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a beter role model – which extends far, far beyond this limited scope of a PhD.

It has been a blast.

O. A.M.D. G.

ii



Title: Optical Recognition

of Handwriten Music Notation

Author: Jan Hajič jr.
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1. Introduction

Optical Music Recognition (OMR) is the ield of research that investigates how to

computationally read music notation. Music notation is an established visual lan-

guage that encodes music graphically; the role of OMR is to automatically under-

stand this encoding and extract the encoded musical information from this graphical

representation. his thesis presents contributions to Optical Music Recognition, with

focus on musical manuscripts.

Figure 1.1: An example of a musical manuscript: a copy of G. B. Pergolesi’s Stabat
Mater, part X: Fac, ut portem Christi mortem.

Why should one atempt to do this?

In European culture, and wherever it has been able to reach, music notation is

the primary way of transferring music from composer to performer, whether across

a room or across centuries. he Common Western Music Notation (CWMN) writing

system evolved over the course of the 17th and 18th centuries and has since been used

to encode tens or hundreds of thousands of compositions, one of the major bodies

of works that deine European cultural heritage (like the manuscript in Fig. 1.1). It is

daily in use by musicians ranging from children beginning to learn to seasoned pro-

fessionals, by composers as well as performers, and reading music notation is one of

the skills that belongs to a well-rounded general education. At a time when the digi-

tal domain tends to become the primary domain for manipulation and dissemination
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of source materials, digitizing this body of cultural heritage becomes a requirement,

lest it should fall by the wayside. Focusing on musical manuscripts is further justi-

ied by the fact that while there are probably more pages of printed music than of

manuscripts, many more compositions are recorded only in manuscript form. Before

the advent of personal computers and the proliferation of sotware such as Sibelius1

or MuseScore,2 music typeseting was a very costly endeavor reserved for authors

and compositions with practically assurred chances of market success, or – in earlier

times – with a particular printing privilege; therefore, most compositions never had

the chance to be typeset.

Many digitization eforts have been undertaken by institutions holding large col-

lections of music scores, such as the SLUB3 in Dresden or the Bavarian State Library

in Munich,4 or by organizations dedicated solely to facillitating access to scans and

born-digital scores such as the IMSLP5 and CPDL6 projects. What these laudable

digitization projects lack, however, is the capability to make digitally accessible not

only an image of the music (which in and of itself is already extremely valuable!), but

also its musical content: essentially, what the given music would sound like. Hav-

ing digital access to the music encoded by music notation in the given documents

would open up entirely new ways of interacting with the accumlated body of mu-

sic scores, such as musical “full-text” search,7 re-typeseting old and contemporary

manuscripts, creating full scores from collections where only parts for individual in-

struments survive – and vice versa, exporting parts for individual instruments from

the full scores; cross-modal retrieval, digital musicology at scale and with access to

music that has never been recorded, and cost-cuting tools for composers or music

directors.

he process of reading music can be formulated as the process of correctly in-

ferrng the notes encoded graphically using the music notation visual language in a

document that is commonly called the score. Notes are abstract musical objects that

are determined by ive properties – pitch (on a piano, which key to press), duration

(how long to hold it), loudness and timbre (which are not encoded in music nota-

tion, aside from signs for some instrument-speciic playing techniques), and the ith

property is onset: when should one press the given key, in relation to the start of the

composition. Recovering the ⟨pitch, duration, onset⟩ triplets is suicient to then

create a practical representation for further processing in most of the envisioned

applications downstream of OMR (such as searching for a piece based on a short

melody); one widespread such representation is the MIDI ile.8 his is the irst major

1https://www.avid.com/sibelius-ultimate
2https://musescore.org
3https://www.slub-dresden.de/en/collections/music/
4https://www.bsb-muenchen.de/en/collections/music/
5https://imslp.org
6https://cpdl.org
7he composition is oten referred to in music and musicology as musical text; hence the term is

indeed appropriate.
8https://www.midi.org
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part of the problem of Optical Music Recognition: extracting the musical semantics,

deined as the set of these triplets.9

Apart from extracting the set of notes encoded by a music notation document,

the second major task of OMR is recording how these notes were encoded: creating a

digital representation of the score itself. his is a diferent objective: one may recover

the musical semantics without explicitly recording information about how the se-

mantics were encoded (e.g., one need not remember whether the stem of a half-note

was oriented up, or down). Due to the nature of the music notation writing sys-

tem, recovering the score itself requires a more complex representation than a set of

triplets. Typical ile formats for storing music notation are MusicXML,10 or *.mscz,

*.sib and other formats used by music notation editors.

hese tasks can also be understood in terms of inverting the process by which

music gets writen down. he irst stage of this process is conceptualizing a musical

idea through the apparatus of musical notes; the second stage is deciding how to

use the elements of music notation to best express the given structure of notes. his

resulting combination of music notation elements is then embodied – using a pen in

case of manuscripts, or using whatever physical process is preferred (movable type,

copper plate engraving, digital typeseting, etc.). his logic of OMR as inverting the

process of writing music is illustrated in Fig. 1.2.

"The music" Conceptualized

with notes

Engraved using 

music notation

Embodied in 

a document

Recover musical semantics

Recover music notation

Figure 1.2: he two goals of OMR explained in terms of the process of writing mu-
sic. We can recover what music was encoded, and we can also recover how it was
encoded.

Both tasks of OMR pose signiicant challenges. Music notation does have a well-

deined set of notation primitives (such as noteheads, stems, beams, . . . ) that form its

alphabet, but some of these primitives may appear in various forms: beams can have

wildly diferent angles, stems can be longer or shorter based on typeseting needs,

etc. he sizes of primitives also difer wildly: from entire staf lines to augmenta-

tion dots. Some primitives cannot be disambiguated by their look alone, but their

9Technically, since it is possible for two notes to share all three properties, one needs to assign an
ID as well, in order for the notes to formally be a set.

10https://www.musicxml.com
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relative positioning to other primitives must be taken into account: a dot below a

notehead signiies a staccato articulation,11 while a dot to the right of a notehead sig-

niies prolonging the note’s base duration by half, and dots can also be part of repeat

symbols or the f-clef symbol. More importantly, as opposed to the situation of the

more popular Optical Character Recognition (OCR), in polyphonic music, multiple

sequences can be recorded in parallel – and may share some graphical elements but

not others. Inferring musical semantics requires taking into account symbols that

are (unpredictably) far away from each other. he primitives can also be combined

into complex composite shapes that have to be broken down into the original com-

ponents in order to infer the musical semantics correctly. Processing handwriten

music notation then adds a separate layer of complications, as all topological con-

straints that are part of music notation syntax are only approximately fulilled. All

these factors together mean that the tasks of OMR is, by virtue of properties inherent

to music notation, substantially more diicult than OCR.

A further hindrance to OMR is that despite its intuitive appeal, the ield is small,

has had few resources and standards for reproducible OMR research, had litle in-

troductory literature for newcomers, and overall lacked internal cohesion. hese

challenges and issues have combined to make OMR a relatively immature ield that

provides few satisfactory solutions.

In this thesis, the task of automatically reading musical manuscripts is addressed.

he irst part of the contributions of this thesis are improvements to the “theory” of

OMR: an extensive analysis of what OMR is and the taxonomy of the ield, and, most

importantly a general graph formalism for describing music notation that allows

formulating the problem of musical manuscript recognition in a machine-learnable

manner. he second signiicant part of the work was to prepare the resources nec-

essary to enable actually addressing this problem, including MUSICMA++, the irst

extensive dataset that has ground truth appropriate for implementing and testing

the full OMR pipeline. hird, an OMR pipeline that takes an image of handwriten

music as input and outputs a MIDI ile capturing the musical semantics encoded in

the given score is built and evaluated both directly and in a retrieval seting.

he inherent variability of mansucripts also points directly towards using statis-

tical methods that can deal with the corresponding uncertainties; we apply machine

learning techniques that form the current state of the art in computer vision in gen-

eral, which is speciically deep learning. Note, however, that this is not a thesis on

developing deep learning methods: we are more concerned with adapting existing

methods to the unique circumstance of the target domain, and, more importantly,

at the same time we shape the target domain so as to allow these machine learning

methods to be successfully applied; one could say that much of the value of our work

lies in making the machine learning parts of the pipeline as simple as possible. With

this in mind, providing an introduction and review of deep learning is not among the

11Technically, a staccato means shortening the note from its writen duration, usually down to an
audible minimum, but at the same time it has various expressive connotations.
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goals of this thesis; we assume the reader is familiar with the concepts of machine

learning and deep learning, and provide citations and brief explanations of speciic

models that we applied for the purposes of OMR. (We of course introduce the target

domain of music notation, and review OMR itself.) For an overview of deep learning,

we recommend the survey papers by Schmidhuber [2015] and LeCun et al. [2015], or

the Deep Learning Book by Ian Goodfellow et al. [2016].

he thesis is structured as a dissertation by publication. In the irst part, we in-

troduce the topic of Optical Music Recognition (OMR), and describe and explain the

contributions of the thesis. he substance of the thesis lies in the second part, which

reproduces published works: six major peer-reviewed publications (two journal pub-

lications, out of which one is under review at the time of writing; four conference

papers) and ive complementary published works (that have also undergone a peer-

review process, but are shorter contributions such as extended abstracts). Note that

the main bibliography of the thesis only contains literature directly mentioned in the

text outside of the published works; the published works carry their own bibliogra-

phies.12

12A full up-to-date bibliography of OMR is available at https://github.com/OMR-Research/

omr-research.github.io; published as supplementary material to the manuscript “Understanding
Optical Music Recognition” that is a part of this thesis in section 6.1.
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2. Reading Music

We have stated in the introduction (chapter 1) that “music notation is [. . . ] a visual

language that encodes music graphically; the role of OMR is to automatically extract

the encodedmusical information from this graphical representation”. In other words,

the role of OMR is to automatically readmusic. What is this process of readingmusic?

What is it that OMR is actually trying to achieve, in more speciic terms that can be

formalized for automation?

We proceed by introducing the two layers that take part in this process: the layer

of musical semantics, which is the target of the process, and the layer of music no-

tation, which is its input, and show how these relate to each other.

2.1 Musical Semantics

First, we deine what we mean by this “encoded musical representation”.

he music that is encoded with Common Western Music Notation (CWMN) can

be conceptualized as a structure of notes in time. his is not necessarily the only

conceptualization of music, but it is the one that CWMN is designed to communicate.

Notes form further structures, such as voices or phrases, but for the purposes of OMR,

we restrict the conceptualization of musical semantics to a set of notes.

We must also clarify what “in time” means. Musical semantics are concerned not

with wallclock time measured in seconds, but with musical time. Musical time is an

abstract concept measured in units called beats that can be further subdivided into

regular parts. Musical time is only projected into wallclock time during performance

– primarily by means of tempo, which sets a certain baseline rate of beats per minute.

However, in reality, the projection is wildly non-linear, and it is at the discretion of

the performer; a linear projection would result in a robotic, boring performance.

A note is an abstract object that is deined by four properties: its pitch, duration,

strength, and timbre. When a musician plays a note, these properties are translated

into a fundamental frequency (pitch) maintained for a certain time (duration) with

certain perceptual loudness (strength) and spectral characteristics (timbre). he notes

are placed on the axis of musical time with a ith parameter, their onset, which gov-

erns during performance when the note should start.

Next to notes, there are rests: periods of silence. hey can be regarded as pseudo-

notes that only have temporal parameters: onset and duration.

2.1.1 Pitch

Formally, pitch is a categorical variable whose values are linearly ordered from lowest

to highest. A piano-centric schematic of how notes are indexed by pitch is provided

in Fig. 2.1. he distance between neighboring pitches is called the semitone and cor-
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Figure 2.1: he values of pitch, illustrated on a piano keyboard. One octave period is
indicated.

responds to neighboring keys. he values of pitch are expressed in terms of ⟨step,

octave, accidental⟩ triplets:

· Step, which is traditionally one of A, B1, C, D, E, F, and G.he distance between

neighboring steps is a whole tone (two semitones), except for B-C and E-F,

which are only a semitone from each other.

· One period of this patern of steps is called the octave, which is the second

of the three determining parameters of pitch in post-medieval musical tradi-

tion. Octaves are usually numbered in the English-speaking tradition 1 to 8,

from lowest to highest, with the “middle c” on a piano falling into octave 4.

Although steps are traditionally named from A to G, octaves – somewhat con-

fusingly – usually start with C and end with B, again especially where German

pedagogical tradition is prevalent.

· he third pitch descriptor is the accidental. he accidental can shit the pitch,

as determined by the step and octave, by one semitone upwards (indicated

using a sharp sign: #), one semitone down (indicated using a lat sign: b), and

sometimes by two semitones, indicated with a double sharp (an x-like symbol)

and analogously a double lat (writen usually as bb).

We emphasize again that pitch is an abstract object: it is not yet the fundamental

frequency of the corresponding tone that would sound during performance. he re-

lationship from pitch to a fundamental frequency during performance is governed by

the tuning used. he middle A (A4) is irst tied to a particular frequency; in modern

times, this is usually 440 Hz.2 he second component of projecting pitch to funda-

mental frequency is the temperament: the diference in frequency between individual

semitones. In modern times, all the semitone distances between neighboring pitches

are the same (this is called equal temperament); as indicated by Fig. 2.1, this implies

1In German tradition, which is also prevalent in the Czech Republic, B is called H.
2In practice, however, this is a much more complicated topic. Orchestras that include many wind

instruments sometimes tune at 442 Hz, but in the baroque period, this standard varied: for most of
music from the time of J. S. Bach or J. D. Zelenka, seting A4 at 415 Hz (roughly a semitone lower)
is more appropriate, and for earlier music, many more tunings were used, both lower (390 Hz) and
higher (467 Hz). Furthermore, current musicological and organological research suggests that much
of Mozart’s or Beethoven’s music was originally performed with A4 = 430 Hz…
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that, e.g., an F4 with a sharp (#) refers to the same frequency as a G4 with a lat

(b): F4 and G4 are one tone away from each other, and the semitone upwards from

F4 to F4# is the same as the one downwards from G4 to G4b. If a diferent temper-

ament was used, e.g. the historical meantone temperament3, the distance from F4 to

F4# would not be exactly half that of the distance from F4 to G4, and vice versa (the

distance from G4 down to G4b would also be slightly smaller than the whole tone

distance F4–G4 divided by two).4

he take-away from this explanation should be that pitch is an abstract concept

expressed usually with a step, octave and accidental, that pitch of a note and fre-

quency of a performed tone are two distinct concepts, and that music notation is

concerned with encoding pitch, not frequency.

2.1.2 Duration

heduration of a note is theoretically any rational number, but in practice – such that

is encoded using music notation – it also becomes a categorical variable. As stated

above (section 2.1), duration is expressed in terms of beats, the basic units of musical

time. In CWMN, these values are powers of 2, mostly negative: 8, 4, 2, 1, 1/2, 1/4, 1/8,

1/16, 1/32 and 1/64, rarely higher (1/128). he usual terminology calls a 4-beat note a

whole note, a note that has a duration of 2 beats is called a half-note, a note that lasts

for one beat is a quarter note, etc. (he most common grouping of beats into regular

units called measures is 4, hence the name “whole” for the 4-beat note, as it lasts for

the whole measure.) Additionally, music notation has ways to encode durations that

do not it into this sequence of powers of two, so that durations like 1/3 of a beat can

be expressed as well. he usual durations one encounters (from a whole note to a

64th note) are usually depicted in music notation as shown in Fig. 2.2.

Duration applies to rests as well as to notes.

2.1.3 Onset

he onset of a note is the point in musical time at which the note should start being

played. he elementary rule for determining the onset of a note is: once the previous

note ends, the next note begins. In order to determine the onset of a note, one must

therefore know the sequence into which the notes are organized. his sequence is

3here are very good musical reasons for this, not just chasing the nebulous concept of “authen-
ticity”: meantone temperament provides very diferent timbre and character for diferent harmonies
(although some become unusable), and these diferences were actively exploited by composers of the
time; when such compositions – especially those that feature the voice – are performed in equal
temperament, they lose much of their dramatic power.

4On a keyboard instrument, when using meantone, one then has to choose whether to tune the
given black key as the appropriate F4#, or G4b. Many so-called “well temperaments” were developed
to allow some compromises in this respect; the title of J. S. Bach’s “Well-Tempered Clavier” refers to
one of these many compromise options, not to the equal temperament of today. Pitch and tuning is a
fascinating topic!

11



Figure 2.2: he types of notes according to duration. Two half-notes takes as long as
one whole note, one half-note takes the same number of beats as two quarter-notes,
etc.

called a voice. Assuming a composition with a single voice (monophonic music), the

irst note of the voice has an onset of 0, and the onset of the i-th note in the given

voice is computed as onset(i − 1) + duration(i − 1). his is the important concept

of precedence. In the writen score, notes are encoded by precedence from let to right

according to the positions of the corresponding graphical notes. Whenmore than one

voice is present, in music that is called polyphonic, a simple let-to-right ordering is

not suicient; for correctly inferring precedence, one must correctly assign notes to

voices.

he concept orthogonal to precedence is simultaneity: a simultaneity is a set of

notes that shares the same onset. Simultaneity can happen within a voice, where all

the participating notes share the same preceding note (or members of the preceding

simultaneity); if all simultaneities withmore than onemember are such that the notes

belong to the same voice, we call the music homophonic.

2.1.4 Strength and Timbre

he note parameters of strength and timbre can be mostly let out for the purposes

of OMR, as they are barely encoded in music notation. Strength is rudimentarily

conveyed with dynamic markings such as piano or forte, and some symbols that con-

vey how strength should change over a sequence of notes (crescendo for increasing,

decrescendo for gradually decreasing strength); timbre is expressed with sporadic tex-

tual expressive markings or instrument-speciic techniques. hese two parameters

are let for the most part at the discretion of the performer.

Importantly, for the motivating applications of OMR listed above, strength and

timbre need not be a part of the OMR outputs. herefore, for the purposes of this

thesis, we simplify the deinition of a note to just the triplet ⟨pitch, duration,

onset⟩, and the task of recovering musical semantics then becomes the task of recov-

ering the set of such triplets. his simpliied representation is already rich enough

to have the OMR system output iles in the widely used MIDI format, which in turn

serves as an input of many of the downstream applications of OMR – especially

full-text search in music archives and other applications oriented towards digital li-

braries, more broadly curating and making accessible sheet music collections, and

musicology overall.
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2.2 Music Notation

Now that we have introduced the layer of musical semantics, we turn our atention

to the music notation, speciically CommonWestern Music Notation (CWMN) visual

language and its relationship to these semantics. We introduce music notation ter-

minology factored into subsets of the music notation alphabet according to which

aspect of the musical semantics deined above the given symbols help encode.

he elementary interface between the “writen” layer and the “semantic” layer,

or music notation and the notes that it encodes, are noteheads. he general rule is

that one notehead encodes one note.5 Noteheads are round6 objects with a ixed

size.7 hey are the central and most frequent music notation primitives.

In the context of OMR, one must be carefull to distinguish the abstract musical

note objectwith the composite graphical objects that are oten also called notes. hese

graphical objects serve as a useful pedagogical concept, but for the purposes of OMR

they are not well-deined. Whenever we wish to refer to the graphical objects, we

will explicitly use the term graphical note.

A reference example of actual music notation is given in Fig. 2.3.

Suppose we have correctly identiied noteheads, and therefore we know how

many notes are encoded in a given notation document. It remains to ind their pa-

rameters that are unambiguously recorded bymusic notation: pitches, durations, and

onsets. he nature of the music notation visual language is featural: these properties

are encoded not using individual primitives, but using the conigurations of these

primitives. We describe which primitives participate in encoding which property,

and explain how.

2.2.1 Encoding Pitch

Pitch, described as a ⟨step, octave, accidental⟩ triplet, is encoded using the follow-

ing primitives:

· stalines and spaces between them, which combine into stafs,

· ledger lines,

· clefs (g-clef, f-clef, c-clef),

· accidentals (sharp, lat, double sharp, double lat, natural),

· measure separators (thin and thick barlines and barline groups).

5In polyphonic music, this rule may get broken: multiple voices on a single staf may share pitch
and have a graphically compatible duration, in which case a notehead can encode two notes; this
would be evident to the reader from the presence of two stems atached to a single notehead.

6Mostly. As is the case with nearly everything in music notation, exceptions abound. In this case,
CWMN allows for diferent notehead shapes, especially in the later half of the 20th century: these
are most widely used to indicate certain playing techniques that afect timbre. Percussion parts are
most prone to non-round noteheads. However, as these are still (relatively) rare, we do not consider
non-round noteheads in this thesis.

7Except for grace noteheads: these encode ornamental notes that do not have a duration of their
own.
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Figure 2.3: An example of real-world notation, with the individual notation elements
marked (not exhaustive). Taken from: Ernst Bloch, Baal Schem: Drei chassidische
Stimmungen for violin and piano, II: Improvisation (Nigun).

Figure 2.4: he elements encoding pitch: three notes with the same pitch writen in
diferent ways. Noteheads red, for clarity.

hree notes with the same pitch are shown in Fig. 2.4.
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Since the times of Guido of Arrezzo (12th century), the staf, consisting of a num-

ber of equidistant parallel stalines and the spaces between them, is the basic layout

object in music notation. Music is read let-to-right per system; each system con-

sists of a number of stafs that are read concurrently; each staf consists of a certain

number of stalines and the stafspaces between those lines (plus two surrounding

the outer stalines of the staf). Overwhelmingly oten, in post-1650 scores, stafs are

built from groups of ive stalines, with six stafspaces between and around them.8

Noteheads are placed on staflines or into stafspaces. Each notehead is posi-

tioned on exactly one staline or stafspace (not both). Moving a notehead to the

neighboring stafspace (or, vice versa, staline) changes its pitch by a step (not nec-

essarily by a semitone; see subsection 2.1.1).

Ledger lines are used when the pitch of a note is more extreme than can be

recorded with the given limited number of stalines and stafspaces. Ledger lines

are short horizontal lines parallel to the staf that simulate the presence of a given

number of additional stalines for the given note; they are interpreted exactly as

additional stalines would be.

he clef symbols are also atached to stalines (not stafspaces, however). Clefs

govern how positions on the staf are interpreted in terms of step and octave.

he f-clef denotes the staline on which noteheads will be interpreted to encode

notes with the pitch F3; overwhelmingly oten, this would be the second staline

from the top. his clef is also known as the bass clef, as it is most oten used to

encode lower-sounding music, such as the let hand’s part in piano literature or the

bass part in vocal music. he g-clef, also known the violin clef, denotes the staline

corresponding to the pitch G4; this clef is overwhelmingly oten placed on the fourth

line from the top, and is used for music in the higher ranges (right hand on the

piano, soprano and later also alto parts, the eponymous violin music, etc.). he c-clef,

sometimes called the viola clef, denotes the staline corresponding to the middle C

(C4), and as its name suggests it is used mostly with alto or tenor instruments such as

the viola. he c-clef usually appears in viola parts on the middle of the ive standard

stalines, but in trombone, French horn, or cello music, it oten appears also on the

second line from the top, and in pre-1750 music it can appear on any of the stalines.9

Clefs are most oten present at the beginnings of stafs, but it is perfectly valid

to encounter clefs anywhere on a staf; all clefs are valid for interpreting notehead

positions on the given staf only to the right of the given clef.

hus, from the position of the clef, and the position of the notehead on the staf

(in terms of which staline, stafspace, or ledger line the notehead is placed on), one

can assign to each notehead the step and octave parts of its pitch. What remains

is the accidental. his is encoded by accidental primitives (again, one must distin-

8he widest exception today is modern plainchant notation with four stalines, and single-line
percussion parts.

9Surprisingly, in early music, the g-clef and the f-clef only appear more frequently in non-standard
positions in French baroque scores.
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guish between the semantic property of accidental and the subset of music notation

primitives – sharps, lats, etc. – that encode this semantic property). hese primi-

tives are the sharp (modiies pitch upwards by semitone), the lat (downwards), the

double sharp and double lat that modify pitch twice as much, and the natural, which

cancels any accidental that might have been valid for the given note. Similarly to

clefs, accidentals are also valid to the right of their horizontal position on the staf,

but they have two lavors – inline accidentals, and key signature accidentals.

Inline accidentals apply to notes encoded by noteheads on the same staf position

as the accidental by convention up until the end of the measure, denoted by the next

barline or barline group.10 Using this convention, if one wants to cancel an inline

accidental at a given note (e.g., irst encode F4#, then F4), one would use the natural

sign to cancel, from then onward, the efect of the accidental that would apply at that

point.

Accidentals in key signatures (which are simply groups of accidentals that are not

associated with any speciic notehead) difer from their inline counterparts in that

their validity does not expire with the next barline: key signature accidentals stay

valid unless overriden temporarily by an inline accidental, or permanently by a new

key signature. hey are usually re-stated at the beginning of each staf.

Note also that the inline accidentals and key signature changes imply that read-

ing music is a stateful process: in order to correctly read the next note, one must

remember some information about the previous notes and music notation elements

that have already been read.

his analysis should now clarify why the notes corresponding to the three high-

lighted noteheads in Fig. 2.4 actually encode the same pitch.

2.2.2 Encoding Duration

Duration is encoded using:

· notehead type (full vs. empty),

· stem,

· lags and beams,

· augmentation dots (absent, one, two),

· tuples.

Recall that duration is a categorical variable that determines for how many beats

(units of musical time) a note should be held. he values of duration are drawn

mostly from powers of 2: 4 beats, 2 beats, 1, 1/2, 1/4, 1/8 and 1/16 (rarely is a note

writen shorter than 1/16th of a beat). his is all we need to care about in OMR; music

notation does not encode the relationship of beats to wallclock time. he names for

10Before roughly 1670, the convention was to apply the inline accidental only to the next note on
the given staf position, and this has become relevant again for atonal music in the 20th century.
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Figure 2.5: he elements encoding duration.

durations are somewhat misleading: a 4-beat note is a whole note, a 2-beat note is

commonly called a half note, a 1-beat note is a quarter note, etc.

See Fig. 2.2 for how these duration values are prototypically encoded in CWMN.

An empty notehead without a stem denotes a whole note; with a stem, it encodes a

half note. A full notehead with a stem encodes a quarter note (1 beat); in CWMN, full

noteheads are required to have stems. Smaller values are then encoded with lags or

beams. here can be more than one lag (or beam) associated with a notehead; each

associated lag or beam halves the duration of the encoded note (a note encoded with

a full notehead, stem and no lag has a duration of 1 beat, with one lag it will have a

duration of 1/2 beat, with two lags, 1/4 of a beat, etc.). Beams are used instead of lags

prototypically when there is more than one consecutive note with sub-beat duration;

they connect the respective graphical notes into beamed groups. For duration values

from outside this row – especially when dividing a larger value into three equal parts

instead of two – the tuple symbols are used. he elements that govern duration are

depicted in Fig. 2.5.

Beams and beamed groups are some of the most problematic elements of music

notation for OMR. Individual beams can have wildly diferent lengths, thicknesses

and angles; the way they are combined into groups relies on just a few rules, but can

lead to visually complex structures with many overlapping elements, and especially

in manuscripts, beamed groups are prime suspects where the topological constraints

on printed music notation get violated. A moderately complex beamed group is de-

picted in Fig. 2.6; a tricky real-life example from an earlymusicmanuscript is depicted

in Fig. 2.7

2.2.3 Encoding Onset

Onset is encoded by how notes are ordered by precedence and assigned to voices.

Ordering notes by precedence within a voice is done simply by ordering the cor-

responding noteheads let-to-right within each staf (and ordering systems down-

wards). A simultaneity with more than one member within a voice is encoded by

making all noteheads that correspond to its member notes share a single stem. (In

case of whole notes, where no stem is used, the empty noteheads are either stacked
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Figure 2.6: A somewhat complex beamed group. Note how it changes stem sizes,
which are otherwise mostly ixed (at 3.5∗stafspace height). he irst two and the last
note have a 16th duration (two relevant beams), the third and fourth notes are 32nd
notes (three beams).

Figure 2.7: A more complex beamed group situation in a 17th century violin
manuscript (H. I. F. Biber, Mystery sonata IV).

on top of each other, or, if they lie on a neighboring staline and stafspace, they are

stacked very close to each other without the noteheads overlapping.)

In case of polyphonic music on a single staf, correctly inding the predecessor(s)

of a note is a diicult problem to solve in general. When the number of voices in a

staf is limited to two, most oten the voices can be diferentiated by stem direction

(rests are then usually positioned signiicantly above their usual position for the top

voice, and below their usual position for the botom voice); however, when more

than two voices are present on a staf, this approach fails. One can partly rely on

the heuristic that whenever voices cross (a voice that is typically below the other

has a note above the one that is currently in the upper voice), stem directions are set

to relect this. However, resolving precedence in polyphonic music in general is an

open problem; examples of complex situations are given in Fig. 2.8. (Note also that

in Fig. 2.7, there is a rare situation where the noteheads that are part of one beamed

group are not necessarily encoding each other’s predecessor notes.)
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(a) Precedence in polyphonic guitar music: note the variable number of voices, some with
chords.

(b) Precedence in complex pianoform music (green connecting lines, let to right). Notice
the voice that is writen across stafs.

Figure 2.8: Examples of notation where precedence is complicated.
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3. Optical Music Recognition

Armed with an understanding and a formal speciication of musical semantics and

how they are expressed using the music notation visual language, we can now talk

about the ield of Optical Music Recogntion in more detail. We revisit the dichotomy

of OMR goals and discuss its implications for OMR systems, describe the taxonomy

of OMR systems according the input they are designed to process, and proceed with

an overview of the state of the art of the ield.1

We have already indicated in chapter 1 that there is a fundamental diference

in the objectives of the ield: OMR for replayability, and reprintability, as remarked

briely by Miyao and Haralick [2000]. (Unfortunately, this distinction was not fol-

lowed up on in subsequent OMR literature.) he terms themselves suggest where

the dichotomy lies. Replayability aims to recover what is encoded, and it has its own

set of applications such as – besides the eponymous replay – full-text search, mu-

sicological research, and curating of digital archives (for instance, detecting copies

of the same music across multiple collections, which helps track how music evolved

over time and geographical area).2 Reprintability means the ability to re-typeset the

given score digitally: recover how exactly music notation was used to encode the

given set of notes.3

Of course, these two objectives are closely related, since they fundamentally re-

quire dealingwith the same input. However, there are important diferences. One lies

in the output representation that is required. For replayability, this is typically some

equivalent of MIDI: regardless of the ile format, the underlying representation can

be simply a list of the ⟨pitch, duration, onset⟩ triplets (see section 2.1), for mono-

phonic music perhaps beter stored as a sequence of consecutive ⟨simultaneity-or-

silence, duration⟩ elements. his is not the case for reprintability, where one has

to output a formal representation of the score itself, which is more complicated than

merely the set of symbols and their positions – given the featural nature of music

notation, one must also bear in mind how the symbols depend on each other. (For

1Much of this chapter is analogous to the content of the manuscript in section 6.1.
2Another such interesting application is part matching: manymanuscript scores exist only as parts

for individual instruments and not as orchestral scores, and sometimes these are assigned incorrectly:
having access to the underlying musical semantics enables checking for incompatibility of parts as-
signed to one score, or unexpected compatibility of a part that was perhaps not considered in the
context of the given composition – for instance, a part found in a diferent location.

