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Executive summary
This technical report summarizes the contributions and findings of the GA UK
project no. 1444217 on Optical Music Recognition (OMR).1 The project fo-
cused on extracting musical semantics, represented by MIDI, from
handwritten sheet music. The main output of the project is a series of peer-
reviewed scientific publications that describe how the OMR system was created
and evaluate its performance, both of its individual steps and of its performance
as a whole.

The main success of the project is creating the first machine learning-based
pipeline for recognition of handwritten music notation of arbitrary complexity,
achieving state-of-the-art performance. Furthermore, it has significantly con-
tributed to the growth and consolidation of the OMR scientific community, and
it has contributed to some advances in cross-modal processing of sheet music and
musical audio as well.

The report is structured as follows:

1. A brief introduction to OMR (Chap. 1)

2. A review of OMR state of the art (Chap. 2)

3. The summary of the project’s contributions to OMR (Chap. 3)

The state of the art of OMR (Chap. 2) is reviewed in order for the specific
value of the project’s contributions to become clear (neither under-, nor over-
estimated).

The third chapter (Chap. 3) then summarizes the work done in the project:
details the main results and describes their importance. (The technical details
can be found in the respective publications.) Overall, we are confident to say
that the project has contributed significantly to the state of the art of Opti-
cal Music Recognition. Note that besides technical contributions resulting in
peer-reviewed publications, the existence of the project enabled participation
in conferences and workshops that led to establishing substantial “intangibles”
in scientific community building: a workshop2, a hitherto-missing tutorial with
introductory materials for newcommers to the otherwise rather opaque field,3
an up-to-date bibliography of OMR,4 and a website centralizing OMR research
news.5

1Note that while the project’s official name adds the epithet Multimodal OMR, due to
circumstances described in the project’s annual reports, the overwhelming majority of work
was done on OMR with image inputs only.

2https://sites.google.com/view/worms2018, https://sites.google.com/view/
worms2019

3http://ismir2018.ircam.fr/pages/events-tutorial-07.html
4https://github.com/OMR-Research/omr-research.github.io
5https://omr-research.net/
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Disclaimer
The text of this report is not original work.

We freely acknowledge that the text of this report re-uses heavily the text
from appropriate sections of the author’s dissertation (defended in June 2019),
most of which has been based on work done in this project. The report is
essentially an updated version of the introductory and summary text of the thesis
abridged to only refer to the work done within the project. This report (while
of course accurate) makes no claim to be a scientific publication, so we see no
reason to significantly re-write an already polished text that contains exactly the
right information about the project. Chapter 1 is an amalgamation of chapters
1 and portions of chapter 3 of the thesis, chapter 2 re-uses the corresponding
portions of chapter 3 of the thesis, and chapter 3 re-uses portions of chapter
4. The thesis chapter 2 which explains how music notation works – what it
encodes about a musical composition (and, no less importantly, what it does not
encode), and how it encodes this musical information – is included in this report
as Appendix A.1, in case the reader wishes to refer to this detailed analysis of the
music notation writing language (but for understanding the report, this should
not be necessary).
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1. Introduction to OMR
Optical Music Recognition (OMR) is the field of research that investigates how
to computationally read music notation. Music notation is an established visual
language that encodes music graphically; the role of OMR is to automatically
understand this encoding and extract the encoded musical information from this
graphical representation.

Figure 1.1: An example of a musical manuscript: a copy of G. B. Pergolesi’s
Stabat Mater, part X: Fac, ut portem Christi mortem.

What is the motivation for OMR?
In European culture, and wherever it has been able to reach, music notation is

the primary way of transferring music from composer to performer. The Common
Western Music Notation (CWMN) writing system evolved over the course of the
17th and 18th centuries and has since been used to encode tens or hundreds
of thousands of compositions, one of the defining bodies of European cultural
heritage (like the manuscript in Fig. 1.1). It is daily in use by musicians ranging
from children to professionals, composers as well as performers, and reading
music notation is one of the skills that belongs to a general education.

As the digital domain is becoming the primary domain for manipulation and
dissemination of source materials, digitizing this body of cultural heritage be-
comes essential for meaningful preservation. There are commercial solutions for
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automatically reading printed music (which can hope to garner enough users
to become economically viable), but this software cannot cope with musical
manuscripts – which are the more valuable component of the source material:
many compositions are recorded only in manuscript form.1

Digitization efforts have been undertaken by institutions holding large col-
lections of music scores, such as the SLUB4 in Dresden or the Bavarian State
Library in Munich,5 or by organizations dedicated solely to facillitating access to
scans and born-digital scores such as the IMSLP6 and CPDL7 projects. These
projects lack, however, the capability to make digitally accessible not only an im-
age of the music (which in and of itself is already extremely valuable), but also its
musical content: essentially, what the given music would sound like. Having dig-
ital access to the music encoded by music notation in the given documents would
enable novel ways of interacting with the accumlated body of music scores, such
as musical “full-text” search,8 re-typesetting old and contemporary manuscripts,
creating full scores from collections where only parts for individual instruments
survive – and vice versa, exporting parts for individual instruments from the full
scores; cross-modal retrieval, digital musicology at scale and with access to music
that has never been recorded, and cost-cutting tools for composers or music di-
rectors. Anecdotally, OMR remains one of the applications of computer science
in the musical domain where the gap between obvious expectations and delivered
results remains widest.

Besides the angle of cultural heritage preservation, dissemination, and deeper
understanding, functioning OMR would singificantly decrease the costs of work-
ing with contemporarily-produced sheet music as well: many scores are being
made available as PDFs, ususally scans; standard unsophisticated musical oper-
ations (such as exporting parts from orchestral or chamber scores, or transpo-
sitions) currently require re-writing the music in a notation software by hand,
which is extremely time-consuming.

1.1 What does OMR do?
The process of reading music can be formulated as the process of correctly in-
ferrng the notes encoded graphically using the music notation visual language

1The reasons for this are economical. Before the advent of personal computers and the
proliferation of software such as Sibelius2 or MuseScore,3 music typesetting was a very costly
endeavor reserved for authors and compositions with practically assurred chances of market
success, or – in earlier times – with a particular printing privilege; therefore, most compositions
never had the chance to be typeset.

4https://www.slub-dresden.de/en/collections/music/
5https://www.bsb-muenchen.de/en/collections/music/
6https://imslp.org
7https://cpdl.org
8The composition is often referred to in music and musicology as musical text; hence the

term is indeed appropriate.
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in a document that is commonly called the score. Notes are abstract musical
objects that are determined by five attributes – pitch (on a piano, which key
to press), duration (how long to hold it), loudness and timbre (which are not
encoded in music notation, aside from signs for some instrument-specific playing
techniques), and the fifth attribute is onset: when should one press the given key,
in relation to the start of the composition. Recovering the ⟨pitch, duration,
onset⟩ triplets is sufficient to then create a practical representation for further
processing in most of the applications utilizing of OMR (such as searching for a
piece based on a short melody); one widespread such representation is the MIDI
file.9 This is the first major part of the problem of Optical Music Recognition:
extracting the musical semantics, defined as the set of these triplets.10

Apart from extracting the set of notes encoded by a music notation docu-
ment, the second major task of OMR is recording how these notes were encoded:
creating a digital representation of the score itself. This is a different objective:
one may recover the musical semantics without explicitly recording information
about how the semantics were encoded (e.g., one need not remember whether the
stem of a half-note was oriented up, or down). Due to the nature of the music
notation writing system, recovering the score itself requires a more complex rep-
resentation than a set of triplets. Typical file formats for storing music notation
are MusicXML,11 or *.mscz, *.sib and other formats used by music notation
editors. That this is a more complex task is perhaps best illustrated by the fact
that the same semantics can be represented by many different configurations of
music notation symbols, as attested to in Fig. 1.2.

1.1.1 The different inputs of OMR
Orthogonally to their goals, OMR systems can be characterized by the types of
input they are designed to process (see Fig. 1.3).

The first major difference lies in the input signal: we differentiate offline
OMR, which processes an image, from online OMR, which processes the tempo-
ral signal from a touch-based device (such as writing with a stylus on a tablet).
The latter is in principle simpler because the pen strokes represent a very good
natural segmentation heuristic; however, the former is more broadly applicable:
while online OMR has its place whenever a composer or arranger is willing to
use a device that records the trajectory information information, it cannot deal
with the stacks of sheet music that have already been written. An interesting
combination, however, is to use online OMR in ground truth acquisition, as
tracing the already written notation is much faster and more natural to qualified
annotators (who presumably themselves have ample experience with writing mu-

9https://www.midi.org
10Technically, since it is possible for two notes to share all three properties, one needs to

assign an ID as well, in order for the notes to formally be a set.
11https://www.musicxml.com
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(a) Input: manuscript image.

(b) Replayable output: pitches, durations, onsets. Time is the horizontal axis, pitch
is the vertical axis. This visualization is called a piano roll.

(c) Reprintable output: re-typesetting.

(d) Reprintable output: same music expressed differently

Figure 1.2: OMR for replayability and reprintability. The input (a) encodes
the sequence of pitches, durations, and onsets (b), which can be expressed in
different ways (c, d).

sic notation), as done by Calvo Zaragoza et al. [2016a]. The second distinction
based on input signal is whether the music in question is typeset, or handwrit-
ten, with obvious implications for symbol intra-class symbol variability. Third,
one must specify what type of music notation a system is designed to process:
CWMN, mensural notation, choral square notation, tabulature (lute, modern
guitar, North German organ...), etc.

A second major axis of classifying OMR systems by input is according to
the complexity of notation they are able to process. This was described in
depth by Byrd and Simonsen [2015]; we use a slightly different classification that
nevertheless preserves the spirit of the original categories:

• Monophonic: each staff contains at most one voice; each simultaneity con-
tains at most one note.

• Homophonic: each staff contains at most one voice; each simultaneity can
contain more than one note.

• Polyphonic: each staff can contain multiple voices, but the staffs can still
be processed in isolation.
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• Pianoform: staffs contain multiple voices, and there is interaction between
staffs (e.g., cross-staff beaming).

A third way of characterizing the inputs of OMR is by the image quality:
both in terms of the underlying document, and in terms of the imaging process
used to digitize the document. Problems that affect the underlying document
are degradation over time (especially for archival materials) – most serious of
which is bleedthrough – or outright damage to the material (stains and tears).
The imaging process then ranges from high-quality scans from music libraries to
mobile phone photos in sub-optimal lighting conditions.

An overview of the basic characterizations of OMR inputs is given in Fig. 1.3.

1.2 Why is OMR difficult?
OMR is still an open problem and satisfactory solutions are available only for
limited sub-problems [Bainbridge and Bell, 2001, Rebelo et al., 2012, Novotný
and Pokorný, 2015]. Beside the small size of the field and the accompanying
non-technical challenges [Calvo Zaragoza et al., 2018], one reason why OMR is
not solved to any satisfactory extent is its sheer difficulty [Byrd and Simonsen,
2015].12

While the straightforward intuitive description of OMR as “Optical Character
Recognition for music”. is appealing, this analogy is only superficially accurate
in terms of the purpose of both OMR and OCR. Music notation has evolved into
a very different writing system than the writing systems for natural languages:
it is a system where one must recover configurations of symbols in order to be
able to output the musical information that OMR is, by definition of its domain,
expected to produce. Compared to OCR, which has to output the sequence of
graphical symbols (including whitespace) and this already can be presented as
useful input for downstream applications in Natural Language Processing, OMR

12That OMR is a difficult problem is attested to by the fact that problems connected to the
inherent properties of music notation have been called “really rotten” in a publication title,
already in 1989 [Clarke et al., 1989]!

Figure 1.3: The basic ways of characterizing OMR inputs.
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Figure 1.4: The presence of multiple voices (indicated with red lines) adds com-
plications.

must, by virtue of the domain it operates on, perform additional steps in order to
be considered useful. This is one fundamental reason why the analogy of OMR
to OCR does not hold beyond a superficial similarity of purpose.

