
The Prague Markup Language (Version
1.1)

Petr Pajas, Institute of Formal and Applied Linguistics, Faculty of Mathematics
and Physics

Revision History
5 Dec 2005Revision 1.0.0

Initial revision for UFAL technical report no. TR-2005-29
4 Aug 2006Revision 1.0.1

Added revision history; added missing list of allowed attributes to the specification of the PML schema element root
1 May 2006Revision 1.1.0

This revision introduces schema language versioning, and several major changes concerning sequence, element, and root data types.
In this revision, element is no more a separate data type, but only a syntactic construction of a sequence (similar to the member subelement
of structure). A new data type container is introduced which replaces the previous data type function of element. Possible orderings
of sequence elements can now be specified via a regular-grammar-based attribute content_pattern.

Newly introduced PML schema elements import and derive provide modularization support for PML schemas.

This revision also restricts the format ID to the NCName production1 of Namespaces in XML2 and introduces a set of new formats based on
W3C XML Schema built-in simple types.

26 Jun 2006Revision 1.1.1
Since this revision, the root can also be of a container type.

Table of Contents
1. Introduction .. 2
2. PML data types ... 3
3. Atomic data formats ... 4
4. PML roles ... 6
5. Header of a PML instance .. 7
6. PML schema file .. 7
7. Processing modular PML schemas ... 17

7.1. Processing import elements ... 17
7.2. Processing derive elements ... 18

8. Numbering revisions of PML schemas .. 19
9. References in PML ... 20
10. Layers of annotation ... 20
11. Tools ... 21
A. Relax NG for PML schema ... 21
B. Examples .. 29

1. Dependency trees ... 30
2. Constituency trees .. 32
3. Internal references .. 35
4. External references ... 38
5. Modular schemas .. 43

Revision history markup: This is how a paragraph added between two latest major revisions
looks like.

1 http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName
2 http://www.w3.org/TR/1999/REC-xml-names-19990114/

1

About this document
This document has been generated with RenderX XEP.
					Visit http://www.renderx.com/ to learn more about
					RenderX family of software solutions for digital
					typography.

http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName
http://www.w3.org/TR/1999/REC-xml-names-19990114/

This is how a paragraph modified between two latest major revisions looks like.

1. Introduction
The Prague Markup Language (PML) is a common basis of an open family of XML-based data
formats for representing rich linguistic annotations of texts, such as morphological tagging,
dependency trees, etc. PML is an on-going project in its early stage. This documentation reflects
the current status of the PML development.

PML tries to identify common abstract data types and structures used in linguistic annotations
of texts as well as in lexicons (especially those intended for machine use in NLP) and other
types of linguistic data, and to define a unified, straightforward and coherent XML-based rep-
resentation for values of these abstract types. PML also emphasizes the following aspects of
linguistic annotation: the stand-off annotation methodology, possibility to stack layers of annota-
tion one over another, and extensive cross-referencing. PML also tries to retain simplicity, so
that PML instances (actual PML representation of the data) could be processed with conventional
XML-oriented tools.

Unlike, e.g. TEI XML, XHTML or DocBook, PML by itself is not a full XML vocabulary but
rather a system for defining such vocabularies.

A fully specified XML vocabulary satisfying the requirements constituted in this document is
called an application of PML. An Application of PML is formally defined using a specialized
XML file called PML schema. PML schema provides one level of abstraction over standard
XML-schema languages such as Relax NG3 or W3C XML Schemas4. It defines an XML
vocabulary and document structure by means of PML data types and PML roles. An XML
document conforming to a PML schema is a PML instance of the schema. PML data types,
described in detail in Section 2, “PML data types”, include atomic types (identifiers, strings,
integers, enumerated types, id-references, etc.), and complex types, which are composed from
abstract types such as attribute-value structures (AVS), lists, alternatives, and mixed-type se-
quences. We refer to a value of a complex type as a construct. The information provided by
PML roles is orthogonal to data typing. It identifies a construct as a bearer of an additional
higher-level property of the annotation, such as being a node of a dependency tree, or being a
unique identifier (see Section 4, “PML roles”).

Based on a PML schema of a particular application of PML, it is possible to automatically derive
a corresponding Relax NG schema that conventional XML-oriented tools can use to validate
actual PML instances (see Section 11, “Tools”).

All XML tags used in applications of PML belong to a dedicated XML namespace

http://ufal.mff.cuni.cz/pdt/pml/

We will refer to the above namespace as PML namespace.

PML schema files use the following XML namespace referred to as PML schema namespace:

3 http://www.relaxng.org/
4 http://www.w3.org/XML/Schema

2

The Prague Markup Language (Version 1.1)

http://www.relaxng.org/
http://www.w3.org/XML/Schema

http://ufal.mff.cuni.cz/pdt/pml/schema/

Currently PML reserves three element names from the PML namespace for the representation
of the technical elements: LM (for bracketing list members), AM (for bracketing alternative
members), and head (for a common PML instance header described in detail in Section 5,
“Header of a PML instance”).

2. PML data types
The PML currently recognizes the following abstract data types from which complex data types
are built by means of composition:

atomic type (cdata)
Atomic values are literal strings. The exact content of an atomic value may be further spe-
cified as its format (see Section 3, “Atomic data formats”). In the XML, atomic values are
(depending on the context) represented in XML either as a CDATA (i.e. text) content of an
element or as an attribute value.

enumerated types
An atomic-value type defined as an exhaustive list of possible values of that type.

structures
A structure is a versatile PML abstract type. Sometimes it is called a feature-structure, attrib-
ute-value structure or AVS. To avoid confusion with XML attributes, we refer to attributes
of a structure as members. A structure is similar to a struct type in the C programming
language. A structure is fully specified by names, types and optionally roles for each of its
members. Different members of the structure must have distinct names. The structure is
represented in XML by an element whose only content are attributes and/or sub-elements
representing the members of the structure. An attribute or sub-element representing a
member is named by the member and its content is the XML representation of the member's
value. The order of members in the structure as represented in XML may be arbitrary.
Whether a particular member is represented by an attribute or a sub-element is specified in
the PML schema, however, only members with values of atomic types can be represented
by attributes. Some structure members may in the PML schema be formally declared as re-
quired, in which case they must appear in the structure and its XML representation and must
have non-empty content. All members not explicitly declared as required are optional.

lists
PML offers unified representation of both ordered and unordered lists of constructs of the
same type (the list member type). PML lists represent data similar to arrays in various pro-
gramming languages. An XML element representing a construct of a list type must as its
only child-nodes have either zero or more XML elements named LM (“List Member”), each
representing a construct of the list member type, or else (as a compact representation of
singleton lists) its content must be of the list member type. List member type can not be a
list, i.e. lists of lists are not allowed. Technically, the difference between ordered and un-
ordered lists is only in the declaration. Ordered lists may still contain repeated member
(members with the same value). Applications are only required to preserve the ordering of
ordered lists.

3

The Prague Markup Language (Version 1.1)

alternatives
Similar to unordered lists but different in usage and semantics are alternatives. Alternatives
can be used to represent data where usually one value of a certain type is used, but under
some circumstances several alternative (or parallel) values are allowed. An XML element
representing an alternative of constructs of a certain type (alternative member type) is either
a representation of a construct of that type (in case of a single value, i.e. no actual alternative
values) or has as its only child-nodes two or more XML elements named AM (“Alternative
Member”), each of which represents a construct of the alternative member type. Alternative
member type must not be an alternative, i.e. alternatives of alternatives are not allowed.

sequences
Sequences are similar to ordered lists but do not require their member constructs to be of
the same type. Each member of a sequence is represented by an XML element whose name
is bound in the sequence definition with the type of the construct it bears and whose content
represents the value. The order and number of occurrences of elements in a sequence may
be specified by a regular expression or left unrestricted.

container
Containers are similar but simpler to structures and can be used to annotate a piece of data
by a set of attribute-value pairs with text-only values. They are represented in XML by an
element whose content is the data and XML attributes are the annotation. The content of a
container can be of any type except for a container and structure.
Important

Because of the compact representation of singleton lists and alternatives, a special care
should be taken when using containers with content whose type is a list or alternative of
containers or structures in order to avoid possible collisions between names of the attributes
of the container and attributes or members rendered as attribute of the contained (singleton)
container or structure. (This problem also applies to type derivation and also to inheritance
which is to appear in a future revision of this specification). To avoid such problems, applic-
ations serializing PML data to XML are allowed to surround singleton list or alternative
members within a container by LM or AM tags respectively, and they must do so if a name
collision is apparent from the PML schema.

3. Atomic data formats
PML currently recognizes the follwoing atomic data formats: In the future, specification for
more formats will be added and/or some generic mechanism for introducing user-defined
atomic formats will be added.

any
Arbitrary string of characters (used in all cases not covered by the formats below).

4

The Prague Markup Language (Version 1.1)

ID
An identifier string, i.e. a string satisfying the NCName production5 of the W3C specification
Namespaces in XML6. Note in particular that the specification explicitly forbids a colon
(:) to occur within an identifier.