3In the context of the previous footnote: while part matching requires replayability to make sure
that the given parts are compatible, when one moves towards actually building scores from individual
parts, this is a reprintability-oriented application: one needs to know at the very least the locations of
measures, so that they can be correctly aligned to each other. In reality, this task is more diicult still,
because in individual parts, consecutive measures where the instrument is not playing are usually
condensed using either special markings (e.g., a pause of 13 measures denoted as two ive-measure
pauses and three single-measure pauses), or a diferent mark and the corresponding number. Again,
this example illustrates how in conceptually straightforward applications of OMR run into themyriads
of details and small optimizations of CWMN for readability that have evolved over the three hundred
years of usage.
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(a) Input: manuscript image.

(b) Replayable output: pitches, durations, onsets. Time is the horizontal axis, pitch is the
vertical axis. his visualization is called a piano roll.

(c) Reprintable output: re-typeseting.

(d) Reprintable output: same music expressed diferently

Figure 3.1: OMR for replayability and reprintability. he input (a) encodes the se-
quence of pitches, durations, and onsets (b), which can be expressed in diferent
ways (c, d).

instance, in practical terms, a reprintability-oriented retypeseting application might

require spliting a system in two – which requires adding the correct clef and key sig-

nature at the beginning of the new system, which is in turn derived from the position

where the system is split.) Additionally, while a score has only one interpretation in

terms of musical semantics, the same musical semantics can be encoded with many

diferent scores (some of which are more readable than others); see Fig. 3.1. his al-

ready implies that more information about the document must be explicitly recorded

if one wants a description of the score, rather than the semantics.

Orthogonally to their goals, OMR systems can be characterized by the types of in-

put they are designed to process. he irst major diference lies in the input signal:

we diferentiate oline OMR, which processes an image, from online OMR, which

processes the temporal signal from a touch-based device (such as writing with a sty-

lus on a tablet). he later is in principle simpler because the pen strokes represent

a very good natural segmentation heuristic; however, the former is more broadly

applicable: while online OMR has its place whenever a composer or arranger is will-

ing to use a device that records the trajectory information information, it cannot

deal with the stacks of sheet music that have already been writen. An interesting
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combination, however, is to use online OMR in ground truth acquisition, as tracing

the already writen notation is much faster and more natural to qualiied annotators

(who presumably themselves have ample experience withwritingmusic notation), as

done by Calvo Zaragoza et al. [2016a]. he second distinction based on input signal is

whether the music in question is typeset, or handwriten, with obvious implications

for symbol intra-class symbol variability. hird, one must specify what type of music

notation a system is designed to process: CWMN, mensural notation, choral square

notation, tabulature (lute, modern guitar, North German organ…), etc.

A second major axis of classifying OMR systems by input is according to the

complexity of notation they are able to process. his was described in depth by

Byrd and Simonsen [2015]; we use a slightly diferent classiication that nevertheless

preserves the spirit of the original categories:

· Monophonic: each staf contains at most one voice; each simultaneity contains

at most one note.

· Homophonic: each staf contains at most one voice; each simultaneity can con-

tain more than one note.

· Polyphonic: each staf can contain multiple voices, but the stafs can still be

processed in isolation.

· Pianoform: stafs contain multiple voices, and there is interaction between

stafs (e.g., cross-staf beaming).

he categories of [Byrd and Simonsen, 2015] did not diferentiate between homo-

phonic and polyphonic music, but rather between music on one staf and on multiple

stafs (monophonic – monophonic multi-staf – polyphonic multi-staf – pianoform).

However, we believe the distinction between homophony and polyphony to be more

important. First, separating music into stafs is a relatively easy part of the problem

(for instance, the OMR pipeline presented in this thesis handles assignment of sym-

bols to stafs successfully in variable manuscripts merely using heuristics). Second,

the distinction between homophony and polyphony is important from the perspec-

tive of precedence: in homophonic scores, inferring precedence is near-trivial, while

Figure 3.2: he basic ways of characterizing OMR inputs.
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in polyphonic scores it becomes a diicult problem. hird, no end-to-end OMR sys-

tems are capable of modeling polyphonic output so far.

A third way of characterizing the inputs of OMR is by the image quality: both

in terms of the underlying document, and in terms of the imaging process used to

digitize the document. Problems that afect the underlying document are degradation

over time (especially for archival materials) – most serious of which is bleedthrough

– or outright damage to the material (stains and tears). he imaging process then

ranges from high-quality scans from music libraries to mobile phone photos in sub-

optimal lighting conditions.

An overview of the basic characterizations of OMR inputs is given in Fig. 3.2.

3.1 Why is OMR diicult?

OMR is still an open problem and satisfactory solutions are available only for limited

sub-problems [Bainbridge and Bell, 2001, Rebelo et al., 2012, Novotný and Pokorný,

2015]. Besides the small size of the ield and the accompanying non-technical chal-

lenges [Calvo Zaragoza et al., 2018], one reason why OMR is not solved to any satis-

factory extent is its sheer diiculty [Byrd and Simonsen, 2015].4

here is a straightforward intuitive description of OMR as “Optical Character

Recognition for music”. However, while appealing, this analogy is only accurate in

terms of the purpose of both OMR and OCR. Given the content that it is trying to

encode (see chapter 2), music notation has evolved into a very diferent writing sys-

tem than the writing systems for natural languages: it is a featural system, where

one must recover conigurations of symbols in order to be able to output the well-

deined musical semantics that OMR is, by deinition of its domain, expected to pro-

duce. Compared to OCR, which has to output the sequence of graphical symbols

(including whitespace) and this already can be presented as input for downstream

applications in Natural Language Processing, OMR must, by virtue of the domain it

operates on, perform additional steps in order to be considered useful. his is one

fundamental reason why the analogy of OMR to OCR does not hold beyond a super-

icial similarity of purpose.

A furhter source of diiculty are the visual properties of music notation. Ac-

cording to Byrd and Simonsen [2015], music notation is probably the most complex

writing system. he main reasons why the way CWMN is writen makes OMR more

diicult than OCR are:

· In order to correctly disambiguate individual symbols, and more generally in

order to construct and interpret the symbol conigurations correctly, both the

horizontal and vertical dimensions are salient, in terms of both size and posi-

tion.
4hat OMR is a diicult problem is atested to by the fact that problems connected to the inherent

properties of music notation have been called “really roten” in a publication title, already in 1989
[Clarke et al., 1989]!
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Figure 3.3: he presence of multiple voices (indicated with red lines) adds complica-
tions.

(a) he C-clef on the let inluences how stalines are interpreted with respect to the
pitches they denote.

(b) A change of clef and key signature. Also, notice the sharp in the middle: it is valid up
to the end of the measure.

Figure 3.4: Long-distance relationships afecting pitch of the note on the right.

· Graphical complexity is increased due to the fact that many symbols overlap

(especially stalines) [Bainbridge and Carter, 1997], and by design composite

graphical structures are built (esp. beamed groups – see Fig. 2.6).

· In handwritenmusic, besides vastlymore varied symbol shapes, the variability

of handwriting leads to a lack of reliable topological properties overall (Fig. 3.5)

– symbols that should not touch start touching, and conversely gaps are let

where symbols should touch or overlap.

· In polyphonic music, individual voices are writen, in a sense, “over” each other

(some symbols may be shared among multiple voices) – as opposed to OCR,

where the ordering of the symbols is linear (Fig. 3.3).

· Recovering pitch and duration requires recovering long-distance relationships

(Fig. 3.4).

Finally, OMR has proven a long-term challenge also because of non-technical

reasons: the ield had until recently no natural shared publication venues, research

was done with comparatively litle regard to reusability, and infrastructure was lack-

ing (both in terms of datasets, evaluation methodologies, and even appropriate ile
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(a) Nice handwriting that follows topological con-
straints according to ideal printed CWMN.

(b) Disjoint notation primitives.

(c) Very hasty handwriting. Some noteheads may be
very hard to distinguish from the stem.

Figure 3.5: he variety of handwriting. Taken from the CVC-MUSCIMA dataset
[Fornés et al., 2012].

formats), which made it diicult to work in OMR [Calvo Zaragoza et al., 2018].

3.2 An Overview of the State of the Art

We now introduce the state of the art on which the work in this thesis builds. he

purpose of this section is to give the reader a good idea of the starting point of the

thesis, in order to understand its contributions; detailed reviews of works related to

the individual thesis contributions are parts of the corresponding published works.

What is the state of the art in Optical Music Recognition? While the “wishlist” of

OMR applications exists from the earliest publications [Pruslin, 1966, Prerau, 1971,

Fujinaga, 1988, Blostein and Baird, 1992] onwards, ater more than 50 years of OMR

research, few truly convincing results have materialized. he reasons for this state

of afairs are several. First, despite its intuitive appeal, the ield is small (some 500
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publications to date), as it requires a combination of computer science expertise and

relatively deep domain knowledge of music and music notation. Second, it follows

that the ield does not have too many resources and established methodologies. Most

work on OMR has been focused into PhD theses [Fujinaga, 1996, Bainbridge, 1997,

Fornés, 2009, Rebelo, 2012, Calvo Zaragoza, 2016], which is a form that ofers lit-

tle incentive for collaboration and establishing a research community that in turn

establishes standards for evaluation and interoperability; therefore, it becomes dii-

cult to build on previous work. Given the lack of standardized, practical evaluation

methodologies [Byrd and Simonsen, 2015, Hajič jr. et al., 2016] and even the under-

lying understanding of what should be evaluated (see section 6.1), the ield cannot in

good conscience even say what “the state of the art in OMR” is.

Having said that, there are survey papers available for OMR. he irst such sub-

stantial paper is by Blostein and Baird [1992], which is the irst atempt to systematize

the ield. he key survey paper for OMR up until 2012 is [Rebelo et al., 2012], which

systematizes the many approaches and contributions to OMR. he underlying ter-

minology of the ield and an analysis of its structure and needs has been done by

Byrd and Simonsen [2015]; a smaller but nevertheless useful review paper for de-

velopments up to the start of this thesis has been writen by Novotný and Pokorný

[2015]. As a part of its contributions, the tutorial paper in section 6.1 systematizes

the ield from the perspective of its output, in addition to Byrd and Simonsen [2015]

characterizations by input and Rebelo et al. [2012] by method. Further resources ex-

ist: a list of OMR datasets5, an OMR bibliography,6 and a video series that introduces

OMR.7,8 What the survey papers have in common is the assessment that a complete

OMR system still lies in the future.9

With these limitations in mind, we turn to introduce the state of OMR, in terms

of its methods and the available infrastructure.

3.2.1 Methods

In terms of methods, the problem is usually broken down into the following steps

[Bainbridge and Bell, 2001, Fornés et al., 2006, Rebelo et al., 2012, Hankinson, 2014,

Novotný and Pokorný, 2015]:

1. Preprocessing. his step involves image de-skewing, potentially binarization,

and other steps that ensure the image is as normalized as possible for further

processing.

5https://apacha.github.io/OMR-Datasets/
6Originally maintained by Fujinaga [2000], recently updated and veriied as part of the submited

manuscript in section 6.1: https://github.com/OMR-Research/omr-research.github.io.
7Presented at the ISMIR 2018 conference as a tutorial: https://www.youtube.com/playlist?

list=PL1jvwDVNwQke-04UxzlzY4FM33bo1CGS0
8he later two resources were to a signiicant extent co-created by the thesis author.
9Incidentally, this is the title of[Bainbridge, 1994], “A complete optical music recognition system:

Looking to the future”.
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2. Staf detection and removal. he stafs (horizontal objects consisting, usu-

ally, of 5 equally-spaced lines) are the ”spines” along which music is read, so

detecting them provides basic information about the layout of the sheet music.

hey are oten then removed from the image, as they are responsible for most

of the object overlap and crossing; once stafs are removed, segmentation can

be done using some heuristics such as connected components. his is a step

speciic to processing music notation. he pipeline up to this step is depicted

in Fig. 3.6.

3. Object detection. he individual notation objects are then detected, either in

two steps (segmentation and classiication) in earlier approaches, or detected

directly in more recent works, using deep learning. In our view, the distinc-

tion from the previous step is mostly a practical issue, not one of principle –

stalines are also symbols that must be detected – but the methods for detect-

ing stalines have historically been distinct; this is due both to their distinct

characteristics and the fact that most methods relied on inding and removing

stalines before the remaining objects could be found.

4. Notation assembly and semantics inference. Given the featural nature of

music notation as a writing system, the relationships of the individual detected

objects to each other must be added (such as: accidentals must be associated

with the right note or grouped into a key signature, beams must be correctly

assigned to noteheads, etc.) and the musical semantics can thus be inferred, by

applying the rules of music notation.

he inal step is to construct the output representation in the required format.

Preprocessing

Preprocessing is a mostly practical stage that focuses on normalizing the input im-

ages in order for it to conform to the assumptions of the downstream parts of a given

OMR system (e.g., de-skewing, so that stafs are straight [Fujinaga, 1988]). he most

important problem for OMR in this stage is binarization [Rebelo et al., 2012]: sorting

out which pixels belong to the background, and which actually make up the nota-

tion. here is some evidence that with respect to binarization, sheet music does have

some speciics [John Ashley et al., 2008], and consequently there have been atempts

at OMR-speciic binarization [Yoo et al., 2008, Pinto et al., 2010, 2011]. On the other

hand, authors have atempted to bypass binarization, especially before staline de-

tection [Rebelo and Cardoso, 2013, Calvo Zaragoza et al., 2016b], as information may

be lost with binarization that could help resolve symbol overlap or other ambiguities

later. Other preprocessing requirements relate mostly to imperfections in the imag-

ing process (e.g., uneven lighting, deformations of the paper; withmobile phone cam-

eras, limited depth-of-ield may lead to out-of-focus segments of the image) and the

quality of the underlying document (degradation, stains, especially bleedthrough)
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(a) Original image.

(b) Binarized image: notation pixels as foreground.

(c) Ater staf removal.

Figure 3.6: he standard OMR pipeline from the original image through image pro-
cessing including binarization, and staf removal. While staf removal is technically
part of symbol recognition, as stalines are symbols as well, it has until very recently
been considered practical to recognize stalines separately.

[Byrd and Simonsen, 2015]. Other than possibly some speciic binarization tech-

niques, or rather estimating the optimal setings of general binarization techniques,

preprocessing is not speciic to OMR.

Staf detection and removal

Staf detection and removal has seen a lot of activity, as it is a critical issue for OMR

since its beginnings [Pruslin, 1966, Prerau, 1971, Fujinaga, 1988]. It is the only part

of OMR where a competition has been organized [Fornés et al., 2011, Fornés et al.,

2014], and an extensive dataset was created [Fornés et al., 2012].

here are practical motivations for considering staline removal a separate step.

Removing them signiicantly simpliies the topology of the foreground regions, to
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the extend that connected components become a useful (if imperfect) heuristic for

pruning the search space of possible segmentations [Fujinaga, 1996, Rebelo, 2012].

Furthermore, the vertical spacing of stalines (stafspace height, measured in pixels)

are the most important parameter that describes the scaling of the score: one can

normalize scores by re-scaling to some ixed stafspace height (due to diferences in

staline thickness relative to the height of a whole staf, using a sum of staline and

stafspace height is a more robust characteristic [Rebelo, 2012]).

Traditional staline detection and removal methods exploit the fact that stalines

are by deinition long and straight, or at least should be. he natural idea is to de-

tect them by searching for peaks in horizontal projections [Pruslin, 1966, Prerau,

1971], notably also by Fujinaga [1988]. For imperfectly scanned scores, de-skewing

can be used as a step that makes projections perform beter [Fujinaga, 1996]. An

alternative to horizontal projections is line tracking, where adjacent vertical runs

of foreground that approximately match the prevalent staline height are consid-

ered stalines [Dalitz et al., 2008a]. A more general approach that also applies to

grayscale images, not necessarily only to binarized inputs, was atempted by Car-

doso et al. [2009] and Rebelo et al. [2013], Rebelo and Cardoso [2013], search for

shortest “stable paths” through foreground areas from the let edge of the score to

the right, also based on the assumption that the stalines are the only extensive hor-

izontal foreground objects. However, more recently, these results have been almost

entirely superseded by convolutional networks Calvo Zaragoza et al. [2017c], Gallego

and Calvo Zaragoza [2017], achieving robust results: both signiicantly outperform-

ing previous results on the CVC-MUSCIMA dataset used for the competition [Fornés

et al., 2012], and being applicable to diferent types of scores as well.

Because errors during staf removal make further recognition complicated, es-

pecially by breaking symbols into multiple connected components with over-eager

removal algorithms, some authors skip this stage. An interesting idea is tried by

Sheridan and George, who instead add extra stalines to annul diferences between

notes on stalines and between stalines [Sheridan and George, 2004], Pugin in-

terprets the stalines in a symbol’s bounding box to be part of that symbol for the

purposes of recognition [Pugin, 2006a]. Furthermore, recent object detection meth-

ods using deep learning (such as presented in this thesis) have been found to not

require staf removal at all [Pacha and Calvo Zaragoza, 2018, Hajič jr. et al., 2018a,

Pacha et al., 2018b].

Object Detection

Object detection, whether with or without stafs removed, has been atemptedmostly

in two steps: a segmentation or localization step irst, and a classiication step next.

While classiication of musical symbols has produced near-perfect accuracy for both

printed and handwriten musical symbols [Rebelo, 2012, Chanda et al., 2014, Wen

et al., 2016], with baseline classiication algorithms on raw pixels as features achiev-

ing close to 80 % accuracy [Calvo Zaragoza and Oncina, 2014], segmentation of hand-

29



writen scores remains elusive. Ater stalines are removed (and if they are removed

well), one can start by using connected foreground components as object candidates.

However, while this heuristic does prune the search space for possible segmenta-

tions to a great extent, it is still the case that (1) multiple notation objects are part

of a single connected component (such as beamed groups), (2) a single object is split

into multiple components (such as the f-clef).

It must also be noted that diferent authors use diferent “alphabets” of music

notation symbols. Some OMR researchers decompose notation into individual prim-

itives (notehead, stem, lag) [Coüasnon and Camillerapp, 1994, Bainbridge and Bell,

1997, Bellini et al., 2001, Bainbridge and Bell, 2003, Fornés, 2005], while others retain

the graphical “note” as a single visual object, and beamed groups are decomposed into

the beam(s) and the remaining notehead+stem combinations of “quarter-like notes”

[Rebelo et al., 2010, Rebelo, 2012, Pham et al., 2015]; in some literature that chooses

this decomposition, beams are unfortunately not included at all [Calvo Zaragoza and

Oncina, 2014, Chanda et al., 2014].

Most segmentation approaches such as projections [Fujinaga, 1988, 1996, Bellini

et al., 2001] rely on topological constraints (such as: the notehead and stem touch)

that do not necessarily hold also in printed music, much less in manuscripts. In

response, a fuzzy approach to topological constraints has been proposed in [Rossant

and Bloch, 2006], and morphological skeletons have been proposed instead [Roach

and Tatem, 1988, Ng et al., 1999, Luth, 2002] as a basis for handwritenOMR. Recently,

however, general object detection methods based on deep learning (one of which is a

part of this thesis) have brought previously unseen performance [Pacha et al., 2018b]

that has since improved further.

Notation Assembly

he locations and classes of symbols on the page becomes the input to the notation

assembly stage. Recall that music notation is a featural writing system: the essence

of notation assembly lies in inferring the symbol conigurations from the individual

symbols and their locations.

However, it is not clear what the output of this stage is, or rather: this output

heavily depends on the assembly approach taken. his is because at this point in the

recognition pipeline, one must start thinking about how to formally represent music

notation. In replayability-oriented applications, one may decide that no explicit rep-

resentation is needed [Shi et al., 2017, van der Wel and Ullrich, 2017, Calvo Zaragoza

et al., 2017b, Calvo Zaragoza and Rizo, 2018]. However, in other cases, it is necessary

to have a formal model of music notation in mind.

One such formalism are context-free grammars. his approach is rooted in the

fact that music notation can be hierarchically decomposed, corresponding well to

the notion of a non-terminal symbol. A page is split into systems, systems into stafs,

stafs into measures, measures into notes, etc. Furthermore, there are strong visual

syntactic rules for how to write valid music notation: e.g., every full notehead must
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have an associated stem; the stem is supposed to touch the notehead on the rightmost

point (if it is pointing upwards), or letmost (if pointing down); the half-rest is on top

of the middle staline, the whole rest is positioned “hanging” from below the 2nd

staline from the top; an inline sharp is at the height of the notehead, etc., that invite

this line of thinking: one can easily imagine generation with non-terminals such as

quarter note−− > {notehead-full, stem}with additional atributes to make sure

that, e.g., stems point in the right direction.

Using context-free grammars has been irst atempted already in 1982 [Alio An-

dronico and Alberto Ciampa, 1982] and several times since [Coüasnon and Camiller-

app, 1994, Coüasnon and Rétif, 1995, Bainbridge and Bell, 2003, Szwoch, 2007], as

it ofers an elegant formalism with established inference algorithms. However, al-

though it does to some extent simulate the human process of writing music (“I need

to write a G4# quarter note” translates at the graphical level to “write a full notehead

on 4th staline, stem pointing upwards, sharp on the let of notehead”), the intu-

itively appealing top-down hierarchical decomposition of music notation into a tree

structure is not necessarily an adequate representation of music notation itself: for

instance, in the (relatively frequent) situation where two voices share a notehead,

one either has to “invent” an overlapping notehead symbol so that the parse tree10

remains a tree, or let subtrees share leaves. his is a problem for parsers, as they

rely on a pre-computed segmentation of the input. In response, graph grammars

have been used [Fahmy and Blostein, 1993, Baumann, 1995, Reed and Parker, 1996,

Fahmy and Blostein, 1998]. he core idea of graph rewriting is also being used by the

Audiveris open-source OMR system [Biteur, 2004].11 However, the interest in such

uniied formalisms (and notation assembly in general) seems to have waned ater

2000, in exchange for increased focus on staf removal and symbol classiication.

Constructing the output representation

Once the score is fully described and the musical semantics are inferred, what re-

mains is to store the given score in the desired output format. For replayability-

oriented applications, this format is usually MIDI and the export is straightforward,

from the list ⟨pitch, onset, duration⟩ triplets that the OMR system has inferred.

For reprintability-oriented applications, where a digital representation of the score

itself is expected, the situation is more complex.

One group of music encoding formats are plaintext. he oldest of these formats,

10TODO: explanation
11A grpah is also used by Chen et al. [2015a]: a graph is built with edges directly connecting some

notation primitives, but this was done for the purposes of preserving layout constraints when stretch-
ing and otherwise manipulating a score without fully recognizing it.
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DARMS,12 **kern,13 the LilyPond14 format for engraving, ABC,15 or NIFF.16 heprob-

lem with these formats – except for LilyPond – is that they are actually more suitable

for replayability than for storing the score itself, as they prioritize saving the musi-

cal semantics and then having them rendered via sensible typeseting defaults, rather

than to store what the score actually looked like. More complex, but also suiciently

powerful formats for storing music notation, are the XML-based MusicXML17 and

MEI.18 hese formats are the state of the art for describing the score itself (of course

including the semantics).

he individual formats are each suitable for a diferent purpose: for instance,

MIDI is most useful for interfacing diferent electronic audio devices, MEI is great

for editorial work, LilyPond allows for excellent control of music engraving. Many

of these have associated sotware tools that enable rendering the encoded music as a

standard musical score, although some – notably MIDI – do not allow for a lossless

round-trip.19 Furthermore, evaluating against the more complex formats is notori-

ously problematic [Szwoch, 2008, Hajič jr. et al., 2016].

As the notation assembly step should resolve any remaining ambiguity, con-

structing the output representation should remain an engineering task (even though

it may still be complex), not a part of the OMR process per se. However, this still

depends on having an appropriate formalism for notation assembly output.

End-to-end OMR

With the advent of deep learning methods that require barely any feature engineer-

ing, a diferent approach than decomposing the problem into the standard pipeline

can be taken: end-to-end recognition, where the intermediate stages of the process

are not done explicitly and the corresponding intermediate results – especially the

individual symbols and their locations – are never recorded. As the object detection

subproblem is in principle hard (see section 3.1) in OMR, including issues with prop-

erly deining the set of symbols (see subsection 3.2.1), this approach is particularly

appealing. It also widens the possibilities of using synthetic data generated on the ly

during training. Recurrent networks ofer the possibility of dealing with the long-

range dependencies inherent in music notation, such as remembering which clef or

key signature is valid for the particular location in the score.

12http://www.ccarh.org/publications/books/beyondmidi/online/darms/ – under the
name Ford-Columbia music representation, was the output of the DO-RE-MI system of Prerau
[1971].)

13http://www.music-cog.ohio-state.edu/Humdrum/representations/kern.html
14https://lilypond.org
15http://abcnotation.com/
16http://www.music-notation.info/en/formats/NIFF.html
17http://www.musicxml.com/
18https://music-encoding.org
19hat is: when converting a ile from format A to B and then back from B to A, the result will not

necessarily contain all the information of the original ile in format A.
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Already before the advent of deep learning, the end-to-end approach has been el-

egantly applied usingHiddenMarkovModels by Pugin [2006a], for the recognition of

monophonic mensural notation printed with movable type. For monophonic music,

this approach was presented irst by Shi et al. [2017] as a side note for a recurent-

convolutional model; an encoder-decodermodel was used by van derWel and Ullrich

[2017], Calvo Zaragoza et al. [2017a] use a recurrent-convolutional model with Con-

nectionist Temporal Classiication loss. Unfortunately, no end-to-end models have

so far been developed for polyphonic, much less pianoform music.

Interactive OMR

For replayability-oriented applications where the OMR output is supposed to be used

as performance material for musicians, no errors are tolerated, and therefore OMR

outputs will always be held “under suspicion” until reviewed and cleared by a qual-

iied editor [Raphael and Wang, 2011]. Since the application requires human inter-

vention anyway, there is litle reason to limit the intervention to the endpoint of the

recognition process, especially since low-level errors early in the recognition pipeline

can have severe implications [Bellini et al., 2007], it would be useful to catch these

errors as they happen, saving subsequent editing efort. his line of thought leads to

interactive OMR systems, where the user is invited to intervene along the pipeline.

Fujinaga [1996] proposed an adaptive system that learned from user feedback over

time; the ideas have been implemented in the Gamera framework [Droetboom et al.,

2002]. More recently, this framework has been adapted into the Rodan online infras-

tructure that allows for arbitrary interactive pipeline steps in the browser [Hankin-

son, 2014]. Outside of the Gamera/Rodan efort, Church and Cuthbert [2014] created

an interface to let users correct misrecognized rhythmic paterns using correct mea-

sures elsewhere in the score. In contrast to these post-editing approaches, Calvo

Zaragoza et al. [2016a] combine the musical score image with the signal from pen-

based “tracing” of the symbols, merging the oline and online modalities of OMR.

Chen and Duan [2016] incorporate human guidance directly into the recognition

process, by leting the user control what elements of notation are allowed, in order

to avoid false positives for rare situations that the editor can rule out for the given

page; the resulting CERES tool allows quick re-recognition and incorporates visual

feedback. What has not been atempted yet is Interactive OMR guided by audio input,

even though playing the music in question seems to be the fastest and most natural

way of providing user feedback: ater all, musical instruments are exactly the inter-

faces intended for the interpretation of the musical score. Closest is the work on

tracking audio in sheet music Dorfer et al. [2016b, 2018b].

Online OMR

With the advent of touch-operated devices, especially in the realm tablets, there has

been interest in online OMR that takes as its input signal the trajectory of a pen
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[Anstice et al., 1996, Miyao and Maruyama, 2004, Mitobe et al., 2004, Tsandilas, 2012,

Calvo Zaragoza and Oncina, 2014, 2015, Calvo Zaragoza et al., 2016a, Calvo Zaragoza

and Jose Oncina, 2017, Sober Mira et al., 2017]. he advantage of this approach is

that much more information is available to the OMR system: individual pen strokes

are an important pre-segmentation heuristic, the order in which strokes are done

will also be predictive of their meaning [Calvo Zaragoza and Jose Oncina, 2017].

his approach cannot on the other hand deal with the already accumulated body

of writen works. However, an elegant idea is to use online OMR to speed up data

acquisition for oline OMR [Calvo Zaragoza et al., 2016a]: the user traces notation

that has already been writen on a touch interface, and the system thus has multiple

signals available. his is much faster than tracing the notation elements individually,

and it might make it feasible for untrained annotators to quickly create in-domain

datasets for specializing OMR systems for individual collections. he MuRET tool by

Rizo et al. [2018] implements this process.

Partial OMR

While transcription of individual scores for performance purposes will remain a ma-

jor target application of OMR for musicians and composers, some application sce-

narios do not require full-scale automated transcription of sheet music – in response

to speciic needs of OMR users (musicians [Dorfer et al., 2016b] and musicologists

[Hankinson et al., 2012], music pedagogy [Sébastien et al., 2012] and audiences and

the general public [Ringwalt et al., 2015]), and as partial steps towards a complete

OMR system. Hankinson et al. [2012] argue – very rightly so, we believe – that

OMR should expand beyond the transcription application for individual users and

towards retrieval from large collections. Retrieval has been a primary focus of the

SIMSSA project [Fujinaga et al., 2014, Hankinson, 2014], producing e.g. the Liber

Usualis project [hompson et al., 2011]. Cross-modal retrieval using OMR has also

been atempted by Damm et al. [2008] and Fremerey et al. [2009], later20 by Balke

et al. [2015], who speciically cites the low quality of OMR ouptuts as a botleneck

for this kind of application. In fact, the most successful sheet music retrieval system

so far bypasses extracting musical semantics and instead learns a joint embedding

space for image and spectrogram snippets [Dorfer et al., 2016a, 2018a].