A furhter source of difficulty are the visual properties of music notation.
According to Byrd and Simonsen [2015], CWMN is probably even the most
complex known writing system, especially from the point of view of computer
vision. The main reasons why the way CWMN is written makes OMR more
difficult than OCR are:

• In order to correctly disambiguate individual symbols, and more generally
in order to construct and interpret the symbol configurations correctly,
both the horizontal and vertical dimensions are salient, in terms of both
size and position.

• Graphical complexity is increased due to the fact that many symbols over-
lap (especially stafflines) [Bainbridge and Carter, 1997], and by design com-
posite graphical structures are built (esp. beamed groups – see Fig. A.6).

• In handwritten music, besides vastly more varied symbol shapes, the vari-
ability of handwriting leads to a lack of reliable topological properties over-
all (Fig. 1.6) – symbols that should not touch start touching, and conversely
gaps are left where symbols should touch or overlap.

• In polyphonic music, individual voices are written, in a sense, “over” each
other (some symbols may be shared among multiple voices) – as opposed
to OCR, where the ordering of the symbols is linear (Fig. 1.4).

• Recovering pitch and duration requires recovering long-distance relation-
ships (Fig. 1.5).

A further hindrance to OMR is that despite its intuitive appeal, the field is
small, has had few resources and standards for reproducible OMR research, had
little introductory literature for newcomers, and overall lacked internal cohesion.
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(a) The C-clef on the left influences how stafflines are interpreted with respect to
the pitches they denote.

(b) A change of clef and key signature. Also, notice the sharp in the middle: it is
valid up to the end of the measure.

Figure 1.5: Long-distance relationships affecting pitch of the note on the right.

(a) Nice handwriting that follows topological con-
straints according to ideal printed CWMN.

(b) Disjoint notation primitives.

(c) Very hasty handwriting. Some noteheads may
be very hard to distinguish from the stem.

Figure 1.6: The variety of handwriting. Taken from the CVC-MUSCIMA dataset
[Fornés et al., 2012].
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These challenges and issues have combined to make OMR a relatively immature
field that provides few satisfactory solutions.

1.3 The project in relation to OMR
The project addresses the task of automatically reading musical manuscripts.
Based on the author’s previous findings in the “theory” of OMR and the re-
sources he prepared: most importantly, the Music Notation Graph (MuNG13

formalism for describing music notation that allows formulating the problem of
musical manuscript recognition in a machine-learnable manner, and the asso-
ciated MUSCIMA++ dataset Hajič jr. and Pecina [2017a], in the project, an
OMR system that takes an image of handwritten music as input and outputs a
MIDI file capturing the musical semantics encoded in the given score is built and
evaluated both directly and in a retrieval setting.

In terms of the above introduction to OMR, the project created a solution
to replayability-oriented OMR that operates on handwritten music notation of
arbitrary complexity. The input score images exhibit no degradation, with a
clear separation of foreground and background. (While the methods we used do
not require that this be true, they would probably require accordingly more data
to reach similar levels of performance.)

The inherent variability of mansucripts also points directly towards using
statistical methods that can deal with the corresponding uncertainties; we apply
machine learning techniques that form the current state of the art in computer
vision in general, which is specifically deep learning [Schmidhuber, 2015, LeCun
et al., 2015, Ian Goodfellow et al., 2016].

13https://github.com/OMR-Research/mung
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2. OMR State of the Art
At its most general, while the “wishlist” of OMR applications exists from the
earliest publications [Pruslin, 1966, Prerau, 1971, Fujinaga, 1988, Blostein and
Baird, 1992] onwards, after more than 50 years of OMR research, few convincing
results have materialized. The reasons for this state of affairs are several. First,
despite its intuitive appeal, the field is small (some 500 publications to date), as it
requires a combination of computer science expertise and relatively deep domain
knowledge of music and music notation. Second, it follows that the field does not
have too many resources and established methodologies. Most work on OMR has
been focused into PhD theses [Fujinaga, 1996, Bainbridge, 1997, Fornés, 2009,
Rebelo, 2012, Calvo Zaragoza, 2016], which is a form that offers little incentive
for collaboration and establishing a research community that in turn establishes
standards for evaluation and interoperability; therefore, it becomes difficult to
build on previous work. Given the lack of standardized, practical evaluation
methodologies [Byrd and Simonsen, 2015, Hajič jr. et al., 2016] and even the
underlying understanding of what should be evaluated, the field cannot in good
conscience precisely say what “the state of the art in OMR” is.

Having said that, there are survey papers available for OMR. The first such
substantial paper is by Blostein and Baird [1992], which is the first attempt to
systematize the field. The key survey paper for OMR up until 2012 is [Rebelo
et al., 2012], which systematizes the many approaches and contributions to OMR.
The underlying terminology of the field and an analysis of its structure and
needs has been done by Byrd and Simonsen [2015]; a smaller but nevertheless
useful review paper for developments up to the start of this project has been
written by Novotný and Pokorný [2015]. Recently, the paper Understanding
Optical Music Recognition [Calvo-Zaragoza et al., 2019]1 systematizes the field
from the perspective of its output, in addition to Byrd and Simonsen [2015]
characterizations by input and Rebelo et al. [2012] by method. Further new
resources exist:2 a list of OMR datasets3, an OMR bibliography,4 and a video
series that introduces OMR.5,6 What the survey papers have in common is the
assessment that a complete OMR system still lies in the future.7

1Also created as part of the project; the arXiv version does not acknowledge the project;
the version currently (31. 2. 2020) under review at the ACM Computational Surveys journal
does.

2That the project’s PI was heavily involved in.
3https://apacha.github.io/OMR-Datasets/
4Originally maintained by Fujinaga [2000], recently updated and verified: https://github.

com/OMR-Research/omr-research.github.io.
5Presented at the ISMIR 2018 conference as a tutorial: https://www.youtube.com/

playlist?list=PL1jvwDVNwQke-04UxzlzY4FM33bo1CGS0
6The latter two resources were to a significant extent co-created by the project PI.
7Incidentally, this is the title of[Bainbridge, 1994], “A complete optical music recognition

system: Looking to the future”.
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With these limitations in mind, we turn to introduce the state of OMR, in
terms of its methods and the available infrastructure.

2.1 Methods
In terms of methods, the problem is usually broken down into the following steps
[Bainbridge and Bell, 2001, Fornés et al., 2006, Rebelo et al., 2012, Hankinson,
2014, Novotný and Pokorný, 2015]:

1. Preprocessing. This step involves image de-skewing, potentially bina-
rization, and other steps that ensure the image is as normalized as possible
for further processing.

2. Staff detection and removal. The staffs (horizontal objects consisting,
usually, of 5 equally-spaced lines) are the ”spines” along which music is
read, so detecting them provides basic information about the layout of
the sheet music. They are often then removed from the image, as they
are responsible for most of the object overlap and crossing; once staffs are
removed, segmentation can be done using some heuristics such as connected
components. This is a step specific to processing music notation. The
pipeline up to this step is depicted in Fig. 2.1.

3. Object detection. The individual notation objects are then detected,
either in two steps (segmentation and classification) in earlier approaches,
or detected directly in more recent works, using deep learning. In our view,
the distinction from the previous step is mostly a practical issue, not one
of principle – stafflines are also symbols that must be detected – but the
methods for detecting stafflines have historically been distinct; this is due
both to their distinct characteristics and the fact that most methods relied
on finding and removing stafflines before the remaining objects could be
found.

4. Notation assembly and semantics inference. Given the featural na-
ture of music notation as a writing system, the relationships of the individ-
ual detected objects to each other must be added (such as: accidentals must
be associated with the right note or grouped into a key signature, beams
must be correctly assigned to noteheads, etc.) and the musical semantics
can thus be inferred, by applying the rules of music notation.

The final step is to construct the output representation in the required format.

2.1.1 Preprocessing
Preprocessing focuses on normalizing the input images in order for it to con-
form to the assumptions of the downstream parts of a given OMR system (e.g.,
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(a) Original image.

(b) Binarized image: notation pixels as foreground.

(c) After staff removal.

Figure 2.1: The standard OMR pipeline from the original image through image
processing including binarization, and staff removal. While staff removal is tech-
nically part of symbol recognition, as stafflines are symbols as well, it has until
very recently been considered practical to recognize stafflines separately.

de-skewing, so that staffs are straight [Fujinaga, 1988]). The most important
problem for OMR in this stage has been binarization [Rebelo et al., 2012]: se-
lecting which pixels belong to the background, and which pixels are part of the
notation. However, authors have also attempted to bypass binarization, espe-
cially before staffline detection [Rebelo and Cardoso, 2013, Calvo Zaragoza et al.,
2016b]. Given the results of [Calvo Zaragoza et al., 2016b], we believe that with
deep learning methods that work on raw pixel values instead of various mor-
phological features, binarization has ceased to be a problem relevant to OMR.
(Furthermore, the only dataset available at the beginning of the project was
already binarized.)

Other preprocessing relates mostly to imperfections in the imaging process
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(e.g., uneven lighting, deformations of the paper; with mobile phone cameras,
limited depth-of-field may lead to out-of-focus segments of the image) and the
quality of the underlying document (degradation, stains, especially bleedthrough)
[Byrd and Simonsen, 2015]. Other than possibly some specific binarization tech-
niques, or rather estimating the optimal settings of general binarization tech-
niques, preprocessing is not specific to OMR.

2.1.2 Staff detection and removal
Staff detection and removal has seen a lot of activity, as it is a critical issue for
OMR since its beginnings [Pruslin, 1966, Prerau, 1971, Fujinaga, 1988]. It is
the only part of OMR where a competition has been organized [Fornés et al.,
2011, Fornés et al., 2014], and an extensive dataset was created [Fornés et al.,
2012]. Removing stafflines significantly simplifies the topology of the foreground
regions, to the extend that connected components become a useful (if imperfect)
heuristic for pruning the search space of possible segmentations [Fujinaga, 1996,
Rebelo, 2012]. Furthermore, the vertical spacing of stafflines (staffspace height,
measured in pixels) is the primary parameter that describes the scaling of the
score: one can normalize scores by re-scaling to some fixed staffspace height (due
to differences in staffline thickness relative to the height of a whole staff, using
a sum of staffline and staffspace height is a more robust characteristic [Rebelo,
2012]).

Traditional staffline detection and removal methods exploit the fact that
stafflines are by definition long and straight, or at least should be. The natural
idea has been to detect them by searching for peaks in horizontal projections
[Pruslin, 1966, Prerau, 1971], notably also by Fujinaga [1988]. A more general
approach that also applies to grayscale images, not necessarily only to binarized
inputs, was attempted by Cardoso et al. [2009] and Rebelo et al. [2013], Rebelo
and Cardoso [2013], search for shortest “stable paths” through foreground areas
from the left edge of the score to the right, also based on the assumption that the
stafflines are the only extensive horizontal foreground objects. However, these
results have been almost entirely superseded by convolutional networks Calvo
Zaragoza et al. [2017c], Gallego and Calvo Zaragoza [2017], achieving robust re-
sults: both significantly outperforming previous results on the CVC-MUSCIMA
dataset used for the competition [Fornés et al., 2012], and being applicable to
different types of scores as well. Furthermore, yet more object detection methods
using deep learning (such as those used in the project) have been found to not
require staff removal at all [Pacha and Calvo Zaragoza, 2018, Hajič jr. et al.,
2018a, Pacha et al., 2018b].
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2.1.3 Object Detection
Object detection, whether with or without staffs removed, has been attempted
mostly in two steps: a segmentation or localization step first, and a classification
step next. Classification of musical symbols has produced near-perfect accu-
racy for both printed and handwritten musical symbols [Rebelo, 2012, Chanda
et al., 2014, Wen et al., 2016], with baseline classification algorithms on raw
pixels as features achieving close to 80 % accuracy [Calvo Zaragoza and Oncina,
2014]. However, it must be noted that different authors ignored various subsets
of possible notation symbols, subject to data availability, and yet more impor-
tantly, they use disparate “alphabets” of music notation symbols. Some OMR
researchers decompose notation into individual primitives (notehead, stem, flag)
[Coüasnon and Camillerapp, 1994, Bainbridge and Bell, 1997, Bellini et al., 2001,
Bainbridge and Bell, 2003, Fornés, 2005], while others retain the graphical “note”
as a single visual object, and beamed groups are decomposed into the beam(s)
and the remaining notehead+stem combinations of “quarter-like notes” [Rebelo
et al., 2010, Rebelo, 2012, Pham et al., 2015]; in some literature that chooses
this decomposition, beams are unfortunately not included at all [Calvo Zaragoza
and Oncina, 2014, Chanda et al., 2014].

