left. [...] This restriction limits expressivity to the level of context-free grammar, and CCG generalizes the context-free core by introducing further rules for combining categories."

— Steedman and Baldridge, Combinatory Categorial Grammar

Pavel Kalvoda CCG April 22, 2014 9 / 37

CCG: Slash types

- A slash has one of four feature values $(\star, \times, \diamond, \cdot)$
- Slash type imposes limits on possible combination
 - Formalized by application/combination rules
- Written as a subscript $(/_{\star},/_{\times},\setminus_{\diamond},\setminus_{\cdot})$

Pavel Kalvoda CCG April 22, 2014 10 / 37

CCG: Slash types – ★

- The most restrictive
- Equivalent to the simple slash in CG
- Supertype of all other slash types

Rules

$$(>)$$
 $X/_{\star}Y Y \Rightarrow X$

$$(<) \quad Y \quad X\backslash_{\star}Y \Rightarrow X$$

Pavel Kalvoda CCG April 22, 2014 11 / 37

Interlude: Building the logical form

CCG allows you to associate functions with the rules. These functions can then be used to generate the logical representation.

Syntax

< expression >:= [< category $>: \lambda <$ paramter > [...] .] < body >

Extended rules

- (>) $X/_{\star}Y: f Y: a \Rightarrow X: fa$
- (<) Y: a $X \setminus_{\star} Y : f \Rightarrow X : fa$

Interlude: Building the logical form

$$\frac{\textit{Marcel}}{\textit{NP : marcel'}} \frac{\frac{\textit{proved}}{(S \backslash \textit{NP}) / \textit{NP : } \lambda x \lambda y. \textit{prove'xy}} \frac{\textit{completeness'}}{\textit{NP : completeness'}}}{S \backslash \textit{NP : } \lambda y. \textit{prove'completeness'y}} > \\ \frac{S : \textit{prove'completeness' marcel'}}{S : \textit{prove'completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove'completeness' y}}{S : \textit{prove'completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' y}}{S : \textit{prove'completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' y}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' y}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' y}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' y}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' y}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' y}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' marcel'}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' marcel'}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' marcel'}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' marcel'}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' marcel'}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{NP : } \lambda y. \textit{prove' completeness' marcel'}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{prove' completeness' marcel'}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{prove' completeness' marcel'}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{prove' completeness' marcel'}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{prove' completeness' marcel'}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{prove' completeness' marcel'}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{prove' completeness' marcel'}}{S : \textit{prove' completeness' marcel'}} > \\ \frac{S \cdot \textit{prove' completeness' marcel'}}{S$$

The expressions are left-associative (prove'completeness'marcel' = (prove'completeness')marcel')

CCG: Slash types $- \times$

- Allows limited permutation
- Subtype of *

Rules

$$(> \mathbf{B}_{\times}) \quad X/_{\times} Y : f \quad Y/_{\times} Z : g \Rightarrow X/_{\times} Z : \lambda z. f(gz)$$

$$(\langle \mathbf{B}_{\times}) \quad \mathbf{Y}/_{\times}\mathbf{Z} : g \quad \mathbf{X}\backslash_{\times}\mathbf{Y} : f \Rightarrow \mathbf{X}/_{\times}\mathbf{Z} : \lambda z.f(gz)$$

Pavel Kalvoda CCG April 22, 2014 14 / 37

CCG: Slash types – ⋄

- Allows associativity (composition)
- Subtype of *
- Can be iterated for a fixed n

Rules

$$(> B)$$
 $X/_{\diamond}Y : f Y/_{\diamond}Z : g \Rightarrow X/_{\diamond}Z : \lambda z.f(gz)$

$$(< \mathbf{B}) \quad \mathsf{Y} \backslash_{\diamond} \mathsf{Z} : \mathsf{g} \quad \mathsf{X} \backslash_{\diamond} \mathsf{Y} : \mathsf{f} \Rightarrow \mathsf{X} \backslash_{\diamond} \mathsf{Z} : \lambda \mathsf{z}.\mathsf{f}(\mathsf{g}\mathsf{z})$$

Pavel Kalvoda CCG April 22, 2014 15 / 37

CCG: Slash types - ·

- Allows any of the former applications
- ullet Subtype of both \diamond and imes

Pavel Kalvoda CCG April 22, 2014 16 / 37

CCG: Type raising

"Combinatory grammars also include type-raising rules, which turn arguments into functions over functions-over-such-arguments."