Example: ab, doc1.para2, and _d3p9_34-a2, are all valid identifiers,

(whereas -ab, 234a, and a:x34 are all invalid).

PMLREF
An atomic value which either is of the ID format described above, or consists of two sub-
strings of the format ID delimited by the character #. Values of this format usually represent
a reference (link), see Section 9, “References in PML”.

Example: doc1#chap2-para3 or doc1.

Formats borrowed from the W3C XML Schema specification:
PML further recognizes the following selected XML Schema7 built-in simple types8 as PML
cdata formats (each format is specified to cover the lexical space of the corresponding
simple type in the XML Schema specification without consraining facets): string9 , normal-
izedString10 , token11 , base64Binary12 , hexBinary13 , integer14 , positiveInteger15 , negati-
veInteger16 , nonNegativeInteger17 , nonPositiveInteger18 , long19 , unsignedLong20 , int21

, unsignedInt22 , short23 , unsignedShort24 , byte25 , unsignedByte26 , decimal27 , float28 ,

5 http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName
6 http://www.w3.org/TR/1999/REC-xml-names-19990114/
7 http://www.w3.org/TR/xmlschema-0/
8 http://www.w3.org/TR/xmlschema-0/#CreatDt
9 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#string
10 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#normalizedString
11 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#token
12 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#base64Binary
13 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#hexBinary
14 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#integer
15 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#positiveInteger
16 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#negativeInteger
17 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#nonNegativeInteger
18 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#nonPositiveInteger
19 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#long
20 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#unsignedLong
21 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#int
22 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#unsignedInt
23 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#short
24 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#unsignedShort
25 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#byte
26 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#unsignedByte
27 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#decimal
28 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#float

5

The Prague Markup Language (Version 1.1)

http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/#CreatDt
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#string
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#normalizedString
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#normalizedString
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#token
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#base64Binary
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#hexBinary
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#integer
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#positiveInteger
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#negativeInteger
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#negativeInteger
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#nonNegativeInteger
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#nonPositiveInteger
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#long
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#unsignedLong
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#int
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#unsignedInt
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#short
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#unsignedShort
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#byte
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#unsignedByte
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#decimal
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#float

double29 , boolean30 , duration31 , dateTime32 , date33 , time34 , gYear35 , gYearMonth36 ,
gMonth37 , gMonthDay38 , gDay39 , Name40 , NCName41 , anyURI42 , language43 , IDREF44

, IDREFS45 , NMTOKEN46 , NMTOKENS47 ,

4. PML roles
PML roles indicate a formal role that a given construct plays in the annotation schema. Roles
are orthogonal to types, but usually are compatible only with certain types of constructs. Roles
are primarily intended to be used by applications processing the data. So far the following roles
have been specified:

#TREES
Only applicable to a list or sequence constructs. This role identifies a construct whose
member constructs represent dependency or constituency trees.

#NODE
Only applicable to a structure or a sequence-member construct. This role identifies a node
of a dependency or constituency tree.

#CHILDNODES
Only applicable to a sequence member or a container whose content is of a list or a sequence
and whose role is #NODE. or to a sequence in an element of role #NODE. This role identifies
a construct representing a list of child-nodes of a node in a dependency or constituency tree.

#ID
Only applicable to an atomic construct, typically with the format ID. A value with this role
uniquely identifies a construct (a structure, sequence, container, etc.) in the PML instance.
This means that all values with the role #ID within a PML instance are distinct..

29 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#double
30 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#boolean
31 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#duration
32 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#dateTime
33 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#date
34 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#time
35 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#gYear
36 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#gYearMonth
37 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#gMonth
38 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#gMonthDay
39 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#gDay
40 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#Name
41 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#NCName
42 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#anyURI
43 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#language
44 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#IDREF
45 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#IDREFS
46 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#NMTOKEN
47 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#NMTOKENS

6

The Prague Markup Language (Version 1.1)

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#double
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#boolean
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#duration
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#dateTime
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#date
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#time
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#gYear
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#gYearMonth
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#gMonth
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#gMonthDay
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#gDay
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#Name
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#NCName
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#anyURI
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#language
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#IDREF
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#IDREFS
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#NMTOKEN
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#NMTOKENS

#KNIT
This role indicates that the application may resolve the atomic value(s) as PML references
and replace their content with copies of the referenced PML constructs. This role is only
applicable to either:

• a structure member of atomic type with the PMLREF format

• a sequence element of atomic type with the PMLREF format

• a list of atomic members with the PMLREF format. The list must occur in a container
or as a structure member.

#ORDER
This role identifies a structure member containing a non-negative integer value used for
ordering nodes in an ordered tree.

#HIDE
This role identifies a structure member whose non-zero non-empty value indicates that an
application may hide the structure from the user.

5. Header of a PML instance
Every PML instance starts with the header element which must occur as the first sub-element
of the document element. The header element has the following sub-elements:

schema
Associates the instance with a PML schema file, indicating that the instance conforms to
the associated schema. The filename or URL of the PML schema file is specified in the at-
tribute href.

references
This element contains zero or more reffile sub-elements, each of which maps a filename
or URL (attribute href) of some external resource to an identifier (attribute id) used as
aliases when referring to the resource from the instance (see Section 9, “References in
PML”). If the external resource is an instance bound with the current instance as declared
in the PML schema, then reffile must have also a third attribute, name, containing the
name used in the tag reference in the PML schema declaration of the bound instance.
For every resource bound to the instance in the PML schema (using reference tag) there
must be a corresponding reffile.

6. PML schema file
In this section, the syntax of a PML schema file is specified. We describe the content of indi-
vidual PML schema elements by formal patterns similar to the grammar used in DTD for element-
content model specification:

name
lower-case literals denote names of XML elements

7

The Prague Markup Language (Version 1.1)

PCDATA
denotes arbitrary text content

EMPTY
denotes empty content

(...)
brackets delimit groups of adjacent content

?
indicates that the element or group whose specification immediately precedes is optional

*
indicates that the element or group whose specification immediately can be repeated

|
separates specifications of exclusively alternative content

,
separates specifications of adjacent content

A formal definition of the PML schema file syntax is available as a Relax NG schema, see
Appendix A, Relax NG for PML schema.

All elements of the PML schema file belong to the PML schema namespace. The following
elements may occur in a PML schema:

pml_schema
This is the root element of a PML schema file. It may have no attributes (except for the
xmlns declaration of the PML-schema namespace). It consists of an optional descrip-
tion, declarations of common instance references, Schema modularization instructions
import and derive, a root declaration and zero or more declarations of named types
(type).

PML schemas which contain no import and derive instructions are called simplified
PML schemas. The section Section 7, “Processing modular PML schemas” describes how
import and derive instructions are to be processed in order to obtain an equivalent
simplified PML schema.

Attributes

version
Version of the PML specification the schema conforms to, currently %pml_version;

Content: (revision?, description?, reference*, import*, de-
rive*, root?, type*)

revision
This optional element is used to assign a revision number to a particular version of the PML
schema, see Section 8, “Numbering revisions of PML schemas”

8

The Prague Markup Language (Version 1.1)

Content: PCDATA

description
This element provides an optional short description of the PML schema.

Content: PCDATA

reference
This element declares that each instance of the PML schema is bound with another PML
instance (usually of a different PML schema) and provides a hint for an application on how
to process the bound instance.

Attributes

name
a symbolic name for the bound instance. This name is used in the reffile element
in the referring file's header to identify the bound instance (see Section 5, “Header of a
PML instance”).

readas
the value trees instructs the application to read the bound instance as a sequence of
dependency or constituency trees; value dom instructs the application to read the bound
instance using the generic Document object model.

import
This element instructs an application processing the PML schema to load root and type
declarations from an external PML schema file specified in the attribute schema to the
current PML schema. The way in which the declarations are to be combined is described
in Section 7, “Processing modular PML schemas”.

Attributes

type
Name of a specific type to import from the external PML schema file.

schema
A filename or URL of the imported external PML schema file.

revision
Constrains revision of the imported schema to the specific value. See Section 8,
“Numbering revisions of PML schemas” for information on comparing revision numbers.
If this attribute is present, then minimal_revision and maximal_revision at-
tributes should be absent. (optional)

minimal_revision
Constrains the revision of the imported schema to revision numbers larger or equal
to the one specified. See Section 8, “Numbering revisions of PML schemas” for inform-
ation on comparing revision numbers. If this attribute present, then revision attribute
should be absent. (optional)

9

The Prague Markup Language (Version 1.1)

maximal_revision
Constrains revision of the imported schema to revisions numbers smaller or equal
to the one specified. See Section 8, “Numbering revisions of PML schemas” for inform-
ation on comparing revision numbers. If this attribute present, then revision attribute
should be absent. (optional)

Content: EMPTY

derive
This element instructs an application processing the PML schema to create a new type de-
claration by extending or modifying an existing base declaration specified by the type
attribute. The newly created type declaration is called the derived declaration. The base
declaration may either be one explicitely given by a type element, or a previously derived
one. The base declaration must declare one of the following types: structure, sequence,
container, or choice.

