Getting a Grip on Morphological Disambiguation

Abstract

The paper shows that morphological disambiguation is a crucial step for assignment of dependency structures. Quantitative evaluation on a German corpus shows that morphological disambiguation of NPs together with syntactic heuristics yields unique morphological analyses for the assignment of dependency relations to NPs in 80.4% of all cases.

1 Introduction

The research reported here is part of a larger project on the development of a robust parsing scheme GRIP (GeRman Incremental Parsing) that uses the Xerox Incremental Deep Parsing System (XIP) (Ait and Chanod and Roux, 2002) and provides syntactic annotation in an incremental fashion: after textual input is tokenized, morphologically analyzed and disambiguated, syntactic annotation is added in two distinct stages of processing. First, a chunk parser provides a partial constituent analysis. In a second stage, the chunked input is further annotated by dependency links that reflect the function-argument structure for each chunked clause. This latter stage of processing is inspired by ideas originating in frameworks of dependency grammar which express grammatical relations as independent notions, rather than as a secondary concept derivable from constituent structure only.\(^1\)

The current paper addresses one specific subtask in the overall GRIP parsing scheme: morphological disambiguation. We will demonstrate that morphological disambiguation is a crucial step in narrowing down the search space for the correct assignment of dependency structures, particularly for languages with rich inflectional morphology. Furthermore, we will describe in detail the customized disambiguation rules of XIP that provide the necessary computational tools to efficiently carry out morphological disambiguation.

The importance of morphological disambiguation has been recognized by a number of researchers, in particular to improve the accuracy of morphological analysis (Oflazer, 1997) and of part-of-speech tagging (Hajic, 2001), (Voutilainen, 1995). We will compare our approach to this previous body of research in detail in section 4.

2 Incremental Syntactic Annotation

Due to its incremental nature, GRIP crucially relies on the accuracy of annotation at previous levels. Chunking will depend on the accuracy of part-of-speech disambiguation, while dependency parsing relies crucially on the structure of the pre-chunked input and on the morphological properties of individual chunks. For example, in order to determine the subject of a clause, case and number information associated with the NP chunks that occur in the clause is of primary importance. For languages with rich inflectional morphology, it can often be difficult to determine such case and number information uniquely since one and the same word form may be associated with more than one combination of case, number and gender values. Consider the German sentence in (1):

1. Die Politiker gaben verdienten
the politicians gave worthy
Beamten ein höheres Gehalt.
civil servants a higher salary

\(^1\)For recent applications of dependency grammars to syntactic annotation and parsing see, among others, (Tapanainen and Järvinen, 1994) and (Duchier, 1999).
A higher salary.’

As shown in (2) - (4), the lexical nodes for each NP in the sentence are, almost without exception, morphologically many times ambiguous. The analyses shown are those provided by the morphological analyzer for German developed by the Xerox Research Centre Europe (XRCE). ²

(2)

Die Pr on+Dem+FMN+Pl+NomAcc
Die Pr on+Dem+Fem+Sg+NomAcc
Die Pr on+Rel+FMN+Pl+NomAcc
Die Pr on+Rel+Fem+Sg+NomAcc
Die Det+Def+Fem+Sg+NomAcc+St
Die Det+Def+FMN+Pl+NomAcc+St

Politiker Noun+Masc+Sg+NomAccDat
Politiker Noun+Masc+Pl+NomAccGen

For example, the noun Politiker has a unique value only for gender (Masc). Number and case values are not unique and co-vary. In the singular reading, the form can be any case but genitive. For the plural only the dative case is ruled out.³ The preceding token die exhibits a three-way word class ambiguity between a determiner reading (Det), a demonstrative pronoun reading and a relative pronoun reading. The latter two will in all likelihood be eliminated by a reliable part-of-speech tagger. However, even for the remaining determiner reading there are several distinct readings: die, taken in isolation, can be (i) nominative or accusative, singular, feminine, or (ii) nominative or accusative plural for any gender.⁴ However, in the context of the following noun Politiker, only the latter reading is valid since it matches the gender specification of the noun. In the other direction, the determiner also helps to partially disambiguate the contextually valid readings of the noun by retaining as possible values of case nominative and accusative. The discussion of this first example shows the nature of this kind of contextual morphological disambiguation: lexical nodes within the same chunk mutually constrain each other as to the set of possible readings.

While example (2) requires identity of case, number and gender values between determiner and noun, other combinations of lexical categories require distinct values for certain morphological features.⁵ In German, word forms for adjectives and determiners can be classified as belonging to either weak or strong declension classes.⁶ For example, all forms of the definite determiner der belong to the strong declension class, while the paradigm of the indefinite determiner ein is split between weak and strong forms. In addition, some nouns, in particular those derived from adjectives like Beamter, also exhibit a distinction between weak and strong forms.