Segmentation of handwritten scores has until recently been yet more elu-
sive. Most segmentation approaches such as projections [Fujinaga, 1988, 1996,
Bellini et al., 2001] relied on topological constraints (such as: the notehead and
stem touch) that do not necessarily hold even in printed music, much less in
manuscripts. In response, a fuzzy approach to topological constraints has been
proposed in [Rossant and Bloch, 2006], and morphological skeletons have been
proposed instead [Roach and Tatem, 1988, Ng et al., 1999, Luth, 2002] as a basis
for handwritten OMR. However, as with the other steps, general object detection
methods based on deep learning (including those developed by the project) have
recently brought previously unseen performance [Pacha et al., 2018b] that has
since improved further.

2.1.4 Notation Assembly
The locations and classes of symbols on the page becomes the input to the no-
tation assembly stage. Recall that music notation is a featural writing system:
the essence of notation assembly lies in inferring the symbol configurations from
the individual symbols and their locations.

However, it is not clear what the output of this stage is, or rather: the for-
mulation of the output heavily depends on the assembly approach taken. This is
because at this point in the recognition pipeline, one must start thinking about
how to formally represent music notation. In strictly replayability-oriented ap-
plications, when using end-to-end learning, one may decide that no explicit rep-
resentation is needed [Shi et al., 2017, van der Wel and Ullrich, 2017, Calvo
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Zaragoza et al., 2017b, Calvo Zaragoza and Rizo, 2018]. However, in other cases,
it is necessary to have a formal model of music notation in mind.

One such formalism are context-free grammars. This approach is rooted in
the fact that music notation seems like it can be hierarchically decomposed, cor-
responding well to the notion of a non-terminal symbol. A page is split into
systems, systems into staffs, staffs into measures, measures into notes, etc. Fur-
thermore, there are strong visual syntactic rules for how to write valid music
notation: e.g., every full notehead must have an associated stem; the stem is sup-
posed to touch the notehead on the rightmost point (if it is pointing upwards),
or leftmost (if pointing down); the half-rest is on top of the middle staffline, the
whole rest is positioned “hanging” from below the 2nd staffline from the top; an
inline sharp is at the height of the notehead, etc., that invite this line of think-
ing: one can easily imagine generation with non-terminals such as quarter note
−− > {notehead-full, stem} with additional attributes to make sure that,
e.g., stems point in the right direction.

Using context-free grammars has been first attempted already in 1982 [Alfio
Andronico and Alberto Ciampa, 1982] and several times since [Coüasnon and
Camillerapp, 1994, Coüasnon and Rétif, 1995, Bainbridge and Bell, 2003, Szwoch,
2007], as it offers an elegant formalism with established inference algorithms.
However, although it does to some extent simulate the human process of writing
music (“I need to write a G4# quarter note” translates at the graphical level to
“write a full notehead on 4th staffline, stem pointing upwards, sharp on the left
of notehead”), the intuitively appealing top-down hierarchical decomposition of
music notation into a tree structure is not necessarily an adequate representation
of music notation itself: for instance, in the (relatively frequent) situation where
two voices share a notehead, one either has to “invent” an overlapping notehead
symbol so that the parse tree remains a tree, or let subtrees share leaves. This
is a problem for parsers, as they rely on a pre-computed segmentation of the
input. In response, graph grammars have been used [Fahmy and Blostein, 1993,
Baumann, 1995, Reed and Parker, 1996, Fahmy and Blostein, 1998]. The core
idea of graph rewriting is also being used by the Audiveris open-source OMR
system [Bitteur, 2004].8 However, the interest in such unified formalisms (and
notation assembly in general) seems to have waned after 2000, in exchange for
increased focus on staff removal and symbol classification.

The project uses a novel notation graph formalism developed previously by
the PI that is both sufficiently strong to represent arbitrary music notation,
and allows formulating assembly as a straightforward machine learning task; see
section 3.1.

8A grpah is also used by Chen et al. [2015a]: a graph is built with edges directly connecting
some notation primitives, but this was done for the purposes of preserving layout constraints
when stretching and otherwise manipulating a score without fully recognizing it.
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2.1.5 Constructing the output representation
Once the score is fully described and the musical semantics are inferred, what
remains is to store the given score in the desired output format. The individual
formats are each suitable for a different purpose: for instance, MIDI is most
useful for interfacing different electronic audio devices, MEI9 is great for editorial
work, LilyPond10 allows for excellent control of music engraving, MusicXML11

offers greatest interoperability with music notation software. Many of these have
associated software tools that enable rendering the encoded music as a standard
musical score, although some – notably MIDI – do not allow for a lossless round-
trip.12

For replayability-oriented applications, the most practical output format is
MIDI, which can be straightforwardly created from the list of ⟨pitch, onset,
duration⟩ triplets that the OMR system has inferred.

As the notation assembly step should resolve any remaining ambiguity, con-
structing the output representation should remain an engineering task (even
though it may still be complex), not a part of the OMR process per se. How-
ever, this still depends on having an appropriate formalism for notation assembly
output.

2.1.6 End-to-end OMR
With the advent of deep learning methods that require barely any feature engi-
neering, a different approach than decomposing the problem into the standard
pipeline can be taken: end-to-end recognition, where the intermediate stages of
the process are not done explicitly and the corresponding intermediate results –
especially the individual symbols and their locations – are never recorded. As
the object detection subproblem is in principle hard in OMR, including issues
with properly defining the set of symbols (see subsection 2.1.3), this approach
is particularly appealing. It also widens the possibilities of using synthetic data
generated on the fly during training. Recurrent networks offer the possibility
of dealing with the long-range dependencies inherent in music notation, such as
remembering which clef or key signature is valid for the particular location in
the score.

Already before the advent of deep learning, the end-to-end approach has
been elegantly applied using Hidden Markov Models by Pugin [2006a], for the
recognition of monophonic mensural notation printed with movable type. For
monophonic music, this approach was presented first by Shi et al. [2017] as

9https://music-encoding.org
10https://lilypond.org
11http://www.musicxml.com/
12That is: when converting a file from format A to B and then back from B to A, the result

will not necessarily contain all the information of the original file in format A.
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a side note for a recurent-convolutional model; an encoder-decoder model was
used by van der Wel and Ullrich [2017], Calvo Zaragoza et al. [2017a] use a
recurrent-convolutional model with Connectionist Temporal Classification loss.
Unfortunately, no end-to-end models have so far been developed for polyphonic,
much less pianoform music.

2.1.7 Interactive OMR
For replayability-oriented applications where the OMR output is supposed to be
used as performance material for musicians, no errors are tolerated, and therefore
OMR outputs will always be held “under suspicion” until reviewed and cleared
by a qualified editor [Raphael and Wang, 2011]. Since the application requires
human intervention anyway, there is little reason to limit the intervention to
the endpoint of the recognition process, especially since low-level errors early
in the recognition pipeline can have severe implications [Bellini et al., 2007], it
would be useful to catch these errors as they happen, saving subsequent editing
effort. This line of thought leads to interactive OMR systems, where the user
is invited to intervene along the pipeline. Fujinaga [1996] proposed an adaptive
system that learned from user feedback over time; the ideas have been imple-
mented in the Gamera framework [Droettboom et al., 2002]. More recently, this
framework has been adapted into the Rodan online infrastructure that allows for
arbitrary interactive pipeline steps in the browser [Hankinson, 2014]. Outside of
the Gamera/Rodan effort, Church and Cuthbert [2014] created an interface to let
users correct misrecognized rhythmic patterns using correct measures elsewhere
in the score. In contrast to these post-editing approaches, Calvo Zaragoza et al.
[2016a] combine the musical score image with the signal from pen-based “trac-
ing” of the symbols, merging the offline and online modalities of OMR. Chen and
Duan [2016] incorporate human guidance directly into the recognition process,
by letting the user control what elements of notation are allowed, in order to
avoid false positives for rare situations that the editor can rule out for the given
page; the resulting CERES tool allows quick re-recognition and incorporates vi-
sual feedback. What has not been attempted yet is Interactive OMR guided by
audio input, even though playing the music in question seems to be the fastest
and most natural way of providing user feedback: after all, musical instruments
are exactly the interfaces intended for the interpretation of the musical score.
Closest is the work on tracking audio in sheet music Dorfer et al. [2016, 2018c].

2.1.8 Online OMR
With the advent of touch-operated devices, especially in the realm tablets, there
has been interest in online OMR that takes as its input signal the trajectory
of a pen [Anstice et al., 1996, Miyao and Maruyama, 2004, Mitobe et al., 2004,
Tsandilas, 2012, Calvo Zaragoza and Oncina, 2014, 2015, Calvo Zaragoza et al.,
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2016a, Calvo Zaragoza and Jose Oncina, 2017, Sober Mira et al., 2017]. The ad-
vantage of this approach is that much more information is available to the OMR
system: individual pen strokes are an important pre-segmentation heuristic, the
order in which strokes are done will also be predictive of their meaning [Calvo
Zaragoza and Jose Oncina, 2017]. This approach cannot on the other hand deal
with the already accumulated body of written works. However, an elegant idea is
to use online OMR to speed up data acquisition for offline OMR [Calvo Zaragoza
et al., 2016a]: the user traces notation that has already been written on a touch
interface, and the system thus has multiple signals available. This is much faster
than tracing the notation elements individually, and it might make it feasible
for untrained annotators to quickly create in-domain datasets for specializing
OMR systems for individual collections. The MuRET tool by Rizo et al. [2018]
implements this process.

2.2 Infrastructure of OMR
The individual steps of this pipeline have garnered the most attention in OMR
literature, but three more important areas must be mentioned which underpin
the overall state of the art: datasets, evaluation, and software.

Datasets have been scarce. There was no openly available dataset for object
detection, for instance; much less for the full recognition pipeline. The only
extensive dataset that has been available is the CVC-MUSCIMA staff removal
and writer identification collection of 1000 scores (and eleven distortions, for a
total of 12 000 images) by Fornés et al. [2012]. For symbol classification (not
detectiononsted the follthe ionalon ture !), the HOMUS dataset [Calvo Zaragoza
and Oncina, 2014] was the most extensive, with the advantage of providing inputs
in both offline and online flavors, and also the only such dataset that was publicly
available; even so, it contained only 32 different symbol classes (with the core
alphabet of music notation, disregarding text, having more than 50 such classes).

During the last three years, scientific dataset have, however, become avail-
able. The first significant addition was the MUSCIMA++ dataset [Hajič jr. and
Pecina, 2017c], which still remains the only dataset for full-pipeline recognition
and for CWMN manuscripts and is one of the key prerequisites for the success
of this project, but for symbol detection and partial semantics inference, there is
the much more extensive – though printed and synthetic – DeepScores [Tuggener
et al., 2018]. Third, the Capitan dataset of mensural notation has been made
available [Pacha and Calvo Zaragoza, 2018] that supports symbol detection, al-
though not semantics inference.

Evaluation remains a problem. While it is possible to evaluate individual sub-
problems of the OMR pipeline and clear up-to-date methodologies exist [Fornés
et al., 2012, Rebelo, 2012, Calvo Zaragoza and Oncina, 2014, Pacha and Calvo
Zaragoza, 2018, Hajič jr. et al., 2018a], evaluating an OMR system as a whole
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is still problematic [Byrd and Simonsen, 2015, Hajič jr. et al., 2016]. The most
extensive such effort was probably undertaken by Bellini et al. [2007], who di-
rected annotators to manually label OMR mistakes according to a detailed list of
possible errors; a different approach was undertaked by Szwoch [2008] and Hajič
jr. et al. [2016], which seeks to develop automated metrics for directly comparing
files in the MusicXML output format.