The element derivemust contain exactly one of the following subelements: structure,
sequence, choice, container, corresponding to the type of the base declaration. In
the context of the derive element, the content and semantics of either of the above listed
subelements differs from what is defined elsewhere in this specification in the following
way:

• each member, element, attribute, or value subelement either replaces a
member, element, attribute, or value with the same name (or content in case of value)
from the base declaration, if such a one exists, or adds a new member, element, attribute,
or value declaration to the derived structure, sequence, container, or choice declaration
(respectively).

additionally, the subelement may contain zero or more delete instructions each spe-
cifying a member, element, attribute, or value of the base declaration to be omitted from
the derived declaration.

See Section 7, “Processing modular PML schemas” for detailed instructions on processing
the derive instruction.

Attributes

type
A name of the base type declaration (required)

name
A name for the derived type declaration (optional). If not specified, the derived declaration
replaces the base declaration (this feature should be used with care and, advisably, only
for base declarations imported from external PML schemas).

Content: (structure | sequence | choice | container)

10

The Prague Markup Language (Version 1.1)

delete
This instruction can only occur in a structure, sequence, choice, or container
subelement of a derive element (and is therefore not included in the specifications of the
content of these individual elements).

The content is a name of a member, element, attribute, or value of a base declar-
ation to be omitted from the derived declaration; see derive and Section 7, “Processing
modular PML schemas” for processing details.

Content: #PCDATA

root
Declaration of the root element of a PML instance.

Attributes

name
The name of the element (required)

type
declares that the root-element's content is a construct of a given named type. This attribute
is complementary to content, i.e. if this attribute is present, then rootmust be an empty
element. The named type this attribute refers to must follow the content pattern specified
below.

Moreover, if the root element's content is declared as a container, then the container
content type may only be a sequence.

Content: (structure | sequence | container)

type
Declaration a named type. Named types are referred to from other elements using the attribute
type. A named type may only be referred from contexts where the actual type represented
by the named type is allowed. In other words, if an element in a PML schema refers to a
named type, then the content of the named type definition must be also a valid content for
the referring element.

Attributes

name
The name of the new named type (required)

role
The PML role of constructs of the type (optional)

Content: (alt | list | choice | constant | structure | contain-
er | sequence | cdata)

11

The Prague Markup Language (Version 1.1)

structure
Declares a complex type which is a structure with the specified members. Its content consists
of one or more member elements defining members of the structure.

Attributes

name
An optional name of the type. This name is not used in the PML schema, but may be
used by applications, e.g. when presenting constructs of the type to the user. (optional)

role
The PML role of the constructs of the type (optional)

Content: (member)+

member
Declares a member of a structure. The attribute name defines the name of the member. The
type of the member's value is specified either by the content or using the type attribute. It
is an error if a structure declaration contains two member declarations with the same name.

Attributes

name
Name of the member (required)

required
value 1 declares the member as required, value 0 declares the member as optional (default
is 0)

role
PML role of the member's value (optional)

as_attribute
value 1 declares that the member is in XML realized as an attribute of the element
realizing the structure. In that case, the value type must be atomic. Value 0 declares that
the member is realized as an XML element whose content realizes the value construct.
In the latter case case no restrictions are put on the value type (default is 0)

type
declares that the value type is the given named type (if this attribute is present, the element
must be empty)

Content: (alt | list | choice | constant | structure | contain-
er | sequence | cdata)

list
Defines a complex type as a list of constructs of a given type. The content defines the type
of the list members (unless a named type is specified in the type attribute).

12

The Prague Markup Language (Version 1.1)

Attributes

ordered
value 1 declares an ordered list, value 0 declares an unordered list (required)

type
declares that the constructs contained in the list are of a given named type (complementary
to content)

role
PML-role of constructs of the type - currently only roles #KNIT and #CHILDNODES
may be used with lists (optional)

Content: (alt | choice | constant | structure | container
|sequence | cdata)

alt
Defines a type which is an alternative of constructs of a given type. The content defines a
type of the alternative members (unless a named type is specified in the type attribute).

Attributes

type
declares that the constructs contained in the list are of a given named type (complementary
to content)

Content: (list | choice | constant | structure | container |
sequence | cdata)

choice
Defines an enumerated type with a set of possible values specified in the value sub-ele-
ments.

Content: (value)+

value
The text content of this element is one of the values of an enumerated type.

Content: PCDATA

cdata
Defines an atomic type. Constructs of atomic types are represented in XML as text or attribute
values. The atomic type is further specified using the format attribute which can have one
of the values listed in Section 3, “Atomic data formats”.

Content: EMPTY

constant
Defines an atomic type with a constant value specified in the content.

13

The Prague Markup Language (Version 1.1)

Content: PCDATA

sequence
Defines a data type representing ordered sequences of zero or more constituents. Each
constituent is either a string of text or a named element whose content data type is uniquely
determined by the element's name. The declaration of a sequence

• specifies elements which can occur in the sequence, uniquely mapping element names
to data types,

• indicates if text constituents are allowed to occur in the sequence (sequences permitting
text constituents are called mixed-content sequences),

• and, optionally, provides a simple regular-expression-like pattern describing all admissible
orderings of constituents (element and interleaved text) in the sequence

Two text constituents in a mixed-content sequences should never be adjacent, i.e. there must
always be an element occurring between every two text constituents.

Attributes

role
PML role of constructs of the type (optional)

content_pattern
This attribute constraints the order in which the constituents are allowed to appear in
the sequence by means of an expression called content pattern (very similar and concep-
tually equivalent to the grammar of the element content model declaration in DTD and
also similar to the syntax used in the productions in this specification).

The content pattern is built on content particles (cp's), which consist of constituent
specifiers, choice lists of content particles, or sequence lists of content particles. The
syntax of a content pattern is given by the following grammar production rules:

pattern ::= (choice | seq | cp)

cnst ::= (Element-name | '#TEXT')

cp ::= (cnst | '(' choice ')' | '(' seq ')') quantifier?

quantifier ::= ('?' | '*' | '+')?

choice ::= WS? cp (WS? '|' WS? cp)+ WS?

seq ::= WS? cp (WS? ',' WS? cp)* WS?

WS ::= (#x20 | #x9 | #xD | #xA)+

where pattern is the content pattern; a content particle (cp) represents one or more
constituents, which may appear in the sequence on a position in which the content particle
appears in the pattern; Element-name is a name of an element constituent (see element)
and represents any element constituent with this name; the string '#TEXT' represents

14

The Prague Markup Language (Version 1.1)

a text constituent; any of the content particles occurring in a choice group may appear
in the sequence at a position in which the choice group appears in the pattern; content
particles occurring in a seq group must each appear in the sequence in the order in
which it is listed in the group; optional quantifier character following a content
particle governs whether the content it represents may occur one or more (+), zero or
more (*), or zero or one times (?). The absence of a quantifier means that the content
specified by the content particle must appear exactly once; content particles, brackets,
commas, etc. may be optionally separated by white-space (WS).

A sequence matches a content pattern if and only if there is a path through the content
pattern, obeying the sequence, choice, and quantifier operators and matching each con-
stituent in the sequence against a cnst production (Element-name or '#TEXT').
It is an error if the pattern allows two adjacent text constituents.
Note

For compatibility with some SGML based content model implementations, it is advisable
(but not enforced) to avoid non-deterministic (1-ambiguous) content patterns such as
(a,b)*,a? (see e.g. Appendix E Deterministic Content Models (Non-Normative)48

to the XML 1.0 specification49 and the pointers therein). In particular, a constituent
should not match more than one occurrence of a cnst production in the content pattern.

Content: text?, (element)+

text
This element can be used at the beginning of the sequence element to indicate that the
sequence is of mixed-content. In that case, every (maximal) contiguous character content
(including white-space) occurring within the XML element representing the sequence is
treated as a constituent of the sequence.

Content: EMPTY

element
Declares an element constituent of a sequence. The attribute name specifies its name and
either the content or the type attribute defines the value type. It is an error if a sequence
declaration contains two elements with the same name.

Attributes

name
name of the element (required)

role
PML role of the construct (optional)

48 http://www.w3.org/TR/2004/REC-xml-20040204/#determinism
49 http://www.w3.org/TR/2004/REC-xml-20040204/#determinism

15

The Prague Markup Language (Version 1.1)

http://www.w3.org/TR/2004/REC-xml-20040204/#determinism
http://www.w3.org/TR/2004/REC-xml-20040204/#determinism

type
declares that the element's content is a construct of a given named type (complementary
to content)

Content: (alt | list | choice | constant | structure | contain-
er | sequence | cdata)

container
Declares a container type. A container consists of a content value accompanied by an an-
notation provided by a set of name-value pairs with atomic values called attributes. The
declaration consists of zero or more attribute declarations, followed by the content type
declaration. The content can be of any type except for container and structure. Containers
with empty content (indicated by absence of a content type declaration) are permitted.

Attributes

role
PML role of the construct (optional)

type
declares that the content is a construct of a given named type (complementary to content)

Content: attribute* (alt | list | choice | constant | sequence
| cdata)?

attribute
Defines an attribute of a container. The content defines the type of attribute's value.