3.2.2 Infrastructure of OMR

he individual steps of this pipeline have garnered the most atention in OMR litera-

ture, but three more important areas must be mentioned which underpin the overall

state of the art: datasets, evaluation, and sotware.

Datasets have been scarce. here was no openly available dataset for object de-

tection, for instance; much less for the full recognition pipeline. he only extensive

20By the same research group under Audiolabs Erlangen.
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dataset that has been available is the CVC-MUSCIMA staf removal and writer identi-

ication collection of 1000 scores (and eleven distortions, for a total of 12 000 images)

by Fornés et al. [2012]. For symbol classiication (not detection!), the HOMUS dataset

[Calvo Zaragoza and Oncina, 2014] was the most extensive, with the advantage of

providing inputs in both oline and online lavors, and also the only such dataset

that was publicly available; even so, it contained only 32 diferent symbol classes

(with the core alphabet of music notation, disregarding text, having more than 50

such classes).

During the last three years, the dataset situation has seen marked improvement.

he irst signiicant addition was the MUSCIMA++ dataset [Hajič jr. and Pecina,

2017c], which still remains the only dataset for full-pipeline recognition and for

CWMNmanuscripts and is one of the key contributions of this thesis, but for symbol

detection and partial semantics inference, there is the much more extensive – though

printed and synthetic –DeepScores [Tuggener et al., 2018]. hird, the Capitan dataset

of mensural notation has been made available [Pacha and Calvo Zaragoza, 2018] that

supports symbol detection, although not semantics inference at this point.

While the dataset situation has gone from being a blocking issue to being a non-

issue for the progress of the ield, at least for the time being, evaluation remains a

problem. While it is possible to evaluate individual sub-problems of theOMRpipeline

and clear up-to-date methodologies exist [Fornés et al., 2012, Rebelo, 2012, Calvo

Zaragoza and Oncina, 2014, Pacha and Calvo Zaragoza, 2018, Hajič jr. et al., 2018a],

evaluating an OMR system as a whole is still problematic [Byrd and Simonsen, 2015,

Hajič jr. et al., 2016]. he most extensive such efort was probably undertaken by

Bellini et al. [2007], who directed annotators to manually label OMR mistakes ac-

cording to a detailed list of possible errors; a diferent approach was undertaked by

Szwoch [2008] and Hajič jr. et al. [2016], which seeks to develop automated metrics

for directly comparing iles in the MusicXML output format. A signiicant part of the

problem may be a lack of appropriate formalisms for describing what the distance

between two music scores is, and a lack of appreciation for the many purposes for

which OMR is used; the corresponding analysis and discussion is a part of this the-

sis (see sections 6.1, 6.5): separate evaluation methodologies have to be applied for

diferent tasks.

Finally, we mention sotware tools for OMR research. he situation here is actu-

ally beter than in evaluation and datasets. he veritable Gamera system [MacMillan

et al., 2001, 2002] has held reference implementations of various OMR methods, for

instance staf removal up until the machine learning-based contributions of the last

four years; it has been used to build also an OMR system for lute tabulatures [Dalitz

and Karsten, 2005] and Byzantine chant notation [Dalitz et al., 2008b]. Aside from

Gamera, there is the Audiveris generic open-source system [Biteur, 2004] and the

Aruspix system for processing early music prints [Pugin, 2006b, Pugin et al., 2008]. In

recent years, the OMR pipeline has been marshalled by the SIMSSA project [Fujinaga

et al., 2014] under the Rodan system [Hankinson, 2014], which is openly available.

35



Given the dominance of machine learning in computer vision, this includes interac-

tive editors for creating ground truth: within the SIMSSA system, these are editors

such as Pixel.js [Saleh et al., 2017] for creating pixelwise ground truth for binariza-

tion and staf deteciton, or Neume.js [Burlet et al., 2012] for manipulating recognition

outputs of sqaure notation of neumes. his thesis also contributes the MUSCIMarker

editor for general object detection ground truth, including pixel-based masks – see

section 6.3; recently, the MuReT tool was also released that facillitates also pen-based

data acquisition [Rizo et al., 2018].

3.2.3 Commercial Sotware

Finally, we must touch on the available commercial sotware. he biggest players are

PhotoScore21 and SmartScore22, each integrated into one of the major commercial

notation editors (PhotoScore in Finale, SmartScore in Sibelius). Given the sorry state

of OMR evaluation and the “black box” nature of commercial sotware, it is not possi-

ble to measure their performance with more accuracy than anecdotal evidence. his

anecdotal evidence suggests that at least for high-quality printed scans, the perfor-

mance of all commercial sotware has improved signiicantly during the last several

years, to the extent that they can now actually be used in practice. However, at the

time of writing only PhotoScore ofers manuscript recognition functionality, and it

is rather bad. he Audiveris sotware is being gradually integrated into the Mus-

eScore open-source notation editor.23 For online OMR, the Neuratron NotateMe24,

StafPad25 and the MyScript back-end service26 are available, and again the estimates

of their usefulness are at best anecdotal and uncertain.

21http://www.neuratron.com/photoscore.htm
22http://www.musitek.com/index.html
23https://www.musescore.com
24https://www.neuratron.com/notateme.html
25https://staffpad.com
26https://developer.myscript.com/music
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4. Contributions

he thesis contributes to three areas of the ield of Optical Music Recognition: the-

oretical advances (T), OMR resources (R), and methods (M). Each of these contribu-

tions is atested to by published works.1,2

· (T1) Beter deinition of what Optical Music Recognition is; a detailed analysis

of the ield’s structure, objectives, and diiculties.

(Corresponding manuscript under review; see section 6.1.)

· (T2) he Music Notation Graph (MuNG): an elegant formal description of the

music notation visual language using a directed graph.

[Hajič jr. and Pecina, 2017c]

· (R1) he MUSCIMA++ dataset, which is the irst OMR dataset that supports

full-pipeline recognition; it contains over 90 000 annotated objects and a similar

number of their relationships as notation graphs (T2).

[Hajič jr. and Pecina, 2017c]

· (R2) he mung sotware package for manipulating the MuNG representation

of music notation (T2), musical semantics inference, and MIDI export.3

[Hajič jr. and Pecina, 2017c,b, Hajič jr. and Dorfer, 2017]

· (R3) heMUSCIMarker annotation and MuNG visualization tool.4

[Hajič jr. and Pecina, 2017b, Hajič jr. and Dorfer, 2017]

· (R4)he omreval corpus that can be used for testing OMR extrinsic evaluation

metrics against human preferences; the corpus contains 100 human judgments

per annotator, with a total of 15 annotators.

[Hajič jr. et al., 2016]

· (R5) A tutorial on Optical Music Recognition presented at the ISMIR 2019 con-

ference, available as a YouTube playlist.5 6

· (M1) Notehead detection with bounding box regression vs. semantic segmen-

tation approaches.

[Hajič jr. and Pecina, 2017a]

1In case of T1, a submited journal manuscript under review at the time of thesis submission.
2he role of the thesis author in the individual publishedworks is detailed in the respective sections

in part II.
3https://github.com/OMR-research/mung
4https://github.com/OMR-research/MUSCIMarker
5https://youtube.com/playlist?list=PL1jvwDVNwQke-04UxzlzY4FM33bo1CGS0
6Note that ISMIR tutorials involve writing an extended abstract that undergoes review.
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· (M2) General music notation object detection with U-Nets (semantic segmen-

tation).

[Hajič jr. et al., 2018a]

· (M3) Notation assembly using pairwise MuNG edge/non-edge classiication.

[Hajič jr. and Pecina, 2017c, Hajič jr. et al., 2018a]

· (M4) Full pipeline combining (M1-3) and (R2) that produces MIDI frommusical

manuscripts (R1), with a graphical interface with MUSCIMarker (R3).

[Hajič jr. and Dorfer, 2017, Hajič jr. et al., 2018a]

Aside from the items listed above, the author of the thesis further contributed to

the ield by serving as one of the General Chairs of the 1st InternationalWorkshop on

Reading Music Systems (WoRMS),7 a satellite event of the ISMIR 2018 conference.8

In terms in which we have introduced OMR in chapter 3, this thesis focuses on

ofline handwritten OMR, general enough to cover both replayability and reprint-

ability, although with focus especially on the former.9 Given the state of the ield

when work on this thesis was starting, in order to address this task, a substantial ef-

fort was necessary before state-of-the-art computer vision methods could be adapted

for the purpose of OMR. Most critically, since these rely on supervised learning, it

was necessary to produce datasets. In the rest of this section, we describe the con-

tributions in more detail and link them with the published work that forms the sub-

stance of this thesis.

he key idea of this thesis is the Music Notation Graph (T2), which was

used for designing and creating the MUSCIMA++ dataset (R1), which in turn

enabled experiments leading to the recognition pipeline (M4). We proceed

by explaining this progression. he purpose of the following text is not to give the

full technical details (these are given in the published works in the next part of the

thesis); rather, it aims to explain the backbone of this thesis.

4.1 Music Notation Graph

We have already prepared ground for the idea of the Music Notation Graph (MuNG)

through the discussion of notation assembly methods and their limitations in sec-

tion 3.2.1. A shared property of all the context-free grammar approaches [Alio

Andronico and Alberto Ciampa, 1982, Coüasnon and Camillerapp, 1994, Coüasnon

and Rétif, 1995, Bainbridge and Bell, 2003, Szwoch, 2007] and graph rewriting sys-

tems [Fahmy and Blostein, 1993, Baumann, 1995, Reed and Parker, 1996, Fahmy and

7https://sites.google.com/view/worms2018
8https://https://ismir2018.ircam.fr/pages/events-at-a-glance.html
9hese “terms in which we have introduced OMR” have to some degree already existed in OMR

literature preivously, but a substantial efort was necessary in order to tie them into a coherent whole;
this is under contribution T1 and subject of section 6.1.
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Blostein, 1998, Biteur, 2004] in OMR so far is that they infer non-terminal “invis-

ible” symbols that correspond to the hierarchy of abstract notation concepts (note,

measure, voice…). his derives from the context-free grammar approach of building

constituency trees. However, while this hierarchical approach is certainly appealing,

especially given that this is how one usually learns to think about music and music

notation, is it the best one can do in OMR? We of course propose that the answer is

– no.

Rather than what could be termed a “constituency graph” of the previous ap-

proaches, in an analogy to the Prague school of Computational Linguistics, we apply

the notion of a dependency graph. Instead of grouping music notation primitives un-

der composite nodes, we link them to each other. We call this formalism simply a

Music Notation Graph (abbreviated as MuNG). he vertices of this graph are mu-

sic notation primitives (not notes!); oriented edges may link the vertices. he idea

of assembling the music notation primitives into a notation graph is illustrated in

Fig. 4.1.

he MuNG representation is irst described in the publication The MUSCIMA++

Dataset for Handwriten Optical Music Recognition [Hajič jr. and Pecina,

2017c], reproduced in section 6.2.

Once this dependency graph is built, we can exploit the straightforward relation-

ship of noteheads to the abstract musical notes and the rules of reading music, as

described in chapter 2, to deterministically infer the musical semantics.

he implementation of this semantics inference and associated MIDI export is irst

referenced in the demo paper Handwriten Optical Music Recognition: A

Working Prototype [Hajič jr. and Dorfer, 2017], reproduced in section 7.6 and

available as themung.inference sotware package.

Central to how MuNG is speciied is the principle that each notehead-type node

(full notehead, empty notehead, and all rests) has as its neighbors (immediate or

close) all the notation primitives relevant to the decoding of the corresponding note.

We have stealthily structured the introduction to musical semantics and music nota-

tion (chapter 2) to make this principle natural. Recall that noteheads are the interface

betweenmusic notation and the encoded notes: there is one note per notehead.10 he

musical semantics for each note are fully encoded through conigurations of symbols

associated with each notehead: the stalines and ledger lines, clef, key signature and

inline accidentals encode pitch; the notehead type, stem, lags or beams, augmen-

10he sole exception being notehead sharing across multiple voices; however, this is detectable
from the presence of multiple stems. In case whole notes are shared, this is typeset as two consecutive
empty noteheads signiicantly closer to each other than if they were to be played consecutively.
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tation dots and tuples encode its duration. Each of these elements can be simply

captured by linking the notehead to the given primitive. he precedence relation-

ships that are necessary to compute the onsets of notes can be captured as prece-

dence edges in the notation graph that link noteheads which should be interpreted

as consecutive notes.

A signiicant advantage of this approach is that the separation between music

notation as a visual language and musical notes and their semantics as abstract ob-

jects is retained: the notation graph is merely a description of the music notation on

the page. he entire process of inferring semantics from the MuNG output of our

notation assembly stage happens independently from the underlying image – and

at the same time, all the information available in the score is fully disambiguated

even before one starts thinking about the musical semantics. his separation makes

it possible to deal with the image separately from the music encoded therein, and

we conjecture that maintaining this principle is what allows formulating the OMR

pipeline in terms of straightforward machine learning tasks (see section 4.3).

his strict separation between the graphical level and the musical semantics, so that

the score is described as a visual object without using any of the abstract musical

concepts such as voice, and yet suiciently to enable unambiguously inferring the

semantics, is motivated by the thorough analysis of the internal structure of OMR

that is part of the submited manuscript Understanding Optical Music Recog-

nition in section 6.1.

he disadvantage of the dependency graph approach is that there are no tractable

algorithms that we know of for generic graph inference from an image. However:

it seems that these may not be required. First, for object detection, state-of-the-art

generic models are capable of leveraging the neighborhood of an object to disam-

biguate it (such as the staccato dot, which is writen below or above its corresponding

notehead, vs. the augmentation dot, which positioned is to the right of a notehead or

rest) without having explicit access to syntactic information (as indicated by Pacha

et al. [2018b], Hajič jr. et al. [2018a] and especially by Pacha et al. [2018a]). With

respect to notation assembly, we can make a strong independence assumption – that

given the vertices of the graph (the music notation primitives), the edges of the graph

are independent. his allows formulating the notation assembly as a binary classi-

ication problem over vertex pairs. On an average page of some 500–800 symbols,

this would still amount to 250 000–640 000 decisions; however, in practice there are

reasonable assumptions (such as the maximum distance between objects that may

be related, and constraints on linked symbol classes) that help prune the space of

decisions to an assymptotically linear instead of quadratic number of classiier runs.

his already allows bringing the full power of current machine learning methods to

bear on the assembly problem: already decision trees with simple features (bound-

ing box relative distance and symbol class labels) achieve useful results, as described
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(a) Notation symbols: noteheads, stems,
beams, ledger lines, a duration dot, slur, and
ornament sign; part of a barline on the lower
right. Vertices of the notation graph.

(b) Notation graph, highlighting noteheads
as “roots” of subtrees. Noteheads share the
beam and slur symbols.

Figure 4.1: Visualizing the detected symbols and the assembled notation graph on
top of staf removal output. Colors of symbol bounding boxes encode symbol classes
(noteheads in red, stems in orange, ledger lines in green, etc.). Using the edges of the
notation graph in (b), the pitch and duration of the notes encoded by the noteheads
(highlighted) can be unambiguosly inferred (stalines removed for clarity, although
for encoding pitch, we would need to establish the relationship of the noteheads
to stalines). Assuming the music is monophonic, onset can be inferred from the
ordering of the noteheads and the notes’ durations.

below in section 4.3.2. Furthermore, ongoing experiments with factoring the MuNG

inference process from detected objects into independent decisions about individual

edges seems to also provide satisfactory results.11

While the idea of MuNG and the notehead-centric deinition is hopefully clear

and clearly motivated, there still remains a plethora of details to take care of: dealing

with key signatures, time signatures, measure separators, etc. Further principles of

MuNG deinition are described in the publication [Hajič jr. and Pecina, 2017c] in sec-

tion 6.2, and in full detail the deinition is available online in the form of annotation

guidelines for the MUSCIMA++ dataset,12 which will be the subject of the following

section. An open-source mung Python package for manipulating notation graphs,

which also implements musical semantics inference and MIDI export fromMuNG, is

also made available.13

11hese experiments are not part of the published works; the results are tentative at best, but very
promising: over ground truth objects, pairwise classiication using neural networks achieves near-
perfect results with just a few elementary training tricks, and ine-tuned Faster R-CNN based detectors
have recently achieved surprisingly good results; the assemby classiier is currently being tested over
detection results.

12https://muscimarker.readthedocs.io/en/latest/instructions.html
13https://github.com/OMR-Research/mung
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4.2 MUSCIMA++

Now that we have introduced the Music Notation Graph formalism that is one key

to building a successful full recognition pipeline, we turn to the second such key:

creating annotated resources for supervised learning.

Recall from subsection 3.2.2 that prior to the work in this thesis [Hajič jr. and

Pecina, 2017c], there was no substantial openly available dataset for full-pipeline

OMR, and the only dataset for object detection was a 3222-symbol collection by Re-

belo [2012] that is not openly available, as it contains scores by contemporary com-

posers that are under strict copyright restriction. he only datasets available were for

the staf removal stage, with only the CVC-MUSCIMA dataset of Fornés et al. [2012]

being large enough to support supervised machine learning (20 pages, each copied

by hand by 50 diferent writers, for a total of 1000 pages), and the HOMUS dataset

of Calvo Zaragoza and Oncina [2014] for symbol classiication (not localization). It

was therefore necessary to build a dataset for full-pipeline OMR.14

heMuNG formalism provides a clear deinition of the ground truth. hree steps

remained:

· Selecting the musical manuscripts to be annotated;

· Implementing an annotation interface;

· Managing the annotation work.

he criteria for selecting manuscripts were to cover as much notation complexity

as possible while sacriicing types of input variability that can be simulated (image

degradations), and secondarily, ease of annotation. In the end, the ideal collection

turned out to be a subset of the 1000 pages of CVC-MUSCIMA. he binarized im-

ages with stafs removed enabled signiicantly speeding up accurate anotations of

the pixel-wise masks of individual symbols; at the same time, the 20 pages of music

in CVC-MUSCIMA range from monophonic to pianoform music and include a rel-

atively large number of diferent rare, yet important situations, such as cross-staf

beaming, time signature, key signature and clef changes in the middle of a staf,

complex beamed groups, non-standard tuples, and even the ot-mentioned notehead

sharing between voices.15 Furthermore, having been created by 50 diferent writers,

there is a large variability in handwriting styles, ranging from elegant and clear to

very hasty. In keeping with the original name, CVC-MUSCIMA, but denoting that

the new dataset ofers much richer options, we name our dataset MUSCIMA++.

14he need for such a resource is atested to by the fact that since its publication of [Hajič
jr. and Pecina, 2017c] in late 2017 until the submission of this thesis, ive papers unrelated to
the author have cited this work. https://scholar.google.com/scholar?oi=bibs&hl=en&cites=

4140859639233316810
15he authors of CVC-MUSCIMA, Fornés et al. [2012], have truly covered a lot of various annoying

notation situations in only 20 pages of music!
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Figure 4.2: he interface of the MUSCIMarker tool. he notation graph in this ex-
ample is taken from CVC-MUSCIMA image of page 10 by writer 01. Highlighted in
red are manually added syntactic edges of the notation graph; in purple are auto-
matically inferred edges pertaining to staf objects (stalines, stafspaces and stafs).
Precedence edges are weakly visible in green.

he MUSCIMA++ dataset is subject of the paper The MUSCIMA++ Dataset for

Handwriten Optical Music Recognition [Hajič jr. and Pecina, 2017c], repro-

duced in section 6.2.

In order to actually create MUSCIMA++, an annotation graphical user interface

had to be developed. here was no open-source sotware suitable for annotating de-

pendency graphs over images; closest is probably the Aletheia document annotation

sotware,16 but it still does not allow building graphs lexibly enough for the purposes

of describing music notation. We created the MUSCIMarker tool, using the Kivy

framework for the Python language.17 he interface is visualized in Fig. 4.2, with an

example of a complex notation graph.

Managing the ground truth acquisition work itself involved recruiting and train-

ing qualiied annotators (music or musicology students), performing quality control,

maintaining and improving the annotation sotware (and its user documentation)

based on annotator feedback, and postprocessing the outputs. In total, 7 annotators

were working on the dataset.18 Each was to annotate one copy of each of the 20

16https://www.primaresearch.org/tools/Aletheia
17https://github.com/OMR-research/MUSCIMarker
18he choice of a self-contained cross-platform technology for MUSCIMarker proved fortunate:

Windows, OS X and Linux operating systems were used by diferent annotators, including one in-
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underlying pages in CVC-MUSCIMA, for a total of 140 pages annotated with MuNG

ground truth. he pages were selected so that the handwriting of each writer ap-

pears at least 2 times and no more than 3 times. In total, there are 91 255 primitives

in MUSCIMA++. Some 82 000 syntactic edges were manually marked (precedence

edges and edges connecting symbols to their respective stalines, stafspaces and

stafs were added automatically and corrected in postprocessing). his amounted to

roughly to some 13 000 notation primitives and about 10 000 MuNG edges annotated

per person. Annotators worked for a combined total of 400 hours, at an average

speed of 4.3 symbols per minute, or one per 14 seconds; an average page of some

650 symbols took about 2 hours 45 minutes neto. Managing the annotation pro-

cess (training annotators, distributing and collecting their work, and the irst level of

quality control) took an additional 150 hours, and the second, inal round of quality

control took an additional 80 hours.19

he MUSCIMarker sotware can be referenced using the short paper

Groundtruthing (not only) Music Notation with MUSCIMarker: a

Practical Overview [Hajič jr. and Pecina, 2017b], reproduced in section 6.3.

With the MUSCIMA++ dataset of binary images manually annotated with MuNG

ground truth in hand, we may now proceed to build the recognition pipeline itself.

4.3 he Recognition Pipeline

he OMR pipeline in this thesis focuses on the later stages of the OMR pipeline:

object detection, and notation assembly and semantics inference. We focus on a

diicult seting in terms of processing manuscripts of arbitrary notation complexity,

rather than on diiculties regarding image quality (which are of course in practice

equally important, but not as inherent to the domain of music notation). he input

images for our pipeline have already been binarized, and stalines have been detected

(and, if need be, removed). his is no more an entirely unreasonable expectation:

convolutional networks have been shown to perform “layout analysis” (essentially,

joint staline detection and binarization: semantic segmentation into background,

stalines, and notation symbols) very well [Calvo Zaragoza et al., 2017a,c,d, Gallego

and Calvo Zaragoza, 2017].

4.3.1 Object Detection

We start the work on the recognition pipeline by testing state-of-the-art object de-

tection techniques. As detecting music notation primitives is a diicult problem (sec-

tion 3.1) that does not conform well to general assumptions of object detection mod-

stance of Windows XP.
19Interestingly, using MUSCIMarker, the work was completed under budget.
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els (there may be a few hundred diferent objects in each image, out of which perhaps

a hundred can belong to the same class; the objects are very close together, some can

be unpredictably small or large, etc.), we start with models that make as few assump-

tions as possible about the objects they are atempting to detect.

Seeing as noteheads are the most important object to detect reliably, we focus

our eforts there. We start using the (then) state-of-the-art object detection method:

Region Proposal Networks, speciically Faster R-CNN [Shaoqing Ren et al., 2015],

for the purposes of OMR. Instead of using a ixed grid of anchor boxes, however, it

uses as anchor pixels those pixels that belong to the morphological skeletons of the

images in the dataset. Noteheads do have amore or less ixed size in a score; however,

since we eventually want our method to generalize to other object classes, instead

of pre-set anchor box sizes, we try to regress to the bounding box sizes directly, by

using four ReLU output units that denote the top, let, botom, and right ofset of

the (proposed) notehead’s bounding box from the given skeleton pixel. (he target

ofsets for non-notehead skeleton pixels are set to 0, and in the model, the ofset

ReLU outputs are multiplied by the value of the “objectness” sigmoid output, so that

in case of skeleton pixels with very low probablity of being part of a notehead, the

predictions for bounding box ofsets do not actually induce a loss.) he training

inputs and outputs to the network are depicted in Fig. 4.3.20 henetwork is otherwise

rather small (two convolutional/pooling layer blocks and two convolutional layers;

enlarging the network does not improve results).

Notehead detection with domain-adapted Region Proposal Networks is the subject

of the short paper Detecting Noteheads inHandwriten Scores with ConvNets

and Bounding Box Regression [Hajič jr. and Pecina, 2017a] (section 7.1).

his method achieves good recall of 0.97, but rather woeful precision of only

0.81.21 In order to improve, a separate post-iltering step is trained: proposed note-

heads are classiied according to features such as their average proposed bounding

box sizes, the ratio of skeleton pixels classiied as noteheads within the proposed

bounding box, etc. A random forest estimator is trained against the outputs of the

model on the validation dataset. he post-iltering slighly impairs recall (0.96) but

signiicantly increases precision (to 0.97). An example of the model’s output is in

Fig. 4.4.

A diferent approach is to use fully convolutional networks for semantic seg-

mentation (assigning a label to each pixel) and a subsequent detection stage (such

as peak picking, or thresholding and connected components). Speciically, we used

20his is loosely analogous to the YOLOv3 approach to bounding box regression [Redmon and
Farhadi, 2018]; had YOLOv3 been published in 2015, we would have used it.

21Recall is computed as proportion of instances correctly detected out of all ground truth instances;
precision is computed as the proportion of correctly detected instances out of all detected instances.
In other words, recall penalizes false negatives, precision penalizes false positives. hese standard
metrics were irst deined in [James W. Perry et al., 1955].
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Figure 4.3: he design of the bounding box-based detector. It is learning for each
anchor pixel, the green t1 and the red t2, its class c (whether the anchor pixel is part
of a notehead or not) and the ofests b of the corresponding bounding box – all 0
in case of pixel t2, as it is not part of a notehead. (Figure taken from [Hajič jr. and
Pecina, 2017a].)

Figure 4.4: An example results of the RCNN-based detector. Note that while the
network itself would detect some false positives in the G-clefs on the let side of
the image, the post-iltering steps discards these candidates. On the other hand, an
obvious error is caused by bounding box regression is the merging of bounding boxes
for the letmost botom notes.
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Figure 4.5: he U-Net architecture. Computation lows let-to-right; the “hourglass”
shape is unrolled downwards with each 2x2 Max-Pooling layer (orange arrows); in
the other direction are 2x2 up-convolution layers with a stride of 2. Blue arrows in-
dicate the residual connections (implemented simply as elementwise sums) bewteen
blocks of corresponding sizes. (Figure taken from [Pacha et al., 2018b].)

the U-Net model [Ronneberger et al., 2015]. his model has an “hourglass” architec-

ture reminiscent of autoencoders, but it is standard feedforward network; the output

layer provides a value for each pixel (in this case, the probability of the given pixel

belonging to the given symbol class). Given that the stages of the hourglass have the

same size, residual connections are added between the corresponding stages. he

network architecture is shown in Fig. 4.5. Without any post-iltering step, merely

with thresholding at 0.5 and non-maxima suppression as the detection step on top of

the probability map output by the model, the U-Net achieved on noteheads a recall

of 0.97 and precision 0.99.

Notehead detection with U-Nets is described in the short paper On the Potential of

Fully Convolutional Neural Networks forMusical Symbol Detection [Dorfer

et al., 2017] (section 7.2).

Given this convincing advantage of the U-Net on noteheads, which are the most

important object to detect, we chose to follow up on the fully convolutional model

and build general object detection based on the U-Net architecture.

Noteheads are relatively easy to detect, relative to other symbols, because their

appearance is very distinct (by design: they should be the irst thing that atract the

eye of amusician!), but some other symbols present tricky detection issues, especially

in handwriting. Some ixed-size symbols such as clefs are visually quite complex and
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very variable, and usually overlap with stalines. Furthermore, clefs are by far not as

frequent as noteheads, even though they are critical for decoding the semantics of all

subsequent notes (as they deine how stalines are interpreted with respect to pitch).

While these symbols at least have a (relatively) ixed size, there are others that have

in principle a relatively simple shape (straight thick line), but their size is variable

(stems, especially in music with wide chords), or even size and orientation (beams,

which are probably the most variable symbol class, and slurs, which can theoretically

be extremely complicated, although in practice they rarely have an inlection point).

he choice of U-Nets is also motivated by the fact that they do not have any hyperpa-

rameters related to symbol sizes and locations besides the size of the receptive ield

of output pixels.

hemajor drawbacks of U-Nets for musical symbol detection is that these models

only perform semantic segmentation, not object detection per se: a detector must

be added on top of the output symbol probability map. Two simplest options are

thresholding and connected component search, and thresholding and non-maxima

suppression. Since non-maxima suppression is prone to leave false positives in long

symbols sucha as stems or slurs, and in larger complex symbols such as clefs, we

choose connected component search, with thresholding at 0.5.22 Note that using a

connected component detector implies that the model may merge objects from the

same class that legitimately touch (such as some handwriten noteheads in chords)

into a single symbol.

In a comparison to other general object detection models, Faster R-CNN [Shao-

qing Ren et al., 2015] and RetinaNet [Lin et al., 2017], the advantages of U-Nets do

result in beter performance [Pacha et al., 2018b], as illustrated in Table 4.1.23

mAP / w-mAP (%)

DeepScores MUSCIMA++ Capitan

Faster R-CNN 19.6 / 14.4 3.9 / 7.9 15.2 / 23.2
RetinaNet 9.8 / 1.9 7.7 / 4.9 14.5 / 34.9
U-Net 24.8 / 17.4 16.6 / 23.3 17.4 / 26.0

Table 4.1: Results in terms of mAP (%) and w-mAP (%) with respect to the dataset and
object detector model following the COCO evaluation protocol. (Table reproduced
from [Pacha et al., 2018b].)