Rules

$$(> \mathbf{T})$$
 X: $a \Rightarrow T/_i(T\backslash_i X)$: $\lambda f.fa$

Where X is a primitive category

Mimics case marking

Pavel Kalvoda CCG April 22, 2014 17 / 37

CCG: Type raising

$$\frac{\frac{Marcel}{NP}}{\frac{S/(S \setminus NP)}{S/NP}} > T \frac{proved}{(S \setminus NP)/NP}}{\frac{S/NP}{S/NP}} > B \frac{\frac{1}{NP}}{\frac{S/(S \setminus NP)}{S/NP}} > T \frac{disproved}{\frac{(S \setminus NP)/NP}{(S \setminus NP)}} > B}{\frac{S/NP}{S/NP}} > \frac{completeness}{NP} > S$$

Pavel Kalvoda CCG April 22, 2014 18 / 37

CCG: Type raising

Question

Can we derive this sentence without type raising?

Pavel Kalvoda CCG April 22, 2014 19 / 37

CCG: Type raising - cases and free word order

- There are approaches for languages with free word order [Karttunen, 1986]
- Most of them treat NPs as functors (because of flexion)
- Relying on prepositions as indicators of some cases doesn't always work
- ... especially when there are no prepositions

Pavel Kalvoda CCG April 22, 2014 20 / 37

CCG: Type raising - cases and free word order

Finnish inessive:

-ssa indicates "in that place"

Nom		Ines	
kaupunki	city	kaupungissa	in city
kylä	village	kylässä	in village
huone	room	huoneessa	in room

Table : -ssa

All constituents of NP clusters take the same suffix: suuri valkoinen talo \rightarrow suuressa valkoisessa talossa (in a big white house)

Other properties and relationships can be expressed in similar way: suuressa valkoisessa talossamme (in our big white house)

More in [Karttunen, 1986]

Pavel Kalvoda CCG April 22, 2014 21 / 37

CCG: Combinatory principles

Adjacency, Consistency

The Principle of Inheritance

If the category that results from the application of a combinatory rule is a function category, then the slash type of a given argument in that category will be the same as the one(s) of the corresponding argument(s) in the input function(s).

$$\begin{array}{ccc} X/Y & Y \Rightarrow Z \\ X/_{\diamond}Y & Y/_{\diamond}Z & \Rightarrow X/_{\times}Z \end{array}$$

Pavel Kalvoda CCG April 22, 2014 22 / 37

CCG: Expressive power

Question

Is CCG context-free? See [Vijay-Shanker and Weir, 1994]

Pavel Kalvoda CCG April 22, 2014 23 / 37

OpenCCG demonstration

Pavel Kalvoda CCG April 22, 2014 24 / 37

Bounded constructions

- Reflexivization
- Dative-shift
- Raising
- Object and Subject Control

Pavel Kalvoda CCG April 22, 2014 25 / 37

Bounded constructions: Reflexivization

Pavel Kalvoda CCG April 22, 2014 26 / 37

Bounded constructions: Reflexivization

proved :=
$$(S \setminus NP_{3sn}) \setminus LEX((S \setminus NP_{3sn})/NP) : \lambda p \lambda y . p(ana'y)y$$

	proved	itself			
The fixed - point theorem	$(S \setminus NP_{arg})/NP : \lambda x \lambda y.prove' xy$	$(S \setminus NP_{3sn}) \setminus ((S \setminus NP_{3sn})/NP) : \lambda p \lambda y . p(ana'y)y$			
$\overline{S/(S\backslash NP_{3sn})}$: $fptheorem'$	$S \setminus NP_{3sn} : \lambda y.prove'(ana'y)y$				
S : prove'(ana'fptheorem')fptheorem'					

It's a clitic!

- * "Itself proved the fixed-point theorem" is disallowed by the Principle of Inheritance
- Limitations of syntactical/lexical approach: I got the book! Can I see it?
- Very similar approach to dative shifts

Pavel Kalvoda CCG April 22, 2014 27 / 37

Bounded constructions: Raising

Modal verbs and verbs that behave like modals act on almost-complete sentences

(38) seems :=
$$(S \backslash NP)/(S_{TO} \backslash NP)$$
 : $\lambda p \lambda y. seem'(py)$

The primitive *seem'* is a modal or intensional operator which the interpretation composes with the complement predicate, thus:

(39) Marcel seems to drink
$$\frac{S/(S \backslash NP)}{S/(S \backslash NP)} \underbrace{(S \backslash NP)/(S_{TO} \backslash NP)}_{: \lambda p.p \ marcel'} \underbrace{(S \backslash NP)/(S_{TO} \backslash NP)}_{: \lambda p.p} \underbrace{(S_{TO} \backslash NP)/(S_{INF} \backslash NP)}_{: \lambda p.p} \underbrace{S_{INF} \backslash NP}_{: \ drink'} \\
\underbrace{\frac{S \backslash NP : \lambda y.seem'(drink'y)}{S : seem'(drink'marcel')}} >$$

Pavel Kalvoda CCG April 22, 2014 28 / 37

Bounded constructions: Object Control

Some verbs control the infinitival complement's subject through the object.