Attributes

name
name of the attribute (required)

required
value 1 declares the attribute as required, i.e. one that must be present on its container;
value 0 declares the attribute as optional (defaults to 0 - optional)

role
defines a PML role of the attribute (optional)

type
defines the type of the attribute value as a given named type. The named type must be
atomic. (The type attribute is complementary to content.)

Content: (choice | cdata)

16

The Prague Markup Language (Version 1.1)

7. Processing modular PML schemas
A simplified PML schema is one which does not contain any import and derive. Simplified
PML schemas are thus self-contained.

This section describes how to process a PML schema containing import and derive instruc-
tions in order to obtain a simplified PML schema semantically equivalent to the original PML
schema (we call two PML schemas semantically equivalent if they describe the same class of
instances, mapping same data to same data types and identifying these types with the same PML
roles).

We describe the process of simplification of a PML schema by means of modifications to the
original PML schema, although a particular implementation might choose a different processing
strategy. See Section 11, “Tools” for a pointer to a reference implementation of this process.

A PML schema processor must first process all import instructions in the order in which they
appear in the PML schema and then process the derive instructions.

7.1. Processing import elements
We call current schema the PML schema containing the import element in turn, and imported
schema the PML schema referred to by the attribute schema of the import element. The
processing of the import instruction differs depending on the presence of the type attribute.

If the type attribute is present, the element is processed as follows:

• If the current schema contains a named type declaration with the attribute name equal to
the value of the type attribute of the import element, then the processing of the import
element stops and it is removed from the current schema (this includes cases when the type
declaration was added to the current schema during processing of any preceding import
elements).

• Otherwise, the imported schema is read from the file specified by a path (absolute or relative
to the location of the file containing the current schema) or an URL contained in the schema
attribute of the element import.

• The imported schema is parsed and its revision number is mached against revision
or minimal_revision and maximal_revision attributes of the import element
(if any of them is present). More specifically, if revision attribute of import is present
then the imported schema revision must be equal to it. If minimal_revision attribute
of import is present then the imported schema revision must be greater or equal to it. If
maximal_revision attribute of import is present then the imported schema revision
must be less or equal to it. It is an error if the revision of the imported schema does not
match these constraints. The details of revision numbering and comparison of revision
numbers are given in Section 8, “Numbering revisions of PML schemas”.

• The imported schema is processed according to these instructions into a simplified PML
schema. (It is an error if two or more PML schemas refer among themselves via import

17

The Prague Markup Language (Version 1.1)

elements in a way that forms a cycle or if a PML schema refers via the import element
to itself).

• A type declaration with name attribute equal to the type attribute of the import element
is located in the imported schema and copied to the current schema. It is an error if such a
declaration cannot be found in the imported schema.

• Every named type referred to by a type attribute from any element occurring within the
copied declaration is also copied from the imported schema to the current schema, unless a
type declaration with the same name already exists in the current schema. This step is
repeated as long as there are copied type declarations referring to declarations in the imported
schema for which there is no type declaration in the current schema with the same name
(either a copied or an original one). In other words, after copying the first type declaration,
other type declarations may be copied to the current schema so that all references to named
types are satisfied.

• Finally, the import element is removed from the current schema.

If the attribute type of the import element is absent, the instruction is processed as follows:

• The imported schema is read from the file specified by the schema attribute of the import
element, parsed and processed just as in the prior case.

• If the current schema does not contain root declaration and there is a root declaration
in the imported schema, it is copied to the current schema.

• Every type declaration is copied from the imported schema to the current schema, unless
there already is a type declaration with the same name in the current schema.

• The import element is removed from the current schema.

7.2. Processing derive elements
The derive instructions cannot be processed if the schema contains any non-processed import
instructions.

The derive element has an attribute type referring to a named type declaration which will
be called the base declaration. It is an error if the PML schema (after all preceding derive
instructions have been processed) does not contain a corresponding base declaration, i.e. a de-
claration whose attribute name equals to the attribute type of the derive element.

If the derive element contains an attribute name specifying a target declaration name, the
base declaration is copied to the PML schema as a new type declaration under the target de-
claration name. We refer to this copy as target declaration. It is an error if prior to creating the
target declaration the PML schema already contained a named declaration with the same name,
except for the case when the target declaration name is the same the name of the base declaration.
In the latter case, or if name attribute of the derive element is absent, the target declaration
is the base declaration.

18

The Prague Markup Language (Version 1.1)

The derive element and the target declaration must contain the same subelement, which is
one of structure, sequence, container, or choice. We refer to the subelement of
the derive element as template and to the subelement of the type element representing the
target declaration as target.

For each attribute of the template with a non-empty value the corresponding attribute on the
target is added or if already present, its value is changed to match the value on the template. If
an attribute is present on both the template and target but its value on the template is empty, the
attribute on the target is removed from the target element. All other attributes of the target are
left unchanged.

If the template (and hence also the target) is a structure element, all member subelements
of the template are copied into the target, unless the target structure already contains a
member subelement with the same name, in which case the member subelement from the
template replaces the corresponding subelement of the target structure. Then, for every
delete subelement of the template, the member subelement of the target structurewhose
name attribute equals to the content of the delete subelement is removed from the target
structure. It is an error if the template contains a delete for which there is no matching
member subelement in the target structure.

The processing of template and target elements which are a sequence, a container, or a
choice is defined analogously, replacing structure and member by sequence and
element, container and choice, or choice and value, respectively, and in the case
of a choice, using value element's content instead of the name attribute.

The derive element is removed from the PML schema after the template has been processed
as described above.

8. Numbering revisions of PML schemas
For maintenance and modularization purposes it is advisible that every revision of a PML schema
which adds or modifies type declarations is assigned a unique revision number. For this purpose,
PML provides the element revision of the PML schema. A modular PML schema using the
import instruction to import types from another PML schema may specify constraints on the
revision number of the imported schema. This section defines the format for PML schema revision
numbers and revision number comparison method (implying a total order on revision numbers).
Consequent revisions of a single PML schema file must be numbered in a non-decreasing order.

Revision numbers should be strings constisting of one or more interleaved non-negative integer
numbers and the character '.', starting and ending with a number.

For example, 12, 0.2.223, and 12.23.1.2.2 are all valid revision numbers, whereas .3,
-3,1.2., or 74..23 are not.

We now describe comparizon of two revision numbers. Let R=r1.r2.….rn and S=s1.s2.….sk
be two revision numbers, where ri (for i=1,…,n) and sj (for j=1,…,k) are non-negative
integers and let n be less or equal to k. Define ri=0 for every i>n. Then R=S if and only if

19

The Prague Markup Language (Version 1.1)

ri=si for every i=1,…,k; R<S if and only if r1<s1 or there is some j<k such that ri=si
for every i=1,…,j and rj+1=sj+1; otherwise R>S.

For example, 1.0.0=1, 2.1.3.8<2.1.12.8, and 2>1.9.8.

9. References in PML
While it is likely that in the future PML will offer other kinds of references, such as XPointer,
currently PML only defines syntax and semantics for simple ID-based references to PML
structure, element or sequence constructs occurring either in the same or some other PML in-
stance, and to XML elements of non-PML XML documents in general. Also, there is no syntax
defined yet for references to non-XML resources or to constructs without an ID.

A reference to a construct occurring within the same PML instance is represented by the ID of
the referred construct (see more specific definition below). A reference to an object occurring
outside the PML instance is represented by a string formatted according to PMLREF format,
i.e., a string consisting of a pair of identifiers separated by the # character. The first of the two
identifiers is an ID associated in the header of the PML instance with the system file name or
URL of the instance containing the referred object. The second of the identifiers is a unique ID
of the construct (or element) within the PML (or XML) instance it occurs in.

If the referred construct is a structure, then its ID is the value of its member with the role #ID.
If the referred construct is an element, then its ID is the value of its attribute with the role #ID.
If the referred construct is an XML element in a non-PML XML document, then its ID is the
value of its ID-attribute (e.g. either the attribute xml:id or some other attribute declared as
ID in the document's DTD or schema).

10. Layers of annotation
PML references are suitable for stacking one layer of linguistic annotation upon another. For
this purpose, the original text is usually transformed to a very simple PML instance that only
adds the most essential features such as basic tokenization, identifiers of individual tokens, etc.,
providing the basis upon which further annotations could be stacked. If it is not possible or de-
sirable to directly include tokens from the original text in such a base layer, then a suitable
mechanism (currently not defined by PML) has to be employed in order to carry unambiguous
references to the corresponding portions of the original text (regardless of the original format).

A specific PML schema is usually defined for each of the annotation layers. The relation between
annotation layers is typically expressed on the instance level using PML references and on the
PML schema level using the instance binding (PML schema element reference).

20

The Prague Markup Language (Version 1.1)

11. Tools
The XSLT stylesheet pml2rng.xsl50 transforms a PML schema to the corresponding Relax NG
schema that can be used for validating instances of the PML schema. The resulting Relax NG
refers to a portion of Relax NG common to all PML applications which is stored in the file
pml_common.rng51.

