
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Jan Hajič

Matching Images to Texts

Institute of Formal and Applied Linguistics (ÚFAL)

Supervisor of the master thesis: RNDr. Pavel Pecina, Ph.D.

Study programme: Computer Science

Specialization: Mathematical Linguistics

Prague 2014

I would like to thank all those that helped deliver this thesis into the world. At
the forefront:

• My advisor, RNDr. Pavel Pecina, for his leadership, support and faith,
• My family, who have been incredibly supportive,
• Adélka Venclová, for her undying patience.

Even the mere fact that this thesis has been written is as much their achievement
as mine. Perhaps more.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Hledáńı obrázk̊u k text̊um

Autor: Bc. Jan Hajič

Katedra: Ústav formálńı a aplikované lingvistiky

Vedoućı diplomové práce: RNDr. Pavel Pecina, Ph.D., Ústav formálńı a apliko-
vané lingvistiky

Abstrakt: Vytvář́ıme společný pravděpodobnostńı model textu a obrázk̊u pro
úlohu automatického přǐrazováńı ilustračńıch fotografíı k novinovým článk̊um.
Přistupujeme k úloze z hlediska učeńı reprezentaćı: chceme nalézt společnou
reprezentaci textu i obrázk̊u nezávislou na vlastnostech jednotlivých modalit,
podobně jako multimodálńı hluboký Boltzmann̊uv stroj Srivastavy a Salakhut-
dinova. Vstupńı obrázky reprezentujeme pomoćı předposledńı vrstvy konvolučńı
neuronové śıtě Krizhevského a kol., state-of-the-art reprezentace obrázk̊u na zá-
kladě jejich obsahu. Vytvořili jsme knihovnu Safire pro hluboké učeńı a správu
multimodálńıch experiment̊u. Úspěšný vyhledávaćı systém se nám vyvinout
nepodařilo, kv̊uli obt́ıžnému trénováńı neuronových śıt́ı na velmi ř́ıdkých tex-
tových datech. Porozuměli jsme však povaze těchto pot́ıž́ı tak, že věř́ıme, že v
navazuj́ıćı práci můžeme lepš́ıch výsledk̊u dosáhnout.

Kĺıčová slova: hluboké učeńı, neuronové śıtě, multimodálńı model, učeńı reprezen-
taćı

Title: Matching Images to Texts

Author: Bc. Jan Hajič

Department: Institute of Formal and Applied Linguistics (ÚFAL)

Supervisor: RNDr. Pavel Pecina, Ph.D., Institute of Formal and Applied Lin-
guistics (ÚFAL)

Abstract: We build a joint multimodal model of text and images for automati-
cally assigning illustrative images to journalistic articles. We approach the task
as an unsupervised representation learning problem of finding a common rep-
resentation that abstracts from individual modalities, inspired by multimodal
Deep Boltzmann Machine of Srivastava and Salakhutdinov. We use state-of-the-
art image content classification features obtained from the Convolutional Neural
Network of Krizhevsky et al. as input “images” and entire documents instead of
keywords as input texts. A deep learning and experiment management library
Safire has been developed. We have not been able to create a successful retrieval
system because of difficulties with training neural networks on the very sparse
word observation. However, we have gained substantial understanding of the na-
ture of these difficulties and thus are confident that we will be able to improve in
future work.

Keywords: deep learning, neural networks, text-image models, representation
learning

Contents

1 Introduction 7
1.1 Neural networks . 9
1.2 Neural network training . 12
1.3 Other architectures . 14

2 Models in Deep Learning 16
2.1 Autoencoders . 16

2.1.1 Denoising autoencoders . 18
2.1.2 Stacking autoencoders . 18

2.2 Restricted Boltzmann Machines 19
2.2.1 Energy-based models . 19
2.2.2 The Restricted Boltzmann Machine model 20
2.2.3 Contrastive Divergence . 21
2.2.4 Variants of RBMs . 23

3 Related Work 24
3.1 Deep Learning . 24

3.1.1 Unsupervised pre-training 24
3.2 Deep Learning in Natural Language Processing 25
3.3 Neural Network Training . 25

3.3.1 Optimization algorithms 26
3.3.2 Other tricks . 27

3.4 Text-Image Models . 28

4 Dataset 29
4.1 Statistics . 29
4.2 Dataset cleaning . 30
4.3 Text-image relationships . 30
4.4 Annotation . 31

4.4.1 Inappropriate images . 32
4.4.2 Annotation process . 32
4.4.3 Annotation item selection 33
4.4.4 Quantitative evaluation . 33

5 Preprocessing 36
5.1 Image Processing . 36

5.1.1 ImageNet CNN . 36
5.1.2 Image data properties . 37
5.1.3 ImageNet features for retrieval 38

5.2 Text Processing . 39

6 Deep Learning experiments 43
6.1 Multimodal model . 43
6.2 Image models . 44
6.3 Text models . 44
6.4 Training procedure . 45

5

7 Results 46
7.1 Analyzing text processing failures 46

7.1.1 Data visualization . 46
7.1.2 Training a model . 47

7.2 Image results . 50
7.2.1 Inspecting retrieval . 53
7.2.2 Visualizing learned representations 65

8 Implementation 67
8.1 Available tools for Deep Learning 67
8.2 Theano . 68
8.3 The SAFIRE library . 68

8.3.1 Library design . 69
8.3.2 Available deep learning functionality 70
8.3.3 Advantages of the SAFIRE library 71
8.3.4 Disadvantages and future work 71

8.4 The attached CD . 72

9 Conclusions and Discussion 73
9.1 Future work . 73
9.2 Concluding remarks . 74

Attachments 85

6

1. Introduction

An image is allegedly worth a thousand words. In this thesis, we attempt to
find images that are worth the given words, a news article: we attempt to auto-
matically retrieve appropriate illustrative images for certain types of journalistic
texts.

The instant expressive power of images is for journalism – with its focus on
impact, on getting a point across in shorthand – a perfect match. Examples
where images manipulate the impact of texts and vice versa are aplenty: both
high-profile iconic shots and even more so cases of sustained coupling of certain
topics with specific imagery, where various propaganda and marketing campaigns
are prime examples, with profound effect on the recipients.

Figure 1.1: Tobacco advertising: associating positive imagery with cigarettes

Figure 1.2: Anti-smoking advertisments

While personal creativity of the journalist is certainly involved in choosing
an appropriate image to accompany his or her text, we hypothesize that the
relationship of text and illustrative photos is predictable enough to allow us to
automatically assign appropriate images to journalistic texts.

That is our primary goal: to build a system that will automatically
assign illustrative images to texts. It should be made clear right away that
in this respect, we did not succeed. This work has negative results.

To gain better insight into why illustrative images are matched to the texts
they accompany, we will also create a dataset with manual annotations of appro-
priateness that should help towards future understanding of what the nature of
the text-illustrative image relationship is.

7

We approach the problem as a representation learning task, where the goal is
to learn a representation that abstracts from the individual modalities to a level
where the representation can be shared across the texts and images, therefore
obtaining a joint distribution that can be conditioned on either modality and used
to generate an image given a text. State-of-the-art results have been obtained on
multimodal tasks by using a topic model [26] or more recently using a distributed
representation obtained using deep learning by Srivasta and Salakhutdinov [73].

While very similar in approach to Srivastava and Salakhutdinov’s deep net-
work, our work is different in two important ways. First, while their work uses
image tags as the text modality, we use entire documents (similar to Feng and
Lapata). Second, we do not learn image features from scratch, but use a state-of-
the-art model used for the Imagenet-1000 image content classification challenge
by Krizhevsky et al. [45] to transform our raw image data to an advanced rep-
resentation and re-purpose this layer for retrieval. Also, our data exhibits a
different, less straightforward relationship between the text and image modali-
ties than [73]. Srivastava and Salakhutdinov used the Flickr dataset where the
text modality for a given image is added by the uploader of the photo for that
specific picture to describe its content. On the other hand, in our data, images
were manually assigned1 to accompany the already finished documents from a
pool of candidate images. (There are other differences as well; refer to the full
experimental setup described in chapter 6.)

We chose to pursue the distributed representation path, also in order to gain
experience with the (still relatively) novel field of deep learning, the building of
multi-layer neural network models. The bulk of the Related Work chapter (3)
will be dedicated to a review of applicable methods and results in deep learning.

As opposed to models like the popular Latent Dirichlet Allocation (LDA) [9],
distributed representations of text allow the learned “topics” to interact. In a
distributed topic model, the presence of topics “media”, “agriculture” and “StB”
in the same news article may dramatically increase the chances of generating also
the word “Babǐs”, much more so than a marginalization over the topic propor-
tions. When layered, distributed topics are also a compact way of expressing
such interactions: an LDA topic model would need a topic for each combination
of media, business and StB to express the large probability of Babǐs when all three
topics are present but not when only one or two are. Neural network distributed
representation are also able to model inhibitory effects directly.

Representation learning is one of the leading perspectives on neural network
models today; for an extensive review, refer to the work of Bengio, Courville and
Vincent from 2012 [4]. It has been shown that after learning a good representation
for the input data, one network can be re-purposed for various other supervised
tasks. For Natural Language Processing, the seminal work in this respect is Col-
lobert and Weston’s SENNA framework [18] which can do morphological tagging,
syntactic parsing, named entity recognition and other tasks above representations
shared across tasks.

We can also call representation learning feature discovery : the network is able
to learn what constitutes good features for the given data. In this respect, neural
networks, especially their deep variants, may become an alternative to hand-

1News portals employ a specialist or two specifically to assign pictures to articles; the jour-
nalists that write the articles do not do this.

8

crafting features. (This is something any representation learning model can do,
and practically any model can be interpreted as learning a representation, but
well-designed deep neural networks seem to be particularly good at it.)

The notion of what a good representation is is formalized by the appropriate
optimization objective. Often, objective functions measure both the network’s
ability to generalize and some interesting property of the representation itself,
like sparsity or other regularization; in models where the input and the learned
features have a probabilistic interpretation, various priors can be utilized.

The distributed representations learned by neural networks have also been
successfully applied to many classification tasks, where a linear classifier such as
a Support Vector Machine is trained on top of the final layer’s representation of
the data [73], or even used directly for discrimination [46].

While notable advances have been made in learning distributed representa-
tions for documents [70] [75] [35], it is still much of an open problem [21].

In the rest of the introduction, we will shortly introduce neural networks and
deep learning. The rest of the work is organized as follows:

• Chapter 2 introduces the common families of deep learning models,
• Chapter 3 reviews related work in deep learning and multimodal models,2

• Chapter 4 describes the dataset and manual annotations,
• Chapter 5 describes preprocessing of the image and text data,
• Chapter 6 describes the models and learning setups we used,
• Chapter 7 evaluates our model’s results,
• Chapter 8 briefly describes the SAFIRE library we implemented for this

work,
• Chapter 9 discusses the experiment results and future work.

1.1 Neural networks

Neural networks (NNs) are machine learning models inspired by the functioning of
the brain and central nervous system in animals. The networks consist of neurons,
which are organized into a progression of layers. The layers are interconnected:
every neuron of the i-th layer sends signal to every neuron of the next layer,
inspired by the action of axons3 and dendrites4 in the biological nervous system.
Some connections are stronger than others – each connection is associated with its
weight. Neurons are activated : the activation of a neuron represents the strength
of the signal passing through it, again mimicking the activation of biological
neurons. When the signal travels only in the direction from the input to the
output layer, we call the model a feedforward neural network.

The main appeal of neural networks is the possibility of building a deep net-
work, with several hidden layers stacked on top of each other. Each layer should
learn a new representation based on the previous layer. The human brain is
known to function this way, at least to a significant extent; the V1 visual cortex

2This is a somewhat unorthodox position of the Related work chapter; however, we feel that
without first describing at least the usual models and introducing the terminology, the value of
the related work will not be sufficiently clear.

3https://en.wikipedia.org/wiki/Axon
4https://en.wikipedia.org/wiki/Dendrite

9

https://en.wikipedia.org/wiki/Axon
https://en.wikipedia.org/wiki/Dendrite

is a prime example of layer-wise organization of neurons in the animal brain [68]
where the layers progress from neurons that work like edge detectors (active on
seeing an edge at a particular angle in the field of vision) all the way to layers that
detect high-level features such as faces. With a deep architecture, it is possible to
represent such complex features more compactly – with fewer parameters – than
in a shallow model with equal expressive power.

A simple neural network with one hidden layer can be visualized like this:

Figure 1.3: Simple feedforward network

Each neuron in a layer represents one dimension of the vector space the layer
occupies. One layer is the input layer, where neurons correspond to features of
the input data; another is the output layer, which represents the solutions to the
task to which the neural network model has been applied. (For instance, for a
10-class classification task with 1000 features, the network will have 1000 neurons
in the input layer and 10 in the output layer.) The other layers are called hidden.

Signal travels from one layer to the next in two stages. First, each neuron on
the receiving end computes the sum of signals from incoming connections. This
signal can also be modified by a bias term: an additive constant for each neuron.
Second, it applies a nonlinearity, usually sigmoid, to compute its activation. This
nonlinearity is called the activation function. Typically, activation of neurons is
constrained by the activation function to lie between 0 and 1, or between −1 and
1. The activation is then propagated to the next layer’s neurons and, together
with the weights of the outgoing connections, contributes to the activations of
the next layer’s neurons.

Formally, this process can be described as

yj = σ

(∑
i∈L

xi ∗Wij + bj

)
(1.1)

where:

• yj is the activation of the j-th neuron in layer L+ 1,

10

• σ is the L-th layer activation function,
• xi is the activation of the i-th neuron in layer L,
• Wij is the strength of the connection from neuron i of L to neuron j of
L+ 1,
• bj is the bias of neuron j of L+ 1.

The equation can be rewritten for the activation of the entire layer:

y = σ
(
WTx + b

)
(1.2)

where y is the vector y1 . . . y‖L+1‖ of output activations, x is analogously the
vector of input activations, Wij is the j-th cell of the i-th row of the weight
matrix W and b is the vector of L+ 1-th layer biases. The activation function σ
is applied element-wise to the linear activation WTx + b.

Figure 1.4: Simple feedforward network visualization, “collapsed” connections.
The grey outlines represent visible variables, modelled after standard probabilistic
graphical model notation.

Typical activation functions are:

• The standard sigmoid: σ(x) = 1
1+e−x , which constrains activations to (0, 1);

• Hyperbolic tangent: σ(x) = tanh(x), which constrains activations to (−1, 1);

• Softmax: σ(xi) = eWix+bi∑
j∈L e

Wjx+bj
, which can be interpreted as the categorical

probability of the i-th label being the true label for the given data point,
• ReLU: σ(x) = max(0, x). This non-sigmoid activation has recently received

much attention after [45] and is currently considered a good choice for super-
vised learning. Other such as noisy ReLUs (σ(x) = max(0, x +N (0, 1))))
have been proposed [57].

Neurons can be connected to each other in other connectivity patterns. While
most often each neuron of a layer is connected to all neurons in adjacent layer(s),

11

this is, not always the case: Convolutional Neural Networks, which have recently
improved state-of-the-art on many image processing tasks, utilize a more complex
connectivity pattern with extensive weight sharing.5

1.2 Neural network training

We will begin with a canonical example: how to construct a neural network for
handwritten digit recognition. Our data will be the famous MNIST dataset of
LeCunn [47].