22Changing the threshold did not lead to improvements.
23he results are evaluated using Mean Average Precision (mAP) and Weighted Mean Average

Precision (w-mAP), according to the object detection practices for the COCO dataset [Chen et al.,
2015b]. he “mean” is taken over average precisions with true positives considered using diferent
intersection-over-union thresholds: the most permissive is 0.5, and, using increments of 0.05, the
cutof for considering a detected object a true positive, the minimum intersection-over-union it must
share with a ground truth object of the given class increases up to 0.95. In the weighted variant, the
object classes are weighed by their support.
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he comparison of generic object detectors across the available OMR datasets is sub-

ject of the paper A Baseline for General Music Object Detection with Deep

Learning [Pacha et al., 2018b] (section 7.4).

he advantage disappears for the Capitan dataset [Pacha and Calvo Zaragoza,

2018] of mensural notation, which uses a diferent symbol alphabet: instead of de-

composing the graphical notes into primitives, its symbol classes correspond to the

entire note: longa, breve, semibreve, minima, semiminima, etc. Furthermore,

Spanish white mensural notation (of which the Capitan dataset comprises) does not

allow many of the situations that make CWMN recognition diicult, such as beamed

groups and polyphony on one staf. Fig. 4.6 illustrates the advantage of U-Nets on

MUSCIMA++.24

We therefore choose U-Nets for the object detection stage of the full recognition

pipeline. Since the objective in this paper is replayability, we restrict detection to

only those classes that are relevant for extracting the musical semantics. (As there is

a separatemodel trained for each class, however, this justmeans reducing the number

of models). We employ further two tricks for improving detection performance.

First, we deal with class imbalances. As the training process samples a 256x512-

pixel window for each data point [Ronneberger et al., 2015, Dorfer et al., 2017, Hajič

jr. et al., 2018a], for relatively rare symbols, oten the window contains no pixel of

the given target class, and useful signal is drowned out by noise in the initial stages

of learning. In order to avoid this efect, if the sampled window does not contain any

pixels from the target class, we uniformly sample a diferent one up to ive times. (If

ater ive samples we still found no foreground target pixel, we use the last sampled

window.) A second trick for training the detection of rare symbols is leting them

share features: with the U-Net model, this only requires adding an output channel

to the training data and the model.

A diferent trick is used to deal with symbols that exhibit complex shapes – again,

especially clefs. Instead of training against their true masks, we train against the

convex hulls of these masks. Since we are at this point mainly trying to detect the

presence of the object in a particular location, this approximation does not lower the

upper bound on detection performance. At the same time, it simpliies the job of

the up-convolution part of the network, as it does not have to “ill in” blanks inside

the complex symbols; it decreases the chances that a single detected symbol will

form two connected components ater thresholding due to false negative pixels in

its thin parts, and most importantly, it saves us from dealing with symbols that are

legitimately composed from several connected components (such as f-clefs and c-

clefs) or writen erroneously as disconnected. he convex hull trick is illustrated in

Fig. 4.7.

24In [Pacha et al., 2018b], both the quantitative and qualitative results are further discussed.
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Figure 4.6: Example results in a complex notational situation. (Selected classes. Fig-
ure taken from [Pacha et al., 2018b].)

General object detection experiments with U-Nets, and the rest of the recognition

pipeline, are subject of the paper Towards Full-Pipeline Handwriten OMR

with Musical Symbol Detection by U-Nets [Dorfer et al., 2017] (section 7.3).

he detection performance, reported simply as the detection f-score,25 for indi-

25he F-score is the harmonic mean of recall and precision. his way, it balances the need to avoid
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Figure 4.7: Modifying the targets for semantic segmentation training to convex hulls
of the objects that we ultimately want to detect. Top: g-clef, botom: f-clef.

vidual replayability-oriented object classes, is reported in Fig. 4.8. he greatest im-

provements using the training tricks came for clefs, whichwere themost problematic

symbols for the “vanilla” training. heywere also the group of symbols that beneited

most from being grouped into a multichannel model.

4.3.2 Notation Assembly and Semantics Inference

Next, we build the notation assembly stage and infer musical semantics.

Under the MuNG formalism, notation assembly is the task of inferring the graph

edges given the (detected) nodes. he simplest thing one can do is to decompose this

task into decision about individual edges (or non-edges): frame the task as binary

classiication over node pairs, and assume the edges (and non-edges) are indepen-

dent.

both false positives and false negatives, and penalizes systems that err too much to one side: a system
with recall 1.0 and precision 0.1 will have an f-score of 0.18, while a systemwith recall 0.6 and precision
0.5 will have an f-score of 0.55.
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Figure 4.8: Detection f-score for symbols required for replayability: with “vanilla” U-
Nets, and with tricks. Note the improvements especially for clefs: these are critical
for pitch inference.

he pairwise independent classiication approach to notation assembly is irst men-

tioned in the paper TheMUSCIMA++Dataset for Handwriten OpticalMusic

Recognition [Hajič jr. and Pecina, 2017c], reproduced in section 6.2, as a baseline

for graph assembly over ground truth objects. he assembly models are applied

on top of object detection results in the article Towards Full-Pipeline Hand-

writen OMR with Musical Symbol Detection by U-Nets [Dorfer et al., 2017]

(section 7.3).

he independence assumption is of course an over-simpliication: e.g., a notehead

may be connected to a beam either above, or below its position, but not both.26 How-

ever, breaking down the problem into independent decisions is a reasonable start –

if the straightforward binary classiication methods do not perform well, we at least

will have a good understanding of what errors they systematically make and what

kind of dependencies we should introduce into the model.

What simpliies the situation further is that edges leading from objects to staf-

lines, stafspaces and their containing stafs can be even in manuscripts inferred near

perfectly27 using appropriate heuristics based simply on how the object overlaps with

the stalines and stafspaces. he only “magic number” that must be selected con-

cerns the situation where a notehead has one part above a staline and another part

below the same staline: if there is a large imbalance between these two parts, ex-

pressed as the ratio of the ofset of the top of the notehead to the top of the staline

26Unless the notehead in question also has stems in both directions, in the case of voices sharing a
note, which is a corner case that breaks a lot of otherwise reasonable assumptions…

27Only two noteheads inMUSCIMA++had their relationship to the staf objects inferred incorrectly,
once the heuristics were completed.
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vs. the ofset of the botom of the notehead to the botom of the staline, it should

be considered connected to the corresponding stafspace rather than to the staline

it overlaps. If this ratio is smaller than 0.2 or greater than 0.8, the notehead should

be assigned to the stafspace; if the imbalance is not as large, it should be considered

to lie on the staline it overlaps. he fact that the relationships of notation objects to

stafs can be inferred so deterministically is one of the few surprisingly easy things

in OMR.

Given that the average image in MUSCIMA++ contains about 650 notation ob-

jects, if we were to consider the quadratic amount of ⟨from, to⟩ pairs in an image

(recall that the MuNG has oriented edges, so the distinction between from and to

is necessary), we would have to make over 400 000 decisions for each image. For-

tunately, objects that are far from each other are quite certain to not be related. In

MUSCIMA++, we found that if we only consider ⟨from, to⟩ pairs within a distance

of 10∗ stafspace height + staline height, we only discard 52 out of the 82247 related

symbol pairs (excluding the relationships to stalines and stafspaces) [Hajič jr. and

Pecina, 2017c]. his reduces the number of ⟨from, to⟩ candidate pairs to a linear

number, albeit with a signiicant multiplicative constant (about 8 – 15, based on the

density of the handwriting).

For a ⟨from, to⟩ candidate object pair: the simplest features we can use are their

classes (classf , classt), and relative position of their bounding boxes: given that

the bounding box of the from object is Bf = (topf , leftf , bottomf , rightf ), and the

bounding box of the to object isBt = (topt, leftt, bottomt, rightt), the ofset features

are (topt − topf , leftt − leftf , bottomt − bottomf , rightt − rightf ). If an edge leads

from the from object to the to object, the target is 1, otherwise it is 0. As positive

examples, we take all related objects in the training data, as negative examples, we

take simply all pairs that are within the threshold distance, but are not related.

We then train a decision tree [Leo Breiman et al., 1984]. Given a suicient max-

imum depth for the tree, the model picks up by itself on the constraints imposed by

symbol classes (for instance, there can never be an edge leading from a stem to a note-

head, only in the opposite direction, accidentals are never associated with rests, etc.).

Already this simple model achieves an f-score of 0.92 on edges on the MUSCIMA++

test set [Hajič jr. and Pecina, 2017c, Hajič jr. et al., 2018a] (as there are many more

non-edges than edges, reporting overall accuracy would be overly optimistic, and we

care only about the positive class anyway).

Some egregious assembly errors are caused by the simpliied pairwise model that

does not take any other objects than the ⟨from, to⟩ pair into account when making

a decision. Especially (1) connecting a notehead to ledger lines both above and below

the given notehead, and (2) connecting a notehead to beams both above it and below,

unless it also has two related stems. However, these two can be relatively easily cor-

rected. While these postprocessing heuristics based on “hard” constraints of music

notation syntax did give quick improvement in these two speciic cases, atempting

other such patches did not improve overall results anymore.
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We note that the MuNG formalism has allowed us to reach respectable assembly

performance on handwriten music notation with gross oversimpliications of the

rules of music notation, thanks to making straightforward machine learning tech-

niques applicable.

A separate chapter are precedence edges. We admit that this aspect of the pipeline

is somewhat underdeveloped: we simply order simultaneities linked to a staf let to

right, and consider noteheads to belong to a simultaneity whenever they have an

edge to a shared stem (this is the MuNG-based deinition of what a chord is in music

notation). his is probably the greatest limitation of our recognition pipeline.

All the results above mater litle by themselves; what makes an OMR system

interesting is its ability to infer the musical semantics. A key advantage of MuNG28

is that once notation assembly is done, which happens without ever straying from

the graphical layer of music notation into the layer of the semantics, one can infer

the musical semantics unambiguously, using the rules for reading music laid out in

section 2.2. hemung package implements this semantics inference and subsequent

MIDI export.

he detection, assembly and semantics inference steps can also be run interac-

tively from MUSCIMarker (with detection running over an htp connection, so that

the detection model can be run remotely as a service in case a given machine does

not have the necessary computing power).

4.3.3 Full Pipeline Results

Weevaluate the full pipeline irst intrinsically, based on its ability to correctly retrieve

the musical semantics. In order to do this, we irst have to align the output MIDI with

theMIDI corresponding to the ground truth pipeline. (Since not all notes are detected

properly, it is not straightforward to directly compare the detected notes with the

ground truth notes: especially duration errors propagate by inluencing the onsets

of all subsequent notes.) We use Dynamic Time Warping (DTW)29 on sequences

simultaneities, using the ratio of pitches shared as the inverse cost function. Within

each simultaneity, the notes are aligned from lowest to highest using a second round

of DTW. he reason for using DTW to ind the alignment between the recognition

result and the ground truth is that it naturally inds an optimal alignment that does

not violate the precedence relationships in neither the ground truth, nor the OMR

output.

Given this alignment, we can compute how well the semantics were recovered.

Unfortunately, for durations, the results were less than convincing (an f-score of

less than 0.6). For pitch, the overall f-score was 0.81. he breakdown of pitch

recognition f-score by individual stafs in theMUSCIMA++ test set is given in Fig. 4.9.

28Dare we say, its elegance?
29Dynamic TimeWarping is a dynamic programming technique that inds the optimal monotonous

alignment of two sequences given a cost function that assigns a cost to pairs of the sequence elements.
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Figure 4.9: he pitch recognition f-score for the MUSCIMA++ writer-independent
test set, broken down per individual staf. Monophonic stafs in green, homophonic
and polyphonic in yellow.

Since duration errors propagate into onset errors, f-score for onsets cannot really be

computed; however, it is implicitly encoded in the inferred precedence edges. hese

are always correct in monophonic and homophonic notation to the extent to which

the symbols corresponding to notes or rests are detected.

What can we do with a manuscript recognition system with this performance?

he application scenario described below is part of the article How Current Opti-

cal Music Recognition Systems Are Becoming Useful for Digital Libraries

[Hajič jr. et al., 2018b] (section 7.5).

It turns out [Hajič jr. et al., 2018b] that it should be possible to use this system to

retrieve musical manuscripts copies. Since transfer learning for object detection is

an unresolved issue, we are limited to the CVC-MUSCIMA dataset (of which MUS-

CIMA++ is a subset). At least for demonstration purposes, we select a subset of 7

of the 20 pages that it as confusing as possible (the music is as similar as possible to

each other), in order to not artiicially inlate the scores, and run recognition for each

of these across all 50 writers, for a total of 350 pages. his is a toy dataset (although

for manuscripts, we unfortunately cannot do beter right now); any OMR system

worth its salt should be able to retrieve duplicate pages perfectly. We use the DTW

alignment cost as the similarity function of the retrieval system.

In Table 4.2, we report results for retrieving OMR outputs using queries con-

structed from OMR outputs, and also cross-modal results: querying the database of

MIDI iles obtained through OMR using ground truth MIDI iles and snippets. Aside

from page queries, we also atempt to retrieve pages using only music from a single

staf, where results are less than perfect (but the task is signiicantly more diicult);

the results there are worse, especially in the cross-modal seting that is sensitive to

design limitations of the OMR system (that may “cancel out” when using OMR out-

puts both as the query and as the database).

he implications of the retrieval experiments are: despite the many limitations of

our OMR pipeline, already it is a method for extracting the musical semantics from
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MAP@1 MAP@10 MAP@49

Page queries, OMR2OMR 1.0 1.0 0.998
Page queries, cross-modal 1.0 1.0 0.998

Snippet queries, OMR2OMR 0.928 0.834 0.763
Snippet queries, cross-modal 0.606 0.610 0.577

Table 4.2: Results for page retrieval using page queries and snippet queries under two
modalities: using OMR for creating the database and the query (OMR2OMR) or just
for the database (cross-modal) and query with ground-truth MIDI. (Table reproduced
from [Hajič jr. et al., 2018b].)

handwriten CWMN of arbitrary complexity that has potential real-world applica-

tions (identifying copies of manuscripts across archives) – to the extent to which

training data will be available.

his concludes themain “thesis story”. Starting from a situationwith no resources

and viable methods to deal with musical manuscripts, our work builds and publishes

a functioning (to the extent described above) OMR system for handwriten music

notation of arbitrary complexity. However, we fully expect the performance of the

recognition pipeline to be surpassed; the most durable contribution of the thesis is

the idea (and implementation) of MuNG as a universal formalism for OMR.

4.4 Auxilliary contributions

Outside of the “main story” of the thesis, other aspects of OMR were also explored,

most importantly evaluation and contributions to the functioning of the scientiic

community.

4.4.1 Evaluation

As stated in subsection 3.2.2, there is no (publicly available) way of meaningfully

and automatically measuring the similarity (or distance) of a pair of music scores.

For replayability-oriented applications, this is not necessarily a problem, but in the

setingwhere OMR si supposed to produce amusical score, the need for such ametric

is unavoidable [Hajič jr., 2018]. While OMR can move forward to some extent even

of the absence of such a measure [Byrd and Simonsen, 2015], it is a major issue

[Droetboom and Fujinaga, 2004, Padilla et al., 2014, Baoguang Shi et al., 2015].30

he need for system-level evaluation at the level of a reconstructed score is most

pressing when comparing against commercial systems: these do not output partial

results, so evaluating on the level of individual symbols requires an impractically

large amount of human efort [Bellini et al., 2007, Sapp, 2013], and is anyway too

30Additionally, this problem has come up as important in all the major discussions among current
OMR researchers: at the ISMIR 2016 Unconference group, at the GREC 2017 workshop discussion
group [Calvo Zaragoza et al., 2018], and at the WoRMS 2019 workshop.
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time-consuming for iterative experimentation. While any way of comparing scores

would be appreciated, OMR would beneit much more if the metric for comparing

music scores could be automated, and, importantly for inally relating the state of

the art in OMR research to commercial sotware, if it also operated on widespread

representations of music scores.

To the best of our knowledge, the only efort to this end has already been under-

taken by Szwoch [2008], who designs a top-down MusicXML comparison function.

However, the method is not described in suicient detail and source code was not

made available. Furthermore, an automated metric for OMR evaluation needs itself

to be evaluated: does it really rank as beter systems that should be ranked beter?

In [Szwoch, 2008], the method was assessed against human judgment, the guidelines

for this assesment were not described suiciently to replicate the experiment.

In [Hajič jr. et al., 2016], we take a diferent approach. Instead of focusing on a

method, we focus on gathering the human judgment resources against which OMR

evaluation methods can be assessed. his “evaluating evaluation” approach is loosely

modelled on analogous eforts in machine translation (MT) [Callison Burch et al.,

2010, Bojar et al., 2011, Matouš Macháček and Ondřej Bojar, 2014], where results of

human evaluations are used to validate proposed automated metrics. Good match

against human preferences was the argument for adopting the now-widespread but

at the same time relatively simple BLEU metric [Papineni et al., 2002].

he work on evaluating automated OMR evaluation proposals is described in the

paper Further Steps Towards a Standard Testbed for Optical Music Recog-

nition [Hajič jr. et al., 2016] (section 6.4). A conscise analysis that beter delimits

the needs of OMR evaluation is given in the short paper A Case for Intrinsic

Evaluation of Optical Music Recognition [Hajič jr., 2018] (section 6.5).

he data points we collect pairwise preference judgments: the annotators are

shown two simulated OMR outputs and the target score, and they are asked to choose

which of the OMR outputs they would prefer. he annotation interface is shown

in Fig. 4.10. A total of 1500 such annotations was collected (a set of the same 100

examples for each annotator) and released as the omreval corpus.31

A proposed OMR evaluation metric can then be assessed according to how well

it agrees with the human preferences using three standard measures of agreement:

we used Spearman’s r [Charles Spearman, 1904], Pearson’s ρ [Pearson, 1896] and

Kendall’s τ [Kendall, 1938]. Four baseline MusicXML distance metrics are assessed

in [Hajič jr. et al., 2016] in this manner: Levenshtein distance [Levenshtein, 1966]

on the XML iles, Levenshtein distance on the LilyPond32 imports of the given Mu-

sicXML iles, Tree Edit Distance [Zhang and Shasha, 1989] on the MusicXML iles

31https://github.com/ufal/omreval
32A text-based format for representing music notation for the purposes of engraving, based on

LaTeX: https://lilypond.org
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Figure 4.10: Collecting a data point for the omreval corpus: the annotators are asked
to choose which of two simulated OMR outputs (orange, botom) they would prefer,
given the correct score (green, top).

directly, and Tree Edit Distance with the subtree of ⟨Note⟩ nodes of the MusicXML

document transformed into a positional encoding of the represented musical seman-

tics. his last method was found to work best (see Table 4.3), but still signiicantly

underperforms the maximum achievable w.r.t. inter-annotator agreement (see sec-

tion 6.4 for details). However, the proposed baseline evaluation metrics are not the

main contributions of [Hajič jr. et al., 2016]; the main contribution is the omreval

corpus and the extensible and robust methodology for collecting it.

4.4.2 OMR Scientiic Community

In the course of the work on this thesis, and especially as a function of the inter-

national collaboration established through this work, the author contributed signii-

cantly also to the coalescing of the ield of OMR into an actual scientiic community,

with a shared publication venue, introductory materials for newcomers, centralized

resources, and, similarly to the related Digital Libraries for Music community, a place

as a part of the broaderMusic Information Retrieval community. hree elementswere

critical to building this (sense of) community:
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Metric rs r̂s ρ ρ̂ τ τ̂

c14n 0.33 0.41 0.40 0.49 0.25 0.36
TED 0.46 0.58 0.40 0.50 0.35 0.51
TEDn 0.57 0.70 0.40 0.49 0.43 0.63

Ly 0.41 0.51 0.29 0.36 0.30 0.44

Table 4.3: he measures of agreement for some proposed evaluation metrics against
the omreval corpus: Spearmann’s r, Pearson’s ρ and Kendall’s τ . Maximum achiev-
able in the individual metrics with respect to the expected inter-annotator agreement
indicated in columns with a hat.

· he GREC 2017 discussion group, organized by Alicia Fornés. he thesis au-

thor actively participated in this group and co-wrote its report [Calvo Zaragoza

et al., 2018]. he outputs of this OMR roundtable established guidance for fur-

ther community-building activities, namely:

· he 1st International Workshop on Reading Music Systems (WoRMS), which

took place as a satellite event of the ISMIR 2019 conference in Paris. he thesis

author served as one of the general chairs of the workshop.

· he tutorial “Optical Music Recognition for Dummies” selected for presenta-

tion at the ISMIR 2018 conference in Paris, which serves as extensive introduc-

tory material for newcomers to OMR.he tutorial is made available online.33,34

33https://youtube.com/playlist?list=PL1jvwDVNwQke-04UxzlzY4FM33bo1CGS0
34he contribution of the thesis author to the tutorial is about 30 – 35 %.
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5. Conclusions

Over the course of this thesis, the state of Optical Music Recognition (OMR) has

advanced signiicantly. he state of the ield in 2014 was such that both the underly-

ing theoretical work in OMR was lacking, and the ield was severy under-resourced,

with no open dataset, standards, evaluation methodologies, etc., which one expects

in less niche ields, and consequently there were few published works that dealt with

manuscript recognition. his thesis has contributed to OMR in three major areas: the

theoretical aspects of OMR, open resources for OMR research, and applied machine

learning for OMR to build an image-to-MIDI pipeline for handwriten scores of arbi-

trary complexity.

heoretical advances have been made irst in creating a beter deinition of OMR

and an analysis of the ield’s internal structure, and, second, in proposing a formal

description of music notation documents as dependency graphs. heMusic Notation

Graph (MuNG) formalism allows accurate notation assembly in arbitrarily complex

handwriten notation by making state-of-the-art machine learning methods appli-

cable. he formalism is conceptually simple, universal, avoids the mixing of music

notation and musical semantics, and while the presented object detection methods

will most likely be surpassed in the very near future with improvements in applying

generic models for OMR, the fact that the MuNG-based assembly performs well, is

easy to set up, and has supporting sotware (esp. MIDI inference), the dependency

graph-based methodology is in a good position to become part of the OMR main-

stream, especially for manuscript recognition. Additionally, an introduction to OMR

in the form of a conference tutorial was made publicly available.

he open resources that have been contributed are the MUSCIMA++ dataset,

which is the irst extensive OMR dataset with systematic annotations for full-pipeline

recognition, themung sotware package for manipulating the Music Notation Graph

representation including MIDI export, the MUSCIMarker annotation tool, and the

omreval corpus for systematic testing of OMR extrinsic evaluation metrics aga-

iafsnst human preferences. hemost important of these is the MUSCIMA++ dataset,

which is the irst extensive dataset of handwriten music notation annotated with

ground truth that allows training and evaluating supervised full-pipeline OMR sys-

tems.

Finally, OMRmethods presented in this thesis comprise amachine learning-based

pipeline that starts with an image and extracts the musical semantics (note pitches,

onsets and durations) as a MIDI ile. he key symbol detection step is tackled using

fully convolutional neural networks (U-Nets), which have outperformed compara-

ble object detection networks. he notation graph formalism then allows formulat-

ing notation assembly as a straightforward binary classiication task. he resulting

pipeline has been evaluated also on a small manuscript retrieval task, and found

promising for manuscript copy retrieval. his is the irst time a machine learning-
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based full pipeline has been developed for handwriten OMR.

Much of the work in this thesis has been achieved through robust international

collaboration in the OMR community,1 which has historically been a rare occurrence.

he thesis author was one of the chairs of the 1st InternationalWorkshop on Reading

Music Systems, an atempt to create an OMR-centered publication venue related to

the Music Information Retrieval and Digital Libraries and Musicology communities;

already in its irst year, despite the tiny size of the ield, it has atracted twelve con-

tributions and more than 25 participants.2 Further community resources were cre-

ated through the established international collaboration: the tutorial “Optical Music

Recognition for Dummies” presented at the ISMIR 2018 conference and made avail-

able as a video playlist,3 a website4 and repository5 for keeping track of OMR ad-

vances and publicizing them, etc.

What are the challenges that OMR is facing now? What are the current oppor-

tunities for research advances?

One major remaining challenge is evaluation: there is still no way to meaning-

fully measure the similarity between two scores, especially in terms of edit distance.

heMuNG formalism ofers one possible solution, if an appropriate graph alignment

algorithm is developed. Of course, further datasets, especially some that would beter

correspond to real-world use-cases on top of the existing datasets focused on gen-

eral challenges of OMR, would be helpful to the ield, but datasets are no longer a

botleneck.

In terms of methods, there are two clear major challenges. One is to create sui-

ciently generic musical object detection methods, so that the amount of task-speciic

manual annotation necessary to apply the machine learning-based OMR techniques

is reduced (and, ideally, eliminated entirely). his should be, to some extent, possible:

Common Western Music Notation (CWMN) remains in principle – and in practice

for human readers – the same writing system, regardless of whether it is printed or

handwriten, whether it is born-digital or writen on a parchment. Models that take

advantage of its ideal topology may be able to generalize across input conditions;

however, these would probably require more complex top-down Bayesian modeling,

such as the hierarchical model of Lake et al. [2013]. Alternately, training data could

perhaps be adapted to it images from a target archive using style transfer [Leon

A. Gatys et al., 2016], at least with respect to the document quality and imaging pro-

cess. An interesting modeling challenge speciic to the MuNG formalism is to ind

an objective function that would allow jointly learning object detection and assem-

bly. he second major challenge for OMR methods is to ind a model for end-to-end

recognition of polyphonic music and the corresponding algorithms for inference.

Overall, we believe this thesis has moved the needle of Optical Music Recognition

1As evidenced by the wealth of co-authors of the publications that form the backbone of this thesis.
2https://sites.google.com/view/worms2018/proceedings
3https://youtube.com/playlist?list=PL1jvwDVNwQke-04UxzlzY4FM33bo1CGS0
4https://omr-research.net/
5https://github.com/OMR-research

61

https://sites.google.com/view/worms2018/proceedings
https://omr-research.net/
https://github.com/OMR-research


on CWMNmanuscripts to the extent that there is a clear path to practical solutions to

the problem of computationally reading handwriten music notation. We are looking

forward to seeing how others will utilize our contributions to move the ield forward.
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Part II

Published Works
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Here we present the individual publication that underlie the claims made in this

dissertation. he publications are grouped in two sections: one on OMR resources

and theory, which are closely interconnected, another on OMR methods. In a short

preface to each of the article, we briely describe the contributions of the articles

towards the dissertation, and detail the contributions of the dissertation author to

the articles.
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6. heory and Resources

We irst list articles related to the theoretical improvements (terminology, taxonomy,

deeper understanding) of OMR and resources that this thesis contributes to the ield.

6.1 Understanding Optical Music Recognition

Jorge Calvo-Zaragoza, Jan Hajič jr. and Alexander Pacha. Understanding Optical

Music Recognition. Manuscript under review.

he article Understanding Optical Music Recognition introduces Optical Music

Recognition: gives a clear deinition and analyzes the structure of the problem, and

proposes a taxonomy of OMR inputs and outputs (applications). Note that the paper

organizes previous work on OMR by application rather than by method, as methods

up to 2011 have been thoroughly reviewed in [Rebelo et al., 2012] and later con-

tributions are nearly all based on deep learning and reviewed in the corresponding

publications in the methods section of this thesis.

he contribution of the thesis author and the co-authors cannot be described in

other terms than equal; the article is a result of year-long weekly discussions. Of

the original theoretical contributions in the article, the thesis author formulated the

analysis of what OMR is in terms of inverting the process how music notation is

created, and elaborated the structure of replayability and reprintability (sections 2,

3, 4).

he article is currently under review in a journal.
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1

Understanding Optical Music Recognition

JORGE CALVO-ZARAGOZA∗, University of Alicante, Spain

JAN HAJIČ, JR.∗, Charles University, Czech Republic

ALEXANDER PACHA∗, TU Wien, Austria

For over 50 years, researchers have been trying to teach computers to read music notation, referred to as

Optical Music Recognition (OMR). However, this �eld is still di�cult to access for new researchers, especially

those without a signi�cant musical background: few introductory materials are available, and furthermore the

�eld has struggled with de�ning itself and building a shared terminology. In this tutorial, we address these

shortcomings by (1) providing a robust de�nition of OMR and its relationship to related �elds, (2) analyzing

how OMR inverts the music encoding process to recover the musical notation and the musical semantics

from documents, (3) proposing a taxonomy of OMR, with most notably a novel taxonomy of applications.

Additionally, we discuss how deep learning a�ects modern OMR research, as opposed to the traditional

pipeline. Based on this work, the reader should be able to attain a basic understanding of OMR: its objectives,

its inherent structure, its relationship to other �elds, the state of the art, and the research opportunities it

a�ords.
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1 INTRODUCTION

Music notation refers to a group of writing systems with which a wide range of music can be visually
encoded so that musicians can later perform it. In this way, it is an essential tool for preserving a
musical composition, facilitating permanence of the otherwise ephemeral phenomenon of music.
In a broad, intuitive sense, it works in the same way that written text may serve as a precursor
for speech. In the same way that Optical Character Recognition (OCR) technology has enabled
the automatic processing of written texts, reading music notation also invites automation. In an
analogy to OCR, the �eld of Optical Music Recognition (OMR) covers the automation of this task of
“reading” in the context of music. However, while musicians can read and interpret very complex
music scores even in real time, there is still no computer system that is capable of doing so with
success.
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We argue that besides the technical challenges, one reason for this state of a�airs is also that
OMR has not de�ned its goals with su�cient rigor to formulate its motivating applications clearly,
in terms of inputs and outputs. Work on OMR is thus fragmented, and it is hard for a would-be
researcher, and even harder for external stakeholders such as librarians, musicologists, composers,
and musicians, to understand and follow up on the aggregated state of the art. The individual
contributions are formulated with relatively little regard to each other, although less than 500 works
on OMR have been published to date. This makes it hard to combine the numerous contributions
and use previous work from other researchers, leading to frequent “reinventions of the wheel.” The
�eld, therefore, has been relatively opaque for newcomers, despite its clear, intuitive appeal.
One reason for the unsatisfactory state of a�airs was a lack of practical OMR solutions: when

one is hard-pressed to solve basic subproblems like sta� detection or symbol classi�cation, it
seems far-fetched to de�ne applications and chain subsystems. However, some of these traditional
OMR sub-steps, which do have a clear de�nition and evaluation methodologies, have recently
seen great progress, moving from the category of “hard” problems to “close to solved,” or at least
clearly solvable [70, 118]. Therefore, the breadth of OMR applications that have long populated
merely the introductory sections of articles now comes within practical reach. As the �eld garners
more interest within the document recognition and music information retrieval communities
[1, 11, 34, 50, 78, 83, 92, 114, 135], we see further need to clarify how OMR talks about itself.