There are many standard freely available tools that can be used to validate an XML document
against a Relax NG, such as jing52 or xmllint53.

A Perl script pml_simplify54 implements a conversion from a modular PML schema to a sim-
plified PML schema described in Section 7, “Processing modular PML schemas”.

The Tree Editor TrEd55 has built-in support for PML representation of dependency and constitu-
ency trees (see Section PMLBackend56 in TrEd User's Manual57 for details).

PML instances may also be processed using conventional XML-oriented tools without direct
support for PML. One of them worth recommending is XSH58, which is a versatile tool for
XML processing.

A. Relax NG for PML schema
In this appendix we provide a Relax NG schema for PML Schema files (it is a listing of the file
pml_schema.rng1). Note that this Relax NG schema is rather simplistic and that does not
currently reflect all constraints implied on the syntax of the PML schema file expressed in this
document. In particular, the Relax NG does not enforce constraints on applicability of roles nor
the requirement that a named type may only be referred to in contexts where the actual type
represented by the named type is permitted.

<?xml version="1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
xmlns:s="http://ufal.mff.cuni.cz/pdt/pml/schema/"

xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
<a:documentation>PML schema syntax (revision 1.1.1)</a:documentation>
<start>
<element name="s:pml_schema">
<attribute name="version">
<choice><value>1.1</value></choice>

</attribute>

50 rewrite:pml2rng.xsl
51 rewrite:pml_common.rng
52 http://www.thaiopensource.com/relaxng/jing.html
53 http://xmlsoft.org/
54 rewrite:pml_simplify
55 rewrite:tred
56 rewrite:tred_manual#pmlbackend
57 rewrite:tred_manual
58 http://xsh.sourceforge.net
1 rewrite:pml_schema.rng

21

The Prague Markup Language (Version 1.1)

rewrite:pml2rng.xsl
rewrite:pml_common.rng
http://www.thaiopensource.com/relaxng/jing.html
http://xmlsoft.org/
rewrite:pml_simplify
rewrite:tred
rewrite:tred_manual#pmlbackend
rewrite:tred_manual
http://xsh.sourceforge.net
rewrite:pml_schema.rng

<optional>
<element name="s:revision">
<text/>

</element>
</optional>
<optional>

<element name="s:description">
<text/>

</element>
</optional>
<zeroOrMore>

<ref name="reference.element"/>
</zeroOrMore>
<zeroOrMore>

<ref name="import.element"/>
</zeroOrMore>
<zeroOrMore>

<ref name="derive.element"/>
</zeroOrMore>
<optional>
<ref name="root.element"/>

</optional>
<zeroOrMore>

<ref name="type.element"/>
</zeroOrMore>

</element>
</start>

<define name="import.element">
<element name="s:import">
<a:documentation>

instruction to import type(s) and root element from another
PML schema

</a:documentation>
<attribute name="schema"/>
<optional>
<attribute name="type">
<data type="ID"/>

</attribute>
</optional>
<optional>
<choice>
<attribute name="revision"/>
<group>
<optional>
<attribute name="minimal_revision"/>

</optional>
<optional>
<attribute name="maximal_revision"/>

</optional>
</group>

</choice>
</optional>

</element>
</define>

<define name="derive.element">
<element name="s:derive">
<a:documentation>

instruction to derive new type from an existing one (including

22

The Prague Markup Language (Version 1.1)

one that is imported)
</a:documentation>
<attribute name="type"/>
<optional>
<attribute name="name">
<data type="ID"/>

</attribute>
</optional>
<choice>
<element name="s:structure">
<optional>
<attribute name="name"/>

</optional>
<optional>
<ref name="role.attribute"/>

</optional>
<zeroOrMore>
<ref name="member.element"/>

</zeroOrMore>
<zeroOrMore>
<ref name="delete.element"/>

</zeroOrMore>
</element>
<element name="s:sequence">

<optional><attribute name="content_pattern"/></optional>
<optional><ref name="role.attribute"/></optional>
<zeroOrMore>
<ref name="element.element"/>

</zeroOrMore>
<zeroOrMore>
<ref name="delete.element"/>

</zeroOrMore>
</element>
<element name="s:container">

<optional><ref name="role.attribute"/></optional>
<zeroOrMore>
<ref name="attribute.element"/>

</zeroOrMore>
<zeroOrMore>
<ref name="delete.element"/>

</zeroOrMore>
</element>
<element name="s:choice">
<zeroOrMore>
<element name="s:value">
<text/>

</element>
</zeroOrMore>
<zeroOrMore>
<ref name="delete.element"/>

</zeroOrMore>
</element>

</choice>
</element>

</define>

<define name="delete.element">
<element name="s:delete">
<a:documentation>delete instruction in derive element (depending
on the context, contains name of a structure member, sequence

23

The Prague Markup Language (Version 1.1)

element, or choice value)</a:documentation>
<text/>

</element>
</define>

<define name="type.decl">
<choice>
<ref name="type.attribute"/>
<ref name="any.type"/>

</choice>
</define>

<define name="any.type">
<choice>
<ref name="alt.element"/>
<ref name="list.element"/>
<ref name="data.type"/>

</choice>
</define>

<define name="data.type">
<choice>
<ref name="choice.element"/>
<ref name="constant.element"/>
<ref name="structure.element"/>
<ref name="sequence.element"/>
<ref name="container.element"/>
<ref name="cdata.element"/>

</choice>
</define>
<define name="non-structure.type">
<choice>
<ref name="alt.element"/>
<ref name="list.element"/>
<ref name="choice.element"/>
<ref name="constant.element"/>
<ref name="sequence.element"/>
<ref name="cdata.element"/>

</choice>
</define>

<define name="role.attribute">
<attribute name="role">
<a:documentation>PML role of the value</a:documentation>
<choice>

<value>#TREES</value>
<value>#NODE</value>
<value>#ORDER</value>
<value>#CHILDNODES</value>
<value>#ID</value>
<value>#KNIT</value>
<value>#HIDE</value>

</choice>
</attribute>

</define>

<define name="root.element">
<a:documentation>declaration of the root-element of a PML instance
(except for the implicit obligatory <head>)</a:documentation>
<element name="s:root">

24

The Prague Markup Language (Version 1.1)

<attribute name="name"/>
<choice>

<ref name="type.attribute"/>
<ref name="sequence.element"/>
<ref name="structure.element"/>
<ref name="container.element"/>

</choice>
</element>

</define>

<define name="reference.element">
<element name="s:reference">
<a:documentation>declare a bound instance and optinally provide
a hint for applications on how to parse it</a:documentation>

<attribute name="name"/>
<optional>

<attribute name="readas">
<choice>
<value>trees</value>
<value>dom</value>

</choice>
</attribute>

</optional>
</element>

</define>

<define name="type.element">
<element name="s:type">
<a:documentation>a named complex type</a:documentation>
<attribute name="name">

<data type="ID"/>
</attribute>
<optional>

<ref name="role.attribute"/>
</optional>
<ref name="any.type"/>

</element>
</define>

<define name="type.attribute">
<attribute name="type">
<a:documentation>a reference to a named complex type</a:documentation>
<data type="IDREF"/>

</attribute>
</define>

<define name="structure.element">
<element name="s:structure">
<a:documentation>a structure (AVS)</a:documentation>
<optional>

<attribute name="name"/>
</optional>
<optional>

<ref name="role.attribute"/>
</optional>
<oneOrMore>

<ref name="member.element"/>
</oneOrMore>

</element>
</define>

25

The Prague Markup Language (Version 1.1)

<define name="member.element">
<element name="s:member">
<a:documentation>a member of a structure</a:documentation>
<optional><ref name="required.attribute"/></optional>
<optional>

<attribute name="as_attribute">
<choice>
<value>0</value>
<value>1</value>

</choice>
</attribute>

</optional>
<optional>

<ref name="role.attribute"/>
</optional>
<attribute name="name"/>
<ref name="type.decl"/>

</element>
</define>

<define name="alt.element">
<element name="s:alt">
<a:documentation>an alternative of values of the same
type</a:documentation>

<choice>
<ref name="type.attribute"/>
<ref name="list.element"/>
<ref name="data.type"/>

</choice>
</element>

</define>

<define name="list.element">
<element name="s:list">
<a:documentation>a list of values of the same
type</a:documentation>

<attribute name="ordered">
<choice>
<value>1</value>
<value>0</value>

</choice>
</attribute>
<choice>

<group>
<attribute name="role">
<value>#KNIT</value>

</attribute>
<attribute name="type">
<a:documentation>a reference to a named complex type

for knitting</a:documentation>
<data type="IDREF"/>

</attribute>
<ref name="cdata.element"/>

</group>
<group>
<optional>

<ref name="role.attribute"/>
</optional>
<choice>

26

The Prague Markup Language (Version 1.1)

<ref name="type.attribute"/>
<ref name="alt.element"/>

<ref name="data.type"/>
</choice>

</group>
</choice>

</element>
</define>

<define name="choice.element">
<element name="s:choice">
<a:documentation>enumerated type (atomic)</a:documentation>
<oneOrMore>