If determiners co-occur with adjectives and nouns in the same NP, adjective and noun agree in declension class, whereas the declension value of the determiner is the opposite. The NP ein höheres Gehalt and the set of candidate analyses in (3) demonstrate this. The only contextually valid reading is provided by the following sequence of morphological tags: Det+Indef+Neut+Sg+NomAcc+St, Adj+Neut+Sg+NomAcc+St, Noun+Neut+Sg+NomAcc.

The morphological analysis for the NP verdi enten Beamten in (4) exemplifies agreement of declension values between adjective and noun.

²An on-line demo version of the XRCE morphological analyzer is available at www.xrce.xerox.com/competencies/content-analysis/demos/german.de.html.

³The morphological tag NomAccGen stands for nominative, accusative or genitive.

⁴The morphological tag FMN stands for any gender.

⁵Even for determiners and nouns identity of case, number and gender values is sometimes too strong a constraint. If the determiner is realized by a relative pronoun as in dessen Mutter (‘whose mother’), a mismatch in case values needs to be allowed.

⁶For a comprehensive study of distributional properties of weak and strong forms in German NP see (Zwicky, 1986).
verdienten Adj+Fem+Sing+Dat+Gen+We
verdienten Adj+Mascul+Sing+Acc+Gen+St+We
verdienten Adj+Mascul+Sing+Dat+We
verdienten Adj+Neut+Sing+Gen+St+We
verdienten Adj+Neut+Sing+Dat+We
verdienten Adj+Mascul+Nominative+Acc+Dat+Gen+St+We
verdienten Adj+Mascul+Nominative+Acc+Dat+St

Beamten Noun+Mascul+Sing+Acc+Gen+St+We
Beamten Noun+Mascul+Sing+Dat+We
Beamten Noun+Mascul+Plural+Nominative+Acc+Dat+Gen+St+We
Beamten Noun+Mascul+Plural+Nominative+Acc+Dat+St

In this case the set of contextually valid readings is still quite large since all adjectival readings that are compatible with the gender specification of the noun will be retained.

However, further pruning of contextually valid readings is possible. If noun phrases do not include an overt determiner, as in the case of the NP verdienten Beamten, then only strong forms are grammatical. Therefore, the only contextually valid readings for this noun phrase are provided by the sequence of morphological tags Adj+Mascul+Plural+Dat+St, Noun+Mascul+Plural+Dat+St.7

3 Guiding Dependency Parsing by Morphological Disambiguation

The preceding discussion was designed to provide an overview of some of the empirical issues that are involved in morphological disambiguation for a morphologically rich language like German. The present section will demonstrate the utility of morphological disambiguation for further incremental syntactic annotation.

Consider once again our example sentence in (1). The ultimate goal for syntactic annotation with the XIP System is to assign a dependency structure to the input sentence. As an intermediate stage, the input is chunked into major constituents. This chunked structure then serves as input to the dependency analysis. For sentence (1) the output of the chunker is as in (5).8

\[
\begin{align*}
\text{SUBJ}(\#2,\#1), & \quad \text{OBJ}_{\text{dir}}(\#2,\#4), \\
\text{OBJ}_{\text{indir}}(\#2,\#3)
\end{align*}
\]

The key to identifying the correct dependency links is to try to match the case specifications inherent in the chunk analysis with the subcategorization information provided by the lexical entry of the main verb. Here is where morphological disambiguation plays a crucial role. In the previous section, we discussed how co-occurring lexical nodes mutually constrain the set of contextually valid morphological interpretations. For the three NPs in sentence (1), the set of analyses shown in (8) will be retained.

In GRIP, the dependency analysis is constructed with the aid of lexical resources such as CELEX and IMS-LEX which provide subcategorization information for German verbs. A simplified entry of the information that CELEX provides for the lemma geben is shown in (7).

\[
\text{geben} \quad +\text{VERB+Aux+H+Acc+Comp+} \\
\quad \text{+Dat+Comp+Comp+Subj}
\]

The key to identifying the correct dependency links is to try to match the case specifications inherent in the chunk analysis with the subcategorization information provided by the lexical entry of the main verb. Here is where morphological disambiguation plays a crucial role. In the previous section, we discussed how co-occurring lexical nodes mutually constrain the set of contextually valid morphological interpretations. For the three NPs in sentence (1), the set of analyses shown in (8) will be retained.