The primary contribution of this paper is to clearly de�ne what OMR is, what problems it seeks
to solve and why. Readers should be able to fully understand what OMR is, even without prior
knowledge of music notation. OMR is, unfortunately, a somewhat opaque �eld due to the fusion of
the music-centric and document-centric perspectives. Even for researchers in the �eld, it is di�cult
to clearly relate their work to the �eld, as illustrated in Section 2.

Many authors think of OMR also notoriously di�cult to evaluate [84]. However, we show that this
clarity also disentangles OMR tasks which are genuinely hard to evaluate, such as full re-typesetting
of the score, from those where established methodologies can be applied straightforwardly, such as
searching scenarios.
Furthermore, the separation between music notation as a visual language and music as the

information it encodes is sometimes not made clear, which leads to a confusing terminology. The
way we formulate OMR should provide a framework of thought in which this distinction becomes
obvious.

In order to be a proper tutorial on OMR, this paper addresses certain shortcomings in the current
literature, speci�cally by providing:

• A robust de�nition of what OMR is, and a thorough analysis of its inherent structure;
• Terminological clari�cations that should make the �eld more accessible and easier to survey;
• A review of OMR uses and applications; well-de�ned in terms of inputs and outputs, and—as
much as possible—recommended evaluation methodologies;

• A brief discussion of how OMR was traditionally approached and how modern machine
learning techniques (namely deep learning) a�ects current and future research;

• As supplementary material, an extensive, extensible, accessible and up-to-date bibliography
of OMR (see Appendix A: OMR Bibliography).1

The novelty of this paper thus lies in collecting and systematizing the fragments found in
the existing literature, all in order to make OMR more approachable, easier to collaborate on,
and—hopefully—progress faster.

1https://github.com/OMR-Research/omr-research.github.io
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2 WHAT IS OPTICAL MUSIC RECOGNITION?

So far, the literature on OMR does not really share a common de�nition of what OMR is. Most
authors agree on some intuitive understanding, which can be sketched out as “computers reading
music.” But until now, no rigorous analysis of this question has been carried out, as most of the
literature on the �eld focuses on providing solutions—or, more accurately, solutions to certain
subproblems—that are usually justi�ed by a certain envisioned application or by referencing a
review paper that elaborates on common motivations, with [132] being the most prominent one.
However, even these review papers [7, 22, 111, 132] focus almost exclusively on technical OMR
solutions and avoid elaborating the scope of the research.
A critical review of the scienti�c literature reveals a wide variety of de�nitions for OMR (see

Appendix B: List of OMR de�nitions and descriptions from published works) with two extremes:
On one end, the proposed de�nitions are clearly motivated by the (sub)problem which the authors
sought to solve (e.g., “transforming images of music scores into MIDI �les”) which leads to a
de�nition that is too narrow and does not to capture the full spectrum of OMR. On the other end,
there are some de�nitions that are so generic that they fail to outline what OMR actually is and
what it tries to achieve. An obvious example would be to de�ne OMR as “OCR for music.” This
de�nition is overly vague, and the authors are—as likewise in many other papers—particularly
unspeci�c when it comes to clarifying what it actually includes and what is not included. We have
observed that the problem statements and de�nitions in these papers are commonly adapted to �t
the provided solution or to demonstrate the relevance to a particular target audience, e.g., computer
vision, music information retrieval, document analysis, digital humanities, or arti�cial intelligence.

While people rely on their intuition to compensate for this lack of accuracy, we would rather
prefer to put an umbrella over OMR and name its essence by proposing the following de�nition.

De�nition 1. Optical Music Recognition is a �eld of research that investigates how to computa-
tionally read music notation in documents.

The �rst claim of this de�nition is that OMR is a “research �eld.” In the published literature,
many authors refer to OMR as “task” or “process,” which is insu�cient, as OMR cannot be properly
formalized in terms of unique inputs and outputs (as discussed in Section 6). OMR must, therefore,
be considered something bigger, like the embracing research �eld, which investigates how to
provide a computer with the ability to read music notation. Within this research �eld, several tasks
can be formulated with speci�c, unambiguous input/output pairs.

The term “computationally” distinguishes OMR from the musicological and paleographic studies
of how to decode a particular notation system. It also excludes studying how humans read music.
OMR does not study the music notation systems themselves—rather, it builds upon this knowledge,
with the goal that a computer should be able to read the music notation as well.

The last part of the de�nition “reading music notation in documents” tries to de�ne OMR in a
concise, clear, speci�c, and inclusive way. To fully understand this part of the de�nition, the next
section clari�es what kind of information is captured in a music notation document and outlines the
process by which it gets generated. The subsequent section then elaborates on how OMR attempts
to invert this process to read and recover the encoded information.

It should be noted, that the output of OMR is omitted intentionally from its de�nition, as di�erent
tasks require di�erent outputs (see Section 6) and specifying any particular output representation
would make the de�nition unnecessarily restrictive.

To conclude this section, Fig. 1 illustrates how various de�nitions of OMR in the literature relate
to our proposed de�nition and are captured by it. A full list of the formulations that have appeared
in OMR papers so far can be found in Appendix B: List of OMR de�nitions and descriptions from
published works.
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field of research 

that investigates how to 

OMR is a/the 

computationally read music notation in documents 

into a/an 

 process 

 technique 

 algorithm 

 task 

 tool 

 challenge 

 discipline 

 program 

 system 

to [automatically] 

of [automatically] 

  music 

  music scores 

  score images 

  scores 

  manuscripts 

  music sheets 

  music documents 

  music notation 

  note information 

  musical information 

  music works 

 extract 

 transform 

 understand 

 translate 

 convert 

 recognize 

 read 

 detect 

 interpret 

 transcribe 

 decode 

 digitize 

 process 

 (re-)set 

 [handwritten] 

 [printed] 

 [pen-based] 

 [symbolic] 

 [scanned] 

 [paper-based] 
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 electronic format 
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Fig. 1. How OMR tends to be defined or described and how our proposed definition relates to them. For
example: “OMR is the challenge of (automatically) converting (handwri�en) scores into a digital representa-
tion.”

3 FROM “MUSIC” TO A DOCUMENT

Music can be conceptualized as a structure of notes in time. This is not necessarily the only way to
conceptualize music,2 but it is the only one that has a consistent, broadly accepted visual language
used to transmit it in writing, so it is the conceptualization we consider for the purposes of OMR.
A note is a musical object that is de�ned by four parameters: pitch, duration, loudness, and timbre.
Additionally, it has an onset: a placement onto the axis of time, which in music does not mean
wall-clock time, but is measured in relative units called beats.3 Periods of musical time during which
no note is supposed to be played are marked by rests, which only have an onset and a duration.
Notes and rests are grouped hierarchically into phrases, voices, and other musical units that can
have logical relationships to one another. This structure is a vital part of music—it is essential to
work it out for making a composition comprehensible.

In order to record this “conceptualization of music” visually, for it to be performed over and
over in (roughly) the same way, at least at the relatively coarse level of notes, multiple music
notation systems have evolved. A music notation system is a visual language that encodes music
into a graphical form and enriches it with information on how to perform it (e.g., bowing marks,
�ngerings or articulations).4 To do that, it de�nes a set of symbols as its alphabet and speci�c rules
for how to position these symbols to capture a musical idea. Note that all music notation systems
entail a certain loss of information as they are designed to preserve the most relevant properties

2As evidenced by either very early music (plainchant) or some later twentieth century compositional styles (mostly
spectralism).
3Musical time is projected onto wall-clock time with an underlying tempo, which can further be stretched and compressed
by the performer. Strictly speaking, the notion of beats might not be entirely applicable to some very early music and some
contemporary music, where the rhythmic pulse is not clearly de�ned. However, the notation used to express such music
usually does have beats.
4Feist [57] refers to notation whimsically as a “haphazard Frankenstein soup of tangentially related alphabets and hiero-
glyphics via which music is occasionally discussed amongst its wonkier creators.”
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of the composition very accurately, especially the pitches, durations, and onsets of notes, while
under-specifying or even intentionally omitting other aspects. Tempo could be one of these aspects,
where the composer might have expressed precise metronomic indication, given a verbal hint, or
stated nothing at all. It is therefore considered the responsibility of the performer to �ll those gaps
appropriately. We consider this as a natural boundary of OMR: it ends where musicians start to
disagree over the same piece of music.

Arguably the most frequently used notation system is Common Western Music Notation (CWMN,
also known as modern sta� notation), which has developed during the seventeenth century from
its mensural notation predecessors and stabilized at the beginning of the nineteenth century. There
have been attempts to supersede it in the avant-garde and postmodern movements, but so far,
these have not produced workable alternatives. Apart from CWMN, there exist a wealth of modern
tablature scores for guitar, used i.a., to write down popular music, as well as a signi�cant body of
historical musical manuscripts that are using earlier notation systems (e.g., mensural notations,
quadratic notation for plainchant, early organum, or a wealth of tablature notations for lutes).

Once a music notation system is selected for writing down a piece of music, it is still a challenging
task to engrave5 the music because a single set of notes can be expressed in many ways. For example,
one must make sure that the stem directions mark voices consistently and appropriate clefs are
used, in order to make the music as readable as possible [57, 79, 89, 143]. These decisions not only
a�ect the visual appearance but also help to preserve the logical structure (see Fig. 2). Afterwards,
it can be embodied in a document, whether physically or digitally.
To summarize, music can be formalized as a structured assembly of notes, enriched through

additional instructions for the performer, that are encoded visually using a music notational
language and embodied in a medium such as paper (see Fig. 3). Once this embodiment is digitized,
OMR can be understood in terms of inverting this process.

4 INVERTING THE MUSIC ENCODING PROCESS

OMR starts after a musical composition has been expressed visually with music notation in a
document.6 The music notation document serves as a medium, designed to encode and transmit a
musical idea from the composer to the performer, enabling the recovery and interpretation of that
envisioned music by reading through it. The performer would:

(1) Read the visual signal to determine what symbols are present and what is their con�guration,
(2) Use this information to parse and decode the notes and their accompanying instructions (e.g.,

indications of which technique to use), and
(3) Apply musical intuition, prior knowledge, and taste to interpret the music and �ll in the

remaining parameters which music notation did not capture.

5Normally, music engraving is de�ned as the process of drawing or typesetting music notation with a high quality for
mechanical reproduction. However, we use the term to refer to “planning the page”: selecting music notation elements and
planning their layout to most appropriately capture the music, before it is physically (or digitally) written on the page. This
is a loose analogy to the actual engraving process, where the publisher would carefully prepare the printing plates from soft
metal, and use them to produce many copies of the music; in our case, this “printing process” might not be very accurate,
e.g., in manuscripts. The engraving process involves complex decisions [24] that can a�ect only a local area, like spacings
between objects but can also have global e�ects, like where to insert a page break to make it convenient for the musician to
turn the page.
6While OMR mainly works with a complete image or document, it is also possible to perform online OMR with the temporal
signal as it is being generated, e.g., by capturing the stylus input on an electronic tablet device, which also results in a
document.
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(a)

(b)

Fig. 2. Excerpt of Robert Schumann’s “Von fremden Ländern und Menschen” (Engl. “Of foreign countries and
people”), Op. 15 for piano. Properly engraved (a), it has two sta�s for the le� and the right hand with three
visible voices, a key signature and phrase markings to assist the musician. In a poor engraving of the same
music (b), that logical structure is lost, and it becomes painfully hard to read and comprehend the music,
although these two versions contain the same notes.

"The music" Conceptualized

with notes

Engraved using 

music notation

Embodied in 

a document

Fig. 3. How music is typically expressed and embodied (wri�en down).

Note that the third step is clearly outside of OMR since it needs to deal with information that is
not written into the music document—and where human performers start to disagree, although
they are reading the very same piece of music [98].7

Coming back to our de�nition of OMR, based on the stages of the writing/reading process we
outlined above, there are two fundamental ways to interpret the term “read” in reading music

notation as illustrated in Fig. 4. We may wish to:

A Recover music notation and information from the engraving process, i.e., what elements were
selected to express the given piece of music and how were they laid out? This corresponds
to stage (1) and does not necessarily require speci�c musical knowledge, but it does require
an output representation that is capable of storing music notation, e.g., MusicXML or MEI,
which can be quite complex.

7Analogously, speech synthesis is not considered a part of optical character recognition. However, there exists expressive
performance rendering software that attempts to simulate more authentic playback, addressing step (3) in our analysis.
More information can be found in [36].
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"The music" Conceptualized

with notes

Engraved using 

music notation

Embodied in 

a document

Recover musical semantics

Recover music notation

Fig. 4. How “reading” music can be interpreted as the operations of inverting the encoding process.

B Recover musical semantics, which we de�ne as the notes, represented by their pitches, ve-
locities, onsets, and durations. This corresponds to stage (2) in the analysis above—we use
the term “semantics” to refer only to the information that can be unambiguously inferred
from the music notation document. In practical terms, MIDI would be an appropriate output
representation for this goal.

This is a fundamental distinction that dictates further system choices, as we discuss in the next
sections. Note that counter-intuitively, going backwards through this process just one step (A -
recover music notation) might be in fact more di�cult than going back two steps (B - recover
musical semantics) directly. This is because music notation contains a logical structure and more
information than simply the notes. Skipping the explicit description of music notation allows
bypassing this complexity.

There is, of course, a close relationship between recovering music notation and musical semantics.
A single system may even attempt to solve both at the same time because once the full score with
all its notational details is recovered, the musical semantics can be inferred unambiguously. Keep in
mind, that the other direction does not necessarily work: if only the musical semantics are restored
from a document without the engraving information that describes how the notes were arranged,
those notes may still be typeset using meaningful engraving defaults, but the result is probably
much harder to comprehend (see Fig. 2b for such an example).

4.1 Alternative Names

Optical Music Recognition is a well-established term, and we do not seek to establish a new one. We
just notice a lack of precision in its de�nition. Therefore, it is no wonder that people have been
interpreting it in many di�erent ways to the extent, that even the optical detection of lip motion for
identifying the musical genre of a singer [53] has been called OMR. Alternative names that might
not exhibit this vagueness are Optical Music Notation Recognition, Optical Score Recognition8, or
Optical Music Score Recognition. While the pre�x “Optical” is not compulsory, it could still prove
bene�cial in highlighting the visual characteristics and help distinguish it from techniques that
work on audio recordings.

8which is similar to the German equivalent “Optische Notenerkennung”
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5 RELATION TO OTHER FIELDS

Now that we have thoroughly described what Optical Music Recognition is, we brie�y set it in
context of other disciplines, both scienti�c and general �elds of human endeavors.

Fig. 5. Optical Music Recognition with its most important related fields, methods, and applications.

Figure 5 lays out the various key areas that are relevant for OMR, both as its tools and the
“consumers” of its outputs. From a technical point of view, OMR can be considered a sub�eld of
computer vision and document analysis, with deep learning acting as a catalyst that opens up
promising novel approaches. Within the context of Music Information Retrieval (MIR), OMR should
enable the application of MIR algorithms that rely on symbolic data and audio inputs (through
rendering the recognized scores). It furthermore can enrich digital music score libraries and make
them much more searchable and accessible, which broadens the scope of digital musicology to
compositions for which we only have the written score (which is probably the majority of Western
musical heritage). Finally, OMR has practical implications for composers, conductors, and the
performers themselves, as it cuts down the costs of digitizing scores, and therefore bring the
bene�ts of digital formats to their everyday practice.

5.1 Optical Music Recognition vs. Text Recognition

One must also address the obvious question: why should OMR be singled out besides Optical
Character Recognition (OCR) and Handwritten Text Recognition (HTR), given that they are tightly
linked [18], and OMR has been called “OCR for music” frequently [25, 26, 68, 80, 93, 94, 109, 128, 129,
147]?9 What is the justi�cation of talking speci�cally about music notation and what di�erentiates
it from other graphics recognition challenges? What are the special considerations in OMR that
one does not encounter in other writing systems?
A part of the justi�cation lies in the properties of music notation as a featural writing system.

While its alphabet consists of well-de�ned primitives (e.g., stems, noteheads, or �ags) that have
a clear interpretation, it is only in their con�guration—how they are placed and arranged on the

9Even the English Wikipedia article on OMR has been calling it “Music OCR” for over 13 years.
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Fig. 6. How the translation of the graphical concept of a note into a pitch is a�ected by the clef and accidentals.
The e�ective pitch is wri�en above each note. Accidentals immediately before a note propagate to other notes
within the same measure, but not to the next measure. Accidentals at the beginning of a measure indicate a
new key signature that a�ects all subsequent notes.

staves, and with respect to each other—that speci�es what notes should be played. The properties of
music notation that make it a challenge for computational reading have been discussed exhaustively
by Byrd and Simonsen [29]; we hypothesize that these di�culties are ultimately caused by this
featural nature of music notation.
Another major reason for considering the �eld of OMR distinct from text recognition is the

application domain itself—music. When processing a document of music notation, there is a
natural requirement to recover its musical semantics (see Section 4, setting B) as well, as opposed
to text recognition, which typically does not have to go beyond recognizing letters or words
and ordering them correctly. There is no proper equivalent of this interpretation step in text
recognition since there is no de�nite answer to how a symbol con�guration (=words) should be

further interpreted; therefore, one generally leaves interpretation to humans or to other well-de�ned
tasks from the Natural Language Processing �eld. However, given that music is overwhelmingly
often conceptualized as notes, and notes are well-de�ned objects that can be inferred from the score,
OMR is, not unreasonably, asked to produce this additional level of outputs that text recognition
does not. Perhaps the simplest example to illustrate this di�erence is given by the concept of the
pitch of the notes (see Fig. 6). While graphically a note lies on a speci�c vertical position of the
sta�, other objects, such as the clefs and accidentals determine its musical pitch. It is therefore
insu�cient for the OMR to provide just the results in terms of positions, but it also has to take
the context into account, in order to convert positions (graphical concept) into pitches (musical
concept). In this regard, OMR is more ambitious than text recognition, since there is an additional
interpretation step speci�cally for music that has no good analogy in other natural languages.
The character set poses another signi�cant challenge, compared to text recognition. Although

writing systems like Chinese have extraordinarily complex character sets, the set of primitives for
OMR spans a much greater range of sizes, ranging from small elements like a dot to big elements
spanning an entire page like the brace. Many of the primitives may appear at various scales and
rotations like beams or have a nearly unrestricted appearance like slurs that are only de�ned
as more-or-less smooth curves that may be interrupted anywhere. Finally, in contrast to text
recognition, music notation involves ubiquitous two-dimensional spatial relationships, which are
salient for the symbols’ interpretation. Some of these properties are illustrated in Fig. 7.
Furthermore, Byrd and Simonsen [29] argue that because of the vague limits of what one may

want to express using music notation, its syntactic rules can be expected to be bent accordingly; this
happens to such an extent that Homenda et al. [90] argued that there is no universal de�nition of
music notation at all. Figure 7 actually contains an instance of such rule-breaking: while one would
expect all notes in one chord to share the same duration, the chord on the bottom left contains
a mix of white and black noteheads, corresponding to half- and quarter-notes. At the same time,
however, the musical intent is yet another: the two quarter-notes in the middle of the chord are
actually played as eighth notes, to add to the rich sonority of the fortissimo chord on the �rst

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:10 Calvo-Zaragoza et al.

Fig. 7. This excerpt by Ludwig van Beethoven, Piano Sonata op. 2 no. 2, Largo appassionato, m. 31 illustrates
some properties of the music notation that distinguish it from other types of writing systems: a wide
range of primitive sizes, the same primitives appearing at di�erent scales and rotations, and the ubiquitous
two-dimensional spatial relationships.

beat.10 We believe this example succinctly illustrates the intricacies of the relationship between
musical comprehension and music notation. This last di�erence between a written quarter and
interpreted eighth note is, however, beyond what one may expect OMR to do, but it serves as
further evidence that the domain of music presents its own di�culties, compared to the domains
where text recognition normally operates.

5.2 Optical Music Recognition vs. Other Graphics Recognition Challenges

Apart from text, documents can contain a wide range of other graphical information, such as
engineering drawings, �oor plans, mathematical expressions, comics, maps, patents, diagrams,
charts or tables [44, 58]. Recognizing any of these comes with its own set of challenges, e.g., comics
combine text and other visual information in order to narrate a story, which makes recovering the
correct reading order a non-trivial endeavor. Similarly, the arrangement of symbols in engineering
drawing and �oor plans can be very complex with rather arbitrary shapes. Even tasks that are
seemingly easy, such as the recognition of tables, must not be underestimated and are still subject
to ongoing research [131, 144]. The hardest aspects of OMR are much closer to these challenges
than to text recognition: the ubiquitous two-dimensionality, long-distance spatial relationships,
and the permissive way of how individual elements can be arranged and appear at di�erent scales
and rotations.
One thing that makes CWMN more complex than many graphics recognition challenges like

mathematical formulae recognition is the complex typographical alignment of objects [7, 29], that
is dictated by the content, e.g., each space between multiple notes of the same length should be
equal. This complexity is often driven by interactions between individual objects that force other
elements to move around, breaking the principal horizontal alignment of simultaneous events (see
Fig. 8, 9 and 10).
Apart from the typographical challenges, OMR also has an extremely complex semantic, with

many implicit rules. To handle this complexity, researchers have started a long time ago to leverage
the rules that govern music notation and formulate them into grammars [4, 123]. For instance, the
fact that the note durations (in each notated voice) have to sum up to the length of a measure has
been integrated into OMR as a post-processing step [120]. Fujinaga [67] even states that music
notation can be recognized by an LL(k) grammar. Nevertheless, the following citation from Blostein
and Baird [22] (p.425) is still mostly true:

10This e�ect would be especially prominent on the Hammerklavier instruments prevalent around the time Beethoven was
composing this sonata.
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Fig. 8. Brahms Intermezzo, Op. 117 no. 1. Adjacent notes of the chords in the first bar in the top sta� are
shi�ed to the right to avoid overlappings (yellow do�ed boxes). The moving eighths in the second bar are
forced even further to the right, although being played simultaneously with the chord (red dashed boxes).

Fig. 9. Sample from the CVC-MUSCIMA dataset [60] with the same bar transcribed by two di�erent writers.
The first three notes and the second three notes form a chord and should be played simultaneously (see right
figure) but is sometimes horizontally spelled out (see le� figure) le� is sometimes used in violin scores.

Fig. 10. Sample from the Songbook of Romeo & Julia by Gerard Presgurvic [124] with uneven spacing between
multiple sixteenth notes of the same length in the middle voice to align the notes with the lyrics.

“Various methods have been suggested for extending grammatical methods which
were developed for one-dimensional languages. While many authors suggest using
grammars for music notation, their ideas are only illustrated by small grammars that
capture a tiny subset of music notation.” [22] (p.425; sec. 7 - Syntactic Methods).

There has been progress on enlarging the subset of music notation captured by these grammars,
most notably in the DMOS system [49], but there are still no tractable 2-D parsing algorithms
that are powerful enough for recognizing music notation without relying on fragile segmentation
heuristics. It is not clear whether current parsers used to recognize mathematical expressions [3]
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are applicable to music notation or simply have not been applied yet—at least we are not aware of
any such works.

6 A TAXONOMY OF OMR

Now that we have progressed in our e�ort to de�ne Optical Music Recognition, we can turn our
attention to systematizing the �eld with respect to motivating applications, subtasks, and their
interfaces. We reiterate that our objective is not to review the methods by which others have
attempted to reach the goals of their OMR work; rather, we are proposing a taxonomy of the �eld’s
goals themselves. Our motivation is to �nd natural groups of OMR applications and tasks for which
we can expect, among other things, shared evaluation protocols. The need for such systematization
has long been felt [23, 30], but subsequent reviews [111, 132] have focused almost entirely on
technical solutions.

6.1 OMR Inputs

The taxonomy of inputs of OMR systems is generally established. The �rst fundamental di�erence
can be drawn between o�ine and online11 OMR: o�ine OMR operates on a static image, while online
OMR operates on a time series of user-interactions, typically pen positions that were captured from a
touch interface [31, 72, 73, 150]. Online OMR is generally considered easier since the decomposition
into strokes provides a high-quality over-segmentation essentially for free. O�ine OMR can be
further subdivided by the engraving mechanism that has been used, which can be either typeset
by a machine, often inaccurately referred to as printed12, or handwritten by a human, with an
intermediate, yet common scenario of handwritten notation on pre-printed sta� paper.

Importantly, music can be written down in many di�erent notation systems that can be seen as
di�erent languages to express musical concepts (see Fig. 11). CWMN is probably the most prominent
one. Before CWMN was established, other notations such as mensural or neumes preceded it, so
we refer to them as early notations. Although this may seem like a tangential issue, the recognition
of manuscripts in ancient notations has motivated a large number of works in OMR that facilitate
the preservation and analysis of the cultural heritage, as well as enabling digital musicological
research of early music at scale [50, 51, 69, 158]. Another category of notations that are still being
actively used today are instrument-speci�c notations, such as tablature for string instruments or
percussion notation. The �nal category captures all other notations including, e.g., modern graphic
notation, braille music or numbered notation that are only rarely used and for which the existing
body of music is much smaller than for the other notations.

To get an idea of how versatile music can be expressed visually, the Standard Music Font Layout
[148] currently lists over 2440 recommended characters, plus several hundred optional glyphs.
Byrd and Simonsen [29] further characterize OMR inputs by the complexity of the notated

music itself, ranging from simple monophonic music to “pianoform.” They use both the presence
of multiple sta�s as well as the number of notated voices inside a single sta� as a dimension of
notational complexity. In contrast, we do not see the number of sta�s as a driver of complexity
since a page typically contains many sta�s and a decision on how to group them into systems has
to be made anyway. Additionally, we explicitly add a category for homophonic music that only has
a single logical voice, even though that voice may contain chords with multiple notes being played
simultaneously. The reason for singling out homophonic music is that inferring onsets becomes

11Although it might sound ambiguous, the term online recognition has been used systematically in the handwritten
recognition community. Sometimes, this scenario is also referred to as pen-based recognition.
12Handwritten manuscripts can also be printed out, if they were scanned previously, therefore we prefer the word typeset.
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(a) (b)

(c) (d)

Fig. 11. Examples of scores wri�en in various notations: (a) Common Western Music Notation (Dvorak
Symphony No.9, IV), (b) White Mensural Notation (Belli [121]), (c) Tabulature (Regondi, Etude No.10) and (d)
Braille (Beethoven, Sonata No.14 Op.27 No.2).

trivial once notes are grouped into chords, as opposed to polyphonic music with multiple logical
voices: one can simply read them left-to-right without having to do a voice assignment.

Therefore, we propose the following four categories (see Fig. 12):

(a) Monophonic: only one note (per sta�) is played at a time.
(b) Homophonic: multiple notes can occur at the same time to build up a chord, but only as a

single voice.
(c) Polyphonic: multiple voices can appear in a single sta�.
(d) Pianoform: scores with multiple staves and multiple voices that exhibit signi�cant structural

interactions. They can be much more complex than polyphonic scores and cannot be disas-
sembled into a series of monophonic scores, such as in polyphonic renaissance vocal part
books. This term was coined by Byrd and Simonsen [29].

This complexity of the encoded music has signi�cant implications on the model design since the
various levels translate into di�erent sets of constraints on the output. It cannot simply be adjusted
or simulated like the visual complexity by applying an image operation on a perfect image [95],
because it represents an intrinsic property of the music.

Finally, as with other digital document processing, OMR inputs can be classi�ed according to their
image quality which is determined by two independent factors: the underlying document quality,
and the digital imaging acquisition mode. The underlying document quality is a continuum on a
scale from perfect or nearly �awless (e.g., if the document was born-digital and printed) to heavily
degraded or defaced documents (e.g., ancient manuscripts that deteriorated over time and exhibit
faded ink, ink blots, stains, or bleedthrough) [29]. The image acquisition mode is also a continuum
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(a) Monophonic

(b) Homophonic

(c) Polyphonic

(d) Pianoform

Fig. 12. Examples of the four categories of music notation complexity.

that can reach from born-digital images, over scans of varying quality to low-quality, distorted
photos that originate from camera-based scenarios with handheld cameras, such as smartphones
[2, 160].

6.2 OMR Outputs

The taxonomy of OMR outputs, on the other hand, has not been treated as systematically in the
OMR literature. Lists of potential or hypothetical applications are typically given in introductory
sections [22, 38, 67, 111]. While this may not seem like a serious issue, it makes it hard to categorize
di�erent works and compare their results with each other, because one often ends up comparing
apples to oranges [7].