The inputs are 28x28-pixel images, where each pixel is represented by its
brightness. We are supposed to classify the images into one of 10 classes (one class
per digit). Therefore, the input layer will have 784 neurons and the output layer
10. The true classification will be represented as a vector of 9 zeros and a 1 at po-
sition j that corresponds to the true class of the data point. (For images of 0’s, the
output will be (1, 0, 0, 0, 0, 0, 0, 0, 0, 0), for 9’s, it will be (0, 0, 0, 0, 0, 0, 0, 0, 0, 1),
etc.) We are free to choose the number and sizes of hidden layers; for this first
example, we will use no hidden layers at all and connect the input layer directly
to the output layer.

To obtain a prediction, we will simply take the label corresponding to the
most active neuron in the output layer. Training will attempt to minimize a loss
function between the output layer activations and the vector corresponding to
the true class of the data point. We will choose our loss function later.

Figure 1.5: A visualization of the classification network action. The loss function
acts as the training criterion.

One activation function we can use is the softmax function, which can be
straightforwardly interpreted to compute class membership probability. When Y
is a label that takes on a value 1 . . . k, for an output layer with k neurons (k-class
classification), we get:

5Unrestricted Boltzmann Machines or Hopfield nets would be examples of other connectivity
patterns, although they are currently only rarely studied, as their expressive power is more
limited.

12

softmaxi(Wx + b) =
eWix+bi∑

j∈1...k e
Wjx+bj

(1.3)

= P (Y = i|x,W,b) (1.4)

We thus obtain the Multinomial Logistic Regression model. (We do not have
to use the softmax function and the network would still work, but the interpre-
tation it has is natural for classification tasks.)

Because of our choice of activation function, we can straightforwardly compute
negative log likelihood of the training data labels. It is a good choice for a loss
function, because it measures how our model distributes probability mass for
output classes to the correct areas of the space in which the data is represented
directly. (We could also use for example Mean Squared Error between the vector
of outputs and the vector representation of the correct label, but it does not have
this direct interpretation.) We will use θ as shorthand for the model parameters,
in this case W,b; D denotes the data. The log-likelihood of the data is defined
as:

L(θ,D) =

|D|∑
i=0

log(P (Y = y(i) | x(i), θ)) (1.5)

where the expression P (Y = y(i) | . . .) stands for the probability that the model
assigns to the correct class for the i-th data item. (Given our choice of activation
function, this is simply the activation of the y(i)-th output neuron.)

To optimize the model parameters, we will now “simply” perform gradient de-
scent on the loss function. The gradient for this loss function is well-known, but
gradients for more complex networks can be hard to compute. For feedforward
networks with certain classes of activation and loss functions, the backpropaga-
tion algorithm for computing gradients with respect to each parameter is used
extensively since a famous 1986 paper [69].6 The idea of backpropagation is that
it is possible to find out how much each neuron and connection between neurons
contributes to the error in the output layer and update the parameters accord-
ingly by propagating the error backwards through the network, as though it were
an input signal traveling from the output layer to the input.

For a long time, only networks with at most one hidden layer were being
successfully used: although the power of multi-layer networks was hypothesized,
effective training procedures were not known (or testable, given hardware at that
time.)7 Some reasons why training multi-layer networks by simple backpropaga-
tion with standard sigmoid units is difficult are described by Glorot and Bengio in
[29]. Today, it is possible to train large and deep networks with back-propagation
thanks to regularization techniques such as dropout, improved optimization algo-
rithms and different activation functions (see 3 for an overview).

6(Backpropagation was discovered earlier, in the 1960’s, but this paper was seminal for its
– well – propagation.)

7For a short history of neural networks including references to relevant publications, see the
Wikipedia page on neural networks: https://en.wikipedia.org/wiki/Artificial_neural_
network#History

13

https://en.wikipedia.org/wiki/Artificial_neural_network#History
https://en.wikipedia.org/wiki/Artificial_neural_network#History

For undirected networks, however, backpropagation is not applicable and dif-
ferent methods have to be used, such as contrastive divergence. (More on undi-
rected networks will be said in 2.2.)

Fortunately, automatic differentiation software with focus on neural networks
is available today which can eliminate this mathematical bottleneck; we have
made extensive use of this functionality [8].

The strategy of choice for training neural networks by gradient descent is mini-
batch gradient descent, a tradeoff between computing the gradient for the entire
dataset (batch gradient descent) and for each item (stochastic gradient descent,
SGD), as it combines the convergence properties of SGD with fast implementa-
tions of matrix operations (the input x in mini-batch gradient descent is not a
single vector, as in SGD, but a matrix).8

Stochastic Gradient Descent is by far not the only way of training a neu-
ral network. Other optimization techniques can be applied, like the Levenberg-
Marquardt method or conjugate gradients, and methods that utilize only a part
of the information from the gradient have also been successful. (We will briefly
describe this plethora of methods in the corresponding section of the Related
Work chapter 3.3.

1.3 Other architectures

Aside from feedforward networks and undirected energy-based models (which we
will discuss in section 2.2), two other architectures feature prominently among
neural networks: Recurrent Neural Networks (RNNs) and the aforementioned
Convolutional Neural Networks.

Recurent networks introduce directed edges that loop back into the layer
they came from. This can be understood as a history and is naturally fit for
sequential data – signal processing, like speech recognition, video processing or
music information retrieval, or language modeling. By “unrolling” the recurrent
network in time, we can recover a dynamic probabilistic graphical model similar
in appearnace to a (rather complicated) Hidden Markov Model (HMM) [78].
The biological inspiration for RNNs comes from areas of the brain such as the
Hippocampus or Lateral Genicular Nuclei, where some neurons from later parts
of the processing pathways send signal to the areas passed previously.

Convolutional neural networks are inspired by the architecture of the retina.
Several prevalent types of neurons participate in processing the raw “pixel-wise”
(photoreceptive-cell-by-photoreceptive-cell) visual signal and significantly com-
pacting it before passing it towards the lateral genicular nuclei and the visual
cortex: cells that integrate signals from overlapping patches of the photorecep-
tive cells (bipolar cells) and other cells that discriminate between incoming signals
through inhibiting their neighbors in the neuron layer (horizontal and amacrine
cells). This action is simplified to two alternating types of layers: convolution-
al layers, which mimic integrating the signal of the regular overlapping patches
that the horizontal cells process, and max-pooling layers, which inhibit some sig-
nals and let others pass uninhibited. Convolutional neural networks have become
state-of-the-art in various image processing tasks, including the famous MNIST

8The minibatch variant is often implied in literature when the term SGD is used.

14

dataset [47].

15

2. Models in Deep Learning

In this chapter, we briefly introduce the models that are the cornerstones of
representation learning in deep learning. These “building blocks” of deep ar-
chitecutres are Autoencoders and Restricted Boltzmann Machines. (Much of the
text in this chapter is based on the excellent tutorials provided by the LISA lab
of the University of Montreal [50].)

2.1 Autoencoders

Autoencoders consist of three layers: visible inputs, hidden units and visible
outputs. The visible layers both have dv units, the hidden layer has dh units.1

The network is parametrized by two sets of weights and biases: encoding weights
W and bias b and decoding weights W′ and bias b′. Typically, the weights will
be tied, so that W = W′T . The network uses encoder activation a and decoder
activation a′. (In practice, the activation functions are often the same.)

Figure 2.1: A plain autoencoder

The loss function is reconstruction error, which is a function of the input and
its reconstruction. The reconstruction x̃ of an input x is defined as:

x̃ = a′(W′a(Wx+ b) + b′) (2.1)

which is simply the result of computing the hidden layer activation h and then
using the backward weights and bias to compute activation of the visible units.
Autoencoders commonly use tied weights, where W′ = WT .

The loss function is then defined as

L(x |W,b) = R(x, x̃) (2.2)

1We will use this notation for visible/hidden layer size throughout.

16

where R is the reconstruction error function. Common reconstruction errors are
the Mean Squared Error

RMSE(x, x̃) =
1

N

N∑
k=1

(xk − x̃k)2 (2.3)

or, for autoencoders with binary units, cross-entropy loss

RXEnt(x, x̃) = −
N∑
k=1

[xk log x̃k + (1− xk) log (1− x̃k)] (2.4)

Cross-entropy can also be used for autoencoders with values interpreted as prob-
abilities of the given unit turning on.

Autoencoders are thus encouraged to learn representations of the input that
encode the input in dh dimensions so that it is possible to reconstruct it as
closely as possible – in other words, this means that the representations lose as
little information about the input data as possible. (For a detailed analysis of
how information flows in autoencoders, see [80].)

If dh < dv, interpreting the representation learned by the autoencoder is
straightforward: it is a good (in the sense of the loss function) compression of
the input data. The smaller amount of hidden units forces the autoencoder
to discover some useful structure in the data that will allow it to represent it
efficiently. (If the inputs were white noise, an autoencoder would not help us
very much. However, if for example each even inputs were generated from low-
variance Gaussians centered on the previous odd input, the autoencoder with
dh = dv/2 could easily learn that the weights for inputs v1, v2 and v3, v4 etc.
can be very close to each other.) Autoencoders have been used in this way for
example to find compact representations for documents [35] or to compress the
benchmark MNIST dataset down to 30 binary features [33]. The reconstructions
obtained with autoencoders easily surpass linear methods such as PCA or LSA
(see visualizations in [33]), although the learned representations have recently
been matched by simpler methods on some classification tasks [15] [16] [59].2

The dh > dv case is more interesting. While we are not forcing the autoencoder
to find structure in the data by looking for a more compact representation, we can
still coax it into learning representations with useful properties, such as sparsity
[58] [51]. Also, simply having many non-linear projections of features can help us
significantly for classification, as the resulting representation may make classes
more linearly separable.

However, when there are more hidden than input/output neurons, one of the
encodings that minimizes reconstruction error is for dv neurons of the hidden layer
to copy the input neurons and the rest will just always stay off. With dh >> dv,
this solution may even be relatively sparse. However, such a representation does
not tell us anything interesting; we want to avoid it. To this end, more complex
autoencoders are designed: the Denoising and Contractive autoencoders.

2The results in [35] and [33] have been obtained by using stacked autoencoders, which we
will describe in a later section 2.1.2.

17

2.1.1 Denoising autoencoders

Denoising autoencoders try to avoid learning the identity function by running the
network on a noisy version of the data, but measuring reconstruction error against
the orignal noise-free input. This forces the autoencoder to learn to de-noise the
inputs (hence “de-noising”), making the identity an unworkable representation.

The reconstruction x̃ is obtained as

x̃ = a′(W′a(Wx̂+ b) + b′) (2.5)

where x̂ is the corrupted (=noisy) version of the input. The reconstruction error
is computed from the uncorrupted input as R(x, x̃).

Figure 2.2: A denoising autoencoder. Note the relationship to the “plain” au-
toencoder and how the reconstruction is computed.

There are many possible corruption functions C that compute x̂ = C(x). The
basic corruption function simply switches each input neuron off with a given
probability. Noise can also of course be generated from an appropriate distri-
bution (Gaussian noise) or salt-and-pepper noise can be used, which switches a
proportion of inputs randomly to either minimum or maximum activation. A
generalization of the denoising principle to multi-layer architectures and theo-
retical relationships between types of noise have been described by Poole et al.
[62].

The relationship of denoising autoencoders to probabilistic models has recent-
ly been described in some detail by Bengio et al. [7].

2.1.2 Stacking autoencoders

Individual autoencoders can be stacked on top of each other just as any other
neural network layers. The hidden layer becomes the input layer of the next

18

autoencoder, etc. Stacking de-noising autoencoders this way with greedy pre-
training of each layer separately has led to competitive performance on benchmark
datasets [80].

2.2 Restricted Boltzmann Machines

A different approach is taken by generative undirected models called Restricted
Boltzmann Machines, or RBMs. These models belong to the class of energy-based
models, inspired by systems from statistical physics. We will first introduce the
framework for energy-based models and then continue towards RBMs.

2.2.1 Energy-based models

Energy-based models assign an energy E to each state of the model’s variables (in
our case, neurons). Training the model means modifying the energy function –
through changes in parameters – so that it has desirable properties: it should as-
sign low energies to states that correspond to states that we think should happen,
like samples from data, and high energies to states that should not happen, like
all neurons set maximum activation. Through the energy function, a probability
distribution of the data x is defined:

P (x) =
e−E(x)

Z
(2.6)

The normalizing factor Z is called the partition function, in line with the physical
inspiration. It is defined as

Z =
∑
x

e−E(x) (2.7)

Learning (like the linear regression example in the introduction 1.2) utilizes neg-
ative log-likelihood l of the data as the loss function:

L(θ,D) = − 1

N

∑
x(i)∈D

log p(x(i)) (2.8)

In this setup, x was composed of visible variables (input neurons) only. (Visible
Boltzmann Machines are an example of such a model.) However, these models
have limited use, as their expressive power is limited. The expressive power of
energy-based models is greatly increased with the introduction of hidden vari-
ables, such as a hidden layer of neurons. The energy-based distribution becomes:

P (x) =
∑
h

P (x, h) =
∑
h

e−E(x,h)

Z
. (2.9)

We will now define the physics-inspired notation of free energy, which will later
allow us to write the data gradient in a fortunate form. The formula for free
energy is:

19

F(x) = − log
∑
h

e−E(x,h) (2.10)

so that we get

P (x) =
e−F(x)

Z
with Z =

∑
x̃

e−F(x̃) (2.11)

(Note that x̃ goes over all possible points of the space in which the data is.) We
can now express the gradient of the data negative log-likelihood in terms of this
free energy (the detailed derivation is included as an attachment 9.2):

−∂ log p(x)

∂θ
=
∂F(x)

∂θ
−
∑
x̃

p(x̃)
∂F(x̃)

∂θ
(2.12)

The terms of the gradient are called the positive and negative phase, based on
their effect on the density P (x). (For a detailed explanation, see Hinton’s original
paper on contrastive divergence [36].)

The second term is an expectation of the free energy gradient over the model
distribution. This is intractable, because it would require summing over the entire
space of possible x̃s (configurations of input neurons), which even with just binary
units is exponentially large. However, it can be approximated by taking a set of
sample configurations N :

−∂ log p(x)

∂θ
≈ ∂F(x)

∂θ
− 1

|N |
∑
x̃∈N

∂F(x̃)

∂θ
(2.13)

The samples from the model distribution are called negative particles. They
represent a “fantasy” of the model: if we left it alone, it would be spontaneously
generating particles like this. However, we want it to model the data – so the
gradient points from what the model is currently dreaming towards where the
data lives. We are thus gradually convincing the model to dream about the data.

Equation 2.13 would be all we need to build a training algorithm for energy-
based models – if we could sample from p(x̃). This, of course, can be done (for
some models easier than for others). We will now shortly interrupt this line of
thought to define Restricted Boltzmann Machines and then come back to show
how the equation 2.13 is applied to RBMs.

2.2.2 The Restricted Boltzmann Machine model

A Restricted Boltzmann Machine consists of two layers: an input layer and a
hidden layer, with each hidden neuron connected to each visible neuron. As
opposed to the Autoencoders and feedforward networks, RBMs are undirected,
meaning that signal can flow both ways. (This also means backpropagation is
unapplicable.) A Restricted Boltzmann Machine looks like this:

20

Figure 2.3: A visualization of a RBM. The equations show how to compute the
activation of the hidden layer given the visible layer and vice versa.