The remaining ambiguities concern the case values of the NPs die Politiker and ein höheres Gehalt. Both can be either nominative or accusative case. Thus, in principle, both NPs can serve as either the subject or direct object of the finite verb. However, even this ambiguity can be resolved due to subject-verb agreement.

7The morphological tag FMM, which stands for any gender, is disambiguated for the adjective as Masculine due to the gender specification on the noun.
8Apart from NP chunking, the structure in (5) labels the topological fields of the clause. Such a topological field analysis is useful for identifying the overall structure of the clause (see Hinrichs et al., 2000a for details).
9The node structure in (5) is grossly oversimplified: it leaves out morphological information percolated up from the daughter nodes. How such morphological information is percolated to the phrasal nodes will be explained in detail in section 5.
Die Politiker verdienten Beamten ein höheres Gehalt

Since the finite verb is plural, only the plural NP *die Politiker* can be the subject and the NP *ein höheres Gehalt* should be direct object.

What this example has shown is that morphological disambiguation in conjunction with other morpho-syntactic constraints such as subject-verb agreement can effectively reduce the number of candidate readings and uniquely determine the dependency structure to be assigned. In the remainder of the paper we will discuss how the XIP System provides the necessary computational environment to efficiently carrying out morphological disambiguation.

4 Implementing Morphological Disambiguation

XIP provides two types of disambiguation rules: ordinary disambiguation rules, which can eliminate readings for a single lexical node on the basis of left and/or right contexts of the token, and double reduction rules which simultaneously reduce readings of sequences of tokens. We will discuss both types of rules in turn.

The general format for ordinary disambiguation rules is shown in (9).

\[
\text{(9) } \text{readings.filter} = |\text{left.context}| \text{selected.readings} |\text{right.context}|.
\]

The left side of the rule specifies which readings of lexical nodes the disambiguation rule should apply to. As the name suggests, the field *selected readings* will specify a proper subset of the readings that are specified in the field *readings filter*. The optional left and right context specifications constrain the environments under which the rule will apply. The effect of such a disambiguation rule can best be demonstrated by an example:

\[
\text{(10) } \text{det.pron} = \text{det} |\text{adj}*, \text{noun}|
\]

The rule in (10) applies to lexical tokens which have determiner and pronoun readings and selects the determiner readings if the token is followed by any, including zero, number of adjectives and a noun. At the same time, pronominal readings will be eliminated in precisely this context.

While ordinary disambiguation rules reduce the contextually valid readings for a single lexical node, double reduction rules simultaneously reduce readings of sequences of tokens. The latter type of rules is therefore used for simplifying the candidate morphological analyses of lexical nodes that make up phrasal categories.

The general format for double reduction rules is shown in (11).

\[
\text{(11) } |\text{node.sequence}| \Rightarrow \text{boolean.constraints}.
\]

(12) instantiates the double reduction rule schema to the disambiguation rule needed for German to eliminate all those readings of adjectives and nouns that do not match.

\[
\text{(12) } |\text{adj#1, noun#2} | \Rightarrow \#1[\text{agr}] :: \#2[\text{agr}].
\]

The condition on the right-hand side of the rule enforces strict identity of agreement features between adjective and noun, with agreement consisting of the gender, number and case features for each node. Therefore, the rule has the effect of eliminating all readings of adjective and noun sequences with conflicting agreement features.

The rule shown in (12) is a simplified version of the rule that is actually needed, since it applies only to noun phrases that contain a single adjective. The rule in (13) generalizes the previous rule to accommodate multiple occurrences of adjectives.

\[
\text{(13) } |\text{adj}*, \text{adj#1, adj}*, \text{noun#2} | \Rightarrow
\quad (#1[\text{agr}] :: \#2[\text{agr}]).
\]

The pattern matching algorithm of the XIP System will ensure non-deterministic application of the rule to each adjective that precedes a noun in a left-to-right fashion.

The rule in (14) accounts for the distinct declension class values required for contextu-
ally valid patterns of determiners and adjectives that we discussed in detail in section 2 above.\(^\text{10}\)

\[(14)\] \((\text{det } \#1, \text{ adj } \#2, \text{ noun}) \Rightarrow (\#1[\text{agr}] \Rightarrow \#2[\text{agr}]) \& (\#1[\text{decl}] \sim \#2[\text{decl}]).\]

If there is no determiner in front of a sequence of an adjective and a noun, then all weak readings of the adjective and the noun should be eliminated, which is done by the rule (15):

\[(15)\] \((?\text{[det]} \sim), \text{ adj } \#1, \text{ noun } \#2 \Rightarrow (\#1[\text{agr}] \Rightarrow \#2[\text{agr}]) \& (\#1[\text{decl}] \sim \#2[\text{decl}]).\]

Rules (14) and (15) illustrate another feature of the expressivity of double reduction rules in XIP: the constraint on the right-hand side of the double reduction rule may contain any combination of Boolean operators (disjunction, conjunction and negation of features) that can be expressed in the system. To force distinctness of declension values the negated equality operator \(\sim:\) is used.