The need for a more principled treatment is probably best illustrated by the unsatisfactory state
of OMR evaluation. As pointed out by [29, 81, 84], there is still no good way at the moment of how to
measure and compare the performance of OMR systems. The lack of such evaluation methods is best
illustrated by the way how OMR literature presents the state of the �eld: Some consider it a mature
area that works well (at least for typeset music) [5, 12, 61, 62, 134]. Others describe their systems
with reports of very high accuracies of up to nearly 100% [33, 91, 99, 104, 110, 122, 145, 160, 161],
giving an impression of success; however, many of these numbers are symbol detection scores
on a small corpus with a limited vocabulary that are not straightforward to interpret in terms of
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actual usefulness, since they do not generalize [19, 29]13. The existence of commercial applications
[71, 106–108, 112, 130, 149] is also sometimes used to support the claim that OMR “works” [13].
On the other hand, many researchers think otherwise [19, 28, 40, 46, 82, 83, 109, 118, 132, 133],
emphasizing that OMR does not provide satisfactory solutions in general—not even for typeset
music. Some indirect evidence of this can be gleaned from the fact that even for high-quality
scans of typeset music, only a few projects rely on OMR,14 while other projects still prefer to
crowdsource the manual transcription instead of using systems for the automatic recognition [78],
or at least crowdsource the correction of the errors produced by OMR systems [141]. Given the
long-standing absence of OMR evaluation standards, this ambivalence is not surprising. However,
a scienti�c �eld should be able to communicate its results in comprehensible terms to external
stakeholders—something OMR is currently unable to do.
We feel that to a great extent this confusion stems from the fact that the question “Does OMR

work?” is an overly vague question. As our analysis in Section 2 shows, OMR is not a monolithic
problem—therefore, asking about the “state of OMR” is under-speci�ed. “Does OMR work?” must
be followed by “... as a tool for X,” where X is some application, in order for such questions to
be answerable. There is, again, evidence for this in the OMR literature. OMR systems have been
properly evaluated in retrieval scenarios [1, 10, 66] or in the context of digitally replicating a
musicological study [83]. It has, in fact, been explicitly asserted [81] that evaluation methodologies
are only missing for a limited subset of OMR applications. Speci�cally, there is no knownmeaningful
edit distance between two scores (whatever their underlying representation).
At the same time, the granularity at which we de�ne the various tasks should not be too �ne,

otherwise one risks entering a di�erent swamp: instead of no evaluation at all, each individual work
is evaluated on themerits of a narrowly de�ned (and oftenmerely hypothetical) application scenario,
which also leads to incomparable contributions. In fact, this risk has already been illustrated on the
subtask of symbol detection, which seems like a well-de�ned problem where the comparison should
be trivial. In 2018, multiple music notation object detection papers have been published [82, 116, 117,
152], but each reported results in a di�erent way while presenting a good argument for choosing
that kind of evaluation, so signi�cant e�ort was necessary in order to make these contributions
directly comparable [119]. A compromise is therefore necessary between fully specifying the
question of whether OMR “works” by asking for a speci�c application scenario, and on the other
hand retaining su�ciently general categories of such tasks.
Having put forward the reasoning for why systematizing the �eld of OMR with respect to its

outputs is desirable, we proceed to do so. For de�ning meaningful categories of outputs for OMR,
we come back to the fundamentals of how OMR inverts the music encoding process to recover
the musical semantics and musical notation (see Section 2). These two prongs of reading musical
documents roughly correspond to two broad areas of OMR applications [105] that overlap to a
certain extent:

• Replayability: recovering the encoded music itself in terms of pitch, velocity, onset, and
duration. This application area sees OMR as a component inside a bigger music processing
pipeline that enables the system to operate on music notation documents as just another
input. Notice, that readability by humans is not required for these applications, as long as the
computer can process and “play” the symbolic data.

13The problem of incomparable results has already been noted in the very �rst review of OMR in 1972 by Kassler [96] when
he reviewed the �rst two OMR theses by Pruslin [126] and Prerau [123].
14Some users of the Choral Public Domain Library (CPDL) project use commercial applications such as SharpEye or
PhotoScore Ultimate: http://forums.cpdl.org/phpBB3/viewtopic.php?f=9&t=9392
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• Structured Encoding: recovering the music along with the information on how it was encoded
using elements of music notation. This avenue is oriented towards providing the score for
music performance, which requires a (lossless) re-encoding of the score and assumes that
humans read the OMR output directly. Recovering the musical semantics might not in fact be
strictly necessary, but in practice, one often wishes to obtain that information too, in order
to enable digitally manipulating the music in a way that would be easiest done with the
semantics being recovered (e.g., transposing a part to make it suitable for another instrument).

In other words, the output of an application that targets replayability is typically processed by a
machine, whereas humans usually demand the complete recognition of the structured encoding to
allow for a readable output (see Fig. 2).

While the distinction between replayability and structured encoding is already useful, there are
other reasons that make it interesting to read musical notation from a document. For example, to
search for speci�c content or to draw paleographic conclusions about the document itself. Therefore,
we need to broaden the scope of OMR to actually capture these applications. We realized that
some use-cases require much less comprehension of the input and music notation than others.
To account for this, we propose the following four categories that demand an increasing level of
comprehension: Document Metadata Extraction, Search, Replayability, and Structured Encoding (see
Fig. 13).

Level of Comprehension

Search Replayability
Encoding
StructuredDocument Metadata

Extraction

CompletePartial

Fig. 13. Taxonomy of four categories of OMR applications that require an increasing level of comprehension,
starting with metadata extraction where a minimal understanding might be su�icient, up to structured
encoding that requires a complete understanding of music notation with all its intricacies.

Depending on the goal, applications di�er quite drastically in terms of requirements—foremost
in the choice of output representation. Furthermore, this taxonomy allows us to use di�erent
evaluation strategies.

6.2.1 Document Metadata Extraction. The �rst application area requires only a partial understand-
ing of the entire document and attempts to answer speci�c questions about it. These can be very
primitive ones, like whether a document contains music scores or not, but the questions can also
be more elaborate, for example:

• In which period was the piece written in?
• What notation was used?
• How many instruments are depicted?
• Are two segments written by the same copyist?

All of the aforementioned tasks entail a di�erent level of underlying computational complexity.
However, we are not organizing applications according to their di�culty but instead by the type of
answer they provide. In that sense, all of these tasks can be formulated as classi�cation or regression
problems, for which the output is either a discrete category or a continuous value, respectively.

De�nition 2. Document metadata extraction refers to a class of Optical Music Recognition appli-
cations that answer questions about the music notation document.
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The output representation for document metadata extraction tasks are scalar values or category
labels, and if not, its structure is determined by the user, not by the properties of the domain. Again,
this does not imply that extracting the target values is necessarily easy, but that the di�culties are
not related to the output representation, as is the case for other uses.
Although this type of application has not been very popular in the OMR literature, there are

some works that approach this scenario. In [9] and [118] the authors describe systems, that classify
images whether they depict music scores or not. While the former one used a basic computer
vision approach with a Hough transform and run-length ratios, the latter uses a deep convolutional
neural network. Such systems can come in handy if one has to automatically classify a very large
number of documents [114]. Perhaps the most prominent application is identifying the writer of a
document [63, 64, 77, 139] (which can be di�erent from the composer). This task was one of the
main motivations behind the construction of the CVC-MUSCIMA dataset [60] and was featured in
the ICDAR 2011 Music Score Competition [59].
The document metadata extraction scenario has the advantage of its unequivocal evaluation

protocols. Tasks are formulated regarding either classi�cation or regression, and these have well-
de�ned metrics such as accuracy, f-measure or mean squared error.

6.2.2 Search. Nowadays we have access to a vast amount of musical documents. Libraries and
communities have taken considerable e�orts to catalog and digitize music scores, by scanning them
and freely providing users access to them, e.g., IMSLP [125], SLUB [140], DIAMM [20] or CPDL
[113], to name a few. Here is a fast growing interest in automated methods which would allow
users to search for relevant musical content inside these sources systematically. Unfortunately,
searching for speci�c content often remains elusive, because many projects only provide the images
and manually entered metadata. We capture all applications that enable such lookups under the
category Search. Examples of search questions could be:

• Do I have this piece of music in my library?
• On which page can I �nd this melody?
• Where does this sequence of notes (e.g., a theme) repeat itself?
• Was a melody copied from another composition?
• Find the same measure in di�erent editions for comparing them.

De�nition 3. Search refers to a class of Optical Music Recognition applications that, given a
collection of sheet music and a musical query, compute the relevance of individual items of the
collection with respect to the given query.

Applications from this class share a direct analogy with keyword spotting (KWS) in the text
domain [74] and a common formulation: the input is a query, as well as the collection of documents
where to look for it; the output is the selection of elements from that collection that match the
query. However, “where” is a loose concept and can refer to a complete music piece, a page, or in
the most speci�c cases, a particular bounding-box or even a pixel-level location. In the context of
OMR, the musical query must convey musical semantics (as opposed to general search queries,
e.g., by title or composer; hence the term “musical” query in De�nition 3). The musical query is
typically represented in a symbolic way, interpretable unambiguously by the computer (similar to
query-by-string in KWS), yet it is also interesting to consider queries that involve other modalities,
such as image queries (query-by-example in KWS) or audio queries (query-by-humming in audio
information retrieval or query-by-speech in KWS). Additionally, it makes sense to establish di�erent
domain-speci�c types of matching, as it is useful to perform searches restricted to speci�c music
concepts such as melodies, sequences of intervals, or contours, in addition to exact matching.
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A direct approach for search within music collections is to use OMR technology to transform
the documents into symbolic pieces of information, over which classical content-based or symbolic
retrieval methods can be used [1, 14, 47, 52, 55, 88, 97, 151]. The problem is that these transformations
require a more comprehensive understanding of the processed documents (see Sections 6.2.3 and
6.2.4 below). To avoid the need for an accurate symbol-by-symbol transcription, search applications
can resort to other methods to determine whether (or how likely) a given query is in a document or
not. For instance, in cross-modal settings, where one searches a database of sheet music using aMIDI
�le [10, 66] or a melodic fragment that is given by the user on the �y [1], OMR can be used as a hash
function. When the queries and documents are both projected into the search space by the same
OMR system, some limitations of the system may even cancel out (e.g., ignoring key signatures), so
that retrieval performance might deteriorate less than one would expect. Unfortunately, if either
the query or the database contains the true musical semantics, such errors do become critical [83].
A few more works have also approached the direct search of music content without the need

to convert the documents into a symbolic format �rst. Examples comprise the works by [100]
dealing with a query-by-example task in the CVC-MUSCIMA dataset, and by [35], considering a
classical query-by-string formulation over early handwritten scores. In the cross-modal setting, the
audio-sheet music retrieval contributions of [54] are an example of a system that explicitly attempts
to gain only the minimum level of comprehension of music notation necessary for performing its
retrieval job.

Search systems usually retrieve not just a single result but all those that match the input query,
typically sorted by con�dence. This setting can re-use general information retrieval methodologies
for evaluating performance [87, 101], such as precision and recall, as well as encompassing metrics
like average precision and mean average precision.

6.2.3 Replayability. Replayability applications are concerned with reconstructing the notes en-
coded in the music notation document. Notice that producing an actual audio �le is not considered
to be part of OMR, despite being one of the most frequent use-cases of OMR. In any case, OMR can
enable these applications by recovering the pitches, velocities, onsets, and durations of notes. This
symbolic representation, usually stored as a MIDI �le, is already a very useful abstraction of the
music itself and allows for plugging in a vast range of computational tools such as:

• synthesis software to produce an audio representation of the composition
• music information retrieval tools that operate on symbolic data
• tools that perform large-scale music-theoretical analysis
• creativity-focused applications [162]

De�nition 4. Replayability refers to a class of Optical Music Recognition applications that recover
su�cient information to create an audible version of the written music.

Producing a MIDI (or an equivalent) representation is one key goal for OMR—at least for the
foreseeable future since MIDI is a representation of music that has a long tradition of computational
processing for a vast variety of purposes. Many applications have been envisioned, that only require
replayability, such as applications, that can sight-read the scores to assist practicing musicians or
provide missing accompaniment.
Replayability is also a major concern for digital musicology. Historically, the majority of com-

positions has probably never been recorded, and therefore is only available in written form as
scores; of these, most compositions have also never been typeset, since typesetting has been a very
expensive endeavor, reserved essentially either for works with assured commercial success, or
composers with substantial backing by wealthy patrons. Given the price of manual transcription, it
is prohibitive to transcribe large historical archives. OMR that produces MIDI, especially if it can do
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so for manuscripts, is probably the only tool that could open up the vast amount of compositions
to quantitative musicological research, which, in turn, could perhaps �nally start answering broad
questions about the evolutions of the average musical styles, instead of just relying on the works
of the relatively few well-known composers.
Systems designed for the goal of replayability traditionally seek �rst to obtain the structured

encoding of the score (see Section 6.2.4), from which the sequences of notes can be straightfor-
wardly retrieved [82]. However, if the speci�c goal is to obtain something equivalent to a MIDI
representation, it is possible to simplify the recognition and ignore many of the elements of musical
notation, as demonstrated by numerous research projects [16, 65, 90, 91, 102, 116, 138]. An even
clearer example of this distinction can be observed in the works of Shi et al. [146] as well as van
der Wel and Ullrich [157]; both focus only on obtaining the sequence of note pairs (duration, pitch)
that are depicted in single-sta� images, regardless of how these notes were actually expressed
in the document. Another instance of a replay-oriented application is the Gocen system [5] that
reads handwritten notes with a specially designed device with the goal of producing a musical
performance while ignoring the majority of music notation syntax.
Once a system is able to arrive at a MIDI-like representation, evaluating the results is a matter

of comparing sets of pitch-onset-duration-triplets. Velocities may optionally be compared too,
once the note-by-note correspondence has been established, but can be seen as secondary for
many applications. Note, however, that even on the level of describing music as con�gurations of
pitch-velocity-onset-duration-quadruples, MIDI is a further simpli�cation that is heavily in�uenced
by its origin as a digital representation of performance, rather than of a composition: the most
obvious inadequacy of MIDI is its inability to distinguish pitches that sound equivalent but are
named di�erently, e.g., F-sharp and G-�at.15

Multiple similarity metrics for comparing MIDI �les have been proposed during the Symbolic
Melodic Similarity track of the Music Information Retrieval Evaluation eXchange (MIREX),16 e.g., by
determining the local alignment between the geometric representations of the melodies [153–156].
Other options could be multi-pitch estimation evaluation metrics [17], Dynamic Time Warping
[54], or edit distances between two time-ordered sequences of pitch-duration pairs [33, 163].

6.2.4 Structured Encoding. It can be reasonably stated that digitizing music scores for “human
consumption” and score manipulation tasks that a vollkommener Capellmeister17 [103] routinely
performs, such as part exporting, merging, or transposing for available instruments is the original
motivation of OMR ever since it started [6, 67, 123, 126] and the one that appeals to the widest
audience. Given that typesetting music is troublesome and time-consuming, OMR technology
represents an attractive alternative to obtain a digital version of music scores on which these
operations can be performed e�ciently with the assistance of the computer.

This brings us to our fourth and last category that requires the highest level of comprehension,
called structured encoding. Structured encoding aims to recognize the entire music score while
retaining all the engraving information available to a human reader. Since there is no viable
alternative to music notation, the system has to fully transcribe the document into a structured
digital format with the ultimate goal of keeping the samemusical information that could be retrieved
from the physical score itself.

15This is the combined heritage of equal temperament, where these two pitches do correspond to the same fundamental
frequency, and of the origins of MIDI in genres dominated by fretted and keyboard instruments.
16 https://www.music-ir.org/mirex/wiki/MIREX_HOME
17roughly translated from German as “ideal conductor”
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Fig. 14. Beginning of Franz Schubert, Impromptu D.899 No. 2 with omi�ed thirds starting in the second
measure of the top sta� (gray) and a color-coding of the two distinct voices in the second sta� (green and
blue).

De�nition 5. Structured Encoding refers to a class of Optical Music Recognition applications that
fully decode the musical content, along with the information of ’how’ it was encoded by means of
music notation.

Note that the di�erence between replayability and structured encoding can seem vague: for
instance, imagine a system that detects all notes and all other symbols and exports them into a
MusicXML �le. The result, however, is not the structured encoding unless the system also attempts
to preserve the information on how the scores were laid out. That does not mean it has to store the
bounding box and exact location of every single symbol, but the engraving information that conveys
musical semantics, like whether the stem of a note went up or down. To illustrate this, consider the
following musical snippet in Fig. 14. If a system like the one described in [33] recognized this, it
would remain restricted to replayability. Not because of the current limitations to monophonic,
single-sta� music, but due to the selected output representation, which does not store engraving
information such as the simpli�cations that start in the second measure of the top sta� (the grayed
out 3s that would be omitted in the printing) or the stem directions of the notes in the bottom sta�
(green and blue) that depict two di�erent voices. In summary, any system discarding engraving
information that conveys musical semantics cannot reach, by de�nition, the structured encoding
goal.
To help understand, why structured encoding poses such a di�cult challenge, we would like

to avail ourselves of the intuitive comparison given by Donald Byrd18: representing music as
time-stamped events (e.g., with MIDI) is similar to storing a piece of writing in a plain text �le;
whereas representing music with music notation (e.g., with MusicXML) is similar to a structured
description like an HTML website. By analogy, obtaining the structured encoding from the image
of a music score can be as challenging as recovering the HTML source code from the screenshot of
a website.

Since this use-case appeals to the widest audience, it has seen development both from the scien-
ti�c research community and commercial vendors. Notable products that attempt full structured
encoding include SmartScore [106], Capella Scan [37], PhotoScore [108] as well as the open-source
application Audiveris [21]. While the projects described in many scienti�c publications seem to
be striving for structured encoding to enable interesting applications such as the preservation
of the cultural heritage [39], music renotation [41], or transcriptions between di�erent music
notation languages [135], we are not aware of any systems in academia that would actually produce
structured encoding.

A major stumbling block for structured encoding applications has for a long time been the lack
of practical formats for representing music notation that would be powerful enough to retain the

18http://music.informatics.indiana.edu/don_notation.html
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information from the input score, and at the same time be a natural endpoint for OMR. This is
illustrated by papers that propose OMR-speci�c representations, both before the emergence of
MusicXML [75, 76] as a viable interchange format [105] and after [86]. At the same time, however,
even without regard for OMR, there are ongoing e�orts to improve music notation �le formats:
further development of MusicXML has moved into the W3C Music Notation Community Group19,
and there is an ongoing e�ort in the development of the Music Encoding Initiative format [137],
best illustrated by the annual Music Encoding Conference.20 Supporting the whole spectrum of
music notation situations that arise in a reasonably-sized archive is already a di�cult task. This can
be evidenced by the extensive catalog of requirements for music notation formats that Byrd and
Isaacson [27] list for a multi-purpose digital archive of music scores. Incidentally, the same paper
also mentions support for syntactically incorrect scores among the requirements, which is one of
the major problems that OMR has with outputting to existing formats directly. Although these
formats are becoming more precise and descriptive, they are not designed to store information
about how the content was automatically recognized from the document. This kind of information
is actually relevant for systems’ evaluation, as it allows, for example, determining if a pitch was
misclassi�ed because of either a wrongly detected position in the sta� or a wrongly detected clef.
The imperfections of representation standards for music notation is also re�ected in a lack of

evaluation standards for structured encoding. Given the ground truth representation of a score
and the output of a recognition system, there is currently no automatic method that is capable of
reliably computing how well the recognition system performed. Ideally, such a method would be
rigorously described and evaluated, have a public implementation, and give meaningful results.
Within the traditional OMR pipeline, the partial steps (such as symbol detection) can use rather
general evaluation metrics. However, when OMR is applied for getting the structured encoding of
the score, no evaluation metric is available, or at least generally accepted, partially because of the
lack of a standard representation for OMR output, as mentioned earlier. The notion of “edit cost” or
“recognition gain” that de�nes success in terms of how much time a human editor saves by using an
OMR system is yet more problematic, as it depends on the editor and on the speci�c toolchain [19].
There is no reason why a proper evaluation should not be possible since there is only a �nite

amount of information that a music document retains, which can be exhaustively enumerated. It
follows that we should be able tomeasure what proportion of this information our systems recovered
correctly. The rationale why this is still such a hard problem is because there is no underlying
formal model of music notation. Such a model could support structured encoding evaluation by
being:

• Comprehensive: integrating naturally both the “reprintability” and “replayability” level (also
called graphical and semantical level in the literature), by being capable of describing the
various corner cases (which implies extensibility);

• Useful: enabling tractable inference (at least approximate) and an adequate distance function;
and

• Su�ciently supported through open-source software.

The existing XML formats for encoding music notation are inadequate representations for OMR.
For example, the XML tree structure is unsuitable, as evidenced by the frequent need for referencing
the XML elements across arbitrarily distant subtrees. Historically, context-free grammars have
been the most explored avenue for a uni�ed formal description of music notation, both with an
explicit grammar [4, 49] and implicitly using a modi�ed stack automaton [8]: this feels natural,
given that music notation has strict syntactic rules and hierarchical structures that invite such

19https://www.w3.org/community/music-notation/
20https://music-encoding.org/conference/past.html
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descriptions. The 2-D nature of music notation also inspired graph grammars [56] and attributed
graph grammars [15]. Recently, modeling music notation as a directed acyclic graph has been
proposed as an alternative [82, 86]. However, none of these formalisms has yet been adopted: the
notation graph is too recent and does not have su�cient software and community support, and
the older grammar-based approaches lack up-to-date open-source implementations altogether
(and are insu�ciently detailed in the respective publications for re-implementation). Without an
appropriate formalism and the corresponding tooling, the evaluation of structured encoding can
hardly hope to move beyond ad-hoc methods.

Hajič [81] argues that a good OMR evaluation metric should be intrinsic21 and independent of a
certain use-case. The bene�ts would be the independence from the selected score editing toolchain
as well as the music notation format and a clearly interpretable automatic metric for guiding OMR
development (which could ideally be used as a di�erentiable loss function for training full-pipeline
end-to-end machine learning-based systems). This question is still one of the major issues in the
�eld.

7 APPROACHES TO OMR

In order to complete our journey through the landscape of Optical Music Recognition, we have yet to
visit the arena of OMR techniques. These have recently undergone a paradigm shift towardsmachine
learning that has brought about a need to revisit the way that OMR methods have traditionally
been systematized. As opposed to OMR applications, the vocabulary of OMR methods and subtasks
already exists [132] and only needs to be updated to re�ect the new reality of the �eld.
As mentioned before, obtaining the structured encoding of the scores has been the main moti-

vation to develop the OMR �eld. Given the di�culty of such objective, the process was usually
approached by dividing it into smaller stages that could represent challenges within reach with
the available technologies and resources. Over the years, the pipeline described by Bainbridge
and Bell [7], re�ned by Rebelo et al. in 2012 [132] became the de-facto standard. That pipeline is
traditionally organized into the following four blocks, sometimes with slightly varying names and
scopes of the individual stages:

(1) Preprocessing: Standard techniques to ease further steps, e.g., contrast enhancement, binariza-
tion, skew-correction or noise removal. Additionally, the layout should be analyzed to allow
subsequent steps to focus on actual content and ignore the background.

(2) Music Object Detection: Finding and classifying all relevant symbols or glyphs in the image.
(3) Notation Assembly: Recovering the music notation semantics from the detected and classi�ed

symbols. The output is a symbolic representation of the symbols and their relationships,
typically as a graph.

(4) Encoding: Encoding the music into any output format unambiguously, e.g., into MIDI for
playback or MusicXML/MEI for further editing in a music notation program.

With the appearance of deep learning in OMR, many steps that traditionally produced suboptimal
results, such as the sta�-line removal or symbol classi�cation have seen drastic improvements
[70, 118] and are nowadays considered solved or at least clearly solvable. This caused some steps
to become obsolete or collapse into a single (bigger) stage. For instance, the music object detection
stage was traditionally separated into a segmentation stage and classi�cation stage. Since sta� lines
make it hard to separate isolated symbols through connected component analysis, they typically
were removed �rst, using a separate method. However, deep learning models with convolutional

21Extrinsic evaluation means evaluating the system in an application context: “How good is this system for purpose X?.”
Intrinsic evaluation attempts to evaluate a system without reference to a speci�c use-case, asking how much of the encoded
information has been recovered. In the case of OMR, this essentially reduces evaluation to error counting.
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neural networks have been shown to be able to deal with the music object detection stage holistically
without having to remove sta� lines at all. In addition to the performance gains, a compelling
advantage is the capability of these models to train them in a single step by merely providing
pairs of images and positions of the music objects to be found, eliminating the preprocessing step
altogether. A baseline of competing approaches on several datasets containing both handwritten
and typeset music can be found in the work of Pacha et al. [119].
The recent advances also diversi�ed the way of how OMR is approached altogether: there are

alternative pipelines with their own ongoing research that attempt to face the whole process in a
single step. This holistic paradigm, also referred to as end-to-end systems, has been dominating the
current state of the art in other tasks such as text, speech, or mathematical formula recognition
[45, 48, 163]. However, due to the complexity of how musical semantics are inferred from the image,
it is di�cult (for now) to formulate it as a learnable optimization problem.While end-to-end systems
for OMR do exist, they are still limited to a subset of music notation, at best. Pugin pioneered this
approach utilizing hidden Markov models for the recognition of typeset mensural notation [127],
and some recent works have considered deep recurrent neural networks for monophonic music
written in both typeset [32, 33, 146, 157] and handwritten [13] modern notation. Unfortunately,
polyphonic and pianoform scores are currently out of reach for end-to-end models—not just that
the results would be disappointing, there is simply no appropriate model formulation. Therefore,
even when only trying to produce the “notes” (semantics), one may choose to recover some of the
engraving decisions explicitly as well, relying on the rules of inferring musical semantics as in the
last stages of the traditional pipeline.
Along with the paradigm shift towards machine learning—which nowadays can be considered

widely established—several public datasets have emerged, such as MUSCIMA++ [86], DeepScores
[152] or Camera-PrIMuS [32].22 There are also signi�cant e�orts to develop tools by which training
data for OMR systems can be obtained including MUSCIMarker [85], Pixel.js [142], and MuRET
[135].
On the other hand, while the machine learning paradigm has undeniably brought signi�cant

progress, it has shifted the costs onto data acquisition. This means that while the machine learning
paradigm is more general and delivers state-of-the-art results when appropriate data is available, it
does not necessarily drive down the costs of applying OMR. Still, we would say—tentatively—that
once these resources are spent, the chances of OMR yielding useful results for the speci�c use-case
are higher compared to earlier paradigms.
Tangentially to the way of dealing with the process itself, there has been continuous research

on interactive systems for years. The idea behind such systems is based on the insight that OMR
systems might always make some errors, and if no errors can be tolerated, the user is essential
to correct the output. These systems attempt to incorporate user feedback into the OMR process
in a more e�cient way than just post-processing system output. Most notably is the interactive
system developed by Chen et al. [42, 43], where the user directly interacts with the OMR system
by specifying which constraints to take into account while visually recognizing the scores. The
user can then iteratively add or remove constraints before re-recognizing individual measures
until he is satis�ed. The most powerful feature of interactive systems is probably the displaying of
recognition results, superimposed on top of the original image, which allows to quickly spot errors
[21, 37, 135, 159].

22A full list of all available datasets can be found at https://apacha.github.io/OMR-Datasets/
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8 CONCLUSIONS

In this article, we have �rst addressed what Optical Music Recognition is and proposed to de�ne it
as research �eld that investigates how to computationally read music notation in documents—a
de�nition that should adequately delimit the �eld, and set it in relation to other �elds such as OCR,
graphics recognition, computer vision, and �elds that await OMR results. We furthermore analyzed
in depth the inverse relation of OMR to the process of writing down a musical composition and
highlighted the relevance of engraving music properly—something that must also be recognized to
ensure readability for humans. The investigation of what OMR is, revealed why this seemingly
easy task of reading music notation has turned out to be such a hard problem: besides the technical
di�culties associated with document analysis, many fundamental challenges arise from the way
howmusic is expressed and captured in music notation. By providing a sound, concise and inclusive
de�nition, we capture how the �eld sees and talks about itself.

We have then reviewed and improved the taxonomy of OMR, which should help systematize the
current and future contributions to the �eld. While the inputs of OMR systems have been described
systematically and established throughout the �eld, a taxonomy of OMR outputs and applications
has not been proposed before. An overview of this taxonomy is given in Fig. 15.

Finally, we have also updated the general breakdown of OMR systems into separate subtasks in
order to re�ect the paradigm shift towards machine learning methods and discussed alternative
paradigms such as end-to-end systems and interactive scenarios.
One of the key points we wanted to stress is the internal diversity of the �eld: OMR is not a

monolithic task. As analyzed in Section 4, it enables various use-cases that require fundamentally
di�erent system designs, as discussed in Section 6.2. So before creating an OMR system, one should
be clear about the goals and the associated challenges.

The sensitivity to errors is another relevant issue that needs to be taken into account. As long as
errors are inevitable [43, 50], it is important to consider the impact of those errors to the envisioned
application. If someone wants to transcribe a score with an OMR system, but the e�ort needed for
correcting the errors is greater than the e�ort for directly entering the notes into a music notation
program, such anOMR systemwould obviously be useless [19]. Existing literature on error-tolerance
is inconclusive: while we tend to believe that users—especially practicing musicians—would not
tolerate false recognitions [136], we also see systems that can handle a substantial amount of OMR
errors [1, 50, 83] and still produce meaningful results, e.g., when searching in a large database of
scores. Therefore, it cannot be decided in advance how severe errors are, as it is always the end
user who sets the extent of tolerable errors.
The reader should now comprehend the spectrum of what OMR might do, understand the

challenges that reading music notation entails, and have a solid basis for further exploring the �eld
on his own—in other words, be equipped to address the issues described in the next section.

8.1 Open Issues and Perspectives for Future Research

We conclude this paper by listing major open problems in Optical Music Recognition that signi�-
cantly impede its progress and usefulness. While some of them are technical challenges, there are
also many non-technical issues:

• Legal aspects: Written music is the intellectual property of the composer and its allowed uses
are de�ned by the respective publisher. Recognizing and sharing music scores can be seen as
copyright infringement, like digitizing books without permission. To avoid this dispute, many
databases such as IMSLP only store music scores whose copyright protection has expired. So
an OMR dataset is either limited to old scores or one enters a legal gray area if not paying
close attention to the respective license of every piece stored therein.
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Fig. 15. An overview of the taxonomy of OMR inputs, architectures, and outputs. A fairly simple OMR
system could, for example, read high-quality scans (o�line) of well-preserved documents that contain typeset,
monophonic, mensural notation, process it in a tradition pipeline and output the results in a MIDI file to
achieve replayability. An extremely complex system, on the other hand, would allow images (o�line) of
handwri�en music in common western notation from degraded documents as input and strive to recognize
the full structured encoding in an end-to-end system.
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• Stable community: For decades, OMR research was conducted by just a few individuals that
worked distributedly and mostly uncoordinated. Most OMR researchers joined the �eld with
minor contributions but left again soon afterward. Furthermore, due to a lack of dedicated
venues, researchers rarely met in person [30]. This unstable setting and researchers that were
not paying su�cient attention to reproducibility led to the same problems being solved over
and over again [115].

• Lack of standards representations: There exist no standard representation formats for OMR
outputs, especially not for structured encoding, and virtually every system comes with its
own internal representation and output format, even for intermediate steps. This causes
incompatibilities between di�erent systems and makes it very hard to replace subcomponents.
Work on underlying formalisms for describing music notation can also potentially have a wide
impact, especially if done in collaboration with the relevant communities (W3C Community
Group on Music Notation, Music Encoding Initiative).

