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Abstract—Optical Music Recognition (OMR) promises to make
accessible the content of large amounts of musical documents,
an important component of cultural heritage. However, the
field does not have an adequate dataset and ground truth
for benchmarking OMR systems, which has been a major
obstacle to measurable progress. Furthermore, machine learn-
ing methods for OMR require training data. We design and
collect MUSCIMA++, a new dataset for OMR. Ground truth in
MUSCIMA++ is a notation graph, which our analysis shows to
be a necessary and sufficient representation of music notation.
Building on the CVC-MUSCIMA dataset for staffline removal,
the MUSCIMA++ dataset v1.0 consists of 140 pages of hand-
written music, with 91255 manually annotated notation symbols
and 82261 explicitly marked relationships between symbol pairs.
The dataset allows training and directly evaluating models for
symbol classification, symbol localization, and notation graph
assembly, and musical content extraction, both in isolation and
jointly. Open-source tools are provided for manipulating the
dataset, visualizing the data and annotating more, and the data
is made available under an open license.

I. INTRODUCTION: WHAT DATASET?

Optical Music Recognition (OMR) is a field of document
analysis that aims to automatically read music. Music notation
encodes musical information in a graphical form; OMR back-
tracks through this process to extract the musical information
from its graphical representation. OMR can be likened to
OCR for the music notation writing system; however, it is
more difficult [1], and remains an open problem [2], [3].
The intricacies of Common western music notation (CWMN1)
have been thoroughly discussed since early attempts at OMR,
notably by Byrd [4], [5].

One of the most persistent hindrances to OMR progress is
a lack of datasets. These are necessary to provide ground
truth for evaluating OMR systems [1], [5]–[8], to enable
fair, replicable comparison among academic and commercial
systems. Furthermore, especially for handwritten notation,
supervised machine learning methods have often been used
that require training data [9]–[12].

We use the term dataset in the following sense: D =
〈(xi, yi) ∀i = 1 . . . n〉. Given a set of inputs xi (in our case,
images of sheet music), the dataset records the desired outputs

1We assume the reader is familiar with CWMN. In case a refresher is
needed, we recommend chapter 2 of “Music Notation by Computer” [4], by
Donald Byrd. A comprehensive list of music notation terminology is main-
tained on Wikipedia: https://en.wikipedia.org/wiki/List of musical symbols

yi – ground truth. The quality of OMR systems can then
be measured by how closely they approximate the ground
truth, although defining this approximation for the variety of
representations of music is very much an open problem [2],
[5]–[7], [13].

For printed music notation, the lack of datasets can be
bypassed by generating music in representations such as
LilyPond2 or MEI,3 and capturing intermediate steps of the
rendering process. However, for handwritten music, no satis-
factory synthetic data generator exists so far, and an extensive
annotation effort cannot be avoided. Therefore, to best utilize
our resources available for creating a dataset, we create a
dataset of handwritten notation.

To build a dataset of handwritten music, we need to decide:
• What should the ground truth yi be for an image xi?
• What sheet music do we choose as data points?
The definition of ground truth must reflect what OMR

does. Miyao and Haralick [14] group OMR applications into
two broad groups: those that require replayability, and those
that need reprintability. Replayability entails recovering pitches
and durations of individual notes and organizing them in time
by note onset. Reprintability is the ability to take OMR results
as the input to music typesetting software and obtain a result
that encodes this music in the same way as it was encoded
in the input sequence. Reprintability implies replayability, but
not vice versa, as one musical sequence can be encoded by
different musical scores; e.g. MIDI is a good representation
for replayability, but not reprintability (see Fig. 1).

The selection of musical score images in the dataset should
cover the known “dimensions of difficulty” [5], to allow for
assessing OMR systems with respect to increasingly complex
inputs.

In the rest of the article, we reason what the ground truth
for OMR should be (II-A) and what kinds of musical score
images the dataset should contain (II-B); we scavenge existing
OMR datasets for work already done that would satisfy these
design choices (III); finally, we describe the MUSCIMA++
dataset (IV), establish simple baselines (V); and provide some
concluding remarks (VI).