The neurons of an RBM are commonly restricted to be binary (either 0 or
1): they are either on, or off. The activation of a neuron is interpreted as the
probability of the neuron being on. Because of how the model is structured,
neurons are conditionally independent given the opposit layer:3

p(xi = 1 | h) =
∏
j

p(xi | hj) (2.14)

p(hj = 1 | v) =
∏
i

p(hj | xi) (2.15)

This formula can be generalized for non-binary RBMs, such as RBMs with a
real-valued Gaussian visible layer [33] [82].

The energy function for a RBM is defined as:

E(x, h) = −b′x− bh− hTWx (2.16)

2.2.3 Contrastive Divergence

Now that we have defined Restricted Boltzmann Machines, we return to the
equation 2.13, the gradient of the negative log likelihood of energy-based models.
In order to train a RBM, we need to sample the negative particles N from the
model.

Given the independence structure of RBMs, this can be easily done using
alternating block Gibbs sampling: first sample the hidden layer, then the visible
given the hidden, etc. This is a standard Markov Chain Monte-Carlo approach.
However, obtaining an unbiased sample from the Markov chain can take many
iterations, making learning too slow, and there is no reliable way of telling when
the chain has reached equilibrium. Furthermore, the estimated gradient has a
large variance [14].

This is where the Contrastive Divergence (CD) algorithm of Hinton [36] has
proven a breakthrough. Instead of directly optimizing the negative log-likelihood,

3Recall the rules for conditional independence in probabilistic graphical models.

21

it optimizes the difference of two Kullback-Leiber divergences. We will introduce
some more notation:

• P0 is the data distribution (the “0” in the notation stands for beginning a
Markov chain there)
• P∞ is the model distribution, which is what we get if we actually run the

Markov chain to equilibrum
• Pn is the model distribution we get after running the Markov chain for n

steps, starting at P0.

Optimizing negative log-likelihood is minimizing the KL-divergenceKL(P0‖P∞).
In contrast, CD optimizes the difference between two KL-divergences [36]:

KL(P0‖P∞)−KL(Pn‖P∞) (2.17)

This cancels out the expectation over the equilibrum P∞. The Contrastive Di-
vergence algorithm then becomes at each point xi of the data:

• Initialize chain at xi in the visible layer,
• Run alternating block Gibbs sampling for K steps, where K is most often

1,
• Take the last visible sample as a negative particle from eq. 2.13, plug into

formula and compute gradient

Of course, the algorithm can be easily parallelized so that the Gibbs sampling
is run for multiple xi in one matrix operation.

The first key observation of Contrastive Divergence is that while for obtaining
an unbiased sample we need a long, well-mixed chain, for training the model, a
biased sample of just a few steps may suffice; in fact sampling the hidden and
visible layer just once is enough. The second key observation is that we can
initialize the chain with the data point we’re currently processing, and that it
may in fact be better for learning from the given data point, in combination with
the very short chain: the one step of CD shows the direction in which the Markov
chain has a tendency to wander off, thus correcting for it.

As Hinton writes [36]:
“Another way of understanding contrastive divergence learning is to view it as

a method of eliminating all the ways in which the PoE model would like to distort
the true data. This is done by ensuring that, on average, the reconstruction is no
more probable under the PoE model than the original data vector.” [36]

A good introduction to the mathematics of RBM training has also been writ-
ten written by Fischer and Igel [27]. The theoretical properties of CD have been
described in [14] and more recently in [5].

A problem with CD-K is that the Markov chain may not mix fast enough
near xi. This is addressed by the persistent contrastive divergence (PCD) algo-
rithm [79]. The central idea of PCD is that instead of starting a new chain with
each data point, we keep several chains running throughout training and sample
negative particles from them.

22

2.2.4 Variants of RBMs

Given the probabilistic nature of RBMs, multiple interesting priors can be ap-
plied, such as the Spike and Slab prior to encourage a “spiking” type of sparsity
instead of only encouraging feature means to stay low.

A notable variant of RBMs for modeling documents as bags-of-words is the
Replicated Softmax model of Salakhutdinov and Hinton [70] in which the hidden
(forward) activation is a standard sigmoid, but the visible (backward) activation is
the softmax function, so that the vector p(x′ | h) forms a categorical distribution.
The input neurons each represent one word in the dictionary (typically a couple
of 1000’s of most frequent words in the data). To recover a negative particle for
a document x of D words, this categorical distribution is sampled from D times.
The hidden bias units have to be scaled by D in the energy function as well; this
can be understood as samplingD times from the empirical categorical distribution
over the input document’s word frequencies. (Note that the article [70] refers to
the categorical distribution as multinomial.) The scaling by D allows Replicated
Softmax to consistently model bag-of-words documents of varying lengths.

Multi-layer RBMs called Deep Boltzmann Machines (DBMs) can be created
by stacking RBM layers on top of each other, just like when building autoen-
coders. DBMs have been very successful in representation learning and applica-
tions. An extensive review has been written by Bengio [4].

23

3. Related Work

The field of deep learning is in an explosion of activity since 2006. Although
relatively young, it has accumulated an impressive track record, pushing state of
the art on many tasks by a very significant amount. This has been most notable in
image processing, where Convolutional Neural Networks represent the new state
of the art on content-based tasks, especially on the ImageNet-1000 classification
challenge [45] and PASCAL-VOC datasets.1 Considerable headway has also been
made in natural language processing, some of which will be reviewed in 3.2.

3.1 Deep Learning

Multi-layer, or deep, neural networks have been proposed as soon as the idea
of mimicking the biological neural system itself. However, until recently (2006),
multi-layer neural networks performed poorly. (An analysis of some of the reasons
can be found in [29].)

Importantly, the raw computing power to properly train large deep networks
simply wasn’t available to researchers. This has changed during the last decade,
most notably with the advent of massive parallelism in general-purpose GPU
computing, for which the matrix multiplication algorithms of neural network
signal propagation are very well-suited. Most large neural networks today are
trained either using GPUs [45], or a distributed system [54], or both.

The other important development are successes of recent methods of training
multi-layer models, most notably unsupervised pre-training.

3.1.1 Unsupervised pre-training

A significant development was the discovery of efficient inference for certain class-
es of neural networks and the layer-wise unsupervised pre-training methodology
proposed by Hinton and Salakhutdinov [33]. Layer-wise pretraining helps combat
the vanishing gradient problem2 in deep networks by initializing the network to
the areas in the parameter space in which the data actually reside [6], so that no
large gradient updates during supervised training (called fine-tuning in this con-
text) are necessary. This helps the network generalize better, because it ensures
that it is actually modeling a distribution where the data come from [24]. Unsu-
pervised pre-training is most useful in situations where there is a large amount
of unlabeled and only small amount of labeled data available; thanks to modern
techniques to combat overfitting and other problems of training feedforward net-
works, it is now possible to train large and deep supervised neural networks using

1http://pascallin.ecs.soton.ac.uk/challenges/VOC
2The error from output neuron j propagates over asymptotically more and more connec-

tions, thereby updating connections in the layers nearer to the input with a rapidly decreasing
magnitude, easily canceling out with other such dilluted, “fizzled-out” gradients. In the first
step of backpropagation, the gradient from j propagates over as many connections as there are
neurons in the previous layer. However, from the previous layer to the layer before that, the
error influences the connection between every pair of neurons - proportionally to how much it
influenced the given backpropagating neuron in the previous iteration.

24

http://pascallin.ecs.soton.ac.uk/challenges/VOC

plain backpropagation.3

3.2 Deep Learning in Natural Language Pro-

cessing

Probably the most notable task in Natural Language Processing where deep
learning methods have made a recent impact is Language Modeling. The first
oft-cited Neural Network Language Model (NNLM) is the work of Bengio et al.
[2]. Building on this model, Mikolov et al. [54] has made remarkable head-
way in learning a representation in which meaningful operations on words can
be performed using arithmetic operations on the word representations (such as
king −man + woman = queen, or Germany

Berlin
= France

Paris
). Recurrent neural network

language models, also by Mikolov [55], have been found to perform excellently
using the representations obtained from skip-grams [54].

Also interesting is the SENNA4 system of Collobert, Weston et al. [18], which
shares representations across multiple tasks: language modelling, part-of-speech
tagging, semantic role labeling, syntactic parsing or named entity recognition.

Models for entire documents based on the bag-of-words approach have also
been explored. One such model is the Replicated Softmax model by Salakhutdi-
nov and Hinton [70], which was also used in [73]. On top of Replicated Softmax,
the Over-replicated Softmax model by the same research group5 has been pub-
lished in 2013 [75]. A thorough description of various previous (non-deep learning)
document models and their relationships, together with a Deep Boltzmann Ma-
chine for representing documents in a low-dimensional space, is given by the same
authors in [35]. However, document modeling on word observations is very much
an open problem [21].

3.3 Neural Network Training

Successfully training neural networks is not easy and may require a lot of pa-
rameter tuning. A substantial amount of work dedicated to training a good
neural network therefore doesn’t make it into published papers. In this respect,
a remarkable resource are practical guides to training networks, such as LeCun’s
Efficient BackProp [48], Hinton’s Practical Guide to training RBMs [38] or Ben-
gio’s Practical recommendations [3]. Another such paper is the guide to SGD by

3The deep learning mantra for supervised learning today is mostly ReLU + dropout + a
lot of parameter tuning, not necessarily pre-training, as for instance one of the foremost deep
learning researchers Yann LeCun noted in a recent interview on the Reddit website: http:

//www.reddit.com/r/MachineLearning/comments/25lnbt/ama_yann_lecun On a tangential
note, this is a general feature of information on deep learning: a significant amount of expertise is
available in condensed form from unofficial sources online, such as the stackoverflow.com Q&A
and other stackexchange network site (stats), metaoptimize.com and the /r/machinelearning
subreddit. While not the place for scientifically rigorous results, these sources are invaluable
for orienting oneself within the field.

4Downloadable from http://ml.nec-labs.com/senna/
5More or less all recent advances in deep learning methods (not necessarily applications)

have been brought about by three or four research groups: those of Geoffrey E. Hinton, Yoshua
Bengio and Yann LeCun.

25

http://www.reddit.com/r/MachineLearning/comments/25lnbt/ama_yann_lecun
http://www.reddit.com/r/MachineLearning/comments/25lnbt/ama_yann_lecun
stackoverflow.com
metaoptimize.com
http://ml.nec-labs.com/senna/

Bottou [10].
Many advances have also been made in neural network training methodology.

Speedups and performance improvements have been made through new activa-
tion functions, optimization algorithms and other ”tricks” such as dropout or
centering. We will shortly describe some of these techniques.

3.3.1 Optimization algorithms

While simplest, plain SGD backpropagation (or mini-batch SGD) is not always
the best choice of optimization algorithm, especially as far as convergence speed
is concerned. The two most important problematic aspects of SGD are the de-
pendence of the step size on the magnitude of the gradient and the difficulty in
choosing a learning rate. When the activation function has a sigmoid shape, the
neuron can enter the saturated regions of the sigmoid where the magnitude of
the gradient is very small and therefore SGD step size greatly decreases. This
can be especially problematic in networks where sparse activation patterns are
preferred, which encourage neurons to be either firmly off or firmly on and thus
can force neurons into these regions of saturation. The problem of choosing a
learning rate is related to this: if we choose a high learning rate to help the net-
work parameters move around more and get un-stuck from local minima easier,
we risk settling into an oscillating pattern; if we choose a learning rate that is
too low, we might not get to the are around the optimum at all, unable to escape
from a local minimum with saturated neurons. Due to these problems with “raw”
SGD, a number of more advanced approaches has been successfully developed.

A straightforward strategy is to adapt the parameter update to the status of
the training. One simple and successful [35] [38] method is momentum: when
computing the parameter update, we remember the update from last time and
add a certain percentage of it to the new update.

∆θi = lr ∗ ∇θ +m ∗∆θi−1

(lr is the learning rate and m is the momentum; both numbers are between 0 and
1.) This helps SGD two-fold. First, it makes learning less sensitive to differences
and noise between mini-batches, as it encourages the update to follow a more
general trend. Second, it takes into account the update history: if consecutive
updates point in generally the same direction, the momentum term will push the
updates along faster. If a change of direction is needed, the update first needs to
“brake”, which – while it may cause it to overshoot for example a turn in a loss
function ravine – makes it resistant to smaller “bumps” on the way. However,
once the learning starts to circle around a large enough optimum, the frequent
changes in gradient direction will tone the momentum term down so that it can
find the actual optimum.

Another algorithm that manipulates learning rate is Adagrad [23] and more
recently ADADELTA [84]. While momentum adapts the direction of the update
to recent learning history, these algorithms directly manipulate the learning rates
to decrease component-wise with training time to reflect how close each parameter
is to convergence. Adagrad has proved successful in training neural network
language models on huge data in a distributed computing environment [54].

26

A third succesful alternative is the family of resillient backpropagation, rprop
[66] [67] [65]. Instead of basing the step size on the gradient magnitude, it on-
ly uses the sign of the gradient. If the sign changes, rprop flips the direction
of the update; the magnitude of the parameter update depends solely on how
many updates have there previously been without the sign of the gradient of that
particular parameter flipping (the un-flipped updates are incremented by a small
constant term in each step, so that subsequent updates in the same direction go
faster). In this respect, it is like a very rough approximation of the momentum,
but without the ∇θ term, completely bypassing the saturated gradient problem.
The rprop family has proven surprisingly successful, both in terms of the optima
found and learning speed [42] [39].

Yet another attempt to solve the SGD update step size problem has been
made by Schaul et al. [71] who try to find an optimal learning rate based on the
Hessian.

This brings us to the category of second-order optimization algorithms. The
algorithms we have seen so far were based on the first derivative of the loss
function; second-order methods take into account not just the slope, but also
the curvature of the loss function surface and move the parameters accordingly.
Because repeated computation of the Hessian is impractical for even medium-size
neural networks (a couple thousand units), since it is quadratic in the number of
parameters, which by itself is quadratic with the number of neurons, a Hessian-
free approach has been suggested by Martens and Sutskever [52] [53]. The first
paper includes a discussion of pathological loss function curvature, the second
deals in more detail with convergence properties and practical settings.

The general second-order Levenberg-Marquardt method [49] can also be used,
which is a curve-fitting method based on optimizing the least-squares criterion.
This method approximates the Hessian by taking the outer product of Jacobians
JTJ . (If this approximation has a significant error, convergence will be slower.)

A third popular second-order choice is the Conjugate Gradient (CG) method,
which adds a line search component along the gradient direction to determine the
update step size. Kostopoulos and Grapsa have written in 2009 a brief overview
of standard CG methods and proposed a self-scaling variant in [44].

However, it should be noted that plain SGD and variants can and do outper-
form second-order methods on non-convex problems [11].6

For training Restricted Boltzmann Machines, an alternative to Contrastive
Divergence has been proposed, parallel tempering [22]. This algorithm addresses
the potentially slow mixing rate and stability problems of the Markov chain in
Persistent Contrastive Divergence.

3.3.2 Other tricks

Several other training techniques have been recently developed and recommenda-
tions for various normalization and other preprocessing steps have been published
in practical guides. The most influential technique is dropout [74]. Dropout is a
powerful regularization technique that combats overfitting by randomly switching
off a significant portion of hidden neurons (often half of them). This serves to
reduce co-adaptation patterns between neurons, as they cannot rely on a partner

6http://leon.bottou.org/projects/sgd

27

http://leon.bottou.org/projects/sgd

being activated [34]. Dropout can also be seen as a generalization of the Denoising
Autoencoder principle of evaluating the network’s performance with artificially
noisy inputs evaluated on noise-free targets. It has been very successful, especially
for supervised training [45], and has become somewhat of a recipe.