<element name="s:value">
<text/>

</element>
</oneOrMore>

</element>
</define>

<define name="cdata.element">
<element name="s:cdata">
<a:documentation>cdata type (atomic)</a:documentation>
<attribute name="format">

<choice>
<value>any</value>
<value>ID</value>
<value>PMLREF</value>

<value>string</value>
<value>normalizedString</value>
<value>token</value>
<value>base64Binary</value>
<value>hexBinary</value>
<value>integer</value>
<value>positiveInteger</value>
<value>negativeInteger</value>
<value>nonNegativeInteger</value>
<value>nonPositiveInteger</value>
<value>long</value>
<value>unsignedLong</value>
<value>int</value>
<value>unsignedInt</value>
<value>short</value>
<value>unsignedShort</value>
<value>byte</value>
<value>unsignedByte</value>
<value>decimal</value>
<value>float</value>
<value>double</value>
<value>boolean</value>
<value>duration</value>
<value>dateTime</value>
<value>date</value>
<value>time</value>
<value>gYear</value>
<value>gYearMonth</value>
<value>gMonth</value>
<value>gMonthDay</value>
<value>gDay</value>
<value>Name</value>

27

The Prague Markup Language (Version 1.1)

<value>NCName</value>
<value>anyURI</value>
<value>language</value>
<value>IDREF</value>
<value>IDREFS</value>
<value>NMTOKEN</value>
<value>NMTOKENS</value>

</choice>
</attribute>

</element>
</define>

<define name="constant.element">
<element name="s:constant">
<a:documentation>a constant (atomic)</a:documentation>
<text/>

</element>
</define>

<define name="sequence.element">
<element name="s:sequence">
<a:documentation>a sequence of elements</a:documentation>
<optional><ref name="role.attribute"/></optional>
<optional><attribute name="content_pattern"/></optional>
<choice>

<oneOrMore>
<ref name="element.element"/>

</oneOrMore>
<group>
<interleave>
<ref name="text.element"/>
<oneOrMore>
<ref name="element.element"/>

</oneOrMore>
</interleave>

</group>
</choice>

</element>
</define>

<define name="text.element">
<element name="s:text">
<a:documentation>declare cdata for mixed-content
sequence</a:documentation>
<empty/>

</element>
</define>

<define name="element.element">
<element name="s:element">
<a:documentation>an element of a sequence</a:documentation>
<attribute name="name"/>
<optional>

<ref name="role.attribute"/>
</optional>
<ref name="type.decl"/>

</element>
</define>

<define name="container.element">

28

The Prague Markup Language (Version 1.1)

<element name="s:container">
<a:documentation>a simple container type</a:documentation>
<optional>

<ref name="role.attribute"/>
</optional>
<zeroOrMore>

<ref name="attribute.element"/>
</zeroOrMore>
<optional>
<ref name="non-structure.type"/>

</optional>
</element>

</define>

<define name="attribute.element">
<element name="s:attribute">
<a:documentation>attribute of a container</a:documentation>
<optional>

<attribute name="required">
<choice>
<value>0</value>
<value>1</value>

</choice>
</attribute>

</optional>
<attribute name="name"/>
<optional>

<ref name="role.attribute"/>
</optional>
<choice>

<ref name="type.attribute"/>
<choice>
<ref name="choice.element"/>
<ref name="cdata.element"/>

</choice>
</choice>

</element>
</define>

<define name="required.attribute">
<attribute name="required">
<choice>

<value>0</value>
<value>1</value>

</choice>
</attribute>

</define>

</grammar>

B. Examples
In this appendix we provide some simple examples of PML usage. Rather than on practical
applicability of the schemas that follow, we concentrate on demonstrating the features, definitions

29

The Prague Markup Language (Version 1.1)

and representation of various constructs. We also show how PML references work and how
annotation layers can be stacked one upon another.

1. Dependency trees
The following PML schema and instance show an application of PML to a very simple analyt-
ical dependency annotation of English sentences. In this example, the annotation consists of
some meta data (annotator's name and a time stamp) and a list of trees. Each tree is represented
by its root-node. Nodes are structures with two members bearing the node-labels (word form
and its syntactical function) and two technical members (index of the node in the ordering of
the tree - represented by the attribute ord, and a list of child-nodes - represented by the element
governs). Note that if a list of child-nodes has only one member, then this single child-node
may be directly represented by the governs element. This eliminates the need for an extra LM
bracketing element. Note that PML doesn't actually distinguish between dependency trees and
constituency trees, but since dependency trees are ordered trees and are not necessarily projective,
we have to employ an extra member ordwith PML-role #ORDER for the tree ordering. Because
we do not want any linguistic complexity to distract the reader's attention from the technical
aspects of how data are defined and represented in PML, we have chosen two shamelessly
simple sentences.

30

The Prague Markup Language (Version 1.1)

Example B.1: PML schema
<?xml version="1.0"?>
<pml_schema version="1.1"
xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>Example of dependency tree annotation</description>
<root name="annotation">
<structure>
<member name="meta" type="meta.type"/>
<member name="trees" role="#TREES" required="1">

<list type="node.type" ordered="1"/>
</member>

</structure>
</root>
<type name="meta.type">
<structure>
<member name="annotator"><cdata format="any"/></member>
<member name="datetime"><cdata format="any"/></member>

</structure>
</type>
<type name="node.type">
<structure role="#NODE">
<member name="ord" as_attribute="1" required="1" role="#ORDER">
<cdata format="nonNegativeInteger"/>

</member>
<member name="func" type="func.type" required="1"/>
<member name="form" required="1">
<cdata format="any"/>

</member>
<member name="governs" role="#CHILDNODES" required="0">
<list type="node.type" ordered="0"/>

</member>
</structure>

</type>
<type name="func.type">
<choice>
<value>Pred</value>
<value>Subj</value>
<value>Obj</value>
<value>Attrib</value>
<value>Adv</value>

</choice>
</type>

</pml_schema>

31

The Prague Markup Language (Version 1.1)

Example B.2: Sample instance with the annotation of the sentence: `John
loves Mary. He told her this Friday.'
<?xml version="1.0"?>
<annotation xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head>
<schema href="example1_schema.xml"/>

</head>
<meta>
<annotator>Jan Novak</annotator>
<datetime>Sun May 1 18:56:55 2005</datetime>

</meta>
<trees>
<LM ord="2">
<func>Pred</func>
<form>loves</form>
<governs>
<LM ord="1">
<func>Subj</func>
<form>John</form>

</LM>
<LM ord="3">
<func>Obj</func>
<form>Mary</form>

</LM>
</governs>

</LM>
<LM ord="2">
<func>Pred</func>
<form>told</form>
<governs>
<LM ord="1">
<func>Subj</func>
<form>He</form>

</LM>
<LM ord="3">
<func>Obj</func>
<form>her</form>

</LM>
<LM ord="5">
<func>Adv</func>
<form>Friday</form>
<governs ord="4"> <!-- ditto -->
<func>Attrib</func>
<form>this</form>

</governs>
</LM>

</governs>
</LM>

</trees>
</annotation>

2. Constituency trees
On two simple (and of course incomplete) examples we demonstrate how Penn-treebank-like
constituency trees might be represented in PML. This situation differs from the dependency
trees in two aspects: 1) with constituency trees we do not have to consider an external ordering

32

The Prague Markup Language (Version 1.1)

of the nodes in the tree, 2) constituency trees usually distinguish between leaf nodes (terminal
nodes) and branching nodes (non-terminal nodes). In the first sample we deal with this by de-
claring two node types and using sequences instead of lists (as lists would require all members
to be of the same type). In the second sample we provide a minimalist approach taking advantage
of the fact that a non-terminal node has at most one terminal child, which in turn eliminates the
need to represent leaf nodes as nodes at all. This, in combination with the possibility to reuse
element names for the actual labels, provides a very compact XML notation very close to the
labeled-bracket syntax of Penn Treebank.

Example B.3: PML schema
<?xml version="1.0"?>
<pml_schema version="1.1"
xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>Example of constituency tree annotation</description>
<root name="annotation">
<sequence role="#TREES" content_pattern="meta, nt+">
<element name="meta">

<structure>
<member name="annotator"><cdata format="any"/></member>
<member name="datetime"><cdata format="any"/></member>

</structure>
</element>
<element name="nt" type="nonterminal.type"/>

</sequence>
</root>
<type name="nonterminal.type">
<container role="#NODE">
<attribute name="label">

<choice>
<value>S</value>
<value>VP</value>
<value>NP</value>
<value>PP</value>
<value>ADVP</value>
<!-- etc. -->

</choice>
</attribute>
<sequence role="#CHILDNODES">

<element name="nt" type="nonterminal.type"/>
<element name="form" type="terminal.type"/>

</sequence>
</container>

</type>
<type name="terminal.type">
<container role="#NODE">
<cdata format="any"/>

</container>
</type>

</pml_schema>

33

The Prague Markup Language (Version 1.1)

Example B.4: Sample instance with annotation of the sentence: ̀ John loves
Mary. He told her this Friday.'
<?xml version="1.0"?>
<annotation xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head>
<schema href="example2_schema.xml"/>

</head>
<meta>
<annotator>John Smith</annotator>
<datetime>Sun May 1 18:56:55 2005</datetime>

</meta>
<nt label="S">
<nt label="NP">
<form>John</form>

</nt>
<nt label="VP">
<form>loves</form>
<nt label="NP">
<form>Mary</form>

</nt>
</nt>

</nt>
<nt label="S">
<nt label="NP">
<form>He</form>

</nt>
<nt label="VP">
<form>told</form>
<nt label="NP"><form>her</form></nt>
<nt label="ADVP"><form>this Friday</form></nt>

</nt>
</nt>

</annotation>

For brevity, we will not repeat the meta element in the second sample.