The main contributions of this work are:

2http://www.lilypond.org
3http://www.music-encoding.org



(a) Input: manuscript image.

(b) Replayable output: pitches, durations, onsets. Time is the
horizontal axis, pitch is the vertical axis. This visualization is called
a piano roll.

(c) Reprintable output: re-typesetting.

(d) Reprintable output: same music expressed differently

Fig. 1: OMR for replayability and reprintability. The input (a)
encodes the sequence of pitches, durations, and onsets (b),
which can be expressed in different ways (c, d).

• MUSCIMA++4 – an extensive dataset of handwritten
musical symbols and their relationships,5

• A notation graph ground truth definition and implementa-
tion that de-couples the graphical expression of music and
musical semantics, while recording sufficient information
to bridge this gap, and also helps understanding the
problem space of OMR;

• Open-source tools for processing the data including infer-
ring pitches and durations, visualizing it, and annotating
more.

MUSCIMA++ enables training and evaluating models for
symbol localization, classification, and arguably its most inno-
vative aspect for OMR is that it enables directly solving music
notation reconstruction, in a way that explicitly considers the
need to infer musical semantics.

II. DESIGNING A DATASET FOR OMR

In this section, we discuss the key design concerns intro-
duced above: an appropriate ground truth for OMR, and the
choice of data.

A. Ground Truth

The ground truth over a dataset is the desired output of a
system solving a task. Therefore, in order to design the ground
truth for the dataset, we need to understand how OMR can be
expressed in terms of inputs and outputs. OMR solutions are
usually pipelines with four major stages [1], [2]:

1) Image preprocessing: enhancement, binarization, scaling;

4Standing for MUsic SCore IMAges, credit for abbreviation to [15]
5Available from: http://hdl.handle.net/11372/LRT-2372

TABLE I: OMR Pipeline as inputs and outputs

Sub-task Input Output

Image Processing Score image “Cleaned” image
Binarization “Cleaned” image Binary image

Staff ID & removal Binary image Stafflines list
Symbol localization (Staff-less) image Symbol regions

Symbol classification Symbol regions Symbol labels

Notation assembly Symbol regs. & labels Notation graph
Infer pitch/duration Notation graph Pitch/duration attrs.

Output conversion Notation graph + attrs. MusicXML, MIDI, ...

2) Music symbol recognition: staffline identification and
removal, localization and classification of other symbols;

3) Musical notation reconstruction: recovering the logical
structure of the score;

4) Final representation construction: depending on the out-
put requirements, usually inferring pitch and duration
(MusicXML, MEI, MIDI, LilyPond, etc.).

The key problems of OMR reside in stages 2 and 3: finding
individual musical symbols on the page, and recovering their
relationships. The inputs and outputs of the individual pipeline
stages and sub-tasks is summarized in Table I. While end-to-
end OMR that bypasses some sections of this pipeline is an
attractive option (see [16]), these should still be compared
against more orthodox solutions.

The input of music symbol recognition is a “cleaned”
and usually binarized image. The output of this stage is a
list of musical symbols recording their locations on the page,
and their types (e.g., c-clef, beam, sharp). Usually, there are
three sub-tasks: staffline identification and removal, symbol
localization (in binary images, synonymous with foreground
segmentation), and symbol classification [2]. Stafflines are
typically handled as a separate step [17], due to them being
rather a layout element than a character-like symbol.

In turn, the list of locations and classes of symbols on the
page is the input to the music notation reconstruction stage.
At this stage, it is necessary to recover the relationships among
the individual musical symbols. These relationships enable
inferring the “musical content” (most importantly, pitch and
duration information – what to play, and when): there is a 1:1
relationship between a notehead notation primitive and a note
musical object, of which pitch and duration are properties,and
the other symbols that relate – directly or indirectly – to a
notehead, such as stems, stafflines, beams, accidentals, or clefs,
inform the reader’s decision to assign the pitch and duration.