Finally, we mention software tools available for OMR research. The veritable
Gamera system [MacMillan et al., 2001, 2002] has held reference implementa-
tions of various OMR methods, for instance staff removal up until the machine
learning-based contributions of the last six years; it has been used to build also
an OMR system for lute tabulatures [Dalitz and Karsten, 2005] and Byzantine
chant notation [Dalitz et al., 2008]. Aside from Gamera, there is the Audiveris
generic open-source system [Bitteur, 2004] and the Aruspix system for processing
early music prints [Pugin, 2006b, Pugin et al., 2008]. In recent years, the OMR
pipeline has been marshalled by the SIMSSA project [Fujinaga et al., 2014] under
the Rodan system [Hankinson, 2014], which is openly available. Given the dom-
inance of machine learning in computer vision, this includes interactive editors
for creating ground truth: within the SIMSSA system, these are editors such as
Pixel.js [Saleh et al., 2017] for creating pixelwise ground truth for binarization
and staff deteciton, or Neume.js [Burlet et al., 2012] for manipulating recogni-
tion outputs of sqaure notation of neumes. Recently, the MuReT tool was also
released that facillitates also pen-based data acquisition [Rizo et al., 2018].

The project author has also published the MUSCIMarker editor for ground
truth acquisition [Hajič jr. and Dorfer, 2017], and throughout the run of the
project, it has been extended with server-based recognition functionality.13

2.2.1 Commercial Software
Finally, we mention the available commercial software. The biggest players are
PhotoScore14 and SmartScore15, each integrated into one of the major commer-
cial notation editors (PhotoScore in Finale, SmartScore in Sibelius). Recently,
the PlayScore software has emerged.16 Given the sorry state of OMR evaluation
and the “black box” nature of commercial software, it is not possible to measure
their performance with more accuracy than anecdotal evidence.17 This anecdotal
evidence suggests that at least for high-quality printed scans, the performance of
all commercial software has improved significantly during the last several years,
to the extent that they can now actually be used in practice. However, at the
time of writing only PhotoScore offers manuscript recognition functionality, and

13https://github.com/omr-research/MUSCIMarker
14http://www.neuratron.com/photoscore.htm
15http://www.musitek.com/index.html
16www.playscore.co
17See e.g. https://omr-research.net/2019/11/04/assessing-playscore/

21

https://github.com/omr-research/MUSCIMarker
http://www.neuratron.com/photoscore.htm
http://www.musitek.com/index.html
www.playscore.co
https://omr-research.net/2019/11/04/assessing-playscore/


it is rather bad. The Audiveris software is being gradually integrated into the
MuseScore open-source notation editor.18 For online OMR, the Neuratron No-
tateMe19, StaffPad20 and the MyScript back-end service21 are available, and again
the estimates of their usefulness are at best anecdotal and uncertain.

18https://www.musescore.com
19https://www.neuratron.com/notateme.html
20https://staffpad.com
21https://developer.myscript.com/music
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3. Contributions
The project has contributed to the field of Optical Music Recognition the follow-
ing:

• The mung software package for manipulating the MuNG representation of
music notation (T2), musical semantics inference, and MIDI export.1
[Hajič jr. and Pecina, 2017c,b, Hajič jr. and Dorfer, 2017]

• General music notation object detection with U-Nets (semantic segmenta-
tion), achieving (then-)state-of-the-art detection performance across mul-
tiple datasets.
[Hajič jr. et al., 2018a, Pacha et al., 2018b]

• Notation assembly using pairwise MuNG edge/non-edge classification.
[Hajič jr. and Pecina, 2017c, Hajič jr. et al., 2018a]

• Full pipeline combining the previous contributions that produces
MIDI from musical manuscripts from the MUSCIMA++ dataset,
with a graphical interface with MUSCIMarker.2

[Hajič jr. and Pecina, 2017b, Hajič jr. and Dorfer, 2017]

• A tutorial on Optical Music Recognition presented at the ISMIR 2019
conference, available as a YouTube playlist.3 4

• The project further contributed to the field by enabling the PI to partic-
ipate in GREC 2017 OMR community discussion and subsequently serve
as one of the General Chairs of the 1st International Workshop on Reading
Music Systems (WoRMS),5 a satellite event of the ISMIR 2018 conference.6
[Calvo Zaragoza et al., 2018]

The key pre-requisite to building the pipeline in this project was the previous
work of the PI on the Music Notation Graph formal representation of music
notation, which was used for designing and creating the MUSCIMA++ dataset.
Hajič jr. and Pecina [2017c]. This work provided then a (relatively) clear path
how to design and run experiments leading to the recognition pipeline (M4). We
therefore first introduce the MuNG representation, the MUSCIMA++ dataset,
and then we can proceed to describe the corresponding recognition pipeline.

1https://github.com/OMR-research/mung
2https://github.com/OMR-research/MUSCIMarker
3https://youtube.com/playlist?list=PL1jvwDVNwQke-04UxzlzY4FM33bo1CGS0
4Note that ISMIR tutorials involve writing an extended abstract that undergoes review.
5https://sites.google.com/view/worms2018
6https://https://ismir2018.ircam.fr/pages/events-at-a-glance.html
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Beside this main line of research, the project did make some contributions
to multimodal sheet music-audio research (although not specifically OMR): to-
gether with CP JKU Linz, it co-produced the MSMD dataset7 and the associated
improvements in audio-based sheet music retrieval (and vice versa) [Dorfer et al.,
2018a].8

3.1 Music Notation Graph
We have already prepared ground for the idea of the Music Notation Graph
(MuNG) through the discussion of notation assembly methods and their lim-
itations in section 2.1.4. A shared property of all the context-free grammar
approaches [Alfio Andronico and Alberto Ciampa, 1982, Coüasnon and Camiller-
app, 1994, Coüasnon and Rétif, 1995, Bainbridge and Bell, 2003, Szwoch, 2007]
and graph rewriting systems [Fahmy and Blostein, 1993, Baumann, 1995, Reed
and Parker, 1996, Fahmy and Blostein, 1998, Bitteur, 2004] in OMR so far is
that they infer non-terminal “invisible” symbols that correspond to the hierar-
chy of abstract notation concepts (note, measure, voice...). This derives from the
context-free grammar approach of building constituency trees. However, while
this hierarchical approach is certainly appealing, especially given that this is how
one usually learns to think about music and music notation, is it the best one
can do in OMR? We of course propose that the answer is – no.

Rather than what could be termed a “constituency graph” of the previous
approaches, in an analogy to the Prague school of Computational Linguistics,
we apply the notion of a dependency graph. Instead of grouping music nota-
tion primitives under composite nodes, we link them to each other. We call
this formalism simply a Music Notation Graph (abbreviated as MuNG). The
vertices of this graph are music notation primitives (not notes!); oriented edges
may link the vertices. The idea of assembling the music notation primitives into
a notation graph is illustrated in Fig. 3.1.

The key property of this graph is that it is acquired for a given score, it
holds all the information relevant to the music notation on the page in a fully
disambiguated manner.

We can exploit the straightforward 1:1 relationship of “notehead” notation
primitives to the abstract musical notes and use the rules of reading music (see
Appendix A.1), which are deterministic, to unambiguously infer the musical
semantics.9

Central to how MuNG is specified is the principle that each notehead-type
node (full notehead, empty notehead, and all rests) has as its neighbors (im-

7https://github.com/CPJKU/msmd
8https://github.com/CPJKU/audio_sheet_retrieval
9This functionality is available in the mung library as the mung.inference module: https:

//github.com/omr-research/mung

24

https://github.com/CPJKU/msmd
https://github.com/CPJKU/audio_sheet_retrieval
https://github.com/omr-research/mung
https://github.com/omr-research/mung


mediate or close) all the notation primitives relevant to the decoding of the
corresponding note. Recall that noteheads are the interface between music no-
tation and the encoded notes: there is one note per notehead.10 The musical
semantics for each note are fully encoded through configurations of symbols as-
sociated with each notehead: the stafflines and ledger lines, clef, key signature
and inline accidentals encode pitch; the notehead type, stem, flags or beams,
augmentation dots and tuples encode its duration. Each of these elements can
be simply captured by linking the notehead to the given primitive. The prece-
dence relationships that are necessary to compute the onsets of notes can be
captured as precedence edges in the notation graph that link noteheads which
should be interpreted as consecutive notes.

A significant advantage of this approach is that the separation between music
notation as a visual language and musical notes and their semantics as abstract
objects is retained: the notation graph is merely a description of the music no-
tation on the page. The entire process of inferring semantics from the MuNG
output of our notation assembly stage happens independently from the under-
lying image – and at the same time, all the information available in the score
is fully disambiguated even before one starts thinking about the musical seman-
tics. This separation makes it possible to deal with the image separately from
the music encoded therein, and we conjecture that maintaining this principle is
what allows formulating the OMR pipeline in terms of straightforward machine
learning tasks.

The disadvantage of the dependency graph approach is that there are no
tractable algorithms that we know of for generic graph inference from an image.
However: it seems that these may not be required. First, for object detection,
state-of-the-art generic models are capable of leveraging the neighborhood of an
object to disambiguate it (such as the staccato dot, which is written below or
above its corresponding notehead, vs. the augmentation dot, which positioned
is to the right of a notehead or rest) without having explicit access to syntactic
information (as indicated by Pacha et al. [2018b], Hajič jr. et al. [2018a] and
especially by Pacha et al. [2018a]). With respect to notation assembly, we can
make a strong independence assumption – that given the vertices of the graph
(the music notation primitives), the edges of the graph are independent. This
allows formulating the notation assembly as a binary classification problem over
vertex pairs. On an average page of some 500–800 symbols, this would still
amount to 250 000–640 000 decisions; however, in practice there are reasonable
assumptions (such as the maximum distance between objects that may be re-
lated, and constraints on linked symbol classes) that help prune the space of

10The sole exception being notehead sharing across multiple voices; however, this is de-
tectable from the presence of multiple stems. In case whole notes are shared, this is typeset
as two consecutive empty noteheads significantly closer to each other than if they were to be
played consecutively.
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(a) Notation symbols: noteheads, stems,
beams, ledger lines, a duration dot, slur,
and ornament sign; part of a barline on
the lower right. Vertices of the notation
graph.

(b) Notation graph, highlighting note-
heads as “roots” of subtrees. Noteheads
share the beam and slur symbols.

Figure 3.1: Visualizing the detected symbols and the assembled notation graph
on top of staff removal output. Colors of symbol bounding boxes encode symbol
classes (noteheads in red, stems in orange, ledger lines in green, etc.). Using the
edges of the notation graph in (b), the pitch and duration of the notes encoded by
the noteheads (highlighted) can be unambiguosly inferred (stafflines removed for
clarity, although for encoding pitch, we would need to establish the relationship
of the noteheads to stafflines). Assuming the music is monophonic, onset can be
inferred from the ordering of the noteheads and the notes’ durations.

decisions to an assymptotically linear instead of quadratic number of classifier
runs. This already allows bringing the full power of current machine learning
methods to bear on the assembly problem: already decision trees with simple
features (bounding box relative distance and symbol class labels) achieve useful
results, as described below in section 3.3.3. Furthermore, ongoing experiments
with factoring the MuNG inference process from detected objects into indepen-
dent decisions about individual edges seems to also provide satisfactory results.

While the idea of MuNG and the notehead-centric definition is hopefully clear
and clearly motivated, there still remains a plethora of details to take care of:
dealing with key signatures, time signatures, measure separators, etc. Further
principles of MuNG definition are described in the publication [Hajič jr. and
Pecina, 2017c], and in full detail the definition is available online in the form of
annotation guidelines for the MUSCIMA++ dataset,11.

3.2 MUSCIMA++
While the MuNG formalism provides a clear definition of the ground truth, the
MUSCIMA++ dataset proivides human ground truth annotations for evaluation

11https://muscimarker.readthedocs.io/en/latest/instructions.html
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and supervised learning of the MuNG-based OMR pipeline. The dataset is a sub-
set of 140 of the 1000 pages of CVC-MUSCIMA [Fornés et al., 2012], consisting of
a total of more than 91 254 manually annotated symbols (MuNG vertices) and 82
247 manually annotated relationships (MuNG edges), representing 23 349 notes
[Hajič jr. and Pecina, 2017c]. (Further objects in the dataset are staffline and
staffspace objects – acquired automatically from the CVC-MUSCIMA staff de-
tection ground truth – and precedence relationships, inferred automatically and
checked by hand.)