3.4 Text-Image Models

The multimodal Deep Boltzmann Machine of Srivastava and Salkhutdinov [73]
after which we fashion our model architecture, trains a stack of RBMs for each
modality (text and images) separately and adds a joint representation layer on top
of the individual modality stacks. Their dataset cosists of images and texts with 1-
0 labels for each one of However, the text data used by [73] only contains keywords,
not entire documents. They represent images by 3857-dimensional features, that
were extracted by concatenating Pyramid Histogram of Words (PHOW) features,
Gist and MPEG-7 descriptors (EHD, HTD, CSD, CLD, SCD). Aside from results
on discriminative image category classification tasks, for generating images for
keywords, they report a MAP of 0.614. However, they use a very permissive
method of evaluation, where if a retrieved image overlaps in at least one category
with the categories of the query image, it is considered relevant.

An approach that does not utilize deep learning is by Feng & Lapata [26]. In
this work, image features are SIFT descriptors (histograms of edge directions),
quantized using the K-means clustering algorithm into visual words. This is
similar to the PHOW features of [73]. A standard topic model, Latent Dirichlet
Allocation [9], is then trained jointly above both the visual words and text words.
They reach a top-1 accuracy of 57.3 %.

Other text-image models include multimodal log-bilinear language models of
Kiros et al. [43] that combine the language modeling approach with multimodal
representation or an interesting multimodal experiment done by Socher et al. in
[72]: using a recurrent neural network to capture recursive structure common
across images and sentences.

28

4. Dataset

For our experiments, we have gathered a collection of journalistic articles and the
accompanying images from 13 Czech news portals. Three of those are internet
editions of tabloid magazines. We call the dataset web-pic.1

By far not all of the texts are high-quality journalism (even after excluding
tabloids). Nevertheless, the composition of the dataset does reflect, to a degree,
the publishing volume of large Czech journalistic portals.

Many articles have more than one illustrative image. However, some of these
images may be connected only to specific portions of the texts. Determining and
annotating this relationship in the dataset is reserved for future work.

It is necessary to note that this dataset is sparse with respect to recall: while
we do have appropriate images for each text, we by far do not have all appropri-
ate images for the given text, or at least a decent sample thereof; furthermore,
we do not know how sparse the dataset is in this respect. The manual anno-
tation described in 4.4 may go some way towards estimating the magnitude of
this problem. (This sparsity is in direct contrast to the data of Srivastava and
Salakhutdinov [?] who can use a rich “network” of connections between individual
texts and images by exploiting the category labels of each of their data points.)

4.1 Statistics

The document counts and lengths for individual sources (subcorpora) are:

Subcorpus # of docs # of images
aha (T) 5418 7521
ble (T) 5473 15555
cen 2446 5495
den 763 1177
e15 519 910
eur 157 163
idn 16017 31462
kaf 276 798
nov 9036 15613
ref 660 809
sup (T) 2741 16638
tis 683 744
tyd 387 1176

Table 4.1: Subcorpora statistics

We only use articles and texts that are not reports of specific events. Illus-
tative images for reporting articles are usually custom-made for the event that
is being reported on, so there is no reason to automatically provide one; further-
more, the features that make a good accompanying image for such a report are

1The dataset will be available under this name from the LINDAT/CLARIN infrastructure.
The image features (see 5.1 for details) will be released; the release of the images themselves is
complicated legally and we are investigating our options.

29

very different from those that make a good illustrative image for e.g. a lifestyle
article.

The dataset has been lemmatized and tagged using the MorphoDiTa mor-
phological tagger [77]. Tags are positional; the tagset is described by Hajič in
[32].

4.2 Dataset cleaning

Even after crawling and retrieving raw text and images, the dataset had to be
further cleaned because of irrelevant images stemming from news outlet habits:
embedding advertisement images into the texts, referencing other articles with
images and other ”junk” images randomly gleaned from the surroundings of the
text. These spurious images were filtered out using simple rules hand-crafted for
each subcorpus based on manual exploration of the roles of images of different
sizes.

However, the dataset is most probably not completely clear in this respect; it
is plausible that some junk images were missed during cleaning. This is a possible
source of noise and the only estimate we have of its magnitude is the proportion
of original images tagged by annotators (see 4.4.4).

Further, we determined by manual inspection that the majority of the tabloid
articles are accompanied by irrelevant images that serve merely to draw reader
attention, or are pictures of specific persons for celebrity gossip articles. The
proportion of such images was about 80 - 90 % in the aha and ble subcorpora
and 50 % in the sup subcorpus. In our experiments, we decided to discard
the tabloid data.

4.3 Text-image relationships

Usually, the images are assigned to the texts they illustrate not by the author
of the text, but by an editor who specializes in choosing illustrative images (we
will call him/her the illustrator). The goals of this illustrator are not to simply
show what is in the article, but to draw such readers to the text that will spend
time with viewing the article. This strategy results in a range of ways in which
the image is relevant (or, in some cases, irrelevant) to the content of the text.

The prototypical case is a simple fit between the article topic and the content
of the image (drawing readers that are simply interested in the topic). 2 In some
articles, the illustrator chooses a tangential topic. Sometimes, there is only a very
loose association between the content of the article and its accompanying image.

2The translation of the Czech texts from the examples to English was done by the author
of this work.

30

To beat, or not to beat?
On dealing with a teen who
looks a little different. Ear-
rings through the tongue, blue
hair, a black cloak all the way
to the ground or trousers eight
sizes too large, with the crotch
at the knees? If you are ashamed
to go out in the street with
your almost-adult progeny, then
that’s all right

Figure 4.1: Direct illustration of the topic of the article.

DANGEROUS MEDICINE
What do the actress Jǐrina Bo-
hdalová and top athletes have in
common? Ozone in their blood.
They are getting high on their
own blood infused with a mix-
ture of oxygen and ozone. So
do those who want to slow down
aging and cure a variety of dis-
eases associated with it. How-
ever, this medicine is dangerous
and a felony.

Figure 4.2: Tangential topic illustration

4.4 Annotation

The downloaded web-pic dataset is sparse, in the sense that it exhibits poor
recall – only one or sometimes a few of many possible illustrative images have been
chosen for each article. Therefore, we have performed further manual annotation.

Annotators were shown items consisting of a text and twelve images. They
were asked to tag appropriate and also inappropriate images. Appropriate images
were defined as ”images that help the gist or message of the article get across”,
inappropriate images were defined as ”those that would lead the reader to misun-
derstand the gist/message of the article”, in the sense that if they were used, they
would promote an idea of what the article was trying to say incongruent with
the actual message. (For example, an article titled ”The beauty of the Azores”
that talks about how great the islands are for a slow family holiday should not
be accompanied by a photo of extreme sports.) The concept of inappropriateness
is based upon the fact that while an image can be related to the topic of the
article, associating that image with the article would produce a discrepancy for
the reader: based on the image, the reader would expect a different message than
the article is trying to convey. This is a situation that the image retrieval system
could easily get into – while it retrieves an image related to what is being talked
about in the article, the image is still wrong.

31

However, while appropriateness of illustrative images is easily understood in
intuitive terms, inappropriateness was an experiment with a very uncertain out-
come: it is not clear whether such a category can be meaningfully – with multiple
annotators agreeing – annotated.

Admittedly, the appropriateness and even more inappropriateness of an image
cannot be quantified well and described exactly. We rely on redundant annotation
items for an estimate of how reliably these concepts can be annotated. This is
one of the key questions of our annotation: how well can people agree on what
constitutes a good (bad) illustrative photo?

More accurately, the main goals of the annotation were:

• To reduce dataset sparsity for evaluation of the image retrieval model
• To estimate how severe the sparsity problem is
• To measure how robust the concept of an appropriate illustrative image is
• To gain a high-quality dataset for further experimentation, or to exclude

the possibility of getting one

4.4.1 Inappropriate images

The concept of inappropriate images merits further discussion. Appropriateness
is not unidimensional: while the content of an image is a category that plays a
major role in whether the image illustrates a text well, so does the effect it has
on the reader.

Problems with inappropriate items were pervasive. A percentage of the an-
notated articles had specific topics like a species of insect or a health problem;
images that were visually very similar to the topic – some other insect, a different
kind of rash, etc. – were technically inappropriate and misleading, by associating
the wrong “visual fact” with the topic of the text, but not in the way the category
was intended to function. That this is a problematic situation was understood
by the annotators as well, as pointed out frequently in the collected feedback.

4.4.2 Annotation process

The annotation was divided into two rounds, each round taking under a week to
complete. The first round was aimed at finding common problems, mostly mis-
interpretation of instructions, and getting the first rough estimates on how many
images will be tagged, what agreement to expect, etc. The second round was
aimed at producing an already viable dataset which will be subject to further
manual examination: reconstructing why the annotators chose to tag the im-
ages they tagged, what are some reasons for disagreement, etc. This qualitative
evaluation is yet to be undertaken.

Annotators were given incentives both for quantity and for quality. Qual-
ity was based on agreement: annotators were rewarded according to whether
they were able to tag the same images as other annotators. Since the num-
ber of tagged images itself was the quantitative incentive, we chose precision
(P (tagged | taggedbyother)) as the metric to evaluate annotator quality. Togeth-
er with sharing detailed information on agreement and item counts after the first
round, this balance was sufficient to keep the average number of images per item
consistent between annotators.

32

4.4.3 Annotation item selection

Annotation items consisted of one text and 12 proposed images. Of these, some
were picked as the closest to the original image associated with the text, the rest
were chosen randomly from the rest. We tried several settings for the balance of
closest/random images; the most satisfactory balance between obtaining results
for a text and exposing the annotators to images visually unrelated to the original
image was struck at 7 closest and 5 random images. (This ratio was selected by
manually inspecting the generated annotation items.)

With a probability of 0.5, the original image was left in the annotation item.
The ability of annotators to recover these original images serves as an important
measure of the agreement we can expect on this task. By leaving some out, on
the other hand, we try to avoid situations where one image is obviously much
better than all others, thereby decreasing the willingness of annotators to tag
images that while perhaps not as appropriate could work anyway.

4.4.4 Quantitative evaluation

The reported results are from the second round of annotations, as the first round
served mostly as fine-tuning for annotation instructions and was plagued by sev-
eral systematic problems that during the second round were fixed (misreadings
of the definition of inappropriateness, issues with timing, etc.). In total, 13 an-
notators participated in the second round (some, of course, more so than others).

Annot. # Items Avg./Item # App. Im. Avg. A. # Inapp. Avg. In.
Total: 5212 2.625 8462 1.624 5217 1.001
mar 239 4.038 627 2.623 338 1.414
ter 239 1.971 326 1.364 145 0.607
kri 1090 2.290 1507 1.383 989 0.907
cic 1034 2.591 1723 1.666 956 0.925
mag 259 2.378 444 1.714 172 0.664
jir 54 3.407 87 1.611 97 1.796
dag 124 2.460 305 2.460 0 0.000
ann 128 2.367 197 1.539 106 0.828
jan 226 2.730 441 1.951 176 0.779
haj 7 2.857 13 1.857 7 1.000
kub 323 2.065 414 1.282 253 0.783
ala 809 2.698 1174 1.451 1009 1.247
ven 680 3.196 1204 1.771 969 1.425

Table 4.2: Total annotated items and images for each category and annotator.
The columns are: annotator name, no. of items processed, average no. of im-
ages tagged per item, total no. of tagged appropriate images, average no. of
appropriate images per item, total no. and average of inappropriate.

As the basic means of measuring inter- and intra-annotator agreement, we
measure f1-score. F1-score, also known simply as f-score, is the harmonic mean
of precision and recall. Precision for a category C (e.g. appropriate) for annotator
A1 with respect to annotator A2 in item i is defined as the proportion of images

33

Annot. F-score % of median F-score # of dupl. items
Total 0.603 2030
mar 0.593 0.998 199
ter 0.624 1.049 182
kri 0.602 1.013 835
cic 0.649 1.091 804
mag 0.595 1.000 205
jir 0.589 0.990 38
dag 0.587 0.988 97
ann 0.545 0.916 101
jan 0.606 1.019 167
haj 0.533 0.897 5
kub 0.613 1.031 256
ala 0.592 0.996 663
ven 0.555 0.933 508

Table 4.3: Average F-score on appropriate images per annotator.

tagged as C by both A1 and A2 (referred to as ”hits”) in the set of images tagged
as C by A1.

Recall is then the proportion of hits in i in the set tagged as C by A2.
Recall indicates whether annotator A1 agreed with A2 on which items to tag,

precision indicates whether A1 agreed with A2 on which items not to tag. Low
precision and high recall means that while the annotators agreed on some of the
images, A1 had much more relaxed criteria for the category. And vice versa: high
precision and low recall means that A1 was stricter than A2. The worst case is,
naturally, both low precision and low recall, which means that the annotators
disagree on what constitutes an appropriate or inappropriate image for the given
text.

We also measured how often the annotators identified the original image as-
sociated with the article (see tab. 4.5) when it was present in the annotation
item.

34

Annot. F-score % of median F-score # of dupl. items
Total 0.446 2030
mar 0.087 0.190 199
ter 0.459 1.000 182
kri 0.520 1.133 835
cic 0.482 1.050 804
mag 0.481 1.047 205
jir 0.379 0.827 38
dag 0.505 1.101 97
ann 0.418 0.911 101
jan 0.405 0.882 167
haj 0.400 0.872 5
kub 0.556 1.212 256
ala 0.445 0.969 663
ven 0.346 0.754 508

Table 4.4: Average F-score on inappropriate images per annotator.

Annot. % orig. as app. # as app. % inapp. # inapp. % untagged # untg.
Total 0.792 2028
mar 0.922 106 0.000 0 0.078 9
ter 0.781 89 0.053 6 0.167 19
kri 0.751 411 0.062 34 0.186 102
cic 0.828 404 0.043 21 0.129 63
mag 0.764 97 0.094 12 0.142 18
jir 0.724 21 0.069 2 0.207 6
dag 0.864 51 0.000 0 0.136 8
ann 0.778 42 0.000 0 0.222 12
jan 0.885 100 0.009 1 0.106 12
haj 0.800 4 0.000 0 0.200 1
kub 0.819 122 0.047 7 0.134 20
ala 0.740 304 0.063 26 0.197 81
ven 0.769 277 0.097 35 0.133 48

Table 4.5: Proportion and number of original illustrative images tagged by an-
notators as appropriate, inappropriate or left untagged

35

5. Preprocessing

In order to make the text and image features usable for training a deep architec-
ture over them, several preprocessing steps have to be applied, both for text and
images.

5.1 Image Processing

For image processing, we use the state-of-the-art convolutional network of Krizhev-
sky et al. [45] (referred to as ImageNet CNN in this chapter) to provide the image
features, using the Caffe [40] implementation. We use the output of the last 4096-
neuron layer on the images in our dataset as the image features, and ”re-purpose”
them for our tasks. (The same ”trick” was used for example by Girshick et al. in
[28] for adapting the ImageNet classification to object detection.)

The network’s output 1000-neuron layer is not used because it encodes pre-
determined categories that do not correspond well to topics found in our dataset
(ImageNet topics are for instance ”Golden Retriever” or ”castle”, the topics found
in the news texts are rather ”banking”, ”health”, ”crime” or ”holidays”. Notably,
the ImageNet topics do not have a category for people, while the news texts
are almost exclusively concerned with human-centric topics.) While it may be
possible to express those topics in terms of the 1000 ImageNet categories, we
chose to use the representation that should be better-suited to learn various sets
of categories and more open to re-purposing.