The result of OMR stage 3 naturally forms a graph. The
symbols from the previous stage become vertices of the
graph, with the symbol classes and locations being the vertex
attributes, and the relationships between symbols assume the
role of edges. Graphs have been explicitly used for assembly
of music notation primitives e.g. by [18], [19], and grammar-
based approaches (e.g., [20]–[23] ) lend themselves to a graph
representation as well, by recording the parse tree(s). An
example of symbol recognition and notation reconstruction



(a) Notation symbols, color-coded: noteheads, stems,
beams, ledger lines, a duration dot, slur, and ornament
sign; part of a barline on the lower right. Vertices of the
notation graph.

(b) Notation graph with edges, highlighting noteheads
as “roots” of subtrees. Noteheads share the beam and
slur symbols.

Fig. 2: Visualizing the list of symbols and the notation graph over staff removal output. The notation graph in (b) allows
unambiguously inferring pitch and duration (stafflines removed for clarity, although for encoding pitch, we would need to
establish the relationship of the noteheads to stafflines).

output over the same snippet of a musical score is given in
Figure 2.

A key observation for ground truth design is that the
notation graph records information both necessary and
sufficient for both replayability and reprintability, and thus
makes a good ground truth for an OMR dataset.

1) Necessary: Before the notation graph is constructed in
stage 3, there is not enough information extracted for the
output to be either replayable or reprintable. No finite alphabet
can be designed so that its symbols could be interpreted
in isolation: recognizing a note is not enough to determine
its pitch: one needs it to relate to the stafflines, clefs, key
signatures, etc.

2) Sufficient: The process of reading musical scores is such
that stage 3 output is the point where the OMR system has
extracted all the useful information – signal – from the input
image, resolving all ambiguities; the system is therefore prop-
erly “free” to forget about the input image. All that remains in
order to project the written page to the corresponding point in
the space of musical note6 configurations in time is to follow
the rules for reading music, which can be expressed in terms of
querying the graph to infer additional properties of the nodes
representing noteheads – essentially, a graph transformation.
This implies that creating the desired representation in stage
4 is only a technical task: implementing conversion to the
desired output format (which can nevertheless still be a very
complex piece of software).7 This observation also implies that

6A musical note object, as opposed to the written note, is characterized in
music theory by four attributes: pitch, duration, loudness, and timbre, of which
OMR needs to recover pitch and duration; the musical score additionally
encodes the onsets of notes in musical time.

7The representation used to record the dataset is not necessarily best for
experiments – but experiment-specific output representations (such as a MIDI
file for replayability-only experiments) are unambiguously obtainable from
the notation graph.

an OMR system that can recover the notation graph does not
have have to explicitly recover pitch and duration.

B. Choice of data

The dataset should enable evaluating handwritten OMR with
respect to the “challenge space” of OMR. In their state-of-the-
art analysis of the difficulties of OMR, Byrd and Simonsen [5]
identify three axes along which musical score images become
less or more challenging inputs for an OMR system: Notation
complexity, Image quality, and Tightness of spacing.

The dataset should also contain a wide variety of musical
symbols, including less frequent items such as tremolos or
glissandi, to enable differentiating systems also according to
the breath of their vocabulary.

The axis of notation complexity is structured by [5] into
four levels. Level 1, single-staff single-voice music, tests an
“OMR minimum”: the recognition of individual symbols for
a single sequence of notes. Level 2, single-staff multi-voice
music, tests the ability to deal with multiple sequences of notes
in parallel, so e.g. rhythmical constraints based on time sig-
natures [24] are harder to use. Level 3, multi-staff single-voice
music, tests high-level segmentation into systems and staffs.
Level 4, pianoform music, then presents the most complex,
combined challenge, as piano music has exploited the rules
of CWMN to their fullest [5] and sometimes beyond. The
dataset should contain a choice of musical scores representing
all these levels.

On the other hand, difficulties relating to image quality
– deformations, noise, and document degradations – do not
have to be represented in the dataset. Their descriptions in [5]
essentially define how to simulate them; many morphological
distortions have already been implemented for staff removal
data [15], [25].



The tightness of spacing in [5] refers to default horizontal
and vertical distances between symbols.8 As spacing tightens,
assumptions about relative notation spacing may cease to hold:
Byrd and Simonsen give an example where the augmentation
dot of a preceding note can be easily confused with a staccato
dot of its following note (see [5], Fig. 21). In handwritten
music, variability in spacing is superseded by the variability
of handwriting itself. Handwritten music gives no topological
guarantees: by definition straight lines, such as stems, become
curved, noteheads and stems do not touch, accidentals and
noteheads do touch, etc. – see Fig. 3. The various styles of
handwriting should be represented in the dataset as broadly as
possible.