The CVC-MUSCIMA dataset contains a handwritten copy of a set of 20 pages
of music done by 50 writers for the total 1000 pages; since there were 7 annotators
available to create MUSCIMA++, 7 copies of each page were annotated, but
selected so that all the 50 writers are represented in the resulting 140 pages as
equally as possible (2 or 3 pages per writer). This ensures the high variability of
handwriting in CVC-MUSCIMA is retained.

The 20 pages of CVC-MUSCIMA also contain notation of all levels of com-
plexity, from monophonic to pianoform notation, including rare, yet important
situations, such as cross-staff beaming, time signature, key signature and clef
changes in the middle of a staff, complex beamed groups, non-standard tuples,
and even an instance of notehead sharing between voices.

As CVC-MUSCIMA contains binarized images with staffs removed, the same
kind of images remains as inputs in the project’s recognition pipeline.

An example of a complex score and its MuNG representation, as visualized
by the MUSCIMarker editor, is shown in Fig. 3.2.

For all experiments, a test set of 20 pages is used so that each of the 20 CVC-
MUSCIMA pages is represented once and the test set writers do not appear in the
training set (so at test time the model deals primarily with unseen handwriting
styles).

With the MUSCIMA++ dataset of binary images manually annotated with
MuNG ground truth in hand, we may now proceed to build the recognition
pipeline itself.

3.3 The Recognition Pipeline
The OMR pipeline focuses on the later stages of the OMR pipeline: object detec-
tion, and notation assembly and semantics inference. As stated in the introduc-
tory chapter, we focus on a difficult setting in terms of processing manuscripts of
arbitrary notation complexity, rather than on difficulties regarding image qual-
ity (which are of course in practice equally important, but not as inherent to
the domain of music notation). The input images for our pipeline have already
been binarized, and stafflines have been detected (and, if need be, removed).
This is no more an entirely unreasonable expectation: convolutional networks
have been shown to perform “layout analysis” (essentially, joint staffline detec-
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Figure 3.2: The interface of the MUSCIMarker tool. The notation graph in
this example is taken from CVC-MUSCIMA image of page 10 by writer 01.
Highlighted in red are manually added syntactic edges of the notation graph;
in purple are automatically inferred edges pertaining to staff objects (stafflines,
staffspaces and staffs). Precedence edges are weakly visible in green.

tion and binarization: semantic segmentation into background, stafflines, and
notation symbols) very well [Calvo Zaragoza et al., 2017a,c,d, Gallego and Calvo
Zaragoza, 2017].

3.3.1 Object Detection
We start the work on the recognition pipeline by testing state-of-the-art object
detection techniques.

Detecting music notation primitives is a difficult class of the general object
detection problem since music notation does not conform well to the usual as-
sumptions of object detection models. The score images are very cluttered (on
average, they contain some 650 objects). While the highest-priority symbols,
noteheads, are relatively easy to detect, because their appearance is very distinct
(by design: they should be the first thing that attract the eye of a musician!),
other symbols present tricky detection issues, especially in handwriting. Some
fixed-size symbols such as clefs are visually quite complex and very variable, and
usually overlap with stafflines. Furthermore, clefs are by far not as frequent as
noteheads, even though they are critical for decoding the semantics of all subse-
quent notes (as they define how stafflines are interpreted with respect to pitch).
While these symbols at least have a (relatively) fixed size, there are others that
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have in principle a relatively simple shape (straight thick line), but their size
is variable (stems, especially in music with wide chords), or even size and ori-
entation (beams, which are probably the most variable symbol class, and slurs,
which can theoretically be extremely complicated shape, although in practice
they rarely have an inflection point). Therefore, we prefer models that make as
few assumptions as possible about the objects they are attempting to detect.

The least-assumptions state-of-the-art model that can be used for object de-
tection is the fully convolutional networks. These networks first perform
semantic segmentation (assigning a label to each pixel) and require a subse-
quent detection stage (such as peak picking, or thresholding and connected com-
ponents). The network itself is completely free of assumptions about symbol
shapes and sizes; the only important hyperpamater is the receptive field of the
output pixels, defined implicitly by the width and amount of convolutional filters
through which information passes to an output pixel. This contrasts with mod-
els such as Region Proposal Networks (of the Faster-RCNN family) that require
pre-defining a set of anchor boxes and their spacing.

Specifically, we used the U-Net model [Ronneberger et al., 2015]. This model
has an “hourglass” architecture reminiscent of autoencoders, but it is standard
feedforward network; the output layer provides a value for each pixel (in this
case, the probability of the given pixel belonging to the given symbol class).
Given that the stages of the hourglass have the same size, residual connections
are added between the corresponding stages. The network architecture is shown
in Fig. 3.3.

Seeing as noteheads are the most important object to detect reliably, we began
our efforts there. Without any post-filtering step, merely with thresholding at
0.5 and non-maxima suppression as the detection step on top of the probability
map output by the model, the U-Net achieved on noteheads a recall of 0.97 and
precision 0.99.

Given this convincing advantage of the U-Net on noteheads, which are the
most important object to detect, we chose to follow up on the fully convolutional
model and build general object detection based on the U-Net architecture. Each
symbol class will be detected with its own U-Net trained specifically on that
class (with the exception of networks with multi-channel outputs for certain rare
symbols, see below).

The major drawbacks of U-Nets for musical symbol detection is that these
models only perform semantic segmentation, not object detection per se: a de-
tector must be added on top of the output symbol probability map. Two simplest
options are thresholding and connected component search, and thresholding and
non-maxima suppression. Since non-maxima suppression is prone to leave false
positives in long symbols sucha as stems or slurs, and in larger complex sym-
bols such as clefs, we choose connected component search, with thresholding at
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Figure 3.3: The U-Net architecture. Computation flows left-to-right; the “hour-
glass” shape is unrolled downwards with each 2x2 Max-Pooling layer (orange
arrows); in the other direction are 2x2 up-convolution layers with a stride of 2.
Blue arrows indicate the residual connections (implemented simply as elemen-
twise sums) bewteen blocks of corresponding sizes. (Figure taken from [Pacha
et al., 2018b].)

0.5.12 Note that using a connected component detector implies that the model
may merge objects from the same class that legitimately touch (such as some
handwritten noteheads in chords) into a single symbol.

In a comparison to other general object detection models, Faster R-CNN
[Shaoqing Ren et al., 2015] and RetinaNet [Lin et al., 2017], the advantages of
U-Nets do result in better performance [Pacha et al., 2018b], as illustrated in
Table 3.1.13

The advantage disappears for the Capitan dataset [Pacha and Calvo Zaragoza,
2018] of mensural notation, which uses a different symbol alphabet: instead of
decomposing the graphical notes into primitives, its symbol classes correspond to
the entire note: longa, breve, semibreve, minima, semiminima, etc. Fur-
thermore, Spanish white mensural notation (of which the Capitan dataset com-
prises) does not allow many of the situations that make CWMN recognition
difficult, such as beamed groups and polyphony on one staff. Fig. 3.4 illustrates

12Changing the threshold did not lead to improvements.
13The results are evaluated using Mean Average Precision (mAP) and Weighted Mean Av-

erage Precision (w-mAP), according to the object detection practices for the COCO dataset
[Chen et al., 2015b]. The “mean” is taken over average precisions with true positives consid-
ered using different intersection-over-union thresholds: the most permissive is 0.5, and, using
increments of 0.05, the cutoff for considering a detected object a true positive, the minimum
intersection-over-union it must share with a ground truth object of the given class increases
up to 0.95. In the weighted variant, the object classes are weighed by their support.
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mAP / w-mAP (%)

DeepScores MUSCIMA++ Capitan

Faster R-CNN 19.6 / 14.4 3.9 / 7.9 15.2 / 23.2
RetinaNet 9.8 / 1.9 7.7 / 4.9 14.5 / 34.9

U-Net 24.8 / 17.4 16.6 / 23.3 17.4 / 26.0

Table 3.1: Results in terms of mAP (%) and w-mAP (%) with respect to the
dataset and object detector model following the COCO evaluation protocol. (Ta-
ble reproduced from [Pacha et al., 2018b].)

the advantage of U-Nets on MUSCIMA++.14

We employ further two tricks for improving detection performance.
First, we deal with class imbalances. As the training process samples a

256x512-pixel window for each data point [Ronneberger et al., 2015, Dorfer et al.,
2017, Hajič jr. et al., 2018a], for relatively rare symbols, often the window con-
tains no pixel of the given target class, and useful signal is drowned out by noise
in the initial stages of learning. In order to avoid this effect, if the sampled
window does not contain any pixels from the target class, we uniformly sample a
different one up to five times. (If after five samples we still found no foreground
target pixel, we use the last sampled empty window.) A second trick for train-
ing the detection of rare symbols is letting them share features: with the U-Net
model, this only requires adding an output channel to the training data and the
model.

A different trick is used to deal with symbols that exhibit complex shapes
– again, especially clefs. Instead of training against their true masks, we train
against the convex hulls of these masks. Since we are at this point mainly trying
to detect the presence of the object in a particular location, this approximation
does not lower the upper bound on detection performance. At the same time, it
simplifies the job of the up-convolution part of the network, as it does not have
to “fill in” blanks inside the complex symbols; it decreases the chances that a
single detected symbol will form two connected components after thresholding
due to false negative pixels in its thin parts, and most importantly, it saves us
from dealing with symbols that are legitimately composed from several connected
components (such as f-clefs and c-clefs) or written erroneously as disconnected.
The convex hull trick is illustrated in Fig. 3.5.

3.3.2 Detection in Full Pipeline
Since the objective of the pipeline is replayability (technically, producing a MIDI
file), in the full-pipeline experiments we restricted detection to only those classes
that are relevant for extracting the musical semantics. (As there is a separate

14In [Pacha et al., 2018b], both the quantitative and qualitative results are further discussed.
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Figure 3.4: Example results in a complex notational situation. (Selected classes.
Figure taken from [Pacha et al., 2018b].)

model trained for each class, however, this just means reducing the number of
models).

The detection performance, reported simply as the detection f-score,15 for in-
15The F-score is the harmonic mean of recall and precision. This way, it balances the need

to avoid both false positives and false negatives, and penalizes systems that err too much to
one side: a system with recall 1.0 and precision 0.1 will have an f-score of 0.18, while a system
with recall 0.6 and precision 0.5 will have an f-score of 0.55.
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Figure 3.5: Modifying the targets for semantic segmentation training to convex
hulls of the objects that we ultimately want to detect. Top: g-clef, bottom: f-clef.

Figure 3.6: Detection f-score for symbols required for replayability: with “vanilla”
U-Nets, and with tricks. Note the improvements especially for clefs: these are
critical for pitch inference.

dividual replayability-oriented object classes, is reported in Fig. 3.6. The greatest
improvements using the training tricks came for clefs, which were the most prob-
lematic symbols for the “vanilla” training. They were also the group of symbols
that benefited most from being grouped into a multichannel model.
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3.3.3 Notation Assembly and Semantics Inference
Next, we build the notation assembly stage and infer musical semantics.

Under the MuNG formalism, notation assembly is the task of inferring the
graph edges given the (detected) nodes. The simplest thing one can do is to
decompose this task into decision about individual edges (or non-edges): frame
the task as binary classification over node pairs, and assume the edges (and
non-edges) are independent.

The independence assumption is of course an over-simplification: e.g., a note-
head may be connected to a beam either above, or below its position, but not
both. However, breaking down the problem into independent decisions is a rea-
sonable start.