34

The Prague Markup Language (Version 1.1)

Example B.5: PML schema
<?xml version="1.0"?>
<pml_schema version="1.1" xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>
Example of very compact constituency tree annotation

</description>
<root name="annotation">
<sequence role="#TREES">
<element name="S" type="nonterminal.type"/>

</sequence>
</root>
<type name="nonterminal.type">
<container role="#NODE">
<attribute name="form"><cdata format="any"/></attribute>
<sequence role="#CHILDNODES">

<element name="VP" role="#NODE" type="nonterminal.type"/>
<element name="NP" role="#NODE" type="nonterminal.type"/>
<element name="PP" role="#NODE" type="nonterminal.type"/>
<element name="ADVP" role="#NODE" type="nonterminal.type"/>
<!-- etc. -->

</sequence>
</container>

</type>
</pml_schema>

Example B.6: Sample instance
<?xml version="1.0"?>
<annotation xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head><schema href="example3_schema.xml"/></head>
<S>
<NP form="John"/>
<VP form="loves">
<NP form="Mary"/>

</VP>
</S>
<S>
<NP form="He"/>
<VP form="told">
<NP form="her"/>
<ADVP form="this Friday"/>

</VP>
</S>

</annotation>

Note that once the labels of non-terminals coincide with the names of elements representing
nodes, we could apply further restrictions on the nesting directly in the PML schema. For ex-
ample, it would be very easy to incorporate some grammar rules (such as that ADVP can only
occur within VP, etc.).

3. Internal references
To demonstrate cross-referencing in a PML instance we define two simple PML schemas for
representing arbitrary graph with both labeled nodes. In the first schema, we represent the graph
by a list of its vertices and a list of its edges. With the second schema the same graph is repres-

35

The Prague Markup Language (Version 1.1)

ented by a list of structures for nodes consisting of a label and a a list of pointers to the nodes
connected with the current node by an edge.

Example B.7: PML schema
<?xml version="1.0"?>
<pml_schema version="1.1" xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>An oriented graph</description>
<root name="graph">
<structure>
<member name="verteces">
<list ordered="0">
<structure>
<member name="id" as_attribute="1" required="1" role="#ID">
<cdata format="ID"/>

</member>
<member name="label" required="1">
<cdata format="any"/>

</member>
</structure>

</list>
</member>
<member name="edges">
<list ordered="0">
<structure>
<member name="from.rf" required="1" as_attribute="1">
<cdata format="PMLREF"/>

</member>
<member name="to.rf" required="1" as_attribute="1">
<cdata format="PMLREF"/>

</member>
</structure>

</list>
</member>

</structure>
</root>

</pml_schema>

Example B.8: Sample instance
<?xml version="1.0"?>
<graph xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head><schema href="example4_schema.xml"/></head>
<verteces>
<LM id="v1"><label>A</label></LM>
<LM id="v2"><label>B</label></LM>
<LM id="v3"><label>A</label></LM>
<LM id="v4"><label>C</label></LM>
<LM id="v5"><label>D</label></LM>

</verteces>
<edges>
<LM from.rf="v1" to.rf="v2"/>
<LM from.rf="v1" to.rf="v3"/>
<LM from.rf="v2" to.rf="v4"/>
<LM from.rf="v3" to.rf="v4"/>
<LM from.rf="v4" to.rf="v1"/>

</edges>
</graph>

36

The Prague Markup Language (Version 1.1)

Example B.9: PML schema
<?xml version="1.0"?>
<pml_schema version="1.1" xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>An oriented graph</description>
<root name="graph">
<structure>
<member name="body" required="1">

<list ordered="0">
<structure>
<member name="id" as_attribute="1"
required="1" role="#ID">
<cdata format="ID"/>

</member>
<member name="label" required="1">
<cdata format="any"/>

</member>
<member name="edges.rf">
<list ordered="0">

<cdata format="PMLREF"/>
</list>

</member>
</structure>

</list>
</member>

</structure>
</root>

</pml_schema>

37

The Prague Markup Language (Version 1.1)

Example B.10: Sample instance
<?xml version="1.0"?>
<graph xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head><schema href="example5_schema.xml"/></head>
<body>
<LM id="v1">
<label>A</label>
<edges.rf>

<LM>v2</LM>
<LM>v3</LM>

</edges.rf>
</LM>
<LM id="v2">
<label>B</label>
<edges.rf>v4</edges.rf>

</LM>
<LM id="v3">
<label>A</label>
<edges.rf>v4</edges.rf>

</LM>
<LM id="v4">
<label>C</label>
<edges.rf>v1</edges.rf>

</LM>
<LM id="v5">
<label>D</label>

</LM>
</body>

</graph>

4. External references
In this example we define PML schemas for two annotation layers. The first layer represents
the tokenized text with the sentence-boundary markup. The second layer is a constituency-tree
annotation of the sentences on the first (lower) layer. This constituency annotation is similar to
the samples Section 2, “Constituency trees”, but this time the terminals contain references to
the tokenized text.

The following schema and instance show a tokenization layer.

38

The Prague Markup Language (Version 1.1)

Example B.11: PML schema
<?xml version="1.0"?>
<pml_schema version="1.1" xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<revision>0.2</revision>
<description>Example of tokenization layer</description>
<root name="tokenization">
<structure>
<member name="sentences">

<list ordered="1" type="sentence.type"/>
</member>

</structure>
</root>
<type name="sentence.type">
<structure>
<member name="id" role="#ID" type="ID.type"

required="1" as_attribute="1"/>
<member name="tokens"> <!-- words (tokens) -->
<sequence>
<element name="w" type="w.type"/>

</sequence>
</member>

</structure>
</type>
<type name="w.type">
<container>
<attribute name="id" role="#ID" type="ID.type"

required="1"/>
<cdata format="any"/>

</container>
</type>
<type name="ID.type">
<cdata format="ID"/>

</type>
</pml_schema>

39

The Prague Markup Language (Version 1.1)

Example B.12: Sample instance
<?xml version="1.0"?>
<tokenization xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head><schema href="example6_schema.xml"/></head>
<sentences>
<LM id="s1">
<tokens>
<w id="s1w1">John</w>
<w id="s1w2">loves</w>
<w id="s1w3">Mary</w>
<w id="s1w4">.</w>

</tokens>
</LM>
<LM id="s2">
<tokens>
<w id="s2w1">He</w>
<w id="s2w2">told</w>
<w id="s2w3">her</w>
<w id="s2w4">this</w>
<w id="s2w5">Friday</w>
<w id="s2w6">.</w>

</tokens>
</LM>

</sentences>
</tokenization>

The following schema and instance show an annotation layer stacked over the previously defined
tokenization layer. The relation between units on these layers, represented by PML references
from the annotation layer to the tokenization layer, may in general be N to M. The references
to the tokenization layer have role #KNIT, which indicates that applications may replace the
member w.rf containing the list of references with the corresponding object from the lower
layer (i.e. the w element).