III. EXISTING DATASETS

We describe the available datasets and discuss how they
correspond to the requirements of Section II. Reviewing Ta-
ble I, the subtasks at stages 2 and 3 of the OMR pipeline
are (a) staffline removal, (b) symbol localization, (c) symbol
classification, and (d) symbol assembly.

For staff removal in handwritten music, the premier dataset
is CVC-MUSCIMA [15], consisting of 1000 handwritten
scores (20 pages of music, each copied by hand by 50
musicians). The state-of-the-art for staff removal has been
established with a competition using CVC-MUSCIMA [17].
The dataset fulfills the requirements for a good choice of data:
the 20 pages include scores of all 4 levels of complexity, and
a wide array of music notation symbols (including tremolos,
glissandi, grace notes, or trills), and handwriting style varies
greatly among the 50 writers, including topological inconsis-
tencies, as illustrated in Fig. 3. Importantly, CVC-MUSCIMA
is freely available for download under a CC-BY-NC-SA 4.0
license.9

The most extensive dataset for handwritten symbol classifi-
cation is the HOMUS dataset of Calvo-Zaragoza and Oncina
[11], which provides 15200 handwritten musical symbols (100
writers, 32 symbol classes, and 4 versions of a symbol per
writer per class, with 8 for note-type symbols). HOMUS data
is recorded from a touchscreen device, so it can be used for
online as well as offline recognition. However, the dataset only
contains isolated symbols, not their positions on a page. While
it might be possible to synthesize handwritten music pages
from the HOMUS symbols, such a synthetic dataset will be
rather limited, as HOMUS does not contain beamed groups
and chords. For symbol localization, we are only aware of a
dataset of 3222 handwritten symbols by Rebelo et al. [26], and
for notation reconstruction, we are not aware of a dataset that
provides ground truth for recovering the relationships among
handwritten musical symbols.

IV. THE MUSCIMA++ DATASET

Our main source of musical score images is the CVC-
MUSCIMA dataset, described in subsection III. The annotator

8We find adherence to topological standards to be a more general term that
describes this particular class of difficulties.

9http://www.cvc.uab.es/cvcmuscima/index database.html

(a) Writer 9: beamed groups, nice handwriting.

(b) Writer 22: Disjoint primitives and deformed noteheads. Some
noteheads will be very hard to distinguish from the stem.

Fig. 3: Variety of handwriting styles in CVC-MUSCIMA.

team consisted of three professional and four advanced ama-
teur musicians. Each annotator marked one of the 50 versions
for each of the 20 CVC-MUSCIMA pages. We selected the
140 out of 1000 pages of CVC-MUSCIMA so that all of the
50 writers are represented as equally as possible: 2 or 3 pages
are annotated from each writer, thus fulfilling the same choice-
of-data requirements (notation complexity, handwriting style)
as CVC-MUSCIMA itself.

There is a total of 91255 symbols (excluding staff objects,
which are already given in the CVC-MUSCIMA ground truth)
marked in the 140 annotated pages of music, of 107 distinct
symbol classes. There are 82261 relationships between pairs
of symbols. The total number of notes encoded in the dataset
is 23352. The set of symbol classes consists of both notation
primitives, such as noteheads or beams, and higher-level nota-
tion objects, such as key signatures or time signatures. (Given
the decomposition of notes into primitives, the equivalent
number in terms of HOMUS symbols would be 5̃7 000.) The
choice of symbols and relationship policies is described in
subsec. IV-A. The frequencies of the most significant symbols
are described in Table II.

A. MUSCIMA++ ground truth
Our ground truth is a graph of musical symbols and

their relationships, with unlabeled directed edges. 10 For each
vertex (symbol), we annotated:
• its label (notehead, sharp, g-clef, etc.),
• its bounding box with respect to the image,
• its mask: exactly which pixels in the bounding box

belong to this symbol.