What simplifies the situation further is that edges leading from objects to
stafflines, staffspaces and their containing staffs can be even in manuscripts in-
ferred near perfectly16 using appropriate heuristics based simply on how the ob-
ject overlaps with the stafflines and staffspaces. The only “magic number” that
must be selected concerns the situation where a notehead has one part above a
staffline and another part below the same staffline: if there is a large imbalance
between these two parts, expressed as the ratio of the offset of the top of the
notehead to the top of the staffline vs. the offset of the bottom of the notehead
to the bottom of the staffline, it should be considered connected to the corre-
sponding staffspace rather than to the staffline it overlaps. If this ratio is smaller
than 0.2 or greater than 0.8, the notehead should be assigned to the staffspace;
if the imbalance is not as large, it should be considered to lie on the staffline it
overlaps.17

Given that the average image in MUSCIMA++ contains about 650 notation
objects, if we were to consider the quadratic amount of ⟨from, to⟩ pairs in
an image (recall that the MuNG has oriented edges, so the distinction between
from and to is necessary), we would have to make over 400 000 decisions for each
image. Fortunately, objects that are far from each other are quite certain to not
be related. In MUSCIMA++, we found that if we only consider ⟨from, to⟩ pairs
within a distance of 10∗ staffspace height + staffline height, we only discard 52
out of the 82247 related symbol pairs (excluding the relationships to stafflines
and staffspaces) [Hajič jr. and Pecina, 2017c]. This reduces the number of ⟨from,
to⟩ candidate pairs to a linear number, albeit with a significant multiplicative
constant (about 8 – 15, based on the density of the handwriting).

For a ⟨from, to⟩ candidate object pair: the simplest features we can use are
their classes (classf , classt), and relative position of their bounding boxes: given
that the bounding box of the from object is Bf = (topf , leftf , bottomf , rightf ),

16Only two noteheads in MUSCIMA++ had their relationship to the staff objects inferred
incorrectly with the implementation in mung.inference.

17The fact that the relationships of notation objects to staffs can be inferred so determinis-
tically is one of the few surprisingly easy things in OMR.
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and the bounding box of the to object is Bt = (topt, leftt, bottomt, rightt), the
offset features are (topt − topf , leftt − leftf , bottomt − bottomf , rightt − rightf ).
If an edge leads from the from object to the to object, the target is 1, otherwise
it is 0. As positive examples, we take all related objects in the training data,
as negative examples, we take simply all pairs that are within the threshold
distance, but are not related.

We then train a decision tree [Leo Breiman et al., 1984]. Given a sufficient
maximum depth for the tree, the model picks up by itself on the constraints
imposed by symbol classes (for instance, there can never be an edge leading
from a stem to a notehead, only in the opposite direction, accidentals are never
associated with rests, etc.). Already this simple model achieves an f-score of 0.92
on edges on the MUSCIMA++ test set [Hajič jr. and Pecina, 2017c, Hajič jr.
et al., 2018a] (as there are many more non-edges than edges, reporting overall
accuracy would be overly optimistic, and we care only about the positive class
anyway).

Some obvious assembly errors are caused by the simplified pairwise model
that does not take any other objects than the ⟨from, to⟩ pair into account
when making a decision. Especially (1) connecting a notehead to ledger lines
both above and below the given notehead, and (2) connecting a notehead to
beams both above it and below, unless it also has two related stems. However,
these two can be relatively easily corrected. While these postprocessing heuristics
based on “hard” constraints of music notation syntax did give quick improvement
in these two specific cases, attempting other such patches did not improve overall
results anymore.

We note that the MuNG formalism has allowed us to reach respectable assem-
bly performance on handwritten music notation with gross oversimplifications of
the rules of music notation, thanks to making straightforward machine learning
techniques applicable.

A separate chapter are precedence edges. This aspect of the pipeline is some-
what underdeveloped: we simply order simultaneities linked to a staff left to
right, and consider noteheads to belong to a simultaneity whenever they have
an edge to a shared stem (this is the MuNG-based definition of what a chord is
in music notation). This is probably the greatest limitation of our recognition
pipeline.

3.3.4 Full Pipeline Results
All the results above matter little by themselves; what makes a (replayability-
based) OMR system interesting is its ability to infer the musical semantics. A
key advantage of MuNG is that once notation assembly is done, which happens
without ever straying from the graphical layer of music notation into the layer
of the semantics, one can infer the musical semantics unambiguously, using the
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Figure 3.7: The pitch recognition f-score for the MUSCIMA++ writer-
independent test set, broken down per individual staff. Monophonic staffs in
green, homophonic and polyphonic in yellow.

rules for reading music.18 The inferred notes are then encoded as a MIDI file.
The detection, assembly and semantics inference steps can also be run inter-

actively from MUSCIMarker (with detection running over an socket connection,
so that the detection model can be run remotely as a service in case a given
machine does not have the necessary computing power).

We evaluate the full pipeline first intrinsically, based on its ability to correctly
retrieve the musical semantics. In order to do this, we first have to align the out-
put MIDI with the MIDI corresponding to the ground truth pipeline. (Since not
all notes are detected properly, it is not straightforward to directly compare the
detected notes with the ground truth notes: especially duration errors propagate
by influencing the onsets of all subsequent notes.) We use Dynamic Time Warp-
ing (DTW) on sequences of simultaneities, using the ratio of pitches shared as
the inverse cost function. Within each simultaneity, the notes are aligned from
lowest to highest using a second round of DTW. The reason for using DTW to
find the alignment between the recognition result and the ground truth is that
it naturally finds an optimal monotonous alignment, that is, an alignment that
does not violate the precedence relationships in neither the ground truth, nor
the OMR output.

Given this alignment, we can compute how well the semantics were recovered.
Unfortunately, for durations, the results were less than convincing (an f-score of
less than 0.6). For pitch, the overall f-score was 0.81. The breakdown of
pitch recognition f-score by individual staffs in the MUSCIMA++ test set is given
in Fig. 3.7. Since duration errors propagate into onset errors, f-score for onsets
cannot really be computed; however, it is implicitly encoded in the inferred
precedence edges. These are always correct in monophonic and homophonic
notation to the extent to which the symbols corresponding to notes or rests
are detected. While we would like to compare our results, there is nothing to
compare to: the project brought the first manuscript recognition results at the
level of musical semantics.

18See Appendix A.1
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MAP@1 MAP@10 MAP@49
Page queries, OMR2OMR 1.0 1.0 0.998
Page queries, cross-modal 1.0 1.0 0.998
Snippet queries, OMR2OMR 0.928 0.834 0.763
Snippet queries, cross-modal 0.606 0.610 0.577

Table 3.2: Results for page retrieval using page queries and snippet queries
under two modalities: using OMR for creating the database and the query
(OMR2OMR) or just for the database (cross-modal) and query with ground-
truth MIDI. (Table reproduced from [Hajič jr. et al., 2018b].)

3.3.5 Applications: Retrieval and Digital Musicology
What can we do with a manuscript recognition system with this performance?

In [Hajič jr. et al., 2018b] we show that it should be possible to use this
system to retrieve musical manuscripts copies. Since transfer learning for object
detection is an unresolved issue, we are limited to the CVC-MUSCIMA dataset
(of which MUSCIMA++ is a subset). At least for demonstration purposes, we
select a subset of 7 of the 20 pages that it as confusing as possible (the music is
as similar as possible to each other), in order to not artificially inflate the scores,
and run recognition for each of these across all 50 writers, for a total of 350
pages. This is a toy dataset (although for manuscripts, we unfortunately cannot
do better right now); any OMR system worth its salt should be able to retrieve
duplicate pages perfectly. We use the DTW alignment cost as the similarity
function of the retrieval system.

In Table 3.2, we report results for retrieving OMR outputs using queries con-
structed from OMR outputs, and also cross-modal results: querying the database
of MIDI files obtained through OMR using ground truth MIDI files and snippets.
Aside from page queries, we also attempt to retrieve pages using only music from
a single staff, where results are less than perfect (but the task is significantly more
difficult); the results there are worse, especially in the cross-modal setting that is
sensitive to design limitations of the OMR system (that may “cancel out” when
using OMR outputs both as the query and as the database).

The implications of the retrieval experiments are: despite the many limita-
tions of our OMR pipeline, already it is a method for extracting the musical
semantics from handwritten CWMN of arbitrary complexity that has potential
real-world applications (identifying copies of manuscripts across archives) – to
the extent to which training data will be available.

In summary, the project built and published a functioning (to the ex-
tent described above) OMR system for handwritten music notation of
arbitrary complexity, and demonstrated the soundness of the MuNG repre-
sentation for such full-pipeline OMR.
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3.4 Auxilliary contributions
Outside of the main line of research on the project, some work was done on audio-
sheet music multimodal retrieval and contributions were made to the functioning
of the OMR scientific community.

3.4.1 Audio – sheet music cross-modal retrieval
The project has had some outputs in the sub-field of multimodal processing of
audio and sheet music images, only not attempting OMR, but rather something
different: retrieving corresponding segments of music across these two modalities
without a need for a shared representation of the musical semantics, instead
learning a joint latent space directly. This was done .19

The retrieval system in [Dorfer et al., 2018a] was trained using the MSMD
open dataset.20. Both the sheet music and the audio is replicably synthesized
from the digital scores of the Mutopia project21, exploiting the advantages of the
LilyPond format for music notation and the associated software stack.22 The
dataset contains 479 solo piano pieces of mostly classical music by 53 composers,
for a total of 1,129 pages of music. The scores are available both as sheet images
and as MIDI. What makes the dataset unique is that the modalities are auto-
matically aligned at a fine-grained level: each individual notehead in the score
images is linked to the corresponding MIDI event(s). The multimodal models
then learn from snippet pairs centered around the aligned notehead/note event
pairs. There is a total of 344,742 such aligned pairs.

The projection into a joint multimodal space is done using neural networks
that are trained with a Canonical Correlation Analysis projection layer and rank-
ing loss [Dorfer et al., 2018]. The learning setup is shown in Figure 3.8. Retrieval
of pieces is done by mapping both the audio and sheet music snippets into this
joint space, searching for nearest neighbors using Euclidean distance, and com-
bining the snippet-wise results across all query snippets from a given query piece
simply by voting (see Figure 3.9).

Performance is measured across the three different train/test splits of MSMD
(one discards everything except the 173 pieces by J. S. Bach, keeping 50 of them
as the test set; one that keeps the 173 Bach pieces as the test set, and one that
selected random 100 compositions as the test set). Besides evaluation on the
synthetic data, the system was also evaluated on retrieving real scores and audio

19Note that the learning setup and the retrieval method was the work of the first author of
the project paper [Dorfer et al., 2018a] that the PI collaborated on. The project PI contributed
the infrastructure for the experiments in the paper: the MSMD dataset, some insights into
evaluation, and suggested using attention for the paper [Dorfer et al., 2018b].

20https://github.com/CPJKU/msmd
21http://www.mutopiaproject.org/
22http://lilypond.org/
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Figure 3.8: Audio-sheet music cross-modal learning setup with a differentiable
Canonical Correlation Analysis layer that maximizes correlation between the cor-
responding representations of input snippets of sheet music and audio excerpts.
The ranking loss then ensures that representations in the joint space differentiate
between input snippets that do not corresnpond to each other. (The figure is
reproduced from [Dorfer et al., 2018a].)

Sheet Music DB

1. Detect systems
and stitch sheet-music

into snippets

2. Embed snippets
using image part
of the network

Query Recording

Sliding Window

Retrieval Histogram

3. Embed audio
excerpts and retrieve
nearest neighbours

4. Lock up Piece-IDs
and build retrieval

histogram

Sheet

Sheet Snippet Embedding

Audio

5. Select piece with
maximum votes

Retrieval Preparation Retrieval

Figure 3.9: How pieces in the complementary modality are retrieved using the
multimodal joint space. (The figure is reproduced from [Dorfer et al., 2018a].)

recordings, on a dataset of 193 compositions with various recordings by famous
pianists and Henle editions of the scores.

We summarize the main results, which show that the multimodal learning
created a useful retrieval tool that generalizes from synthetic data to real scores
and, to some extent, real performances. (For details, see [Dorfer et al., 2018a].)
When searching for a score based on an audio input, Recall@1 is 0.82 (meaning
correct piece is retrieved rougly 82 % of the time as the top retrieval result)
and Recall@5 is 0.95 (which signifies that 95 % of the time the correct piece is
retrieved within the top 5). When using real scores, the system obtained similarly
satisfactory performance with synthesized audio (in both directions), but not so
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Figure 3.10: Adding a soft attention mechanism over the audio input bewteen
the spectrogram and the first layer of the previously established multimodal
architecture should allow the model to become more invariant to changes in
tempo, which affect the “density” of events in the input spectrogram. (The
figure is reproduced from [Dorfer et al., 2018b].)

when using real scores to search for recordings of real performances (Recall@1
at 0.46, Recall@5 0.70), and even worse when searching for real scores using the
real performances (Recall@1 0.29, Recall@5 0.58, with almost sixty ).