5.1.1 ImageNet CNN

In order to correctly process these features, we need to understand both what the
features represent and how these features were obtained. The network has eight
layers, five convolutional and three fully connected. The convolutional layers are
a black box to us, as all their ”work” is processed by the first fully connected
layer. Because the network was trained by standard backpropagation, we cannot
discount the influence of the last layer, because that is where gradients backprop-
agated from. However, the features themselves were produced as a function of
the first fully connected layer activation and our layer’s weights and bias; this is
what we will focus on.

Units of the previous layer (and of all layers in the ImageNet CNN) are Rec-
tified Linear Units (ReLU). They use the activation function f(x) = max(0, x),
as described in [45]. ReLUs have since been found useful on other architec-
tures than CNNs, notably also Restricted Boltzmann Machines [37]. ReLUs are
non-saturating units that can output any value in the range < 0,+inf >. (In
addition, in the ImageNet network, the outputs of ReLUs in the convolutional
layers are further transformed to promote competition between neurons for large
activations.) This has works very well in supervised classification tasks, where
the target values of 0, 1 in the output layer act as a regularization on the absolute
values of activations throughout the network. However, in an unsupervised set-
ting, this regularization factor has to be supplied from somewhere else. Therefore,

36

in order to learn RBMs or Autoencoders above these image features, we need to
devise a suitable prior or a scaling scheme to model these inputs.

5.1.2 Image data properties

We first visualize a sample of the dataset:

Figure 5.1: A heatmap of the ImageNet layer activations, with 1000 randomly
chosen images. Lighter colors correspond to higher activation (white represents
an activation of 4.00 or higher). The top plot shows average activation of each
neuron in the sample. (The blue line represents a moving average over 20 adjacent
neurons and is scaled up by a factor of 2, to help visualize variations in average
activation. The peaks correspond to lighter columns of the heatmap.)

The overall sparsity (proportion of zeros) of the image dataset is about 61.4 %:
slightly more than one in three activations is non-zero. The average correlation
between feature pairs on this sample is slightly under 0.005, showing that co-
adaptation in this layer has been combatted successfully.

However, the dataset doesn’t lend itself easily to interpretation – we cannot
exactly say what the activity of each neuron means by itself. (This is a general
problem with neural networks: they are often difficult to interpret.)

The applicability of centering to zero mean is contrary to the intuition that
the data vector are sparse, with many of the neurons set to 0. This is especially
true for the text data, which is notoriously sparse: our text data has 0.354 % of
nonzero input activations after filtering. Centering, in this context, would move
all the zero activations to slightly less than zero, losing us the property of neurons
simply not contributing.

In order to compensate for the apparent non-uniform mean activation of the
image features, we applied the covariance-based scaling proposed by LeCunn et
al. in [48], eq. 16. They propose scaling each feature so that the covariance Ci
of each feature fi is ”about the same”, with Ci defined as

37

Ci =
1

N

N∑
n=1

(x(i)n)2 (5.1)

where x
(i)
n is the value of the i-th feature in data point xn. To scale the

features, we need to compute the covariance scaling coefficient ci. We set the
target covariance C̄ as the mean of all covariances Ci. The coefficient is then
obtained by solving for ci:

1

N

N∑
n=1

(ci ∗ x(i)n)2 = C̄ (5.2)

N∑
n=1

(ci ∗ x(i)n)2 = NC̄ (5.3)

c2i

N∑
n=1

(x(i)n)2 = NC̄ (5.4)

ci =

√
NC̄∑N

n=1(x
(i)
n)2

(5.5)

The transformed dataset exhibited the following distribution of feature values:
To compress the data into the (0, 1) range necessary for classical activation

functions to operate in, we then ran the ci-normalized data through the tanh
function. We observed that the most significant proportion of available activation
after applying the normalization are concentrated in the region, as evidenced by
the histogram of activations:

Note the beta distribution-like “hump”, which gives us an intuition about
what range of activation means that the neuron can safely be interpreted as
“switched on” when defining sparse priors.

5.1.3 ImageNet features for retrieval

Aside from using the image features as a representation of images (above which
we will build other representations, to reduce dimensionality), we wish to use the
features as a retrieval search space.

First, we need to establish that visually (or functionally) similar images are
represented close to each other in this space. This property of the image feature
space is not obvious. The top 1000-neuron layer was trained with one-hot vectors
of image categories, so at that level, similar vectors mean the image belongs to
similar semantic categories. However, at the previous level, dissimilar patterns
of activation may lead to similar activity in the classification layer, and similar
patterns to different classification. (Imagine all active neurons except for one
have a very weak connection to all output neurons, and in a similar example this
one neuron is switched off. The original network should, of course, not permit
such degenerate cases of practically useless neurons; this example serves merely to
illustrate that the meaning of proximity in representations may be very different.)

38

Figure 5.2: Histogram of feature values for the normalized image data. The red
line represents how much “total activation” is availabe in the dataset through
feature values in the given range. The

The easiest way to check that proximity in this feature space is useful is by
inspecting retrieval examples:

More examples are given in section 7.2.

5.2 Text Processing

The role of text preprocessing is essentially selecting words that are relevant to
the task. Preprocessing consists mainly of standart NLP techniques for battling
data sparsity: lemmatization, part-of-speech filtering, removing infrequent and
too frequent words. Also, we experimented with retaining as features only words
that occur in the beginnings of texts, assuming that the first few paragraphs of an
article sum up its message adequately, and with transforming the term-document
matrix using Tf-Idf transformation.

Lemmatization and morphological tagging was done using the MorphoDiTa
tagger [77], which uses the UFAL positional tagset [32]. All text experiments
were done over lemmas. We experimented with retaining autosemantic words
(content words: nouns, adjectives, verbs and adverbs) and subsets of those. The
tagger also handled segmentation into sentences.

It was found that omitting adverbs was also beneficial, as the majority of
frequent adverbs was also comprised of low-content words such as “how”, “a lot”,
“yesterday”, etc.

39

Figure 5.3: Histogram of feature values after applying the sigmoid.

Next, because journalistic texts most often condense the gist of their message
in the first few paragraphs, we experimented with retaining only a certain por-
tion of the text from the start. We tried both a fixed amount of sentences (5,
10, 20) and a proportion of the entire text (0.2, 0.3). However, to differentiate
signal from noise, we compute for the retained words frequencies from the entire
document - this way, words that are pertinent to the document’s actual topic gain
comparatively greater influence than words that occur more or less randomly, like
figures of speech journalists sometimes like to use in the opening paragraph.

At this stage, we apply the standard Tf-Idf transformation across the corpus,
and normalized each document vector to unit Euclidean norm.

Finally, we applied frequency filtering, discarding k′ most frequent words (gen-
eral terms and domain-specific irrelevant terms: ”to be”, ”to have”, ”time”,
”year”, ”author”) and retaining only the next K − k′ most frequent words. The
value of k′ was set to 10, since in positions around 11 - 20, words like ”man” or
”child” often appeared, which are already relevant to selecting images.

The extracted text features and their values with 10 sample sentences:

40

Figure 5.4: Similarity search in UCov. feature space. (Top left image is query.)

guitar 0.463
Is it difficult to play the guitar?
Most people are asking me whether it is
difficult to play the guitar. I say it’s
not. Everyone has something inside
they can utilize for themselves.
Learning to play well takes strong will.
I found out that I had musical talent. I
tried to play the guitar so much and
after a long effort, it was worth it. (. . .)

musical 0.386
learn 0.232
difficult 0.215
firm 0.154
try 0.154
willpower 0.154
everyone 0.108
want 0.081
person 0.040

Table 5.1: An example of 10 most prominent extracted text features

41

Figure 5.5: Image originally accompanying the article

Figure 5.6: Unfortunately but not too surprisingly, in this case, the image features
seem to have focused on the more prominent hand.

42

6. Deep Learning experiments

In this chapter, we describe the multimodal model(s) we used and the experi-
mental setup1 and the training procedure.

6.1 Multimodal model

Following the architecture of Srivastava and Salakhutdinov [73], we train two
stacks of unsupervised models and a joint “roof” layer. The stacks are trained
using the greedy unsupervised layer-wise pre-training procedure [33].

The entire learning process is unsupervised: the joint layer is also learned as
a generative (or pseudo-generative, for autoencoders) model with the inputs set
to a concatenation of the top-level image-only and text-only representations of
the training text-image pair.

Figure 6.1: The architecture of the multimodal model. (The optimal number of
the hidden layers is not necessarily 2.)

To obtain an image, the text is first transformed to successive representations
in the text processing pipeline. The text inputs to the joint layer are then fixed
at the activations obtained from the text pipeline and the values of the joint layer
and other image features are sampled from the model distribution conditioned on
the clamped text representation. (Because the lower-level text representations
are conditionally independent on the joint layer and image features given the
topmost text layer, we can disregard them at this stage.)

Once a sample of the image features is obtained, it is used as a similarity
query in the vector space of all available images in the data. We can choose the

1Because we were unable to learn a good representation for the text data, the full multimodal
model was in practice only run once, to verify the expected result: retrieving the same – or
very nearly same – images for each document. See 7.

43

level of representation at which we want to search: after training the image stack,
we can transform the original image data and build a similarity index using the
learned representations.

To obtain samples of top-level image activations, we should sample from the
full model, as described in [73]. We approximate this procedure by only sampling
the top layer, forgetting about the rest of the stack. This approximation allows us
to easily plug models without a straightforward probabilistic interpretation into
the image pipeline (as well as the text pipeline). To obtain the “proposed image”,
we run an alternating Gibbs chain for K steps between hIT and hI2, hT2, with
the clamping expressed as setting the proposal distribution p(k+1)(hT2 | h(k)IT) to

δ(h
(0)
T2),2 the distributions p(k)(hIT | hkI2, hkT2) and p(k+1)(hI2 | hkIJ) stay unchanged.

We initialize the chain at the “mean representation” hI2 = 1
D
∑|D|

j=1 hI2(j).
(Unfortunately, because of the failure of training a text representation, we

were not able to test whether the sampling procedure approximates sampling
from the full conditional p(hI2 | hIT , hI1, vI) well enough.)

6.2 Image models

Over the image modality, since the image features are already the results of an
advanced neural network [45], the task is less a question of finding a meaningful
representation and more of a straightforward dimensionality reduction task.

We experimented both with Autoencoders and Restricted Boltzmann Ma-
chines. The standard sigmoid activation σ(x) = 1

1+e−x was used. The image
stack was trained using Denoising Autoencoders with zero-masking noise and the
corruption level set to 0.3. The first layer was set to 1000 neurons, the second to
250. We used cross-entropy (defined in eq. 2.4) as the reconstruction function.

We applied both denoising autoencoders and RBMs.

6.3 Text models

We tried:

• Restricted Boltzmann Machines
• Sparse RBMs
• Replicated Softmax
• Denoising Autoencoders
• Sparse DAs

We tested hidden layer sizes of 2000, 1000, 250 and 100, with various activation
functions: sigmoid, piece-wise approximation of sigmoid, softplus, capped ReLU
and hyperbolic tangent. We also experimented with regularization: sparsity,
weight decay and bias decay.

Weights were initialized uniformly from the interval ±
√

6
‖V ‖∗‖H‖ and biases

were initialized to 0.

2The δ here stands for the Dirac delta function centered at the input text representation.

44

6.4 Training procedure

The learning algorithm was simple minibatch stochastic gradient descent. It is
more efficient computationally to use larger minibatches rather than multiple sm-
laler ones, thanks to thoroughly optimized matrix-matrix multiplication routines;
however, smaller batches allow for faster parameter updates, especially in the be-
ginning of training. We found a good convergence speed vs. training time per
item tradeoff at batch sizes around 100. The learning rate was kept at 0.13.

The Restricted Boltzmann Machines were trained using CD-1 to estimate the
gradient. The hidden layer was sampled and the mean (i.e. activation) was used
for the negative particle.3 The autoencoders were trained using gradient from
backpropagation4 computed using symbolic differentiation in theano. 8.2

All experiments were run on a Lenovo W520 workstation laptop, using the
NVidia Quadro 2000M GPU with 192 CUDA cores. Mathematical operations
were run using Intel’s MKL library [19] optimized for the Canopy distribution
[1] of the numpy [81] Python package. One epoch of training on the web-pic
training dataset took between 6 and 60 seconds, depending on the complexity of
the model. Without the GPU, training took about three times as long.

3As recommended in [?].
4Autoencoders are feedforward models, altough they are unsupervised, so backpropagation

applies. In a sense, they are “self-supervised” by the input data.

45

7. Results

We would very much like to report meaningful MAP (mean average precision)
results. However, all text representations we trained found a degenerate solu-
tion, representing all documents with the same (or extremely similar/correlated)
vectors. Therefore, as the image features are conditionally independent on the
text inputs given the text representations, the same images will be retrieved for
all documents. We have trained and run one full multimodal model and it con-
firmed that this was indeed the case. 1 The MAP@10 (10 pictures is a reasonable
number that a journalist can process as a query result) was 0.00.

This problem was caused squarely by the text pipeline: the neurons of the
topmost text layer are clamped when sampling the joint layer, so they will always
direct the top-level Gibbs chain in the same direction, regardless of what text was
given. On the image data separately, we were able to train denoising autoencoders
with retrieval properties comparable to retrieval in the original 4096-dimensional
space. We therefore focused our efforts on training usable text representations.

We were unfortunately unable to find settings or models that would overcome
these problems. In the rest of this chapter, we will present an analysis of the
networks’ behavior.

7.1 Analyzing text processing failures

We do not claim to have complete understanding of why learning document rep-
resentations failed. However, we will at least attempt to analyze the behavior of
the model and try to find some causes of the failure, and suggest remedies.

We will refer to the activation of the i-th input neuron in data item n as x
(n)
i .

The following preprocessing steps have been applied:

• Part of Speech filtering, retaining only nouns, adjectives and verbs
• Positional filtering: only words that appeared in the first 20 % of sentences

from each article were used, but their frequencies were counted over the
whole document.
• Capitalized lemmas were removed. This was especially useful for removing

pervasive geographical (“Czech Republic”) and reporter names.
• Tf-Idf processing was applied and the resulting data vectors (rows in the

visualizations below) were scaled to unit norm.

7.1.1 Data visualization

We will first visualize the text data. We plot the dataset heatmap and the
histogram of activations. The “starry sky” heatmap shows us what the samples
generated from a well-trained representation should look like (Fig. 7.1).

When looking at the activations in detail, we see that there is a bit less black
than it would seem at first sight (Fig. 7.2).

1The model used one hidden layer for each modality and one joint layer. The hidden layer
for images was a Denoisign Autoencoder with 2000 hidden neurons. For the text and joint
layers, we used a Restricted Boltzmann Machine. Both were trained for about 120 epochs,
until – apparently only temporary – convergence.

46

Figure 7.1: Plotting the activation of the dataset

Figure 7.2: A more detailed view of the activation on a small part of the dataset

There are, of course, naturally occurring correlations between features. The
clearly noticeable columns (Fig. 7.3) correspond to the words “scientist” and
“research”.

The (nonzero) feature activations over the entire dataset approximately follow
the distribution visualized in (Fig. 7.4).

7.1.2 Training a model

We will run SGD for a 250-neuron Restricted Boltzmann Machine on this dataset
to illustrate how the network’s distribution P (x, v) evolves.