10The complete annotation guidelines detailing what the symbol set is and
how to deal with individual notations are available online: https://muscimarker.
readthedocs.io/en/latest/instructions.html



TABLE II: Symbol frequencies in MUSCIMA++

Symbol Count Symbol (cont.) Count

stem 21416 16th flag 495
notehead-full 21356 16th rest 436
ledger line 6847 g-clef 401
beam 6587 grace-notehead-full 348
thin barline 3332 f-clef 285
measure separator 2854 other text 271
slur 2601 hairpin-decr. 268
8th flag 2198 repeat-dot 263
duration-dot 2074 tuple 244
sharp 2071 hairpin-cresc. 233
notehead-empty 1648 half rest 216
staccato-dot 1388 accent 201
8th rest 1134 other-dot 197
flat 1112 time signature 192
natural 1089 staff grouping 191
quarter rest 804 c-clef 190
tie 704 trill 179
key signature 695 All letters 4072
dynamics text 681 All numerals 594

These are a superset of the primitive attributes in [14]. An-
notating the mask enables us to build an accurate model of
actual symbol shapes.

We do not define a note symbol. The concept of a note
on paper [6], [11], [26] is ambiguous: they consist of multiple
primitives (notehead and stem and beams or flags), but at the
same time, multiple notes can share these primitives, including
noteheads. Furthermore, it is not clear what primitives consti-
tute a note. If we follow musical semantics, should e.g. an
accidental be considered a part of the note, because it directly
influences its pitch? It is more elegant to annotate how the
“note” musical objects are expressed, and if need be, use the
relationships among the primitives to construct the somewhat
arbitrary “note” written symbols when necessary.

Instead of trying to categorize symbols as low- or high-
level [5], [6], [13] according to whether they carry semantics
or not (which is a dubious proposition: musical semantics arise
from configurations of symbols, as music notation is mostly a
featural writing system, where the individual symbols encode
separate well-defined aspects of musical semantics but make
very limited sense in isolation), we express the dichotomy
through the rules for forming relationships. This leads to
“layered” annotation. E.g., a 3/4 time signature is annotated
using three symbols: a numeral_3, numeral_4, and a
time_signature symbol that has outgoing relationships
to both numerals. An example of this structure for is given in
Figure 4. We take care to define relationships so that the result
is a Directed Acyclic Graph (DAG). There is no theoretical
limit on the maximum oriented path length, but in practice, it
is rarely longer than 3. We break down symbols that consist
of multiple connected components when these components
can be used in syntactically valid music notation in different
configurations to encode distinct musical semantics: an empty

Fig. 4: Two-layer annotation of a triplet. The symbols
numeral_3 (in blue), tuple_bracket/line, and the
three noteheads that form the triplet are highlighted. The
tuple symbol itself, to which the noteheads are connected,
is the lighter rectangle encompassing its two components; it
has relationships leading to both of them (not highlighted).

notehead may show up with a stem, without one, with multiple
stems when two voices share pitch,11 or it may share stem with
others, so we define these as separate symbols. An f-clef dot
should not exist without the rest of the clef, and vice versa, so
we define the f-clef as a single symbol; however, a single
repeat may have a variable number of repeat dots, based on
how many staves it is spanning, so we define a repeat-dot
separately.

B. MUSCIMA++ software tools
In order to make using the dataset easier, we provide

two open-source software tools. The musicma Python 3
package12 implements the MUSCIMA++ data model, which
can parse the dataset and enables manipulating the data further
(such as assembling the related primitives into notes, to
provide a comparison to the existing datasets with different
symbol sets), and implements extracting pitch, duration and
onset data from the notation graph, thus enabling export-
ing MIDI and thus multimodal OMR experiments, even if
so far only on synthesized audio. Second, we provide the
MUSCIMarker application13 used for creating the dataset,
which can also visualize the data.

C. Annotation process and quality control
The annotators worked on symbols-only CVC-MUSCIMA

images, which allowed for more efficient annotation. The

11As seen in page 20 of CVC-MUSCIMA.
12https://github.com/hajicj/muscima
13https://github.com/hajicj/MUSCIMarker



interface used to add symbols consists of two tools: foreground
lasso selection, and connected component selection, and our
MUSCIMarker software also supports editing the objects’
masks in-place.