Tempo-invariant audio representation with attention

The substantially worse retrieval results on real performance audio, we suspect,
has to do with the fact that time tends to be very flexible in real musical perfor-
mance.

A limitation of the retrieval system is that the field of view into both modal-
ities had a fixed size. This is a pronounced problem for the audio modality
because of different recordings having different tempi. When the audio of the
same sheet excerpt played at a different tempo is segmented into spectrogram
excerpts with a fixed number of frames (and a fixed framerate), these will contain
different amounts of musical content, relative to what the model has seen dur-
ing training. At the same time, sheet music is written with the same notehead
typesetting density both for slow and fast pieces. We would like our retrieval
system to be, ideally, tempo-invariant. To use this, we attempted to use a soft
attention mechanism [Dorfer et al., 2018b]. This mechanism is applied directly
to the columns of the spectrogram before it is sent into the audio network (see
Fig. 3.10).

The attention mechanism does indeed learn to react to tempo changes as one
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Figure 3.11: The attention mechanism is shown to train according to our intu-
ition: at faster tempi, only a narrow part of the spectrogram is “let through”
for the multimodal mechanism to learn, corresponding to the fact that the given
fixed-width snippet of sheet music is played very quickly. As the music becomes
slower, the attention mechanism allows focusing on a longer time range in the
input spectrogram, so that the roughly the same amount of musical events is
processed as in the faster music. (The figure is taken from [Dorfer et al., 2018].)

would expect: when note onsets are spread further from each other in time, as is
the case when playing the same part of the music at a slower tempo, the atten-
tion mechanism is capable of adapting to what it believes is the representative
counterpart to the sheet image snippet in question (see Fig. 3.11).

Adding the attention mechanism improves performance already at the snippet
level he performance, improving Recall@1 from 0.41 to 0.48 and Recall@5 from
0.64 to 0.68. However, we realized that attention also allows using a larger audio
window without causing imbalance in the relative importance of the audio and
image input modalities, in order to deal specifically with slow tempi. Doubling
the audio excerpts from 84 spectrogram frames to 168 improved Recall@1 to 0.55
and Recall@5 to 0.77.23

3.4.2 OMR Scientific Community
As a function of the international collaboration established through the project,
the PI was able to contribute significantly to the coalescing of the field of OMR
into an true scientific community, with a shared publication venue, introduc-
tory materials for newcomers, centralized resources, and, similarly to the related
Digital Libraries for Music community, a place as a part of the broader Music
Information Retrieval community. Three elements were critical to building this
(sense of) community:

• The GREC 2017 discussion group, organized by Alicia Fornés. The PI
actively participated in this group and co-wrote its report [Calvo Zaragoza
et al., 2018]. The outputs of this OMR roundtable established guidance
for further community-building activities, namely:

• The 1st International Workshop on Reading Music Systems (WoRMS),
which took place as a satellite event of the ISMIR 2018 conference in

23As [Dorfer et al., 2018] was a smaller workshop paper, the full battery of retrieval experi-
ments on whole pieces was not done.
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Paris.24 The PI served as one of the general chairs of the workshop. The
2nd WoRMS was held as a satellite event of ISMIR 2019 in Delft.25

• The tutorial “Optical Music Recognition for Dummies” selected for pre-
sentation at the ISMIR 2018 conference in Paris, which serves as extensive
introductory material for newcomers to OMR. The tutorial is made avail-
able online.26

24http://ismir2018.ircam.fr/pages/events-at-a-glance.html
25https://ismir2019.ewi.tudelft.nl/?q=satellite-events
26https://youtube.com/playlist?list=PL1jvwDVNwQke-04UxzlzY4FM33bo1CGS0
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Matthias Dorfer, Jan Hajič jr., Andreas Arzt, Harald Frostel, and Gerhard Wid-
mer. Learning Audio–Sheet Music Correspondences for Cross-Modal Retrieval
and Piece Identification. Transactions of the International Society for Music
Information Retrieval, 1(1):22–33, 2018a. doi: 10.5334/tismir.12.
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A. Attachments

A.1 Reading Music
We have stated that “music notation is [. . . ] a visual language that encodes
music graphically; the role of OMR is to automatically extract the encoded
musical information from this graphical representation”. In other words, the role
of OMR is to automatically read music. What is this process of reading music?
What is it that OMR is actually trying to achieve, in more specific terms that
can be formalized for automation?

We proceed by introducing the two layers that take part in this process: the
layer of musical semantics, which is the target of the process, and the layer of
music notation, which is its input, and show how these relate to each other.

A.1.1 Musical Semantics
First, we define what we mean by this “encoded musical representation”.

The music that is encoded with Common Western Music Notation (CWMN)
can be conceptualized as a structure of notes in time. This is not necessarily
the only conceptualization of music, but it is the one that CWMN is designed to
communicate. Notes form further structures, such as voices or phrases, but for
the purposes of OMR, we restrict the conceptualization of musical semantics to
a set of notes.

We must also clarify what “in time” means. Musical semantics are concerned
not with wallclock time measured in seconds, but with musical time. Musical
time is an abstract concept measured in units called beats that can be further
subdivided into regular parts. Musical time is only projected into wallclock time
during performance – primarily by means of tempo, which sets a certain baseline
rate of beats per minute. However, in reality, the projection is wildly non-linear,
and it is at the discretion of the performer; a linear projection would result in a
robotic, boring performance.

A note is an abstract object that is defined by four properties: its pitch, du-
ration, strength, and timbre. When a musician plays a note, these properties are
translated into a fundamental frequency (pitch) maintained for a certain time
(duration) with certain perceptual loudness (strength) and spectral character-
istics (timbre). The notes are placed on the axis of musical time with a fifth
parameter, their onset, which governs during performance when the note should
start.

Next to notes, there are rests: periods of silence. They can be regarded as
pseudo-notes that only have temporal parameters: onset and duration.
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Figure A.1: The values of pitch, illustrated on a piano keyboard. One octave
period is indicated.

Pitch

Formally, pitch is a categorical variable whose values are linearly ordered from
lowest to highest. A piano-centric schematic of how notes are indexed by pitch
is provided in Fig. A.1. The distance between neighboring pitches is called the
semitone and corresponds to neighboring keys. The values of pitch are expressed
in terms of ⟨step, octave, accidental⟩ triplets:

• Step, which is traditionally one of A, B1, C, D, E, F, and G. The distance
between neighboring steps is a whole tone (two semitones), except for B-C
and E-F, which are only a semitone from each other.

• One period of this pattern of steps is called the octave, which is the sec-
ond of the three determining parameters of pitch in post-medieval musical
tradition. Octaves are usually numbered in the English-speaking tradition
1 to 8, from lowest to highest, with the “middle c” on a piano falling into
octave 4. Although steps are traditionally named from A to G, octaves –
somewhat confusingly – usually start with C and end with B, again espe-
cially where German pedagogical tradition is prevalent.

• The third pitch descriptor is the accidental. The accidental can shift the
pitch, as determined by the step and octave, by one semitone upwards
(indicated using a sharp sign: #), one semitone down (indicated using a
flat sign: b), and sometimes by two semitones, indicated with a double
sharp (an x-like symbol) and analogously a double flat (written usually as
bb).

We emphasize again that pitch is an abstract object: it is not yet the fun-
damental frequency of the corresponding tone that would sound during perfor-
mance. The relationship from pitch to a fundamental frequency during perfor-
mance is governed by the tuning used. The middle A (A4) is first tied to a
particular frequency; in modern times, this is usually 440 Hz.2 The second com-
ponent of projecting pitch to fundamental frequency is the temperament: the

1In German tradition, which is also prevalent in the Czech Republic, B is called H.
2In practice, however, this is a much more complicated topic. Orchestras that include many

wind instruments sometimes tune at 442 Hz, but in the baroque period, this standard varied:
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difference in frequency between individual semitones. In modern times, all the
semitone distances between neighboring pitches are the same (this is called equal
temperament); as indicated by Fig. A.1, this implies that, e.g., an F4 with a
sharp (#) refers to the same frequency as a G4 with a flat (b): F4 and G4 are
one tone away from each other, and the semitone upwards from F4 to F4# is
the same as the one downwards from G4 to G4b. If a different temperament was
used, e.g. the historical meantone temperament3, the distance from F4 to F4#
would not be exactly half that of the distance from F4 to G4, and vice versa (the
distance from G4 down to G4b would also be slightly smaller than the whole
tone distance F4–G4 divided by two).4

The take-away from this explanation should be that pitch is an abstract
concept expressed usually with a step, octave and accidental, that pitch of a
note and frequency of a performed tone are two distinct concepts, and that
music notation is concerned with encoding pitch, not frequency.

Duration

The duration of a note is theoretically any rational number, but in practice – such
that is encoded using music notation – it also becomes a categorical variable. As
stated above (section A.1.1), duration is expressed in terms of beats, the basic
units of musical time. In CWMN, these values are powers of 2, mostly negative:
8, 4, 2, 1, 1/2, 1/4, 1/8, 1/16, 1/32 and 1/64, rarely higher (1/128). The usual
terminology calls a 4-beat note a whole note, a note that has a duration of 2
beats is called a half-note, a note that lasts for one beat is a quarter note, etc.
(The most common grouping of beats into regular units called measures is 4,
hence the name “whole” for the 4-beat note, as it lasts for the whole measure.)
Additionally, music notation has ways to encode durations that do not fit into this
sequence of powers of two, so that durations like 1/3 of a beat can be expressed
as well. The usual durations one encounters (from a whole note to a 64th note)
are usually depicted in music notation as shown in Fig. A.2.

Duration applies to rests as well as to notes.

for most of music from the time of J. S. Bach or J. D. Zelenka, setting A4 at 415 Hz (roughly a
semitone lower) is more appropriate, and for earlier music, many more tunings were used, both
lower (390 Hz) and higher (467 Hz). Furthermore, current musicological and organological
research suggests that much of Mozart’s or Beethoven’s music was originally performed with
A4 = 430 Hz...

3There are very good musical reasons for this, not just chasing the nebulous concept of “au-
thenticity”: meantone temperament provides very different timbre and character for different
harmonies (although some become unusable), and these differences were actively exploited by
composers of the time; when such compositions – especially those that feature the voice – are
performed in equal temperament, they lose much of their dramatic power.

4On a keyboard instrument, when using meantone, one then has to choose whether to tune
the given black key as the appropriate F4#, or G4b. Many so-called “well temperaments” were
developed to allow some compromises in this respect; the title of J. S. Bach’s “Well-Tempered
Clavier” refers to one of these many compromise options, not to the equal temperament of
today. Pitch and tuning is a fascinating topic!
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Figure A.2: The types of notes according to duration. Two half-notes takes as
long as one whole note, one half-note takes the same number of beats as two
quarter-notes, etc.

Onset

The onset of a note is the point in musical time at which the note should start
being played. The elementary rule for determining the onset of a note is: once
the previous note ends, the next note begins. In order to determine the onset of a
note, one must therefore know the sequence into which the notes are organized.
This sequence is called a voice. Assuming a composition with a single voice
(monophonic music), the first note of the voice has an onset of 0, and the onset of
the i-th note in the given voice is computed as onset(i−1)+duration(i−1). This
is the important concept of precedence. In the written score, notes are encoded
by precedence from left to right according to the positions of the corresponding
graphical notes. When more than one voice is present, in music that is called
polyphonic, a simple left-to-right ordering is not sufficient; for correctly inferring
precedence, one must correctly assign notes to voices.

The concept orthogonal to precedence is simultaneity: a simultaneity is a set
of notes that shares the same onset. Simultaneity can happen within a voice,
where all the participating notes share the same preceding note (or members of
the preceding simultaneity); if all simultaneities with more than one member are
such that the notes belong to the same voice, we call the music homophonic.