The data on which we will be tracking the model’s behavior is visualized in
(Fig. 7.5). This is a part of the heldout data which do not contribute to gradient
descent.

The next figure 7.6 is a visualization of the corresponding hidden unit activa-
tion at initialization. Since

∑
i∈I,j∈J Wi,j is close to 0 for any index sets I, J due

47

Figure 7.3: Correlated features

to the weight initialization procedure (see 6.3), the activation falls very close to
0.5.

The reconstruction at initialization is also very close to the center of the
sigmoid, as illustrated in (Fig. 7.7).

After one pass over the training data, the CD-1 negative particles look like
(Fig. 7.8).

After seventy nine more passes, the negative particles look quite similar, as
evidenced by (Fig. 7.9)

Either the gradient has very quickly reached a plateau and cannot move away,
or there is a degenerate local minimum.

We first worked under the assumption that generating negative particles from
the unigram distribution P (v | D) is some sort of a local minimum that is hard to
leave because the counter-examples – where less common words play a major role
and frequent words don’t – are much less frequent, thus relegated to the level of
background noise, and the model will much rather optimize itself for the frequent
words.

We tried various regularization to force the model to change the kind of rep-
resentaiton it prefers: notably, the generalized notion of sparsity. By setting a
target mean activation for all features alike, we hoped to break up the “columns”
that stretched throught the data representation. Adding sparsity to a model is
easy: the loss function simply acquires a sparsity term for each neuron.

Sρ(x) = ρ log
ρ

ρ̂
+ (1− ρ) log

1− ρ
1− ρ̂

(7.1)

This is the KL-divergence of a Bernoulli distribution with mean ρ to a Bernoul-
li distribution with the empirical mean ρ̂.

However, adding sparsity also did not produce a desirable representation.
The activity of the network hints more at modeling document, instead of feature,
magnitudes.

Based on the observation in 7.2.2, we are currently leaning more towards the
variant that this area of modeling is a large plateau of the loss function that has

48

Figure 7.4: Distribution of feature weights. The red line corresponds to how
much of the total activation available is concentrated in such (n, i) that their

activations x
(n)
i fall within the given range on the X axis. (If the histogram was

uniform, the red line would be following Y = X.) The term P (0) refers to the
sparsity: the proportion of (n, i) s.t. xni = 0.

Figure 7.5: The heldout data on which we inspect model behavior.

to be crossed. Instead of a problematic loss function, we have a slow learning
algorithm.

Again, the culprit is most probably the sparsity of the trainig set. The inter-
action is simpler than competition: infrequent features probably just learn that
much slower. The model first learns to generate frequent words from the empiri-
cal categorical distribution very fast, because it has enough training examples to
“discover” the subspace of projecting to only these less sparse features and tries
to move there. It takes many more iterations for a word that is seen just eight or
ten times in the dataset to exert at least a slight “pull” on the model. Learning in
the subspace of frequent features simply goes a lot faster than for the infrequent
examples.

The appropriate remedy here would be a more sophisticated, faster learning
algorithm. If we are dealing with a smooth plateau, Conjugate Gradient may
help span larger distances, as it determines the optimal learning step using line
search. If the gradient is more or less consistently going in one direction (although
possibly zigzagging), the rprop algorithms may help speed it up considerably,
independent on the magnitude of the gradient.

49

Figure 7.6: Transformation with the initial parameter values.

Figure 7.7: Reconstruction with initial parameter values.

(It is also possible that a part of the problem lies in the Contrastive Divergence
algorithm. Some problematic behaviors of CD have been outlined by Breuleux
et al. in [13].)

7.2 Image results

Training the image stack was a matter of dimension reduction, as a state-of-the-
art distributed representation learned by the ImageNet CNN [45] was already
available. For this task, autoencoders are a natural choice; we also tried RBMs
to see how they would compare.

Since we cannot evaluate the image pipeline in the context of a multimodal
model, we at least provide a qualitative evaluation: comparing the output of a
similarity query at various levels of representation and try to find an interpretation
of similarity in the image representation spaces. Since visualizing the action of

50

Figure 7.8: Negative particles after the first epoch.

Figure 7.9: Negative particles after the 80th epoch.

neural network is difficult and an open research problem [25], we are going to
have to “resort” to our human understanding of the examples.

51

Figure 7.10: Representations learned after 40 epochs with a sparsity target set
to 0.3. Notice the range of heatmap colors. Setting different sparsity targets led
to the same structure learned, only at a different scale.

Figure 7.11: Negative particles from the trained model. Notice the grid-like pat-
tern: it probably represents some saddle-point in a transition from horizontally-
degenerate to vertically-degenerate states.

52

7.2.1 Inspecting retrieval

We report the original image and 9 most similar in the given representation.
Similarity is measured using the cosine distance. The query image is always the
top left thumbnail.

Figure 7.12: Original 4096 features + ci scaling + tanh sigmoid

First, we compare a scene of several well-defined textures. It seems that small
differences in texture have a much greater influence than a change of color: the
1000-neuron RBM (Fig. 7.15) retrieves a green field in between two practically
identical yellow fields. Also, the image of dark patches in ochre grass appears
very close to the top in 4 of 5 of the models, including the original, mimicking the
sunflowers; this would suggest that the image features encode also the presence
of “macro-textures”, regular edge structures on a larger scale.

53

Figure 7.13: Denoising autoencoder, 1000 neurons

Figure 7.14: Stacked Denoising Autoencoder, 1000 + 250 neurons

54

Figure 7.15: Restricted Boltzmann Machine, 1000 neurons

Figure 7.16: Stacked Restricted Boltzmann Machines, 1000 + 250 neurons

55

Figure 7.17: Original 4096 features + ci scaling + tanh sigmoid

Figure 7.18: Denoising autoencoder, 1000 neurons

56

Figure 7.19: Stacked Denoising Autoencoder, 1000 + 250 neurons

Figure 7.20: Restricted Boltzmann Machine, 1000 neurons

57

Figure 7.21: Stacked Restricted Boltzmann Machines, 1000 + 250 neurons

58

The second example shows various types of similarity the models are able to
notice practically orthogonal to each other: color, texture, positioning, scaling.
Texture – as was seen in the first example – seems to be dominant. However, it
is also an example where information is lost in transformation to the higher-level
representations and as a consequence, a potentially appropriate picture is missed.
The upper-right picture of a woman sleeping (Fig. 7.17) is unfortunately lost in
all the learned representations.

In the third set of examples, we can see how the lower-dimensional represen-
tations may help discover interesting new candidates. Both the stacked RBMs
(Fig. 7.26) and autoencoders (Fig. 7.24) have discovered the image of the man
with the cart and the autoencoders have also found a new image from the inside
of a cave. While one example is definitely not proof, it shows that one can gain
retrieval performance from training further layers above the high-quality image
features from Krizhevsky et al. [45], depending on how the model is trained.

The fourth and last set of examples of retrieved images uses a query image with
more clutter. It seems that the straight lines of the tripods in the query image
are a dominant feature for the original 4096-neuron representation (Fig. 7.27),
together with the presence of people, but not as much in the other models: the
3rd, 4th and 7th pictures of the top ten most similar images in the original image
feature space are not found among the top 10 anywhere else. On the other hand,
the 4096-1000-250 autoencoder (Fig. 7.29) model discovers a recording session
and a concert that the original model did not.

(The stacked RBMs (Fig. 7.31) may start relying more on the large-scale
distribution of brightness or color – the picture of soldiers looks very similar to a
vertical flip of the query image if one lets the picture blur; in the same way, the
Indian schoolroom is similar in the distribution of faces to a horizontal flip of the
query image, and the picture of Columbus also starts making a little more sense
when flipped horizontally.)

59

Figure 7.22: Original 4096 features + ci scaling + tanh sigmoid

Figure 7.23: Denoising autoencoder, 1000 neurons

60

Figure 7.24: Stacked Denoising Autoencoder, 1000 + 250 neurons

Figure 7.25: Restricted Boltzmann Machine, 1000 neurons

61

Figure 7.26: Stacked Restricted Boltzmann Machines, 1000 + 250 neurons

Figure 7.27: Original 4096 features + ci scaling + tanh sigmoid

62

Figure 7.28: Denoising autoencoder, 1000 neurons

Figure 7.29: Stacked Denoising Autoencoder, 1000 + 250 neurons

63

Figure 7.30: Restricted Boltzmann Machine, 1000 neurons

Figure 7.31: Stacked Restricted Boltzmann Machines, 1000 + 250 features

64

7.2.2 Visualizing learned representations

An important clue that the data is to “blame” for the failure of the text stack
is the progression of several epochs in the beginning of training the 1000-neuron
RBM. We plot the heatmap of the learned representations on a batch heldout
data after 3 (Fig. 7.32), 6 (Fig. 7.33) and 30 (Fig. 7.33) epochs of training.

Figure 7.32: Representation learned with the 1000-neuron RBM, sigmoid activa-
tions, after the third epoch

We see that while features were quite correlated in the beginning, the learning
successfully de-correlated them. This gives us certain hope that perhaps the
trouble with the text modality was the result of an underestimated amount of
time needed to train them, rather than a flaw in the models themselves.

65

Figure 7.33: Representation learned with the 1000-neuron RBM, sigmoid activa-
tions, after the sixth epoch

Figure 7.34: Representation learned with the 1000-neuron RBM, sigmoid activa-
tions, after epoch 30

66

8. Implementation

This chapter will shortly introduce tools available for deep learning and then give
a high-level overview of our dedicated codebase, the Safire library.

Even on modern hardware, deep neural networks still require a lot of com-
puting power. The algorithmic bottleneck for deep learning algorithms are the
mathematical operations that happen inside neural networks. For this reason, it
is highly beneficial to use a well-optimized mathematical library such as ATLAS
[83], OpenBLAS [63] or Intel’s MKL [19]. These libraries are written in C or
C++ and implement the BLAS specification.1

Notably, for the Python programming environment, the NumPy [81] and
SciPy [41] packages are available, which implement BLAS and can provide op-
timized math operations using these mathematical libraries. For Windows, the
Entought Python Distribution (recently renamed Canopy) [1] is linked to an
optimized version of MKL, which gives good speedups over a ”plain” NumPy
installation.2

8.1 Available tools for Deep Learning

Several neural network libraries exist that provide an implementation of the un-
derlying algorithms and can utilize the fast mathematical libraries. Among these
are FANN (Fast Artificial Neural Networks) [61], Caffe [40], Theano, [8] which
we used, PyLearn2 [31] or Torch7 [17] (which is implemented over the somewhat
exotic Lua language).

Furthermore, some of these libraries allow to transparently use CUDA GPUs
[60], when available, which means practically no time has to be spent on GPG-
PU programming itself. For Python, which we used in our implementation, the
cudamat library [56] is available for interfacing with CUDA code and the Theano
library allows CUDA GPU use completely transparently with a configuration
option (albeit only for 32-bit floats so far). In C++, the Caffe library also pro-
vides CUDA implementations. OpenCL [76] support among available tools is still
minimal.

A remarkably elegant tool that deals with machine learning for NLP is the
gensim Python library [64]. The library is designed to form pipelines from corpus,
transformer and index objects. Corpora serve to feed data in the form of sparse
vectors, transformers encapsulate machine learning algorithms as operations on
sparse vectors or entire corpora and indexes are used for retrieval based on cosine
similarity. The library is designed to keep a constant memory footprint using the
generator construct of Python. We implemented our library on top of gensim’s
interfaces, wrapping our models as transformer objects.

1https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
2Of course, on Linux systems, it would be much easier than on Windows to compile and

optimize ATLAS, for a similar performance range.

67

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

8.2 Theano

For the computationally intensive part of our library, we settled on using the
Theano library [8].3 Programming with Theano comes in two stages. First, the
programmer defines a symbolic graph of the computation. In the second stage,
the symbolic graph is compiled into a C function. This second step is performed
automatically - Theano parses the symbolic graph, applies numerous speed and
stability optimizations, dynamically generates the C code and compiles it.

A notable feature is the grad operation, which automatically builds a symbolic
graph for the gradient of another symbolic graph. This allows to define complex
computations without worrying about how to differentiate them.

Theano has several distinct advantages:

• Transparent CUDA GPU integration
• Symbolic differentiation (no need to compute gradients manually)
• Automatic optimizations to improve speed and numerical stability
• Easy to implement various formulae
• Relatively mature project, good support, documentation and tutorials
• Multi-platform: both Windows and Linux

It also has several disadvantages:

• A steep learning curve (it takes considerable time to learn to think in
symoblic expressions)
• Not quite perfect documentation
• Debugging is complicated, although well-documented
• Programming constructs like conditions or loops are difficult in symbolic

expressions
• While possible to set up on 64-bit Windows, it is not easy (again, docu-

mentation is available)

Theano doesn’t directly implement neural networks. However, its authors
from the LISA lab4 also provide a step-by-step tutorial on how to implement
them using Theano.5

We chose Theano for implementing the mathematical “guts” of the models
because of its performance, transparent use of GPU, symbolic differentiation and
importantly solid documentation, support and an active community.6

8.3 The SAFIRE library

The SAFIRE library is the codebase for this work (and related future work). It
is written in Python 2.7 using the EPD/Canopy distribution for 64-bit Windows.
Besides packages for scientific computing that are a part of Canopy (numpy,

3http://deeplearning.net/software/theano/introduction.html
4http://lisa.iro.umontreal.ca/index_en.html
5http://www.deeplearning.net/tutorial/
6The theano-users Google group sees around 20 posts daily, with the library developers usu-

ally responding within hours. https://groups.google.com/forum/#!forum/theano-users

68

http://deeplearning.net/software/theano/introduction.html
http://lisa.iro.umontreal.ca/index_en.html
http://www.deeplearning.net/tutorial/
https://groups.google.com/forum/#!forum/theano-users

scipy and matplotlib), SAFIRE depends also on the gensim [64] and Theano [8]
libraries.

The library is a medium-sized project, currently with about 24 000 lines of
code. It is divided into the safire package, which contains the library, and a suite
of scripts for preprocessing, training, running, evaluating, dataset manipulation,
etc. that are built above the safire package. The scripts are designed so that
they can be also used as pipeline components in an experiment: the functionality
of each script is contained in a main(args) method where args is a names-
pace of command-line arguments and a build argument parser() method that
constructs the argument namespace and awaits initialization through Python’s
versatile argparse standard library mechanism. This way, any of the scripts can
be called from within another Python module, enabling any users to construct
their own wrappers around SAFIRE functionality smoothly, without resorting to
Subprocess.popen() or fork calls.

8.3.1 Library design

The library is built around the gensim philosphy of pipelines that start with a
source of data and feed vectors through various transformations, keeping to a low
memory footprint. For retrieval, at the end of the pipeline, gensim’s Similarity
class is used as a search index.

The neural networks themselves are only loosely coupled to the gensim inter-
faces through a SafireTransformer wrapper class. The mechanism for training
neural networks is somewhat of a library within a library, in the safire.learning
module. It comprises of models, model handles, updaters, learners and a wrapper
that implements the gensim TransformationABC interface, so that the trained
models can be plugged into pipelines.

The model classes do not do anything; they implement definitions of their
namesakes described in this work as Theano function graphs. These function
graphs are constructed on model instance construction. In order to use the mod-
el – train it, use it to transform input data, etc. – model handles that provide
an interface for training, validating and running the model. The same model
can be re-used for different modes of operation by attaching to it multiple differ-
ent handles: for instance, the joint layer of a multimodal model has a different
handle for obtaining the joint representation from multimodal inputs and for
sampling image features given clamped text features. Model handles are given to
SafireTransformers at initialization; for transforming an incoming data vector,
the transformer only calls the handle’s run method.