After an annotator completed an image, we checked for cor-
rectness. Automated validation of the submitted relationships
was implemented in MUSCIMarker, however, manual checks
and manually correcting mistakes found in auto-validation
was still needed, as the validation was just an advisory voice
to highlight questionably annotated symbols. After collecting
annotations for all 140 images, we performed a second quality
control round, this time with further automated checks. We
checked for disconnected symbols, and for symbols with
suspiciously sparse masks (a symbol was deemed suspicious
if more than 7 % of the foreground pixels in its bounding box
were not marked as part of any symbol at all). We also fixed
other clearly wrong markings (e.g., if a significant amount of
stem-only pixels was marked as part of a beam).

The average speed overall was 4.3 symbols per minute, or
one per 14 seconds: an average page of about 650 symbols
took about 2 3

4 hours. Annotating the dataset using the process
detailed above took roughly 400 hours of work; the “quality
control” correctness checks and managing the annotation pro-
cess took an additional 150. The second, more complete round
of quality control took roughly 80 hours.

D. Inter-annotator agreement

In order to assess the trustworthiness of the annotations,
all annotators were given the same image to annotate, and
we measured inter-annotator agreement both before and after
quality control (QC) was applied, and we also measured how
many changes were made in QC. Given that the expected level
of true ambiguity in our ground truth is relatively low, we
can interpret disagreement between annotators as evidence of
inaccuracies. At the same time, a comparison of annotations
after quality control gives the upper limit on achievable per-
pixel accuracy.

1) Computing agreement: To compute agreement, we align
the annotated object sets against each other, and compute the
macro-averaged per-pixel f-score over the aligned object pairs.
Alignment was done in a greedy fashion. For symbol sets
S, T , we first align each t ∈ T to the s ∈ S with the highest
pairwise f-score F (s, t), then vice versa align each s ∈ S
to the t ∈ T with the highest pairwise f-score. Taking the
intersection, we then get symbol pairs s, t such that they are
each other’s “best friends” in terms of f-score. The symbols
that have no such a counterpart are left out of the alignment.
Furthermore, symbol pairs that are not labeled with the same
symbol class are removed from the alignment as well. When
there are multiple such “best friend” candidates, we prefer
aligning those that have the same symbol class. Objects that
have no counterpart contribute 0 to both precision and recall.

2) Agreement results: The resulting f-scores are summa-
rized in Table III. We measured inter-annotator agreement
both before quality control (noQC-noQC) and after (withQC-
withQC), and we also measured the extent to which quality

TABLE III: Inter-annotator agreement

Setting macro-avg. f-score

noQC-noQC (inter-annot.) 0.89
noQC-withQC (self) 0.93

withQC-withQC (inter-annot.) 0.97

control changed the originally submitted annotations (noQC-
withQC), averaged over the 7 annotators. Ideally, the post-QC
measurements reflect the level of genuine disagreement among
the annotators about how to lead the boundaries of objects in
intersections and the inconsistency of QC, while the pre-QC
measurements also measures the extent of actual mistakes that
were fixed in QC.

Legitimate sources of disagreement lie in unclear symbol
boundaries in intersections, and illegible handwriting. How-
ever, even after quality control, there were 689 – 691 objects
in the image and 613 – 637 relationships, depending on which
annotator we asked. This highlights the limits of both the
annotation guidelines and QC: the ground truth is probably
not entirely unambiguous, so various annotations of the same
notation passed QC, and the QC process itself is not free
from human error. At the same time, as seen in Table III, the
two-round quality control process apparently removed nearly
4/5 of all disagreements, bringing the withQC inter-annotator
f-score of 0.97 from a noQC f-score of 0.89. On average,
QC introduced less change than what the original differences
between individual annotators were. This suggests that the
withQC results are somewhere in the “center” of the space
of submitted annotations, and therefore the quality control
process probably really leads to more accurate annotation
instead of merely distorting the results in its own way.