- I persuaded Marcel to take a bath.
- I persuaded Marcel to bathe himself.

```
persuaded := ((S \setminus NP)/(S_{TO} \setminus NP))/NP : \lambda x \lambda p \lambda y . persuade'(p(ana'x))xy
persuade'(bathe'(ana'(ana'marcel'))(ana'marcel'))marcel'me'
```

Pavel Kalvoda CCG April 22, 2014 29 / 37

Bounded constructions: Subject Control

Some verbs control the subject reference.

- John promised me _ to go away.
- John ordered me _ to go away.

Pavel Kalvoda CCG April 22, 2014 30 / 37

Coordination

Pavel Kalvoda CCG April 22, 2014 31 / 37

Word order

- (93) a. Kyooju-ga komonjo-o gakusee-ni kasita. Professor-NOM manuscript-ACC student-DAT lent-PAST.CONCL 'The professor lent the manuscript to the student.'
 - b. Kyooju-ga komonjo-o gakusee-ni kasita.

$$\frac{\overline{S/VP}^{>\mathsf{T}} \quad \overline{VP/TV}^{\mathsf{T}} \quad \overline{TV/DTV}^{>\mathsf{T}} \quad \overline{DTV}}{S/TV} \xrightarrow{>\mathsf{B}}
\frac{S/DTV)}{S}$$

In this case there is another derivation for the argument cluster:

(94) Kyooju-ga komonjo-o gakusee-ni kasita.

$$\frac{\overline{S/VP}^{\mathsf{T}}}{S/VP}^{\mathsf{T}} \frac{\overline{VP/TV}^{\mathsf{T}}}{VP/DTV}^{\mathsf{T}} \frac{\overline{TV/DTV}^{\mathsf{T}}}{DTV}^{\mathsf{D}}$$

$$\frac{\overline{S/DTV}}{S} \rightarrow \mathsf{B}$$

32 / 37

Intonation

- (107) Q: I know who proved soundness. But who proved COMPLETENESS?
 - A: (MARCEL) (proved COMPLETENESS).
 - H*L L+H* LH%
- (108) Q: I know which result Marcel PREDICTED. But which result did Marcel PROVE?
 - A: (Marcel PROVED) (COMPLETENESS).
 - L+H*LH% H* LL%
- (111) proved := $(S_{\theta} \backslash NP_{\theta})/NP_{\theta} : \lambda x \lambda y. * prove' xy$

Pavel Kalvoda CCG April 22, 2014 33 / 37

Intonation

Source: [Ladd, 2008]

Pavel Kalvoda CCG April 22, 2014 34 / 37

Implementation

- CCG can be parsed in low polynomial time (quadratic)
 - However, most sentences are regular
 - This is an upper bound
 - Humans can do it in linear time (or better)
 - Statistical optimization
- OpenCCG
 - Parser & realizer
 - Java (and lots of XML, too)
 - Standalone or library
 - LGPL

Applications

- English
 - Dialogs
 - Intonation in generation
 - Generation in for in-car systems
- German
 - Parsing
- Italian, Greek, sign languages
- Most projects seem to be abandoned

More at

www.utcompling.com/wiki/openccg/projects-using-openccg

References & other resources

Steedman and Baldridge (2011)

Combinatory Categorial Grammar http://homepages.inf.ed.ac.uk/steedman/papers/ccg/SteedmanBaldridgeNTSyntax.pdf

A Brett

Lecture notes for Linguistics 484 (University of Victoria) http://web.uvic.ca/~ling48x/ling484/notes/index.html

Vijay-Shanker, K. and Weir, David J. (1994)

The Equivalence of Four Extensions of Context-Free Grammars. Mathematical Systems Theory 27(6): 511546.

D. R. Ladd (2008)

Intonational Phonology Cambridge University Press

L. Karttunen (2008)

Radical Lexicalism https://www.academia.edu/1863598/Radical_Lexicalism

B. Hoffman (1992)

A CCG Approach to Free Word Order Languages