The models are initialized indirectly, using a setup class method. This
method correctly initializes the model dimension and compiles the training, val-
idation, test and run functions. This is a somewhat convoluted setup, which is
brought about by the necessity to accomodate the idiosyncracies of theano: the
building of the symbolic computational graph for the training and other func-
tionalitites of the model is coupled to parameters of the learning algorithm such
as batch size or learning rate. (Refactoring to reduce this coupling is planned.)

The training itself is also “outsourced” to classes separate from the model.
Two classes participate in training: a learner, which runs the training, moni-
tors progress, etc., and an updater, which defines the learning rule. Different

69

learning algorithms as described in 3.3 would be implemented in updaters. Dif-
ferent learning strategies (like early-stopping) or facilities for monitoring progress
are available in the learner. Also, saving progress and the capability to resume
learning where it left off is implemented, although only in a very rudimentary
form.

For feeding data to models and keeping a constant memory footprint at the
same time, in line with the philosophy of gensim, a ShardedDataset class is
available that feeds matrices of input data to the models and in the background
dynamically loads shards from serialized files. (This action is modeled after the
Similarity class is implemented in gensim.)

Facilities are also available for experiment management. A directory structure
and naming scheme for keeping data and various components of the machine
learning pipelines is defined in the DataDirLayout class, above which Loaders
operate to feed the components to scripts that train, run or otherwise use them.

All components of the Safire library have save/load funcitonality. Due to
restrictions on serialization using Python’s cPickle module, a separate serializa-
tion scheme from gensim’s SaveLoad class is employed for the model classes and
classes that contain a model as a member which relies on taking a “snapshot” of
serializable instance attributes that sufficiently characterize the instance. Each
(sub)class with this save/load mechanism can be initialized using this instance
attribute snapshot.

The run.py and img index explorer.py have an interactive mode, a very
simple command-line interface, to explore the retrieval quality and the action of
the multimodal pipeline. These capabilities are rudimentary at best; however,
they have proven very useful and we plan to expand them significantly.

8.3.2 Available deep learning functionality

Classes for models belong into the safire.learning.models namespace. Mod-
els do not do anything; they implement definitions. The following models are
implemented:

• Feedforward layer,
• Logistic regression classifier layer,
• Autoencoders,
• Denoising Autoencoders, Sparse Autoencoders,
• Restricted Boltzmann Machines (with sparsity and weight decay penalties

as parameters),
• Replicated Softmax,7

The models can be concatenated together into a feedforward multilayer net-
work, the MultilayerPerceptron class.

Only the updater for the standard SGD learning rule θ(k+1) = θ(k) − lr ∗ ∇θ
is implemented.

7Known bug in sampling; in progress.

70

8.3.3 Advantages of the SAFIRE library

Once one is familiar with the Theano library,8 it becomes easy to add new mod-
els. (Implementing a sparse denoising autoencoder when a denoising autoencoder
was done was a matter of 20 minutes, including debugging.) This is thanks to
Theano’s automatic differentiation: within a class of models, only the loss func-
tion needs to be re-defined (and the corresponding parameters, like the sparsity
target, have to be added to the initialization parameters and to the instance
attribute snapshot, for persistence) and Theano takes care of the rest. In the
same way, adding different optimization algorithms is a matter of implementing
an Updater subclass (although it is necessary to be careful about what exactly
needs to be updated outside the model as well, such as the matrix of previous
updates for Rprop-family algorithms) and no modifications need to be made to
the model or the Learner class that executes the training loop.

Care is taken to make data loading efficient and as little a bottleneck as
possible, while maintaining a constant memory footprint. The ShardedDataset
class allows for matrices to be accessed in a way that the memory footprint stays
constant9 by splitting the entire dataset into shards on disk and reading only the
current shard into memory. For sequential access, which is usually the case when
training a network, this works very well; for non-sequential access such as in the
ShardedMultimodalDataset class, a simple cache is implemented to alleviate the
effects of “shard jumping”.

We also attempted to make error messages as informative as possible and in-
clude a command-line option to training scripts for debugging the insides of
Theano-compiled functions. In addition, each script has a standard -v and
--debug interface for turning on lower levels of progress logging. (It is rec-
ommended to use the --verbose, or -v, option, as it provides the best balance
between being able to monitor that everything is running OK and having a lot
of clutter in your console that is useless unless actually debugging an error.)

8.3.4 Disadvantages and future work

Although we have been able to carry out various experiments and the SAFIRE
proved useful, flexible and efficient, it is not yet a mature software product from
a software engineering perspective. During extensive use for this work, it has
grown to a point where refactoring into a separate experiment management and
machine learning library would be beneficial.

The more pressing issues from the software development cycle point of view
are:

• Some unit tests are available but mostly re-purposed for scenario testing to
verify that the pipelines for basic training and runtime tasks work. Unit
tests in the true sense of the word are available only for a small number of
utility functions.

8Which is not easy, but quite worth familiarizing oneself with, anyway.
9With the caveat of a known memory leak that is the result of some strange interaction of

the “self” special instance method argument with Python 2.7’s garbage collector in a special
case of indexing the dataset.

71

• While API documentation is generated using the Sphinx [12] autodoc mod-
ule and – at least for the deep learning components – relatively complete,
user documentation is available only in the form of a tutorial and introduc-
tory remarks to individual classes with doctest examples.
• Facilities for distributing the library using the standard distutils library

– the ubiquitous setup.py script – is not available.

Features missing, incomplete or in need of redesign:

• Facilities for monitoring the learning process, while available, need to be
refactored away to a separate Monitor class that the learner uses.
• The experiment management component needs to be able to automatically

and consistently generate labels for experiment components based on input
parameters.
• Coupling between the learning process parameters, gradient descent up-

dates and model at model initialization complicate library design. While
the Updater classes are a step in this direction, it should be investigated
how to de-couple them further.
• The process of setting up training updates for Contrastive Divergence train-

ing in RBMs needs to be refactored, as there is currently a coupling that is
preventing delegating the update step generation to an Updater class.

8.4 The attached CD

The Safire library with a sample data set and tutorial is included with this the-
sis as supplementary material on a CD enclosed with this thesis. There is a
README.rst text file in the root directory that contains all necessary information
on running the library.

72

9. Conclusions and Discussion

This work has not attained its main goal. We were unable to train a working deep
learning model for the text-image modeling task. This is due to several factors:

• Difficulty of training deep learning models. We underestimated how
complex the training process for a multi-layer unsupervised neural network
is.
• Strategic miscalculations, which are detailed below. The strategic errors

made caused a drain on resources – time – that accounts for the lack of
positive results.

First, the difficulty of training a deep neural network was severely underesti-
mated.

Second, while the SAFIRE library is not a bad tool per se, it was a much
greater development project than anticipated. Programming took up far too
much time and not enough time was left for experimentation. While the volume
of code (roughly 24 000 lines) may sound like a significant amount of work and
the library is ready for running and managing experiments, it is still not near a
mature software product. The decision to create a dedicated codebase for both
the experiment management and machine learning parts (although this division
only became clear as the specification evolved) was probably wrong; the available
tools like the pylearn2 library should have been investigated more thoroughly.

Also, further time was spent on coordinating the annotation project which,
while promising for the research of article-illustrative image relationships, has
had little impact on the experiments.

In general, the work is at a sort of half-way point. The Safire library, while
not a mature piece of software, can be used for experimenting in earnest and
is easily extensible, and the image features obtained from the ImageNet CNN
are appropriate for content-based retrieval, However, as evidenced by the lack
of progress, more experimentation is needed on the text document models. We
also need a greater understanding of how the networks train and how to interpret
different types of failures to be able to design a model and set hyperparameters
so that learning doesn’t converge to a degenerate solution.

9.1 Future work

First, there is some hope with regard to overcoming the sparsity issue: based on
the observations in Sect. 7.1, we tried training a 250-neuron RBM on the text
data with L2 weight decay and extra bias decay and a vastly prolonged training
schedule (1000s of epochs, after the observations in Sect. 7.2.2). The learned
representations on a heldout sample eventually looked like (Fig. 9.1). While
strong correlations between feature activities are still pronounced, the model has
been able to move away somewhat from the P (xi | D) loss function plateau.

It is possible that if this process was run for several more days or (probably
rather) weeks, a useful representation could indeed have been learned.

73

Figure 9.1: 250-neuron RBM on normalized data with weight decay

More optimization methods such as momentum, rprop or second-order meth-
ods should also be explored. Also, dropout and other types of noise than zero-
masking should be applied, and better normalization of data such as the centering
trick for RBMs should be applied.

We plan to investigate priors for the learned representations with more com-
plex desirable patterns of activation; notably sparse Dirichlet or Pitman-Yor pri-
ors for multinomial units such as in the Replicated Softmax model. Some research
has been done on Spike-and-Slab priors for RBMs, which also have interesting
sparsity properties [20] [30].

On a different track, we plan to use neural network language models like
the skip-grams of Mikolov et al. [54] as a transformation of the input, to gain a
somewhat denser and less volatile representation for words. Training such models,
however, will require orders of magnitude larger text data than we had.

While released as supplementary material for this thesis, much work remains
on making the SAFIRE library ready for a full release. The merit of maintaining
the library and its components will have to be assessed.

The manual annotation of the dataset will be further investigated in order to
understand the relationship we are trying to model. A better understanding here
may lead to more suitable text preprocessing steps.

9.2 Concluding remarks

It may well be that the image (Fig. 9.2) that was retrieved by the failed mul-
timodal model referenced in 7 as the top candidate for over 60 % of texts (and
was second or third for practically all others) is exactly the image worth these
previous (several) thousand words.

While we have produced a resoundingly negative result on training the text
modality and were unable to build a working multimodal model, we are hopeful
that the lessons learned will help us to train better models in the future.

74

Figure 9.2: The image that was retrieved as the top candidate for over 60 percent
of the evaluation data texts. A fitting conclusion? Let us hope not entirely.

75

Bibliography

[1] Enthought canopy (version 1.4.0), 2014.

[2] Y. Bengio, R. Ducharme, and P. Vincent. A neural probabilistic language
model. Journal of Machine Learning Research, 3:1137–1155, 2003.

[3] Yoshua Bengio. Practical recommendations for gradient-based training of
deep architectures. CoRR, abs/1206.5533, 2012.

[4] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation
learning: A review and new perspectives. CoRR, abs/1206.5538, 2012.

[5] Yoshua Bengio and Olivier Delalleau. Justifying and generalizing contrastive
divergence. Neural Comput., 21(6):1601–1621, June 2009.

[6] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, Univer-
sité De Montréal, and Montréal Québec. Greedy layer-wise training of deep
networks. In In NIPS. MIT Press, 2007.

[7] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized
denoising auto-encoders as generative models. CoRR, abs/1305.6663, 2013.

[8] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan
Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. Theano: a CPU and GPU math expression compiler. In
Proceedings of the Python for Scientific Computing Conference (SciPy), jun
2010. Oral Presentation.

[9] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research, 3:993–1022, 2003.

[10] Léon Bottou. Stochastic gradient tricks. In Grégoire Montavon, Genevieve B.
Orr, and Klaus-Robert Müller, editors, Neural Networks, Tricks of the Trade,
Reloaded, Lecture Notes in Computer Science (LNCS 7700), pages 430–445.
Springer, 2012.

[11] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning.
In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems, volume 20, pages 161–168. NIPS
Foundation (http://books.nips.cc), 2008.

[12] Georg Brandl et al. Sphinx, 2007.

[13] Olivier Breuleux, Yoshua Bengio, and Pascal Vincent. Rates-fpcd: A better-
mixing sampling procedure for rbms. 2010.

[14] Miguel A. Carreira-Perpinan and Geoffrey E. Hinton. On contrastive diver-
gence learning. 2005.

[15] A. Coates, H. Lee, and A. Y. Ng. An analysis of single-layer networks in
unsupervised feature learning. In AISTATS, 2011.

76

[16] Adam Coates and Andrew Ng. The importance of encoding versus train-
ing with sparse coding and vector quantization. In Lise Getoor and Tobias
Scheffer, editors, Proceedings of the 28th International Conference on Ma-
chine Learning (ICML-11), ICML ’11, pages 921–928, New York, NY, USA,
June 2011. ACM.

[17] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like envi-
ronment for machine learning. 2011.

[18] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuk-
sa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12:2493–2537, 2011.

[19] Intel corporation. Math kernel library, January 2014.

[20] Aaron C. Courville, James Bergstra, and Yoshua Bengio. A spike and slab
restricted boltzmann machine. In AISTATS, pages 233–241, 2011.

[21] George E. Dahl, Ryan Prescott Adams, and Hugo Larochelle. Training re-
stricted boltzmann machines on word observations. CoRR, abs/1202.5695,
2012.

[22] Guillaume Desjardins, Aaron Courville, Yoshua Bengio, Pascal Vincent, and
Olivier Delalleau. Tempered Markov Chain Monte Carlo for training of
restricted Boltzmann machines. In Yee Whye Teh and Mike Titterington,
editors, Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, May 13-15, 2010, Chia Laguna Resort, Sardinia,
Italy, pages 145–152, 2010.

[23] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159, 2011.

[24] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol,
Pascal Vincent, and Samy Bengio. Why does unsupervised pre-training help
deep learning? J. Mach. Learn. Res., 11:625–660, March 2010.

[25] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Vi-
sualizing higher-layer features of a deep network. Technical Report 1341,
University of Montreal, June 2009. Also presented at the ICML 2009 Work-
shop on Learning Feature Hierarchies, Montréal, Canada.

[26] Yansong Feng and Mirella Lapata. Topic models for image annotation and
text illustration. In Human Language Technologies: The 2010 Annual Con-
ference of the North American Chapter of the Association for Computational
Linguistics, HLT ’10, pages 831–839, Stroudsburg, PA, USA, 2010. Associ-
ation for Computational Linguistics. http://dl.acm.org/citation.cfm?

id=1857999.1858124.

[27] Asja Fischer and Christian Igel. Training restricted boltzmann machines:
An introduction. Pattern Recognition, 47(1):25–39, 2014.

77

http://dl.acm.org/citation.cfm?id=1857999.1858124
http://dl.acm.org/citation.cfm?id=1857999.1858124

[28] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmentation.
CoRR, abs/1311.2524, 2013.

[29] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS, pages 249–256, 2010.

[30] Ian J. Goodfellow, Aaron C. Courville, and Yoshua Bengio. Spike-and-slab
sparse coding for unsupervised feature discovery. CoRR, abs/1201.3382,
2012.

[31] Ian J. Goodfellow, David Warde-Farley, Pascal Lamblin, Vincent Dumoulin,
Mehdi Mirza, Razvan Pascanu, James Bergstra, Frédéric Bastien, and
Yoshua Bengio. Pylearn2: a machine learning research library. arXiv preprint
arXiv:1308.4214, 2013.

[32] Jan Hajič. Disambiguation of Rich Inflection: Computational Morphology of
Czech. Karolinum, nakladatelstvi Univerzity Karlovy, 2004.

[33] G E Hinton and R R Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, July 2006.

[34] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov. Improving neural networks by preventing co-adaptation of feature
detectors, 2012.