V. BASELINE EXPERIMENTS

MUSCIMA++ allows developing and evaluating OMR sys-
tems on symbol recognition and notation reconstruction sub-
tasks, both in isolation and jointly:
• Symbol classification: use the bounding boxes and sym-

bol masks as inputs, symbol labels as outputs. Use primi-
tive relationships to generate a ground truth of composite
symbols, for compatibility with datasets of [11] or [2].

• Symbol localization: use the pages (or sub-regions) as
inputs; the corresponding list of bounding boxes (and
optionally, masks) is the output.

• Primitives assembly: use the bounding boxes/masks and
labels as inputs, adjacency matrix as output.

Convincing baselines for handwritten musical symbol clas-
sification have already been established in [11]. We therefore
focus on musical symbol localization and primitives assembly,
for which MUSCIMA++ is a key contribution.

A. Symbol localization/segmentation

We examine a basic heuristics: skeleton graphs (SGs).
Although we do not expect this baseline to be particularly
strong, it could prove useful as an oversegmentation step,
an initialization of other segmentation algorithms, and it



should illuminate what are the serious challenges posed by
handwritten notation.

The skeleton graph (SG) G is derived from the mor-
phological skeleton S of the binary image. Each endpoint
(skeleton pixel with at most one 8-connected neighbor in S)
and junction (set of neighboring skeleton pixels with more
than 2 neighbors in S) forms a vertex of the skeleton graph,
and every vertex pair u, v ∈ G such that there is an 8-
connected path p ⊂ S from u to v, on which no other vertex
v′ lies, forms an edge e in G. When computing S, we smooth
the foreground boundary by first dilating the image with a
3x3 square structuring element, then eroding it with a 5x5
diamond. (However, evaluation metrics are computed against
the unsmoothed input image.)

We compute the oversegmentation on the binary images
after staff removal.

To assess the usefulness of a given oversegmentation, we
want to compute the upper bound of segmentation perfor-
mance, assuming that the proposed superpixels will not be
further subdivided: if we use the given oversegmentation, how
much information do we inevitably lose? This is expressed
well with area under the precision-recall curve (AUC-PR).

This inevitable loss of information is going to happen when
a superpixel spans multiple symbols, and is not a subset of
any one of them. For instance, the skeleton graph might not
have a vertex at the boundary of two symbols s1, s2, so the
edge is either “sticking out” of whichever symbol we assign
it to, and – as SG edges do not overlap, except for junction
vertices – its pixels are missing from whichever s1, s2 we do
not assign it to.

Because symbols can (and do) overlap arbitrarily, the over-
segmentation setting is atypical in that it is a one-to-many
alignment: one proposed superpixel can legitimately be a part
of multiple symbols, which implies that assigning a superpixel
to one symbol does not preclude assigning it to any other
symbol. This enables us to treat symbols independently.

For each ground truth symbol s and its intersection I(s, S)
with the image skeleton S, we can find: (A) the maximum-
recall assignment Ar(s) = ∪es,1, . . . , es,i of SG edges
es,1, . . . , es,i ∈ E such that ∀e ∈ Ar(s) : e ⊂ I(s, S); (B)
the maximum-precision assignment Ap(s) = ∪es,1, . . . , es,j
such that ∀x ∈ I(s, S) : x ∈ Ap(s). The size of Ar(s)
relative to the size of I(s, S) gives us maximum recall
rec+(s, E) at precision 1.0, and the size of I(s, S) relative
to Ap(s) gives us maximum precision prec+(s, E) at recall
1.0, given the oversegmentation E derived from the skeleton
graph. We can then compute a lower bound on AUC-PR as
rec+(s, E) + (1− rec+(s, E)) ∗ prec+(s, E). We use macro-
averaging over symbols, as larger symbols are not necessarily
more important (in fact, noteheads are most important, and
they are some of the smallest symbols).

1) Results.: The average AUC-PR lower bound over all
symbols in the dataset is 0.767, with average rec+(s, E) =
0.548 and prec+(s, E) = 0.649.