40

The Prague Markup Language (Version 1.1)

Example B.13: PML schema
<?xml version="1.0"?>
<pml_schema version="1.1" xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>
Example of tree annotation over a tokenization layer

</description>
<reference name="tokenization" readas="dom"/>
<root name="annotation">
<sequence role="#TREES">
<element name="S">

<container role="#NODE">
<attribute name="sentence.rf">
<cdata format="PMLREF"/>

</attribute>
<list ordered="1" role="#CHILDNODES" type="node.type"/>

</container>
</element>

</sequence>
</root>
<type name="node.type">
<structure role="#NODE">
<member as_attribute="1" name="label">
<choice>
<value>S</value>
<value>VP</value>
<value>NP</value>
<value>PP</value>
<value>ADVP</value>
<!-- etc. -->

</choice>
</member>
<member name="w.rf">
<list ordered="0" role="#KNIT" type="w.type">
<cdata format="PMLREF"/>

</list>
</member>
<member name="constituents" role="#CHILDNODES">
<list ordered="1" type="node.type"/>

</member>
</structure>

</type>
<type name="w.type">
<container>
<attribute name="id" role="#ID" required="1">
<cdata format="ID"/>

</attribute>
<cdata format="any"/>

</container>
</type>

</pml_schema>

41

The Prague Markup Language (Version 1.1)

Example B.14: Sample instance
<?xml version="1.0"?>
<annotation xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head>
<schema href="example7_schema.xml"/>
<references>
<reffile name="tokenization" id="t" href="example6.xml"/>

</references>
</head>
<S sentence.rf="s1">
<LM label="NP"><w.rf>t#s1w1</w.rf></LM>
<LM label="VP">
<w.rf>t#s1w2</w.rf>
<constituents label="NP">
<w.rf>t#s1w3</w.rf>

</constituents>
</LM>

</S>
<S sentence.rf="s2">
<LM label="NP"><w.rf>t#s2w1</w.rf></LM>
<LM label="VP">
<w.rf>t#s2w2</w.rf>
<constituents>
<LM label="NP"><w.rf>t#s2w3</w.rf></LM>
<LM label="ADVP">
<w.rf>
<LM>t#s2w4</LM>
<LM>t#s2w5</LM>

</w.rf>
</LM>

</constituents>
</LM>

</S>
</annotation>

After knitting is applied on PML references in w.rf, the instance appears to the application as
follows:

42

The Prague Markup Language (Version 1.1)

Example B.15: Sample instance after knitting
<?xml version="1.0"?>
<annotation xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head>
<schema href="example7_schema.xml"/>
<references>
<reffile name="tokenization" id="t" href="example6.xml"/>

</references>
</head>
<S sentence.rf="s1">
<LM label="NP"><w id="s1w1">John</w></LM>
<LM label="VP">
<w id="s1w2">loves</w>
<constituents label="NP">
<w id="s1w3">Mary</w>

</constituents>
</LM>

</S>
<S sentence.rf="s2">
<LM label="NP"><w id="s2w1">He</w></LM>
<LM label="VP">
<w id="s2w2">told</w>
<constituents>
<LM label="NP"><w id="s2w3">her</w></LM>
<LM label="ADVP">
<w>
<LM id="s2w4">this</LM>
<LM id="s2w5">Friday</LM>

</w>
</LM>

</constituents>
</LM>

</S>
</annotation>

5. Modular schemas
In the last schema example example7_schema.xml, we have repeated the type w.type
from example6_schema.xml. In real-world cases, copy-paste repetitions lead to many
maintainability issues and are not a good practice. Starting from version 1.1, PML provides
support for modularization of PML schemas via import and derive instructions. Here is
how example7_schema.xml schema could be rewritten using these features:

43

The Prague Markup Language (Version 1.1)

Example B.16: Modular version of the schema example7_schema.xml
<?xml version="1.0"?>
<pml_schema version="1.1" xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<revision>0.7</revision>
<description>
Example of tree annotation over a tokenization layer

</description>
<reference name="tokenization" readas="dom"/>

<import type="w.type" schema="example6_schema.xml" revision="0.2"/>

<root name="annotation" type="annotation.type"/>

<type name="annotation.type">
<sequence role="#TREES">
<element name="S" type="S.type"/>

</sequence>
</type>
<type name="S.type">
<container role="#NODE">
<attribute name="sentence.rf">

<cdata format="PMLREF"/>
</attribute>
<list ordered="1" role="#CHILDNODES" type="node.type"/>

</container>
</type>
<type name="node.type">
<structure role="#NODE">
<member as_attribute="1" name="label" type="label.type"/>
<member name="w.rf">
<list ordered="0" role="#KNIT" type="w.type">
<cdata format="PMLREF"/>

</list>
</member>
<member name="constituents" role="#CHILDNODES">
<list ordered="1" type="node.type"/>

</member>
</structure>

</type>
<type name="label.type">
<choice>
<value>S</value>
<value>VP</value>
<value>NP</value>
<value>PP</value>
<value>ADVP</value>
<!-- etc. -->

</choice>
</type>

</pml_schema>

The modularity allows for extending the imported schema. The following example presents a
PML schema based on example8_schema.xml but largely extended. It also borrows a
single type from example1_schema.xml.

44

The Prague Markup Language (Version 1.1)

Example B.17: Extending PML schemas
<?xml version="1.0"?>
<pml_schema version="1.1" xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<revision>0.1</revision>
<description>
Extended example of tree annotation over a tokenization layer

</description>
<reference name="tokenization" readas="dom"/>

<import schema="example8_schema.xml"
minimal_revision="0.4"
maximal_revision="1.0"/>

<import schema="example1_schema.xml" type="meta.type"/>

<derive type="annotation.type">
<sequence content_pattern="meta, S+">
<element name="meta" type="newmeta.type"/>

</sequence>
</derive>
<derive type="S.type">
<container>
<attribute name="annotators_comment">
<cdata format="any"/>

</attribute>
</container>

</derive>
<derive type="meta.type" name="changes.type">
<structure>
<member name="id" role="#ID" as_attribute="1" required="1"><cdata format="ID"/></member>
<member name="desc"><cdata format="any"/></member>

</structure>
</derive>
<derive type="label.type">
<choice>
<value>SDECL</value>
<value>SIMP</value>
<value>SQUEST</value>
<delete>S</delete>

</choice>
</derive>
<type name="newmeta.type">
<structure>
<member name="lang"><cdata format="any"/></member>
<member name="changes"><list type="changes.type" ordered="1"/></member>

</structure>
</type>

</pml_schema>

Modular PML schemas can be converted back to non-modular, simplified, PML schemas for
easier processing. The following schema is the simplified version of example9_schema.xml,
automatically generated by the tool pml_simplify, mentioned in Section 11, “Tools”.

45

The Prague Markup Language (Version 1.1)

Example B.18: Extending PML schemas
<?xml version="1.0"?>
<!--
Created by pml_simplify on Fri Jun 2 14:29:25 2006
Command-line: pml_simlify examples/example9_schema.xml examples/example10_schema.xml

-->
<pml_schema xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/" version="1.1">
<revision>0.1</revision>
<description>
Extended example of tree annotation over a tokenization layer

</description>
<reference name="tokenization" readas="dom"/>

<!-- ============ import schema="example8_schema.xml" ============ -->
<root name="annotation" type="annotation.type"/>
<type name="w.type">
<container>
<attribute name="id" role="#ID" type="ID.type" required="1"/>
<cdata format="any"/>

</container>
</type>
<type name="ID.type">
<cdata format="ID"/>

</type>
<!-- ============ derived from annotation.type ============ -->
<type name="annotation.type">
<sequence role="#TREES" content_pattern="meta, S+">
<element name="S" type="S.type"/>
<element name="meta" type="newmeta.type"/>

</sequence>
</type>

<!-- ============ derived from S.type ============ -->
<type name="S.type">
<container role="#NODE">
<attribute name="annotators_comment">
<cdata format="any"/>

</attribute>
<attribute name="sentence.rf">
<cdata format="PMLREF"/>

</attribute>
<list ordered="1" role="#CHILDNODES" type="node.type"/>

</container>
</type>
<type name="node.type">
<structure role="#NODE">
<member as_attribute="1" name="label" type="label.type"/>
<member name="w.rf">
<list ordered="0" role="#KNIT" type="w.type">
<cdata format="PMLREF"/>

</list>
</member>
<member name="constituents" role="#CHILDNODES">
<list ordered="1" type="node.type"/>

</member>
</structure>

</type>
<!-- ============ derived from label.type ============ -->
<type name="label.type">
<choice>
<value>VP</value>

46

The Prague Markup Language (Version 1.1)

<value>NP</value>
<value>PP</value>
<value>ADVP</value>

<!-- etc. -->
<value>SDECL</value>
<value>SIMP</value>
<value>SQUEST</value>

</choice>
</type>

<!-- === -->
<!-- ============ import schema="example1_schema.xml" type="meta.type"============ -->
<type name="meta.type">
<structure>
<member name="annotator">
<cdata format="any"/>

</member>
<member name="datetime">
<cdata format="any"/>

</member>
</structure>

</type>
<!-- == -->
<type name="newmeta.type">
<structure>
<member name="lang">
<cdata format="any"/>

</member>
<member name="changes">
<list type="changes.type" ordered="1"/>

</member>
</structure>

</type>
<!-- ============ derived from meta.type ============ -->
<type name="changes.type">
<structure>
<member name="annotator">
<cdata format="any"/>

</member>
<member name="datetime">
<cdata format="any"/>

</member>
<member name="id" role="#ID" as_attribute="1" required="1">
<cdata format="ID"/>

</member>
<member name="desc">
<cdata format="any"/>

</member>
</structure>

</type>
</pml_schema>

47

The Prague Markup Language (Version 1.1)

	The Prague Markup Language (Version 1.1)
	Table of Contents
	1. Introduction
	2. PML data types
	3. Atomic data formats
	4. PML roles
	5. Header of a PML instance
	6. PML schema file
	7. Processing modular PML schemas
	7.1. Processing import elements
	7.2. Processing derive elements

	8. Numbering revisions of PML schemas
	9. References in PML
	10. Layers of annotation
	11. Tools
	A. Relax NG for PML schema
	B. Examples
	1. Dependency trees
	2. Constituency trees
	3. Internal references
	4. External references
	5. Modular schemas