• Evaluation: Due to the lack of standards for outputting OMR results, evaluating them is
currently in an equally unsatisfactory state. An ideal evaluation method would be rigorously
described and veri�ed, have a public implementation, give meaningful results, and not rely
on a particular use-case, thus only intrinsically evaluating the system [81].

On the technical side, there are also many interesting avenues, where future research is needed,
including:

• Music Object Detection: recent work has shown that the music object detection stage can be
addressed in one step with deep neural networks. However, the accuracy is still far from
optimal, which is especially detrimental to the following stages of the pipeline that are based
on these results. In order to improve the detection performance, it might be interesting to
develop models that are speci�c to the type of inputs that OMR works on: large images with
a high quantity of densely packed objects of various sizes from a vast vocabulary.

• Semantical reconstruction: merely detecting the music objects in the document does not
represent a complete music notation recognition system, and so the music object detection
stage must be complemented with the semantical reconstruction. Traditionally, this stage is
addressed by hand-crafted heuristics that either hardly generalize or do not cover the full
spectrum of music notation. Machine learning-based semantical reconstruction represents
an unexplored line of research that deserves further consideration.

• Structured encoding research: despite being the main motivation for OMR in many cases,
there is a lack of scienti�c research and open systems that actually pursue the objective of
retrieving the full structure encoding of the input.

• Full end-to-end systems: end-to-end systems are accountable for major advances in machine
learning tasks such as text recognition, speech recognition, or machine translation. The
state of the art of these �elds is based on recurrent neural networks. For design reasons,
these networks currently deal only with one-dimensional output sequences. This �ts the
aforementioned tasks quite naturally since their outputs are mainly composed of word
sequences. However, its application for music notation—except for simple monophonic
scores—is not so straightforward, and it is unknown how to formulate an end-to-end learning
process for the recognition of fully-�edged music notation in documents.

• Statistical modeling: most machine learning algorithms are based on statistical models that
are able to provide a probability distribution over the set of possible recognition hypotheses.
When it comes to recognizing, we are typically interested in the best hypothesis—the one
that is proposed as an answer—forgetting the probability given to such hypothesis by the
model. However, it could be interesting to be able to exploit this uncertainty. For example, in
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the standard decomposition of stages in OMR systems, the semantic reconstruction stage
could bene�t from having a set of hypotheses about the objects detected in the previous stage,
instead of single proposals. Then, the semantic reconstruction algorithm could establish
relationships that are more logical a priori, although the objects involved have a lower
probability according to the object detector. These types of approaches have not been deeply
explored in the OMR �eld. Statistical modeling could also be useful so that the system provides
its certainty about the output. Then, the end user might have a certain notion about the
accuracy that has been obtained for the given input.

• Generalizing systems: A pressing issue is generalizing from training datasets to various real-
world collections because the costs for data acquisition are still signi�cant and currently
represent a bottleneck for applying state-of-the-art machine learning models in stakehold-
ers’ work�ows. However, music notation follows the same underlying rules, regardless of
graphical di�erences such as whether it is typeset or handwritten. Can one leverage a typeset
sheet music dataset to train for handwritten notation? Given that typeset notation can be
synthetically generated, this would open several opportunities to train handwritten systems
without the e�ort of getting labeled data manually. Although it seems more di�cult to
transfer knowledge across di�erent kinds of music notation, a system that recognizes some
speci�c music notation could be somehow useful for the recognition of shared elements in
other styles as well, e.g., across the various mensural notation systems.

• Interactive systems: Interactive systems are based on the idea of including users in the recog-
nition process, given that they are necessary if there is no tolerance for errors—something
that at the moment can only be ensured by human veri�cation. This paradigm reformulates
the objective of the system, which is no longer improving accuracy but reducing the e�ort—
usually measured as time—that the users invest in aiding the machine to achieve that perfect
result. This aid can be provided in many di�erent ways: error corrections that then feed back
into the system, or manually activating and deactivating constraints on the content to be
recognized. However, since user e�ort is the most valuable resource, there is still a need
to reformulate the problem based on this concept, which also includes aspects related to
human-computer interfaces. The conventional interfaces of computers are designed to enter
text (keyboard) or perform very speci�c actions (mouse); therefore, it would be interesting
to study the use of more ergonomic interfaces to work with musical notation, such as an
electronic pen or a MIDI piano, in the context of interactive OMR systems.

We hope that these lists demonstrate that OMR still provides many interesting challenges that
await future research.
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6.2 heMUSCIMA++Dataset for Handwritten Opti-

cal Music Recognition

Jan Hajič jr. and Pavel Pecina. he MUSCIMA++ Dataset for Handwriten Op-

tical Music Recognition. 14th International Conference on Document Analysis

and Recognition, pages 39–46, Kyoto, Japan, 2017. ISBN 978-1-5386-3586-5, ISSN

2379-2140, doi: 10.1109/ICDAR.2017.16.

he article he MUSCIMA++ Dataset for Handwriten Optical Music Recognition

introduces the irst dataset for full-pipeline OMR, and most importantly introduces

the key concept of the Music Notation Graph (MuNG), an adequate and learnable

representation that allows formulating the later half of the OMR pipeline as a (1)

relatively simplemachine learning problem, (2) deterministic exploitation of the rules

of music notation.

he thesis author designed the MuNG representation, managed the annotation

process and wrote the text of the article. he co-author Pavel Pecina contributed to

the inal text of the article with his comments. he contribution of the dissertation

author is about 95% of the article.
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6.3 Groundtruthing (not only) Music Notation with

MUSCIMarker: a Practical Overview

Jan Hajič jr. and Pavel Pecina. Groundtruthing (not only) Music Notation with

MUSCIMarker: a Practical Overview. 14th IAPR International Conference on Doc-

ument Analysis and Recognition / GREC, Kyoto, Japan, pages 47–48, 2017. ISBN

978-1-5386-3586-5, doi: 10.1109/ICDAR.2017.271

he short workshop paper Groundtruthing (not only) Music Notation with MUS-

CIMarker: a Practical Overview introduces the MUSCIMarker sotware that was used

to create the MUSCIMA++ dataset and is made openly available from GitHub;1 the

paper serves as the reference paper for the MUSCIMarker tool. he co-author Pavel

Pecina contributed to the inal text of the article with his comments. he contribution

of the dissertation author is about 95% of the article.

1https://www.github.com/OMR-research/MUSCIMarker
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Abstract—Dataset creation for graphics recognition, especially
for hand-drawn inputs, is often an expensive and time-consuming
undertaking. The MUSCIMarker tool used for creating the
MUSCIMA++ dataset for Optical Music Recognition (OMR) led
to efficient use of annotation resources, and it provides enough
flexibility to be applicable to creating datasets for other graphics
recognition tasks where the ground truth can be represented
similarly. First, we describe the MUSCIMA++ ground truth
to define the range of tasks for which using MUSCIMarker
to annotate ground truth is applicable. We then describe the
MUSCIMarker tool itself, discuss its strong and weak points,
and share practical experience with the tool from creating the
MUSCIMA++ dataset.

I. INTRODUCTION

Optical Music Recognition (OMR) is a field of graphics

recognition that aims to automatically read music. Music

notation encodes music with configurations of graphical prim-

itives; OMR extracts the musical information back from the

page. OMR can be likened to OCR for the music notation

writing system; however, it is more difficult [1], [2]. One of

the major roadblocks to OMR progress is the lack of pub-

licly available datasets with ground truth [1]–[3]. The CVC-

MUSCIMA dataset [4] provides ground truth for staff removal,

the HOMUS dataset [5] provides ground truth for symbol

classification, and only very recently the MUSCIMA++ dataset

[6] has ground truth for symbol localization as well, and

all these datasets are limited to contemporary handwriting,

normalized staff size, and binary images. Therefore, it is

reasonable to expect that OMR researchers will need to create

datasets of their own.

The MUSCIMarker open-source annotation tool that was

used to create MUSCIMA++ may prove useful for further

groundtruthing efforts. Furthermore, the ground truth rep-

resentation and the annotation tool are general enough to

support the creation of different datasets beyond OMR. This

work focuses on the practical aspects of dataset creation with

MUSCIMarker. It should serve as a guide for anyone interested

in datasets for OMR, and anyone who might contemplate

creating an analogous dataset for a different task. We hope

to invite feedback and suggestions for further development

both of the ground truth and the software, with respect to the

needs of the OMR community, but also the broader graphics

recognition community as well, as the software may be useful

e.g. for datasets of mathematical drawings or diagrams.

Fig. 1: A group of six notes that illustrates MUSCIMA++

notation graph. The rectangles are vertices, the lines represent

edges (all outgoing from noteheads). Notice e.g. the two short

beams in darker yellow, which are only relevant for notes 1

and 2, and 4 and 5, while all notes share the two long beams.

II. THE NOTATION GRAPH GROUND TRUTH

The ground truth of MUSCIMA++ is a notation graph.

It is a directed acyclic graph (DAG), its vertices are music

notation primitives, and its edges connect primitives which

are related to one another. OMR-specific is the definition the

alphabet of vertex classes and constraints on subgraphs, which

required careful design in order to be useful for OMR focused

both on the goals of replayability and reprintability [7].1 An

example is given in fig. 1. The data model for the annotation,

the primitives alphabet, and their grammar through classes is

implemented by the muscima Python package.2

Graphs have of course been explored before for representing

music notation, e.g. [8], parse trees are implied whenever

there is a mention of formal grammars (e.g., [9]–[12]), and

the Audiveris software3 uses a ,,Symbol Interpretation Graph”

as its internal representation. However, to the best of our

knowledge, no one before MUSCIMA++ has yet undertaken

the effort to provide notation graph ground truth. Furthermore,

our notation graph is based on dependency grammars, rather

1In full: https://muscimarker.readthedocs.io/en/develop/instructions.html
2https://github.com/hajicj/muscima
3https://github.com/Audiveris/audiveris
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than constituency grammars, which are more general, e.g.

allowing non-tree structures, which make the notation graph

easier to query for musical information (pitches and durations

of the encoded notes), and in general allow describing a

broader range of visual structures.

III. THE MUSCIMARKER ANNOTATION TOOL

The MUSCIMarker annotation tool4 is implemented in

Python 2.7, using the Kivy5 framework. While Python is not

the first choice for GUI applications, it is reliably cross-

platform, and we anticipate tight integration of machine

learning-based components automating portions of the annota-

tion workflow, which can be expected to be Python. Kivy pro-

vides an elegant event/observer model that naturally enables

triggering e.g. consistency checks or backups. MUSCIMarker

is designed to work offline, for use e.g. in public transport.

While a tool for marking regions in images is in principle

trivial, MUSCIMarker takes advantage of the nature of the in-

puts and the ground truth, and implements “tricks” that greatly

improved annotator productivity. To speed up adding accurate

objects with binary inputs, it provides auto-croppping and

connected component search; for adding graph edges, parsing

is available for primitive groups (permitted edges are defined

in a “dependency grammar file”, which lists the allowed edges

based on their starting and ending vertex classes and cardi-

nalities.) Automated recognition functionality is being added

concurrently with experimental progress. MUSCIMarker also

provides extensive user action logging capability, which helped

analyze productivity bottlenecks and prioritize features for

development. Quality control tools were developed to address

the most time-consuming problems: validating the notation

graph, and searching for very small or sparse symbols.

Annotators marked on average 7.5 primitives+edges per

minute overall, with the fastest at 10.5. (The author, with

intimate knowledge of the software and ground truth, set the

upper limit at 15.6.) [6] The dataset was done under budget.

MUSCIMarker still has important drawbacks that need to

be addressed. Adding vertices is only optimized for binary

images, edges cannot be differentiated into classes of their

own, and the development documentation is rather poor.

IV. DISCUSSION AND CONCLUSIONS

The toolchain used to create the MUSCIMA++ dataset is

designed generically enough that it may serve the creators

of other datasets with comparable graph-based ground truth.

Through the experience with MUSCIMA++, it has been opti-

mized for annotator productivity. Despite its limitations, it has

been instrumental to efficient dataset creation, and we hope it

will be a useful tool for addressing outstanding dataset needs

across the OMR and broader graphics recognition community.

4https://github.com/hajicj/MUSCIMarker,
Documentation at https://muscimarker.readthedocs.org
5www.kivy.org

Fig. 2: MUSCIMarker interface. Tool selection on the left;

controls on the right. Highlighted relationships have been se-

lected. (Last bar of from MUSCIMA++ image W-35_N-08.)
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6.4 Further Steps Towards a Standard Testbed for

Optical Music Recognition

Jan Hajič jr., Jiřı́ Novotný, Pavel Pecina and Jaroslav Pokorný: Further Steps

towards a Standard Testbed for Optical Music Recognition. Proceedings of the

17th International Society for Music Information Retrieval Conference, pages 157–

163, New York, USA, 2016. ISBN 978-0-692-75506-8.

he paper Further Steps Towards a Standard Testbed for Optical Music

Recognition [Hajič jr. et al., 2016] responds to the lack of established automated

evaluation metrics for OMR. In order to establish such an automated metric, one

needs to ascertain that the results of the computation actually correspond to the

quality of the output. Inspired by the data-driven methodology used for establishing

the BLEU metric in machine translation, the article uses the following methodology:

collect a corpus of human judgments, and then assess the adequacy of proposed au-

tomated OMR evaluation metrics according to how they agree with the human judg-

ments. his omreval corpus was collected, its reliability was analyzed, and several

baseline OMR evaluation metrics for comparing MusicXML iles – the closest to an

interchange format for music notation – were tested against the omreval corpus. As

a companion to the evaluation methodology, a subset of the CVC-MUSCIMA dataset

was annotated with symbol locations and MusicXML encodings, as a prototype of a

multi-layer test corpus for OMR itself.

In this article, the thesis author designed and performed did all the work andwrit-

ing, except for section 4.1, Symbol-level ground truth, which was done by co-author

Jiřı́ Novotný. he co-authors Pavel Pecina and Jaroslav Pokorný contributed to the

inal text of the article with their comments. he contribution of the dissertation

author is about 80% of the article.
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6.5 A Case for Intrinsic Evaluation of Optical Music

Recognition

Jan Hajič jr.: A Case for Instrinsic Evaluation of Optical Music Recognition.

Proceedings of the 1st International Workshop on Reading Music Systems, Paris,

France, pp. 15–16, 2018.

he short position paper A Case for Intrinsic Evaluation of Optical Music Recogni-

tion complements the previous article with a beter understanding of the problems

in OMR evaluation, providing a beter delineation of the contribution of the previous

article, but otherwise this is not a substantial work. he contribution of the thesis

author is 100% of the article.
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A Case for Intrinsic Evaluation

of Optical Music Recognition

Jan Hajič jr.

Institute of Formal and Applied Linguistics

Charles University

Email: hajicj@ufal.mff.cuni.cz

Abstract—Evaluating Optical Music Recognition (OMR) has
long been an acknowledged sore spot of the field. This short
position paper attempts to bring some clarity to what are actually
open problems in OMR evaluation: a closer look reveals that the
main problem is finding an edit distance between some practical
representations of music scores. While estimating these editing
costs in the transcription use-case of OMR is difficult, I argue
that the problems with modeling the subsequent editing workflow
can be de-coupled from general OMR system development using
an intrinsic evaluation approach, and sketch out how to do this.

I. WE NEED A MUSIC SCORE EDIT DISTANCE

Optical Music Recognition (OMR) has a known problem

with evaluation [1]–[3]. We can approach OMR evaluation

from two angles: extrinsic and intrinsic. By extrinsic, we mean

evaluation in application contexts: how well does an OMR

system address a specific need (such as retrieval, transcription,

playback, ...)? Intrinsic evaluation asks a different question:

how much of the information encoded by the music score

has a given OMR system recovered? An example of extrinsic

OMR evaluation can be found, e.g., in [4], where OMR is

evaluated in the context of a cross-modal retrieval system;

(partial) intrinsic evaluation is done i.a. in [5], where pitches

and durations of recognized notes are counted against ground

truth data. In this short position paper, I assess what the

outstanding problems in evaluating OMR are, and propose

intrinsic evaluation as a sensible way forward for OMR

research.

The major problem in OMR evaluation is that given a

ground truth encoding of a score and the output of a recogni-

tion system, there is no automatic method capable of reliably

computing how well the recognition system performs that

would (1) be rigorously described and evaluated, (2) have

a public implementation, (3) give meaningful results. Other

applications such as retrieval or extracing MIDI can be eval-

uated using more general methodologies. E.g., when using

OMR to retrieve music scores, there is little domain-specific

to defining success compared to retrieving other documents;

any time MIDI output is required, metrics used to evaluate

multi-f0 estimation can be adapted; score following has well-

defined evaluation metrics at different levels of granularity

as well. Within the traditional OMR pipeline [6], the partial

steps (such as smbol detection) also can use more general

evaluation metrics. However, when OMR is applied to re-

typesetting music (which is arguably its original motivation),

no evaluation metric is available.

In fact, computing an “edit distance” between a ground truth

representation of a full music score and OMR output may be

the only evaluation scenario where satisfactory measures are

not available. The notion of “edit cost” [7] or “recognition

gain” [8] that defines success in terms of how much time a

human editor saves by using an OMR system is yet more

problematic, as it depends on the specific toolchain used.

What can be done? One can try and implement such

a metric. However, because cost-to-correct depends on the

toolchains music editors use to work with OMR outputs, de-

veloping extrinsic evaluation metrics of OMR for transcription

would require user studies at a scale which is not feasible for

the few active OMR researchers. For these reasons, we argue

it would be helpful for OMR development to have an intrinsic

evaluation metric. After all, why address individual concerns

that OMR users may have when full-pipeline OMR does have

the potential to address all the application scenarios of OMR,

as it attempts to extract all the information available from a

music score?

II. MUSIC NOTATION FORMATS ARE PROBLEMATIC

A part of the edit distance problem lies in the ways

music notation is stored digitally. MusicXML or MEI, which

represent current best practices in open-source formats of

digital representation of music scores, have some properties

that make it difficult to compute a useful edit distance between

two such files (useful in the sense that it would meausre either

the amount of errors that an OMR system made, or the actual

difficulty of changing one score to the other). Furthermore, the

formats can encode the same score in multiple ways – e.g.,

MusicXML stores scores either measure-wise, or voice-wise.

Next, both formats are designed top-down, as trees that rep-

resent in their nodes both abstract concepts like a voice or note

and graphical entities such as stems or beams. This implies that

they cannot represent partial recognition results, and cannot

encode syntactically incorrect notation. Furthermore, while the

hierarchical structure mostly reflects the abstract structures of

music such as voices and measures, it does not reflect the

structure of music notation: local changes in the score can lead

to several changes in the encoding that occur far apart, and

vice versa. This is an inherent limitation of their tree structure.
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The LilyPond format is impractical for anything but at-

tempts at end-to-end OMR, as it hides much of the graphical

representation in its engraving engine, and has so many ways

of representing the same music that it is hard to meaningfully

compare LilyPond files. The MuNG format [3] does to some

extent overcome this locality problem by assuming a directed

acyclic graph instead of a tree stucture, but it is limited to

OMR ground truth and lacks conversions to other formats than

MIDI.

The lesson here is that one should not bind intrinsic OMR

evaluation to specific notation formats. After all, these formats

change much faster than music notation itself. Rather, an

evaluation metric should focus on inherent properties of music

notation.

III. ARGUING FOR INTRINSIC EVALUATION

Intrinsic evaluation of OMR systems means to answer the

question “How good is this system?” without having to add,

“for this specific purpose?” – thus de-coupling research of

OMR methods from their individual use-cases, including the

problematic score transcription. After all, music notation is

the same regardless of whether it is being recognized for the

purpose of searching a database or for producing a digital

edition of the score.

There is no reason why this should not be possible: there is

a finite amount of information that a music document carries,

which can be exhaustively enumerated. It follows that we

should be able to measure what proportion of this informa-

tion our systems recover correctly. The benefit of intrinsic

evaluation would be shedding the burden of accounting for

score editing toolchains, independence on problematic music

notation formats used in broad practice, and a clearly inter-

pretable automatic metric for guiding OMR development (and

potentially usable as a differentiable loss function for training

full-pipeline end-to-end machine learning-based systems).

IV. A ROADMAP

What would such an intrinsic evaluation metric measure?

At the fullest, we expect two classes of outputs from an OMR

system. First, a digital re-encoding of the score itself — creat-

ing a digital document that would convey exactly the same to a

reader as the original. Second, recovering the semantic musical

information: primarily the pitches, durations and onsets of

notes (the minimum to build a MIDI representation of the

given composition).

A thorough definition of error types in OMR was done by

Bellini et al. [8]. They ask human evaluators to count errors

for individual symbol types, and what they call “high-level”

mistakes: pitch and duration attributes of note symbols. This

seems like a good starting point from which to develop an

automated intrinsic OMR evaluation metric.

The reason why [8] do not automate error-counting was

a (then) lack of ground truth data. This has now been alle-

viated by the DeepScores dataset [9] at the low level, and

MUSCIMA++ dataset [3] at both levels. The other step to

automating the metric of [8] is aligning the recognition output

and the ground truth score. At the graphical level, where

the outputs are in principle symbol and their relationships,

success can be measured using some graph similarity met-

ric. At the semantic level, distance on lists of (onset,

duration, pitch) triplets would be conditioned on some

optimal alignment; DTW seems like a possible starting point

for tractably finding this alignment, as it harshly penalizes

ordering errors, which are rather critical due to the sequential

nature of music. Given that noteheads can be thought of as

carriers of the semantic information within the graphical level,

the graph alignment function can also be used to directly find

corresponding semantic triplets.

V. FINALLY

I hope this short paper will inspire discussion on the merits

of intrinsic evaluation of OMR (I am especially keen to find

out how I am wrong!), and perhaps nudge along the musical

score edit distance problem that has been a thorn in the side

of OMR research for the duration of its existence.
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7. Methods

7.1 Detecting Noteheads in Handwritten Scores

with ConvNets and Bounding Box Regression

Jan Hajič jr. and Pavel Pecina. Detecting Noteheads in Handwriten Scores with

ConvNets and Bounding Box Regression. CoRR, 2017. arXiv:1708.01806

(Note: he short paper was presented as a poster at the Digital Libraries for Music

2017 workshop in Shanghai, China; originally, it was submited as a short paper, but

was shited to the poster section from the main program as too technical for oral

presentation to the broader workshop audience. DLfM posters are not listed in the

proceedings, hence the arXiv citation.)

he short paper Detecting Noteheads in Handwriten Scores with ConvNets and

Bounding Box Regression starts the efort to detectmusic notation objects, and chooses

to focus on noteheads, arguing that OMR can be re-formulated to a signiicant extent

as (1) detecting noteheads, (2) assigning properties to noteheads based on their local

neighborhood, and therefore noteheads are the key and (almost) only object that has

to be detected directly from the page. hen-state of the art object detection with Re-

gion Proposal Networks, speciically R-CNN, was adapted for the purposes of OMR.

he dissertation author did all the work on the paper; the co-author contributed to

the inal text of the article with his comments. he contribution of the dissertation

author is about 95% of the article.
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7.2 On the Potential of Fully Convolutional Neural

Networks for Musical Symbol Detection

Mathias Dorfer, Jan Hajič jr. and Gerhard Widmer. On the Potential of Fully

Convolutional Neural Networks for Musical Symbol Detection. 14th Interna-

tional Conference on Document Analysis and Recognition / GREC, Kyoto, Japan,

pp. 53–54, 2017. ISBN 978-1-5386-3586-5, doi: 10.1109/ICDAR.2017.274.

he short paper On the Potential of Fully Convolutional Neural Networks for Mu-

sical Symbol Detection uses a diferent model that addresses some of the problems

of the R-CNN based approach of the previous paper in generalizing to other symbol

classes1 and speed: by doing away with all bounding box-related hyperparameters:

the fully convolutional network processes the entire image in a single shot.

In this article, the dissertation author contributed the dataset and wrote most of

the text of the article; the irst author used a previous implementation of FCNs on

the MUSCIMA++ dataset. he contribution of the dissertation author to the article

is about 30–40%.

1Unpublished experiments.
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7.3 Towards Full-Pipeline Handwritten OMR with

Musical Symbol Detection by U-Nets

Jan Hajič jr., Mathias Dorfer, Gerhard Widmer, Pavel Pecina. Towards Full-

Pipeline Handwriten OMR with Musical Symbol Detection by U-Nets. Proceed-

ings of the 19th Conference of the International Society for Music Information Re-

trieval, pages 225–232, Paris, France, 2018. ISBN 978-2-9540351-2-3.

he article Towards Full-Pipeline Handwriten OMR with Musical Symbol Detec-

tion by U-Nets is the cornerstone of the methods section of the thesis, as it builds the

full recognition pipeline to MIDI. he pipeline proceeds in three steps: object detec-

tion, notation graph assembly, and semantics inference (with MIDI export). Based

on the previous two notehead detection approaches, the fully convolutional mod-

els (U-Nets) were chosen as a general object detection model, and improved with

domain-speciic training tricks (convex hull training and multichannel outputs) to

boost performance. A baseline notation assembly model was chosen using decision

trees, which for each plausible object pair decide whether there should be a notation

graph edge connecting the given two objects. Semantics inference from the notation

graph is then deterministic. he article then evaluates both the object detection with

U-Nets, and the full pipeline: directly the accuracy of the inferred semantics, and in

a (small) retreival context.

In this article, the co-author Mathias Dorfer has trained the object detection

models designed earlier, implemented the detector evaluation procedure, and de-

signed the multichannel training trick. he dissertation author has re-implemented

the U-Net training procedure and replicated the object detection results2, authored

the convex hull training trick, designed and implemented the notation assembly step

and semantics inference and MIDI export from the MuNG representation, performed

the full-pipeline evaluations, and wrote most of the text except for most of section 3

and 4. he co-authors Gerhard Widmer and Pavel Pecina contributed comments and

improvements to the text. he contribution of the dissertation author to the article

is roughly 65–70%.

2he original implementation used the theano framework, the re-implementation was done in
PyTorch, resulting in signiicantly simpliied deployment and some future-prooing, as theano devel-
opment has been discontinued.
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7.4 A Baseline for General Music Object Detection

with Deep Learning

Alexander Pacha, Jan Hajič jr. and Jorge Calvo-Zaragoza. A Baseline for General

Music Object Detection with Deep Learning. Applied Sciences, Vol. 8, No. 9,

pages 1488–1488, Basel, Switzerland, 2018. ISSN 2076-3417.

he article A Baseline for General Music Object Detection with Deep Learning com-

pares three general object detection models with each other across three diferent

OMR datasets that have object detection ground truth. he models used are Faster

R-CNN (two-step detection), RetinaNet (one-step detection), and the U-Net models

from the previous publication [Hajič jr., 2018]. he datasets in question are the Capi-

tan dataset of mensural notation, the DeepScores dataset with synthetic printedmod-

ern notation, and the MUSCIMA++ dataset with handwriten modern notation. he

paper therefore establishes a relatively robust and state-of-the-art baseline for music

notation object detection, using the general MSCOCO evaluation methodology with

(Weighted) Mean Average Precision. Notably, the U-Net model outperformed the

other baselines, even without applying the training tricks from the previous paper.

In this paper, the dissertation author contributed the U-Net experiments on all

three datasets and most of the text in the Results and Conclusions sections, with

contributions to the text throughout. he contribution of the dissertation author to

this article is about 25–30%; the purpose of including the article in the dissertation is

to provide supporting evidence that the U-Net approach developed over the previous

two articles has been selected well, in that it is competitive against other baseline

options.
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7.5 How Current Optical Music Recognition

Systems Are Becoming Useful for Digital

Libraries

Jan Hajič jr., Marta Kolárová, Alexander Pacha, Jorge Calvo-Zaragoza. How cur-

rent optical music recognition systems are becoming useful for digital libraries.

Proceedings of the 5th International Conference on Digital Libraries for Musicology,

pages 57–61, Paris, France, 2018. ISBN 978-1-4503-6522-2.

he paper How Current Optical Music Recognition Systems Are Becom-

ing Useful for Digital Libraries. updates general expectations of applicability of

state-of-the-art OMR systems within the context of digital libraries: the performance
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ABSTRACT

Optical Music Recognition (OMR) promises to make large collec-
tions of sheet music searchable by their musical content. It would
open up novel ways of accessing the vast amount of written music
that has never been recorded before. For a long time, OMR was not
living up to that promise, as its performance was simply not good
enough, especially on handwritten music or under non-ideal image
conditions. However, OMR has recently seen a number of improve-
ments, mainly due to the advances in machine learning. In this
work, we take an OMR system based on the traditional pipeline and
an end-to-end system, which represent the current state of the art,
and illustrate in proof-of-concept experiments their applicability in
retrieval settings. We also provide an example of a musicological
study that can be replicated with OMR outputs at much lower costs.
Taken together, this indicates that in some settings, current OMR
can be used as a general tool for enriching digital libraries.

CCS CONCEPTS

· Information systems → Music retrieval; Image search; · Ap-
plied computing → Digital libraries and archives; Document

searching; Graphics recognition and interpretation;
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1 INTRODUCTION

Optical Music Recognition (OMR), the ield of computationally read-
ing music notation in documents, is long known to hold signiicant
promise for music libraries. The ability to search in vast archives
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of musical manuscripts using their content rather than solely their
metadata would open entirely new avenues of large-scale research
in digital musicology. A large number of compositions have never
been recorded or digitized before; most of them probably exist only
as manuscripts, since typesetting music has historically been a
costly endeavor. As OMR is a cost-efective alternative to arrive at a
structured encoding, it is, therefore, a key to signiicantly diversify
the digitally available sources both to the general and professional
audience. This applies to works from the 20th and 21st centuries
as well: many are currently collecting dust in composers’ private
collections because there are insuicient resources to typeset them.

OMR is also known not to work very well [5, 19], and exist-
ing methods are rarely applicable beyond speciic collections of
scores. However, we believe recent OMR advances (e.g., [3, 16])
warrant revisiting this assertion. The contribution of this paper is
to provide evidence for digital librarians and musicologists that
current approaches to OMR can make it applicable in the following
downstream scenarios: content-based retrieval, especially at the
page level, of handwritten scores; melodic similarity matching; and
digital musicology studies based on data aggregation.