Strength and Timbre

The note parameters of strength and timbre can be mostly left out for the
purposes of OMR, as they are barely encoded in music notation. Strength
is rudimentarily conveyed with dynamic markings such as piano or forte, and
some symbols that convey how strength should change over a sequence of notes
(crescendo for increasing, decrescendo for gradually decreasing strength); tim-
bre is expressed with sporadic textual expressive markings or instrument-specific
techniques. These two parameters are left for the most part at the discretion of
the performer.

Importantly, for the motivating applications of OMR listed above, strength
and timbre need not be a part of the OMR outputs. Therefore, for the pur-
poses of this project, we simplify the definition of a note to just the
triplet ⟨pitch, duration, onset⟩, and the task of recovering musical seman-
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tics then becomes the task of recovering the set of such triplets. This simplified
representation is already rich enough to have the OMR system output files in
the widely used MIDI format, which in turn serves as an input of many of the
downstream applications of OMR – especially full-text search in music archives
and other applications oriented towards digital libraries, more broadly curating
and making accessible sheet music collections, and musicology overall.

A.1.2 Music Notation
Now that we have introduced the layer of musical semantics, we turn our at-
tention to the music notation, specifically Common Western Music Notation
(CWMN) visual language and its relationship to these semantics. We introduce
music notation terminology factored into subsets of the music notation alpha-
bet according to which aspect of the musical semantics defined above the given
symbols help encode.

The elementary interface between the “written” layer and the “semantic”
layer, or music notation and the notes that it encodes, are noteheads. The
general rule is that one notehead encodes one note.5 Noteheads are round6

objects with a fixed size.7 They are the central and most frequent music notation
primitives.

In the context of OMR, one must be carefull to distinguish the abstract
musical note object with the composite graphical objects that are often also
called notes. These graphical objects serve as a useful pedagogical concept, but
for the purposes of OMR they are not well-defined. Whenever we wish to refer
to the graphical objects, we will explicitly use the term graphical note.

A reference example of actual music notation is given in Fig. A.3.
Suppose we have correctly identified noteheads, and therefore we know how

many notes are encoded in a given notation document. It remains to find their
parameters that are unambiguously recorded by music notation: pitches, dura-
tions, and onsets. The nature of the music notation visual language is featu-
ral: these properties are encoded not using individual primitives, but using the
configurations of these primitives. We describe which primitives participate in
encoding which property, and explain how.

5In polyphonic music, this rule may get broken: multiple voices on a single staff may share
pitch and have a graphically compatible duration, in which case a notehead can encode two
notes; this would be evident to the reader from the presence of two stems attached to a single
notehead.

6Mostly. As is the case with nearly everything in music notation, exceptions abound. In
this case, CWMN allows for different notehead shapes, especially in the latter half of the 20th
century: these are most widely used to indicate certain playing techniques that affect timbre.
Percussion parts are most prone to non-round noteheads. However, as these are still (relatively)
rare, we do not consider non-round noteheads in this project.

7Except for grace noteheads: these encode ornamental notes that do not have a duration of
their own.
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Figure A.3: An example of real-world notation, with the individual notation
elements marked (not exhaustive). Taken from: Ernst Bloch, Baal Schem: Drei
chassidische Stimmungen for violin and piano, II: Improvisation (Nigun).

Encoding Pitch

Pitch, described as a ⟨step, octave, accidental⟩ triplet, is encoded using the
following primitives:

• stafflines and spaces between them, which combine into staffs,
• ledger lines,
• clefs (g-clef, f-clef, c-clef),
• accidentals (sharp, flat, double sharp, double flat, natural),
• measure separators (thin and thick barlines and barline groups).

Three notes with the same pitch are shown in Fig. A.4.
Since the times of Guido of Arrezzo (12th century), the staff, consisting of a

number of equidistant parallel stafflines and the spaces between them, is the basic
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Figure A.4: The elements encoding pitch: three notes with the same pitch written
in different ways. Noteheads red, for clarity.

layout object in music notation. Music is read left-to-right per system; each
system consists of a number of staffs that are read concurrently; each staff consists
of a certain number of stafflines and the staffspaces between those lines (plus two
surrounding the outer stafflines of the staff). Overwhelmingly often, in post-1650
scores, staffs are built from groups of five stafflines, with six staffspaces between
and around them.8 Noteheads are placed on stafflines or into staffspaces.
Each notehead is positioned on exactly one staffline or staffspace (not both).
Moving a notehead to the neighboring staffspace (or, vice versa, staffline) changes
its pitch by a step (not necessarily by a semitone; see subsection A.1.1).

Ledger lines are used when the pitch of a note is more extreme than can
be recorded with the given limited number of stafflines and staffspaces. Ledger
lines are short horizontal lines parallel to the staff that simulate the presence of
a given number of additional stafflines for the given note; they are interpreted
exactly as additional stafflines would be.

The clef symbols are also attached to stafflines (not staffspaces, however).
Clefs govern how positions on the staff are interpreted in terms of
step and octave. The f-clef denotes the staffline on which noteheads will be
interpreted to encode notes with the pitch F3; overwhelmingly often, this would
be the second staffline from the top. This clef is also known as the bass clef,
as it is most often used to encode lower-sounding music, such as the left hand’s
part in piano literature or the bass part in vocal music. The g-clef, also known
the violin clef, denotes the staffline corresponding to the pitch G4; this clef is
overwhelmingly often placed on the fourth line from the top, and is used for
music in the higher ranges (right hand on the piano, soprano and later also alto
parts, the eponymous violin music, etc.). The c-clef, sometimes called the viola
clef, denotes the staffline corresponding to the middle C (C4), and as its name
suggests it is used mostly with alto or tenor instruments such as the viola. The
c-clef usually appears in viola parts on the middle of the five standard stafflines,

8The widest exception today is modern plainchant notation with four stafflines, and single-
line percussion parts.
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but in trombone, French horn, or cello music, it often appears also on the second
line from the top, and in pre-1750 music it can appear on any of the stafflines.9

Clefs are most often present at the beginnings of staffs, but it is perfectly
valid to encounter clefs anywhere on a staff; all clefs are valid for interpreting
notehead positions on the given staff only to the right of the given clef.

Thus, from the position of the clef, and the position of the notehead on
the staff (in terms of which staffline, staffspace, or ledger line the notehead is
placed on), one can assign to each notehead the step and octave parts of its
pitch. What remains is the accidental. This is encoded by accidental primitives
(again, one must distinguish between the semantic property of accidental and
the subset of music notation primitives – sharps, flats, etc. – that encode this
semantic property). These primitives are the sharp (modifies pitch upwards by
semitone), the flat (downwards), the double sharp and double flat that modify
pitch twice as much, and the natural, which cancels any accidental that might
have been valid for the given note. Similarly to clefs, accidentals are also valid
to the right of their horizontal position on the staff, but they have two flavors –
inline accidentals, and key signature accidentals.

Inline accidentals apply to notes encoded by noteheads on the same staff
position as the accidental by convention up until the end of the measure, denoted
by the next barline or barline group.10 Using this convention, if one wants to
cancel an inline accidental at a given note (e.g., first encode F4#, then F4),
one would use the natural sign to cancel, from then onward, the effect of the
accidental that would apply at that point.

Accidentals in key signatures (which are simply groups of accidentals that are
not associated with any specific notehead) differ from their inline counterparts in
that their validity does not expire with the next barline: key signature accidentals
stay valid unless overriden temporarily by an inline accidental, or permanently
by a new key signature. They are usually re-stated at the beginning of each staff.

Note also that the inline accidentals and key signature changes imply that
reading music is a stateful process: in order to correctly read the next note, one
must remember some information about the previous notes and music notation
elements that have already been read.

This analysis should now clarify why the notes corresponding to the three
highlighted noteheads in Fig. A.4 actually encode the same pitch.

Encoding Duration

Duration is encoded using:
9Surprisingly, in early music, the g-clef and the f-clef only appear more frequently in non-

standard positions in French baroque scores.
10Before roughly 1670, the convention was to apply the inline accidental only to the next

note on the given staff position, and this has become relevant again for atonal music in the
20th century.
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Figure A.5: The elements encoding duration.

• notehead type (full vs. empty),
• stem,
• flags and beams,
• augmentation dots (absent, one, two),
• tuples.

Recall that duration is a categorical variable that determines for how many
beats (units of musical time) a note should be held. The values of duration are
drawn mostly from powers of 2: 4 beats, 2 beats, 1, 1/2, 1/4, 1/8 and 1/16
(rarely is a note written shorter than 1/16th of a beat). This is all we need to
care about in OMR; music notation does not encode the relationship of beats
to wallclock time. The names for durations are somewhat misleading: a 4-beat
note is a whole note, a 2-beat note is commonly called a half note, a 1-beat note
is a quarter note, etc.

See Fig. A.2 for how these duration values are prototypically encoded in
CWMN. An empty notehead without a stem denotes a whole note; with a stem,
it encodes a half note. A full notehead with a stem encodes a quarter note (1
beat); in CWMN, full noteheads are required to have stems. Smaller values are
then encoded with flags or beams. There can be more than one flag (or beam)
associated with a notehead; each associated flag or beam halves the duration of
the encoded note (a note encoded with a full notehead, stem and no flag has a
duration of 1 beat, with one flag it will have a duration of 1/2 beat, with two
flags, 1/4 of a beat, etc.). Beams are used instead of flags prototypically when
there is more than one consecutive note with sub-beat duration; they connect the
respective graphical notes into beamed groups. For duration values from outside
this row – especially when dividing a larger value into three equal parts instead
of two – the tuple symbols are used. The elements that govern duration are
depicted in Fig. A.5.

Beams and beamed groups are some of the most problematic elements of
music notation for OMR. Individual beams can have wildly different lengths,
thicknesses and angles; the way they are combined into groups relies on just
a few rules, but can lead to visually complex structures with many overlapping
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Figure A.6: A somewhat complex beamed group. Note how it changes stem
sizes, which are otherwise mostly fixed (at 3.5∗staffspace height). The first two
and the last note have a 16th duration (two relevant beams), the third and fourth
notes are 32nd notes (three beams).

Figure A.7: A more complex beamed group situation in a 17th century violin
manuscript (H. I. F. Biber, Mystery sonata IV).

elements, and especially in manuscripts, beamed groups are prime suspects where
the topological constraints on printed music notation get violated. A moderately
complex beamed group is depicted in Fig. A.6; a tricky real-life example from an
early music manuscript is depicted in Fig. A.7

Encoding Onset

Onset is encoded by how notes are ordered by precedence and assigned to voices.
Ordering notes by precedence within a voice is done simply by ordering the
corresponding noteheads left-to-right within each staff (and ordering systems
downwards). A simultaneity with more than one member within a voice is en-
coded by making all noteheads that correspond to its member notes share a
single stem. (In case of whole notes, where no stem is used, the empty noteheads
are either stacked on top of each other, or, if they lie on a neighboring staffline
and staffspace, they are stacked very close to each other without the noteheads
overlapping.)

In case of polyphonic music on a single staff, correctly finding the predeces-
sor(s) of a note is a difficult problem to solve in general. When the number of
voices in a staff is limited to two, most often the voices can be differentiated by
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(a) Precedence in polyphonic guitar music: note the variable number of voices, some
with chords.

(b) Precedence in complex pianoform music (green connecting lines, left to right).
Notice the voice that is written across staffs.

Figure A.8: Examples of notation where precedence is complicated.

stem direction (rests are then usually positioned significantly above their usual
position for the top voice, and below their usual position for the bottom voice);
however, when more than two voices are present on a staff, this approach fails.
One can partly rely on the heuristic that whenever voices cross (a voice that is
typically below the other has a note above the one that is currently in the upper
voice), stem directions are set to reflect this. However, resolving precedence in
polyphonic music in general is an open problem; examples of complex situations
are given in Fig. A.8. (Note also that in Fig. A.7, there is a rare situation where
the noteheads that are part of one beamed group are not necessarily encoding
each other’s predecessor notes.)
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