We also measured “hard” recall: the proportion of ground
truth symbols that have at least one “dedicated” SG edge

(nonzero rec + (s, E)), so that they can be at least found
(even if not particularly accurately) without “using up” the
edge and compromising the ability to find another symbol.
This proportion of objects with at least one skeleton graph
edge that is a subset of I(s, S), is, however, only 0.67, and
unfortunately this disproportionately affects the most impor-
tant symbols: there are 10121 out of 21356 full noteheads
with rec+(s, E) = 0, 194/348 such grace noteheads, and
12205/21416 stems. (However, when we measured hard recall
for CCs directly, it was just 0.37.14)

B. Notation graph construction

For primitives assembly, we establish a binary classifica-
tion baseline given gold-standard symbol segmentation and
classification for deciding whether oriented symbol pairs are
related. As positive instances, we extract all 82261 symbol
pairs connected by a relationship; as negative instances, we
extract for each symbol all symbol within a threshold distance
dneg , set to 200 pixels (only 52 out of 82261 related symbol
pairs are further away). As features for an oriented symbol pair
u, v, we use their respective symbol classes, and the relative
positions of their bounding boxes.

We used a decision tree classifier.15 Using a random 80:20
training–test split, we obtained an f-score of 0.92 on recover-
ing the 82261 positive instances. Note that this was achieved
even without syntactic constraints (e.g.: “At least one stem per
full notehead.”). Most frequent problems were in recovering
notehead-beam relationships: about 1 in 10 notehead–beam
relationships was a false negative. This result suggests that
the primary difficulty in notation graph reconstruction will be
dealing with symbol detection errors.

VI. CONCLUSION

In MUSCIMA++, we provide an OMR dataset of hand-
written music that allows training and benchmarking OMR
systems tackling the symbol recognition and notation recon-
struction stages of the OMR pipeline. Building on the CVC-
MUSCIMA staff removal ground truth, we provide ground
truth for symbol localization, classification, and notation graph
construction, which is the step that performs ambiguity reso-
lution necessary for inferring pitch and duration.

However, some requirements discussed in Sec. II, are not
yet fully implemented. While stafflines, staves, and the re-
lationships of noteheads to the staff symbols can be found
automatically, it is not clear how accurately precedence can

14Note that skeleton graph oversegmentation will always perform at least
as well as the connected components (CCs) heuristic. The skeleton of each
connected component is also a connected component in the skeleton image,
so if the given CC corresponds to a symbol (or is part of a multi-CC symbol),
all edges in the skeleton of this CC will be assigned to Ar(s) and there will
be no edge from this CC which will be in Ap(s) and not in Ar(s). In fact,
SG oversegmentation may lead to a better AUC. CC oversegmentation fails
when one connected component consists of multiple symbols. However, the
skeleton graph of the CC may consist of multiple edges, and some of these
may be unrelated to one or more of the ground truth symbols, thereby not
appearing in Ap(s, E) and improving – at least – prec+(s, E).

15We used the scikit-learn implementation, setting maximum tree
depth to 20 and minimum number of instances per leaf to 10.



be inferred. Second, while the variety of handwriting collected
by Fornés et al. [15] is impressive, it is all contemporary –
whereas the application domain of handwritten OMR is also
in early music, where different handwriting styles have been
used. The dataset should also be re-encoded in a standard
format. From the available musical score encodings, the Music
Encoding Initiative (MEI16) is a format that can theoretically
represent the notation graph and all its vertex attributes.

Finally, evaluation procedures over the notation graph need
to be established. We are confident that the conceptual clarity
of the MUSCIMA++ ground truth definition will simplify
this task, although the relationship of simple metrics such
as adjacency matrix f-score to semantical correctness of the
output needs to be explored.

In spite of its imperfections, the MUSCIMA++ dataset is
the most complete and extensive dataset for OMR to date.
Together with the provided software, it should enable the OMR
field to establish a more robust basis for comparing systems
and measuring progress. Although evaluation procedures will
need to be developed for the notation graph, we believe the
fine-grained annotation will enable automatically evaluating at
least the stage 2 and stage 3 tasks, in isolation and jointly,
with a methodology close to those suggested in [5], [6],
or [13]. Finally, it can also serve as the training data for
extending the machine learning paradigm of OMR described
by Calvo-Zaragoza et al. [12] to symbol recognition and
notation assembly tasks.

We hope that the MUSCIMA++ dataset will be useful to
the broad OMR community.
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