Furthermore, the current OMR state of the art relies purely on
supervised machine learning. Therefore, rather than demonstrating
the use of an OMR system within a speciic project (e.g., [6, 8]),
our paper can be interpreted to set general expectations on the
performance of the given OMR methods across analogous appli-
cation scenarios, as long as comparable training data is available.
The OMR methods are independent from speciic use-cases, to the
point where one can follow a łcookbookž to apply them to a new

collection; costs are mainly shifted onto manual supervised data

acquisition, which is a standardized, predictable task that does not

require competitive computer vision expertise.

2 RELATED WORK

The PROBADO project [7], the Levy Collection [6], the OMRAS

project [8], the digital version of the Liber Usualis [1, 22] within

the SIMSSA project [12], the RISM project1, the RILM project2

and more recently PatternFinder [13] relect the ongoing efort to

create digital libraries of a large body of music and enable searching

and indexing those collections. These systems feature powerful

engines to evaluate a range of queries in an extensive database of

symbolic music, e.g., searching by melody, by interval or looking

1http://opac.rism.info/metaopac/
2http://www.rilm.org/
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up a particular note-sequence with optional wildcards. This power
is enabled once a symbolic representation of the music is available
Ð and without OMR, obtaining this representation has to be done
manually, which is expensive and time-consuming.

Attempts have been made to use generic OMR to extract the
requisite symbolic representation of music directly from musical
score images, but the OMR component proved to be a weak point.
In [10, 11], the authors describe how to match scanned sheet music
to audio recordings automatically with an OMR algorithm doing
the initial sheet music transcription. However, the evaluated algo-
rithms produced such a large number of errors, that a subsequent
correction was required before being able to match the OMR output
to the audio representation. Similarly, in [2] the authors describe
how to match musical themes from multiple sources using OMR,
but the OMR output contained too many errors, and the authors
had to resort to a drastically simpliied representation, practically
discarding note durations, clefs, and even absolute pitches.

OMR accuracy has been a signiicant bottleneck in the further
development of similar applications to the extent that more success
has been achieved by retrieving raw score images rather than their
structured encodings [18] ś but this does not provide the structured
encodings that enable further processing and research.

3 OMR SYSTEMS

We showcase twoOMR systems representing the current state of the
art for obtaining the musical content from sheet music images. Both
systems output a MIDI representation corresponding to the music
score in the input image. First, we use a traditional full-pipeline
system [16], applied to retrieval. Second, we use an end-to-end
system [3]. Both systems are based on supervised learning with
generic neural networks.

The full-pipeline approach (FP-OMR) builds of of the traditional
OMR stages [20]. However, the detection method (U-Nets for se-
mantic segmentation and a Connected Components detector [16])
jointly performs segmentation and classiication on the input image
directly, without removing the staf lines. Notation assembly is also
performed with a machine learning method, as the Notation Graph
representation [15] allows decomposing this step into a series of
local decisions. MIDI is then inferred deterministically from the
notation graph.3 The advantages of this system are its applicability
to arbitrarily complex music (given corresponding training data),
the possibility of exporting the results in a rich representation such
as MEI from the Notation Graph,4 and its ability to operate on
manuscripts, since the statistical methods can deal with the topo-
logical uncertainties of handwriting. Its disadvantages are that the
symbol detection network is sensitive to low-level properties of
the training dataset, thus requiring separate training sets for every
source of data, and that the notation assembly model is currently
underdeveloped.

The end-to-end approach (E2E-OMR) uses a convolutional re-
current neural network (CRNN) that is capable of providing the
sequence of music symbols from the image of a single staf [3].
The term end-to-end signiies that the model is trained to directly
produce the correct sequence of musical events, without providing

3Implemented in https://github.com/hajicj/muscima.
4Theoretically. Only MIDI export is currently implemented.

geometric information of where each symbol is located. Although
this reduces the efort when creating the ground-truth data, the
CRNNdesign is so far inherently limited to single-staf, monophonic
music. The system has only been trained on born-digital printed
scores, but with artiicial distortions to simulate more realistic score
images.

4 RETRIEVAL EXPERIMENTS

We deine several retrieval tasks over a small test collection, evalu-
ated with common retrieval metrics. The similarity between two
MIDI iles is computed using Dynamic TimeWarping over the pitch
sequences (discarding durations, which are still too unreliable), sim-
ilar to [2]. We assume a human user will verify retrieved items from
a ranked list and stop when the irst non-duplicate score is returned.
For this, we return Mean Average Precision (MAP@k), where k is
the number of duplicates for a given page in the collection (in our
case, MAP@49).

As the retrieval collection, we use CVC-MUSCIMA [9]. This
dataset contains 20 distinct pages of music, each copied by 50 people,
for a total of 1000 images. Since the individual pieces exhibit a
signiicant amount of variability, using the entire collection would
make the problem extremely easy. For that reason, we select a
confuse-retrieval subset of 7 pages. While decreasing the collection
size would typically improve retrieval performance, in this case, the
remaining 13 pieces are so distinctive that including them would
make the collection less challenging. One advantage of this dataset
is that we know in advance how many copies of each page exist in
the database, so the experiments in this section can thus be seen
as indicators of the general ability of the OMR system to deal with
retrieving manuscripts with diferent handwriting styles.

We prepare all the MIDI representations of the score images
in this section with the full-pipeline system (FP-OMR), as it is
capable of dealing with entire pages instead of just individual stafs.
We investigate page retrieval when querying with full pages (e.g.,
searching for copies of a piece) or just with snippets (searching for
pages using individual stafs).

4.1 Page Queries

Musical manuscripts were often manually copied; in large collec-
tions and across collections, there may be duplicates of the same
music that are accidentally kept as a separate composition. One
might want to discover such copies automatically. This is the irst
retrieval task we simulate.

In principle, this task is easy once OMR systems achieve results
somewhat above a random baseline. The collection is quite small
ś 350 pages in total. In the MIDI representation, pages are long
sequences in a very sparse space, so any minimally robust similarity
score should yield good results.5 Page retrieval is therefore a natural
starting point for demonstrating whether OMR systems are useful
for anything at all: if an OMR system fails on this task, it can hardly
be expected to be useful anywhere else. So far, we are not aware of
any OMR system that can handle handwritten music scores even
with remote success.

5One does not even necessarily have to use the musical content of the scores to match
them, given a smart enough algorithm dealing with the score images. However, łsmart
enoughž may be daunting, as one would have to contend with diferent handwriting
styles, segmentations of scores into stafs and pages, etc.



How Current Optical Music Recognition Systems Are Becoming Useful for Digital Libraries DLfM’18, September 2018, Paris, France

MAP@1 MAP@10 MAP@49
Page queries, OMR2OMR 1.0 1.0 0.998
Page queries, cross-modal 1.0 1.0 0.998
Snippet queries, OMR2OMR 0.928 0.834 0.763
Snippet queries, cross-modal 0.606 0.610 0.577

Table 1: Results for page retrieval using page queries and

snippet queries under two modalities: using OMR for creat-

ing the database and the query (OMR2OMR) or just for the

database (cross-modal) and query with ground-truth MIDI.

4.2 Snippet Queries

One might want to search not only using entire pieces, but also
with shorter segments. We imagine musicologists, e.g., tracing the
genealogy of a musical thought throughout a substantial body
of work, or looking for musical citations across a geographic area.
Here, the query is much shorter, and therefore OMRmistakesmatter
proportionally more.

4.3 Evaluation and Results

Both tasks are evaluated in two modalities: when the database and
the query are created using the same OMR system (OMR2OMR),
and when only the database is created by the OMR system and
the queries are taken from the ground truth MIDI (cross-modal:
simulating searching a sheet music database with, e.g., a keyboard
capture sequence). If both the query and the database are processed
with the same OMR system, some of the system’s limitations may
cancel out (e.g., ignoring key signatures), whereas when querying
a sheet music database with MIDI from a diferent source, these
limitations come to light.

The retrieval results are shown in Table 1. The FP-OMR system
can deal with manuscripts of CVC-MUSCIMA well enough to re-
trieve copies of the same score reliably. When snippets are used as
queries, the applicability of the systemwould depend on the speciic
scenario; the results in Table 1, row 3 indicate that the OMR system
will be better suited in situations that require precision rather than
recall. In the cross-modal setting, the simpliications made by [16]
render the system practically useless at the granularity of individual
stafs.

5 SYMBOLIC MUSIC SIMILARITY

Besides content-based retrieval, onemay have various other reasons
to compute similarity over symbolic representations of music [13,
14, 17, 21]. As we cannot realistically evaluate OMR systems in all
these settings, we can instead try to measure how the errors made
by OMR systems inluence the behavior of the standard symbolic
similarity metrics.

Figure 1: Sample from PrIMuS dataset, synthetically dis-

torted to resemble non-ideal sheet conditions.

Spearman Pearson
Query M1 M2 M1 M2

OMR2OMR 94.0 96.9 96.4 97.0
cross-modal 93.8 97.1 97.0 97.1

Table 2: Average Spearman’s and Pearson’s correlation coef-

icients (in %) for the similarity between the original MIDI

ile and the MIDI ile generated by the OMR system.M1 and

M2 refers to ShapeH and Time symbolic similarity functions,

respectively, from Urbano’s MelodyShape library.

We use Urbano’s MelodyShape library6 as the battery of stan-
dard metrics, available for measuring symbolic music similarity.
Speciically, we consider ShapeH (M1) and Time (M2) similarity func-
tions [24], as these ranked top in previous editions of the MIREX
Symbolic Melodic Similarity challenge.7

The data used for this experiment corresponds to a subset of the
PrIMuS dataset [4], which contains synthetically rendered scores
of real music incipits from the RISM database. An incipit is the
opening sequence of a song and can be used for the identiication of
a musical work. Therefore, they represent suitable musical elements
for showcasing OMR-based search. We speciically consider the
partition of images that have been distorted to resemble diicult
conditions that might appear in some real cases [3]. An example
from this collection is shown in Fig. 1.

The experiment considers the similarity between an incipit that
acts as a query, and each sample of two sets of 1500 incipits: the real
(ground truth) MIDI iles and the MIDI iles generated by the E2E-
OMR system. For evaluation, Spearman’s and Pearson’s correlation
coeicients are computed between the similarities obtained from
the same query in both datasets. While Spearman’s coeicient
measures only whether the relationship is monotonous, Pearson’s
coeicient also measures if the relationship is linearly correlated.
The higher these correlation coeicients are, the more smoothly
an OMR system can substitute human input, to provide MIDI in
applications where the given similarity function is used. A total
of 1000 such queries were made, and the averaged coeicients are
reported. In addition, we study the same two modalities as before:
in the irst one, the query is the MIDI output of the OMR system
that read the image (OMR2OMR); in the other one, the query is
taken from the ground-truth MIDI representation (cross-modal).

The results of this experiment are provided in Table 2. In most
cases, the correlation coeicients are higher than 95 %. Relecting
the observations in [24], OMR errors perturb M1 more with respect
to the rank-aware Spearman’s correlation. Considering the high
igures of the Pearson’s coeicient, reorderings caused by OMR
mistakes are likely to occur for samples that are very similar anyway.
With respect to the M2 metric, fewer reorderings are observed,
while rank-unaware correlations remain the same.

6https://github.com/julian-urbano/MelodyShape
7See http://www.music-ir.org/mirex/wiki/2015:Symbolic_Melodic_Similarity_Results
for further details.
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Figure 2: Original igure from [25] summarizing their quan-

titative results. Note that this igure compares data for two

stylistically diferent datasets: western music (white), and

folk tunes (gray). The authors were looking for how the

diference between ascending/descending interval distribu-

tions could be used to distinguishmelodies originating from

the music of the respective styles.

6 CASE STUDY FOR DIGITAL MUSICOLOGY

So far, we have shown the extent to which current state-of-the-art
OMR can enhance a digital library’s indexing and search. In this sec-
tion, we illustrate how OMR systems can be useful to musicologists
when working with such an enriched collection.

As a model for a musicological investigation that could plausibly
beneit from OMR, we use the work of Vos and Troost [25]. Its
authors propose characterizing the Western classical music genre
based on the joint distribution of interval sizes and direction (as-
cending vs. descending), and compare these against a corpus of
non-artiicial music: both quantitatively and in a perceptual experi-
ment.8 We re-trace the quantitative portion of their work, showing
that in this data aggregation scenario, the OMR systems would
lead the researcher to propose the same hypothesis while obviat-
ing the need for manual data entry and checking. The errors that
OMR introduces are ofset by the vastly greater scale at which data
aggregation is enabled, compared to manual data entry.

The quantitative indings of [25] are summarized in Fig. 2 and
reproduced in Fig. 3. We compute the same distribution from the
PrIMuS set of incipits [4]. This dataset is stylistically the same
as the Dictionary of Musical Themes (DMT), although it is not
limited to themes. The ascending/descending interval distributions
are shown in Fig. 3. We found that for no interval size the balance
between its ascending and descending instances was signiicantly
diferent between the ground truth MIDI and OMR outputs (two-
tailed binomial test at levels 0.05 and 0.01, following [25]).

Comparing the igures 2 and 3, one could discover the same
trends. There are meaningful diferences for the ifth and the octave,
which may be because the DMT only contains prominent melodies,
while PrIMuS data contains all incipits, including those frommiddle
voices. However, our point is rather that one can see the same trend
both in the ground truth MIDI and OMR outputs, indicating that
the manual labor of data acquisition in [25] can be avoided using
OMR without substantially putting the conclusions into question.

8This study has been cited over 180 times and is used, e.g., to illustrate the functionality
of the MIDItoolbox software [23].

Figure 3: Ascending vs. descending tendency by interval

size in semitones, comparing ground truth MIDI and OMR

outputs on the monophonic PrIMuS dataset. The dataset is

monostylistic; colors diferentiate the method of MIDI ac-

quisition. We observe comparable tendencies to the Com-

poser data (white bars in Fig. 2).

7 CONCLUSIONS

We have attempted to show on several scenarios that recent ad-
vances in OMR state of the art have, to an extent, made OMR a
more relevant technology. We believe these advances, especially
given the underlying generic machine learning methodology, have
implications for designing and enriching digital collections of sheet
music. Being aware of these advances can be valuable for various
stakeholders such as librarians and musicologists.

The showcased methods still have inherent limitations. Chiely,
learning does not transfer easily between datasets. The currently
best-performing methods require re-training for each archive, even
though the notation style may be the same. This implies that for
every use-case, manual annotations will be necessary, and it is
diicult to estimate in advance how much data will be enough.
Furthermore, the systems are still not accurate enough to provide
functionality such as playback or structured encoding. Beyond
suicient accuracy, further concerns also remain before łfull-textž
search in music can be done at a truly massive scale ś eicient

representations of music notation and its indexing, multimedia

linking (such as lyrics alignment), and user interface design.
Overall, we conclude that the current state of the art in OMR

enables (1) adding content-based similarity and retrieval function-
ality to music score image databases, especially for use-cases that
do not require ine granularity, (2) applications based on symbolic
melodic similarity, (3) research in digital musicology that builds on
aggregating massive amounts of data and quantitative conclusions.
The experiments in this paper should be considered as supporting
evidence for these conclusions. We hope that the interested reader
will ind the reported capabilities of state-of-the-art OMR worth
considering.

ACKNOWLEDGMENTS

Jan Hajič jr. acknowledges support by the Czech Science Foundation
grant no. P103/12/G084, Charles University Grant Agency grants
1444217 and 170217, and by SVV project 260 453; Marta Kolárová
is supported by Charles University Grant Agency grant 1444217.



How Current Optical Music Recognition Systems Are Becoming Useful for Digital Libraries DLfM’18, September 2018, Paris, France

REFERENCES
[1] Andrew Hankinson, John Ashley Burgoyne, Gabriel Vigliensoni, Alastair Porter,

Jessica Thompson, Wendy Liu, Remi Chiu, and Ichiro Fujinaga. 2012. Digital
Document Image Retrieval Using Optical Music Recognition. In Proceedings of
the 13th International Society for Music Information Retrieval Conference, Fabien
Gouyon, Perfecto Herrera, Luis Gustavo Martins, and Meinard Müller (Eds.).
577ś582.

[2] Stefan Balke, Sanu Pulimootil Achankunju, and Meinard Müller. 2015. Matching
Musical Themes based on noisy OCR and OMR input, In 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing - Proceed-
ings 2015-August (2015), 703ś707. DOI:http://dx.doi.org/10.1109/ICASSP.2015.
7178060

[3] Jorge Calvo-Zaragoza and David Rizo. 2018. Camera-PrIMuS: Neural End-to-End
Optical Music Recognition on Realistic Monophonic Scores. In 19th International
Society for Music Information Retrieval Conference. (in press).

[4] Jorge Calvo-Zaragoza and David Rizo. 2018. End-to-End Neural Optical Music
Recognition of Monophonic Scores. Applied Sciences 4 (2018). DOI:http://dx.doi.
org/10.3390/app8040606

[5] L.iang Chen and Kun Duan. 2016. MIDI-assisted egocentric optical music recog-
nition, In 2016 IEEE Winter Conference on Applications of Computer Vision
(WACV). 2016 IEEE Winter Conference on Applications of Computer Vision, WACV
2016 (2016). DOI:http://dx.doi.org/10.1109/WACV.2016.7477714 cited By 0; Con-
ference of IEEE Winter Conference on Applications of Computer Vision, WACV
2016 ; Conference Date: 7 March 2016 Through 10 March 2016; Conference
Code:121834.

[6] G. Sayeed Choudhury, M. Droetboom, Tim DiLauro, Ichiro Fujinaga, and Brian
Harrington. 2000. Optical Music Recognition System within a Large-Scale Digi-
tization Project. In 1st International Symposium on Music Information Retrieval.
1ś6.

[7] Jürgen Diet and Frank Kurth. 2007. The ProbadoMusic Repository at the Bavarian
State Library.. In ISMIR. 501ś504.

[8] Matthew J. Dovey. 2004. Overview of the OMRAS project: Online music re-
trieval and searching. Journal of the American Society for Information Science and
Technology 55, 12 (2004), 1100ś1107. DOI:http://dx.doi.org/10.1002/asi.20063

[9] Alicia Fornés, Anjan Dutta, Albert Gordo, and Josep Lladós. 2012. CVC-
MUSCIMA: a ground truth of handwritten music score images for writer
identiication and staf removal. International Journal on Document Analysis
and Recognition (IJDAR) 15, 3 (2012), 243ś251. DOI:http://dx.doi.org/10.1007/
s10032-011-0168-2

[10] C. Fremerey, D. Damm, F. Kurth, and M. Clausen. 2009. Handling Scanned Sheet
Music and Audio Recordings in Digital Music Libraries. In Proceedings of the
International Conference on Acoustics NAG/DAGA. 1ś2.

[11] Christian Fremerey, Meinard Müller, Frank Kurth, and Michael Clausen. 2008.
Automatic mapping of scanned sheet music to audio recordings. In Proceedings
of the 9th International Society for Music Information Retrieval Conference (ISMIR
2008). 413ś418. http://ismir2008.ismir.net/papers/ISMIR2008_116.pdf

[12] Ichiro Fujinaga, Andrew Hankinson, and Julie E. Cumming. 2014. Introduction to
SIMSSA (Single Interface for Music Score Searching and Analysis). In Proceedings
of the 1st International Workshop on Digital Libraries for Musicology. ACM, 1ś3.
DOI:http://dx.doi.org/10.1145/2660168.2660184

[13] David Garinkle, Claire Arthur, Peter Schubert, Julie Cumming, and Ichiro Fu-
jinaga. 2017. PatternFinder: Content-Based Music Retrieval with Music21. In
Proceedings of the 4th International Workshop on Digital Libraries for Musicol-
ogy (DLfM ’17). ACM, New York, NY, USA, 5ś8. DOI:http://dx.doi.org/10.1145/
3144749.3144751

[14] Joe George and Lior Shamir. 2014. Computer analysis of similarities between
albums in popular music. Pattern Recognition Letters 45 (2014), 78ś84.

[15] Jan jr. Hajič and Pavel Pecina. 2017. The MUSCIMA++ Dataset for Handwritten
Optical Music Recognition. Proceedings of the 14th IAPR International Conference
on Document Analysis and Recognition (2017).

[16] Jan Hajič jr., Matthias Dorfer, Gerhard Widmer, and Pavel Pecina. 2018. Towards
Full-Pipeline Handwritten OMR with Musical Symbol Detection by U-Nets. In
19th International Society for Music Information Retrieval Conference. (in press).

[17] Alan Marsden. 2012. Interrogating Melodic Similarity: A Deinitive Phenomenon
or the Product of Interpretation? Journal of New Music Research 41, 4 (2012),
323ś335.

[18] Matthias Dorfer, Andreas Arzt, and Gerhard Widmer. 2017. Learning Audio-
Sheet Music Correspondences for Score Identiication and Oline Alignment.
In Proceedings of the 18th International Society for Music Information Retrieval
Conference, ISMIR 2017, Suzhou, China, October 23-27, 2017, Sally Jo Cunningham,
Zhiyao Duan, Xiao Hu, and Douglas Turnbull (Eds.). 115ś122. https://ismir2017.
smcnus.org/wp-content/uploads/2017/10/32_Paper.pdf

[19] Alexander Pacha and Horst Eidenberger. 2017. Towards Self-Learning Optical
Music Recognition. In 2017 16th IEEE International Conference on Machine Learn-
ing and Applications (ICMLA). 795ś800. DOI:http://dx.doi.org/10.1109/ICMLA.
2017.00-60

[20] Ana Rebelo, Ichiro Fujinaga, Filipe Paszkiewicz, Andre R.S. Marcal, Carlos Guedes,
and Jaime S. Cardoso. 2012. Optical music recognition: state-of-the-art and open
issues. International Journal of Multimedia Information Retrieval 1, 3 (March
2012), 173ś190. DOI:http://dx.doi.org/10.1007/s13735-012-0004-6

[21] David Rizo. 2010. Symbolic music comparison with tree data structures. Ph.D.
Dissertation. Universidad de Alicante.

[22] Jessica Thompson, Andrew Hankinson, and Ichiro Fujinaga. 2011. Searching
the Liber Usualis: Using CouchDB and ElasticSearch to Query Graphical Music
Documents. In Proceedings of the 12th International Society for Music Information
Retrieval Conference. http://ismir2011.ismir.net/latebreaking/LB-10.pdf

[23] P. Toiviainen and T. Eerola. 2016. MIDI toolbox 1.1.
https://github.com/miditoolbox/. (2016).

[24] Julián Urbano. 2013. MIREX 2013 Symbolic Melodic Similarity: A Geometric Model
supported with Hybrid Sequence Alignment. Technical Report. Music Information
Retrieval Evaluation eXchange.

[25] Piet G. Vos and JimM. Troost. 1989. Ascending and Descending Melodic Intervals:
Statistical Findings and their Perceptual Relevance. Music Perception 6, 4 (1989),
383ś396.



7.6 Handwritten Optical Music Recognition:

A Working Prototype

Jan Hajič jr. and Mathias Dorfer. Handwriten Optical Music Recognition: a

Working Prototype. Extended Abstracts for the Late-Breaking Demo Session of

the 18th International Society for Music Information Retrieval Conference. Suzhou,

China, 2017.

Handwritten Optical Music Recognition: AWorking Prototype. his short

paper accompanied a demo in which the OMR pipeline was integrated into the MUS-

CIMarker sotware. he paper underlies thesis contribution (M4).

he contribution of the dissertation author is about 60% of the article if one takes

into account that the co-author provided the trained models for object detection; if

one takes merely the sotware demo aspect of the article into account, the contribu-

tion of the dissertation author rises to about 90%.
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Véronique Sébastien, Henri Ralambondrainy, Olivier Sébastien, and Noël Conruyt.
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Based Music Document Transcription. In 14th International Conference on Doc-

ument Analysis and Recognition, pages 21–22, Kyoto, Japan, 2017. IEEE. doi:

10.1109/ICDAR.2017.258.

Mariusz Szwoch. Guido: A Musical Score Recognition System. In 9th International

Conference on Document Analysis and Recognition, pages 809–813, 2007. doi: 10.

1109/ICDAR.2007.4377027.

Mariusz Szwoch. Using MusicXML to Evaluate Accuracy of OMR Systems. In

International Conference on heory and Application of Diagrams, pages 419–422,

Herrsching, Germany, 2008. Springer, Springer-Verlag. ISBN 978-3-540-87729-5.

doi: 10.1007/978-3-540-87730-1 53.

184

https://ccrma.stanford.edu/~craig/mro-compare-beethoven
https://ccrma.stanford.edu/~craig/mro-compare-beethoven
http://ismir2012.ismir.net/event/papers/571-ismir-2012.pdf
http://ismir2012.ismir.net/event/papers/571-ismir-2012.pdf
https://sites.google.com/site/theauscc/auscc04/papers/sheridan-auscc04.pdf
https://sites.google.com/site/theauscc/auscc04/papers/sheridan-auscc04.pdf


Jessica Thompson, Andrew Hankinson, and Ichiro Fujinaga. Searching the Liber

Usualis: Using CouchDB and ElasticSearch to Query Graphical Music Documents.

In 12th International Society for Music Information Retrieval Conference, 2011. URL

http://ismir2011.ismir.net/latebreaking/LB-10.pdf .

Theophanis Tsandilas. Interpreting Strokes on Paper with a Mobile Assistant. In

25th Annual ACM Symposium on User Interface Sotware and Technology, pages

299–308, Cambridge, Massachusets, USA, 2012. ACM. ISBN 978-1-4503-1580-7.

doi: 10.1145/2380116.2380155.

Lukas Tuggener, Isamil Elezi, Jürgen Schmidhuber, Marcello Pelillo, and Stadelmann

Thilo. DeepScores - A Dataset for Segmentation, Detection and Classiication

of Tiny Objects. In 24th International Conference on Patern Recognition, Beijing,

China, 2018. doi: 10.21256/zhaw-4255. URL https://arxiv.org/abs/1804.00525.

Eelco van der Wel and Karen Ullrich. Optical Music Recognition with Convolutional

Sequence-to-Sequence Models. In 18th International Society for Music Information

Retrieval Conference, Suzhou, China, 2017. ISBN 978-981-11-5179-8. URL https:

//arxiv.org/abs/1707.04877.

Cuihong Wen, Jing Zhang, Ana Rebelo, and Fanyong Cheng. A Directed Acyclic

Graph-LargeMargin DistributionMachineModel forMusic Symbol Classiication.

PLoS ONE, 11(3):1–11, 2016. doi: 10.1371/journal.pone.0149688.

JaeMyeong Yoo, Nguyen Dinh Toan, DeokJai Choi, HyukRo Park, and Gueesang

Lee. Advanced Binarization Method for Music Score Recognition Using Local

hresholds. In 8th International Conference on Computer and Information Tech-

nology Workshops, pages 417–420, 2008. doi: 10.1109/CIT.2008.Workshops.101.

Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance

between trees and related problems. SIAM journal on computing, 18(6):1245–1262,

1989.

185

http://ismir2011.ismir.net/latebreaking/LB-10.pdf
https://arxiv.org/abs/1804.00525
https://arxiv.org/abs/1707.04877
https://arxiv.org/abs/1707.04877


List of Figures

1.1 An example of a musical manuscript: a copy of G. B. Pergolesi’s Sta-

bat Mater, part X: Fac, ut portem Christi mortem. . . . . . . . . . . . 4

1.2 he two goals of OMR explained in terms of the process of writing

music. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 he values of pitch, illustrated on a piano keyboard. One octave pe-

riod is indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 he types of notes according to duration. . . . . . . . . . . . . . . . . 12

2.3 Example page of music notation. . . . . . . . . . . . . . . . . . . . . . 14

2.4 he elements encoding pitch . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 he elements encoding duration. . . . . . . . . . . . . . . . . . . . . . 17

2.6 A somewhat complex beamed group . . . . . . . . . . . . . . . . . . . 18

2.7 A more complex beamed group situation in a 17th century violin

manuscript (H. I. F. Biber, Mystery sonata IV). . . . . . . . . . . . . . . 18

2.8 Examples of notation where precedence is complicated. . . . . . . . . 19

3.1 OMR for replayability and reprintability. . . . . . . . . . . . . . . . . 21

3.2 he basic ways of characterizing OMR inputs. . . . . . . . . . . . . . 22

3.3 he presence of multiple voices (indicated with red lines) adds com-

plications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Long-distance relationships afecting pitch of the note on the right. . 24

3.5 he variety of handwriting . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 he standard OMR pipeline up to staf removal. . . . . . . . . . . . . 28

4.1 Visualizing the detected symbols and the assembled notation graph

on top of staf removal output . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Interface of the MUSCIMarker tool . . . . . . . . . . . . . . . . . . . 43

4.3 he design of the bounding box-based detector . . . . . . . . . . . . . 46

4.4 An example results of the RCNN-based detector . . . . . . . . . . . . 46

4.5 he U-Net architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Example results in a complex notational situation . . . . . . . . . . . 50

4.7 Convex hull trick for training U-Nets for complex symbols . . . . . . 51

4.8 he detection f-score for symbols required for replayability . . . . . . 52

4.9 Pitch recognition f-score per staf . . . . . . . . . . . . . . . . . . . . 55

4.10 Collecting a data point for the omreval corpus . . . . . . . . . . . . . 58

186



List of Tables

4.1 Comparison of generic object detection methods on OMR datasets. . 48

4.2 he results for page retrieval using page queries and snippet queries

under two modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Measures of agreement for some proposed evaluationmetrics against

the omreval corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

187



List of Abbreviations

CWMN: Common Western Music Notation

OMR: Optical Music Recognition

MIDI: Musical Instrument Digital Interface

MuNG: Music Notation Graph

MUSCIMA: Music Score Images

DTW: Dynamic Time Warping

R-CNN: Region-Proposal Convolutional Neural Network

TED: Tree Edit Distance

188



List of publications

7.7 Publications used in this thesis
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Jan Hajič jr. and Pavel Pecina. Detecting Noteheads in Handwriten Scores with

ConvNets and Bounding Box Regression. CoRR, 2017. arXiv:1708.01806

Cited by (excluding self-citations, according to Google Scholar): 4
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for polarity classiication in Czech. Empirical Methods in Natural Language Processing

— Proceedings of the Conference on Natural Language Processing 2012, Wien, Austria,

ISBN 3-85027-005-X, pp. 296-304, 2012

Cited by (excluding self-citations, according to Google Scholar): 17
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