[35] Geoffrey Hinton and Ruslan Salakhutdinov. Discovering binary codes for
documents by learning deep generative models. Topics in Cognitive Science,
3(1):74–91, 2011.

[36] Geoffrey E. Hinton. Training products of experts by minimizing contrastive
divergence. Neural Computation, 14(8):1771–1800, 2002.

[37] Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann ma-
chines vinod nair. In Proceedings of the 27 th International Confer- ence on
Machine Learning, 2010.

[38] Geoffrey E. Hinton. A practical guide to training restricted boltzmann ma-
chines. In Neural Networks: Tricks of the Trade (2nd ed.), pages 599–619.
2012.

[39] Christian Igel and Michael Hüsken. Empirical evaluation of the improved
rprop learning algorithms. Neurocomputing, 50(0):105 – 123, 2003.

[40] Yangqing Jia. Caffe: An open source convolutional architecture for fast
feature embedding. http://caffe.berkeleyvision.org/, 2013.

[41] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–. [Online; accessed 2014-07-19].

[42] Özgür Kişi and Erdal Uncuoğlu. Comparison of three back-propagation
training algorithms for two case studies. Indian Journal of Engineering and
Materials Sciences (IJEMS), pages 434–442, October 2005.

78

http://caffe.berkeleyvision.org/

[43] Ryan Kiros, Ruslan Salakhutdinov, and Zemel. Multimodal neural language
models. In Journal of Machine Learning Research: Workshop and Confer-
ence Proceedings, volume 32, pages 595–603, 2014.

[44] A. E. Kostopoulos and T. N. Grapsa. Self-scaled conjugate gradient training
algorithms. Neurocomputing, (72):3000–3019, 2009.

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifi-
cation with deep convolutional neural networks. In F. Pereira, C.J.C. Burges,
L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[46] Hugo Larochelle and Yoshua Bengio. Classification using discriminative re-
stricted boltzmann machines. In Proceedings of the 25th International Con-
ference on Machine Learning, ICML ’08, pages 536–543, New York, NY,
USA, 2008. ACM.

[47] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
November 1998.

[48] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr
and Muller K., editors, Neural Networks: Tricks of the trade. Springer, 1998.

[49] Kenneth Levenberg. A method for the solution of certain non-linear problems
in least squares. Quarterly of Applied Mathematics, 2:164–168.

[50] University of Montreal LISA lab. Deep learning tutorials, 2008.

[51] Alireza Makhzani and Brendan Frey. k-sparse autoencoders. CoRR,
abs/1312.5663, 2013.

[52] James Martens. Deep learning via hessian-free optimization. In ICML, pages
735–742, 2010.

[53] James Martens and Ilya Sutskever. Training deep and recurrent networks
with hessian-free optimization. In Neural Networks: Tricks of the Trade (2nd
ed.), pages 479–535. 2012.

[54] Tomáš Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient esti-
mation of word representations in vector space. CoRR, abs/1301.3781, 2013.

[55] Tomáš Mikolov, Stefan Kombrink, Anoop Deoras, Lukáš Burget, and Jan
Černocký. Rnnlm - recurrent neural network language modeling toolkit. In
Proceedings of ASRU 2011, pages 1–4. IEEE Signal Processing Society, 2011.

[56] Volodymyr Mnih. Cudamat: a cuda-based matrix class for python. Technical
report, 2009.

[57] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In ICML, pages 807–814, 2010.

[58] Andrew Ng. Sparse autoencoders.

79

[59] Jiquan Ngiam, Zhenghao Chen, Sonia A. Bhaskar, Pang W. Koh, and An-
drew Y. Ng. Sparse filtering. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett,
F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 24, pages 1125–1133. Curran Associates, Inc., 2011.
http://papers.nips.cc/paper/4334-sparse-filtering.pdf.

[60] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with cuda. Queue, 6(2):40–53, March 2008.

[61] S. Nissen. Implementation of a fast artificial neural network library (fann).
Technical report, Department of Computer Science University of Copen-
hagen (DIKU), 2003. http://fann.sf.net.

[62] Ben Poole, Jascha Sohl-Dickstein, and Surya Ganguli. Analyzing noise in
autoencoders and deep networks. CoRR, abs/1406.1831, 2014.

[63] Wang Qian, Zhang Xianyi, Zhang Yunquan, and Qing Yi. Augem: Au-
tomatically generate high performance dense linear algebra kernels on x86
cpus. In The International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’13), Denver, CO, November 2013.

[64] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010.
ELRA. http://is.muni.cz/publication/884893/en.

[65] M. Riedmiller. Advanced supervised learning in multi-layer perceptrons -
from backpropagation to adaptive learning algorithms. Computer Standards
and Interfaces, 16(5):265–278, 1994.

[66] M. Riedmiller. Rprop - description and implementation details. Technical
report, 1994.

[67] M. Riedmiller and H. Braun. A direct adaptive method for faster back-
propagation learning: The rprop algorithm. In IEEE INTERNATIONAL
CONFERENCE ON NEURAL NETWORKS, 1993.

[68] M Riesenhuber and Tomaso Poggio. Hierarchical models of object recogni-
tion in cortex. Nature Neuroscience, 2(11):1019–1025, 1999.

[69] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1. chap-
ter Learning Internal Representations by Error Propagation, pages 318–362.
MIT Press, Cambridge, MA, USA, 1986.

[70] Ruslan Salakhutdinov and Geoffrey E. Hinton. Replicated softmax: an undi-
rected topic model. In NIPS, pages 1607–1614, 2009.

[71] Tom Schaul, Sixin Zhang, and Yann LeCun. No More Pesky Learning Rates.
In International Conference on Machine Learning (ICML), 2013.

80

http://papers.nips.cc/paper/4334-sparse-filtering.pdf
http://is.muni.cz/publication/884893/en

[72] Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng, and Christopher D.
Manning. Parsing natural scenes and natural language with recursive neural
networks. In ICML, pages 129–136, 2011.

[73] N. Srivastava and R. Salkhutdinov. Multimodal learning with deep boltz-
mann machines. Proceedings of the 2012 NIPS conference, 2012.

[74] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

[75] Nitish Srivastava, Ruslan Salakhutdinov, and Geoffrey E. Hinton. Modeling
documents with deep boltzmann machines. CoRR, abs/1309.6865, 2013.

[76] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel pro-
gramming standard for heterogeneous computing systems. IEEE Des. Test,
12(3):66–73, May 2010.

[77] Milan Straka and Jana Straková. MorphoDiTa: Morphological dictionary
and tagger, 2014.

[78] R. L. Stratonovich. Conditional markov processes. Theory Probab. Appl.,
5(2):156–178, 1960.

[79] T. Tieleman. Training Restricted Boltzmann Machines using Approxima-
tions to the Likelihood Gradient. In Proceedings of the 25th international
conference on Machine learning, pages 1064–1071. ACM New York, NY,
USA, 2008.

[80] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion. J. Mach. Learn.
Res., 11:3371–3408, December 2010.

[81] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The numpy
array: A structure for efficient numerical computation. Computing in Science
and Engg., 13(2):22–30, March 2011.

[82] Nan Wang, Jan Melchior, and Laurenz Wiskott. Gaussian-binary re-
stricted boltzmann machines on modeling natural image statistics. CoRR,
abs/1401.5900, 2014.

[83] R. Clint Whaley and Antoine Petitet. Minimizing development
and maintenance costs in supporting persistently optimized BLAS.
Software: Practice and Experience, 35(2):101–121, February 2005.
http://www.cs.utsa.edu/~whaley/papers/spercw04.ps.

[84] Matthew D. Zeiler. Adadelta: An adaptive learning rate method. CoRR,
abs/1212.5701, 2012.

81

List of Tables

4.1 Subcorpora statistics . 29
4.2 Total annotated items and images for each category and annotator.

The columns are: annotator name, no. of items processed, average
no. of images tagged per item, total no. of tagged appropriate
images, average no. of appropriate images per item, total no. and
average of inappropriate. 33

4.3 Average F-score on appropriate images per annotator. 34
4.4 Average F-score on inappropriate images per annotator. 35
4.5 Proportion and number of original illustrative images tagged by

annotators as appropriate, inappropriate or left untagged 35

5.1 An example of 10 most prominent extracted text features 41

82

List of Figures

1.1 Tobacco advertising: associating positive imagery with cigarettes . 7
1.2 Anti-smoking advertisments . 7
1.3 Simple feedforward network . 10
1.4 Simple feedforward network visualization, “collapsed” connections.

The grey outlines represent visible variables, modelled after stan-
dard probabilistic graphical model notation. 11

1.5 A visualization of the classification network action. The loss func-
tion acts as the training criterion. 12

2.1 A plain autoencoder . 16
2.2 A denoising autoencoder. Note the relationship to the “plain”

autoencoder and how the reconstruction is computed. 18
2.3 A visualization of a RBM. The equations show how to compute

the activation of the hidden layer given the visible layer and vice
versa. 21

4.1 Direct illustration of the topic of the article. 31
4.2 Tangential topic illustration . 31

5.1 A heatmap of the ImageNet layer activations, with 1000 random-
ly chosen images. Lighter colors correspond to higher activation
(white represents an activation of 4.00 or higher). The top plot
shows average activation of each neuron in the sample. (The blue
line represents a moving average over 20 adjacent neurons and is
scaled up by a factor of 2, to help visualize variations in average
activation. The peaks correspond to lighter columns of the heatmap.) 37

5.2 Histogram of feature values for the normalized image data. The
red line represents how much “total activation” is availabe in the
dataset through feature values in the given range. The 39

5.3 Histogram of feature values after applying the sigmoid. 40
5.4 Similarity search in UCov. feature space. (Top left image is query.) 41
5.5 Image originally accompanying the article 42
5.6 Unfortunately but not too surprisingly, in this case, the image

features seem to have focused on the more prominent hand. 42

6.1 The architecture of the multimodal model. (The optimal number
of the hidden layers is not necessarily 2.) 43

7.1 Plotting the activation of the dataset 47
7.2 A more detailed view of the activation on a small part of the dataset 47
7.3 Correlated features . 48
7.4 Distribution of feature weights. The red line corresponds to how

much of the total activation available is concentrated in such (n, i)

that their activations x
(n)
i fall within the given range on the X

axis. (If the histogram was uniform, the red line would be following
Y = X.) The term P (0) refers to the sparsity: the proportion of
(n, i) s.t. xni = 0. 49

83

7.5 The heldout data on which we inspect model behavior. 49
7.6 Transformation with the initial parameter values. 50
7.7 Reconstruction with initial parameter values. 50
7.8 Negative particles after the first epoch. 51
7.9 Negative particles after the 80th epoch. 51
7.10 Representations learned after 40 epochs with a sparsity target set

to 0.3. Notice the range of heatmap colors. Setting different spar-
sity targets led to the same structure learned, only at a different
scale. 52

7.11 Negative particles from the trained model. Notice the grid-like
pattern: it probably represents some saddle-point in a transition
from horizontally-degenerate to vertically-degenerate states. . . . 52

7.12 Original 4096 features + ci scaling + tanh sigmoid 53
7.13 Denoising autoencoder, 1000 neurons 54
7.14 Stacked Denoising Autoencoder, 1000 + 250 neurons 54
7.15 Restricted Boltzmann Machine, 1000 neurons 55
7.16 Stacked Restricted Boltzmann Machines, 1000 + 250 neurons . . . 55
7.17 Original 4096 features + ci scaling + tanh sigmoid 56
7.18 Denoising autoencoder, 1000 neurons 56
7.19 Stacked Denoising Autoencoder, 1000 + 250 neurons 57
7.20 Restricted Boltzmann Machine, 1000 neurons 57
7.21 Stacked Restricted Boltzmann Machines, 1000 + 250 neurons . . . 58
7.22 Original 4096 features + ci scaling + tanh sigmoid 60
7.23 Denoising autoencoder, 1000 neurons 60
7.24 Stacked Denoising Autoencoder, 1000 + 250 neurons 61
7.25 Restricted Boltzmann Machine, 1000 neurons 61
7.26 Stacked Restricted Boltzmann Machines, 1000 + 250 neurons . . . 62
7.27 Original 4096 features + ci scaling + tanh sigmoid 62
7.28 Denoising autoencoder, 1000 neurons 63
7.29 Stacked Denoising Autoencoder, 1000 + 250 neurons 63
7.30 Restricted Boltzmann Machine, 1000 neurons 64
7.31 Stacked Restricted Boltzmann Machines, 1000 + 250 features . . 64
7.32 Representation learned with the 1000-neuron RBM, sigmoid acti-

vations, after the third epoch . 65
7.33 Representation learned with the 1000-neuron RBM, sigmoid acti-

vations, after the sixth epoch . 66
7.34 Representation learned with the 1000-neuron RBM, sigmoid acti-

vations, after epoch 30 . 66

9.1 250-neuron RBM on normalized data with weight decay 74
9.2 The image that was retrieved as the top candidate for over 60

percent of the evaluation data texts. A fitting conclusion? Let us
hope not entirely. 75

84

Attachments

Deriving the gradient of RBM negative log-likelihood
Given an energy function E and the following definitions of the free energy

F , probability distribution P (x) and normalization constant Z:

F(x) = −log
∑
h

e−E(x,h) (9.1)

Z =
∑
x̃

e−F(ṽ) (9.2)

P (x) =
e−F(x)

Z
(9.3)

we obtain the following gradient of the negative log likelihood `(x) with respect
to the model parameters θ:

−∂logp(x)

∂θ
=

[
−log e

−F(x)

Z

]′
θ

= −
[
logeF(x) − logZ

]′
θ

=
∂F(x)

∂θ
− [logZ]

′

θ (9.4)

Computing ∂logZ
∂θ

:

∂logZ

∂θ
=

1

Z

∂Z

∂θ

=
1

Z

[∑
x̃

e−F(x̃)

]′
θ

= −
∑
x̃

e−F(x̃)

Z

∂F(x̃)

∂θ

= −
∑
x̃

P (x̃)
∂F(x̃)

∂θ
(9.5)

and plugging into 9.4 :

−∂logp(x)

∂θ
=
∂F(x)

∂θ
−
∑
x̃

P (x̃)
∂F(x̃)

∂θ
(9.6)

85

	Introduction
	Neural networks
	Neural network training
	Other architectures

	Models in Deep Learning
	Autoencoders
	Denoising autoencoders
	Stacking autoencoders

	Restricted Boltzmann Machines
	Energy-based models
	The Restricted Boltzmann Machine model
	Contrastive Divergence
	Variants of RBMs

	Related Work
	Deep Learning
	Unsupervised pre-training

	Deep Learning in Natural Language Processing
	Neural Network Training
	Optimization algorithms
	Other tricks

	Text-Image Models

	Dataset
	Statistics
	Dataset cleaning
	Text-image relationships
	Annotation
	Inappropriate images
	Annotation process
	Annotation item selection
	Quantitative evaluation

	Preprocessing
	Image Processing
	ImageNet CNN
	Image data properties
	ImageNet features for retrieval

	Text Processing

	Deep Learning experiments
	Multimodal model
	Image models
	Text models
	Training procedure

	Results
	Analyzing text processing failures
	Data visualization
	Training a model

	Image results
	Inspecting retrieval
	Visualizing learned representations

	Implementation
	Available tools for Deep Learning
	Theano
	The SAFIRE library
	Library design
	Available deep learning functionality
	Advantages of the SAFIRE library
	Disadvantages and future work

	The attached CD

	Conclusions and Discussion
	Future work
	Concluding remarks

	Attachments