The full expressivity of double reduction rules makes it possible to state conditions on contextually valid morphological readings as succinctly as possible. This is one of the main advantages of the present approach over previous frameworks for morphological disambiguation.\(^\text{11}\) While the framework of constraint grammar used by (Voutilainen, 1995) permits Boolean constraints, it lacks an equality operator and the use of variables over features on adjacent nodes. This in turn means that constraints cannot be generalized, but have to be stated in a case by case fashion. While this may be tolerable for languages like English, it will lead to an explosion of rules for languages like German with richer morphological paradigms.

(Hajic, 2001) and (Oflazer, 1997) do not consider agreement phenomena of the sort treated here. Therefore, it is difficult to tell whether the syntax of their disambiguation rules is rich enough to accommodate the same level of generality provided by the XIP double reduction rules.

5 Percolation of Morphological Features and Putting it all Together

As mentioned above, the dependency analysis takes as input the output of the chunk parser and tries to link nodes of the chunked tree by dependency relations. For example, chunked NPs are linked to the finite verb via grammatical relations such as subject, direct object and indirect object, depending on the morphological features present on the NP nodes. This section will explain how the contextually valid morphological analyses for the lexical nodes that make up an NP can be percolated up to the NP node during chunking.

The chunker uses non-recursive rewrite rules to combine the lexical nodes that make up an NP, after these nodes have been disambiguated by the use of ordinary disambiguation rules and double reduction rules. The desired percolation of morphological features onto the mother node is carried out by side conditions on the rewrite rules that are specified by Boolean constraints analogous to those shown in the previous section for double reduction rules.

The resulting interaction between ordinary disambiguation rules, double reduction rules and chunking rules can best be illustrated by the chunk analysis for one of the NPs of our example sentence. Figure 1 shows the result of morphological disambiguation for the NP verhie- tenten Beamten.

Lines marked with a minus sign are eliminated due to morphological disambiguation – by double reduction rules (12) or (15). Double reduction rule (12) also reduces the FMN gender value (shown in the corresponding line in (4)) for the remaining reading of verhie- tenten to Masc. The chunker then combines adjective and noun into an NP and percolates the agreement features of the remaining contextually valid reading onto this mother node.

Since XIP allows the inclusion of features on non-terminal nodes for chunking rules, readers might wonder why narrowing down contextually valid readings has to be done prior to chunking by the special-purpose mechanism of dou-
Figure 1: Morphological disambiguation for the NP *verdienten Beamten*

6 Quantitative Evaluation

The efficiency of the double reduction rules was tested on a corpus of noun phrases extracted from the *taz* newspaper corpus (*taz*, 1999). 500 noun phrases were extracted at random from the corpus and morphologically analyzed by the XRC E morphological analyzer for German. This analysis produced an average number of 6,237 distinct readings per token in the corpus before any ordinary disambiguation rules or double reduction rules were applied. After applying these disambiguation rules the average number of contextually valid readings reduced to 1,732 per token. This corresponds to a 72.23% reduction of readings per token.

6.1 Morphological Disambiguation

The number of distinct contextually valid readings per noun phrase after disambiguation is identical to the number of readings per token, since only readings shared among all tokens are kept. Thus, the average number of contextually valid readings per noun phrase is the same as that for tokens, i.e. 1.732. Figure 2 shows the distribution of the number of disambiguated readings over the entire corpus.

<table>
<thead>
<tr>
<th>count of NPs</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 reading</td>
<td>173</td>
</tr>
<tr>
<td>2 readings</td>
<td>315</td>
</tr>
<tr>
<td>≥ 3 readings</td>
<td>12</td>
</tr>
</tbody>
</table>

Figure 2: Results of morphological disambiguation

Thus, in more than 97% of all cases, at most two readings are retained, with more than a third of all noun phrases being uniquely disambiguated.

6.2 Adding Syntactic Heuristics

For the set of 327 NPs that retain more than one valid analysis after morphological disambiguation, the syntactic environment in which they occur in the corpus helps to uniquely disambiguate more than two thirds of them. In the full paper, the full range of such syntactic heuristics will be presented. Due to space limitations, we mention only the most effective one here: more than half of the NPs with two readings involve nominative/accusative ambiguities. If these NPs occur within a prepositional phrase, the case required by the preposi-
tion will lead to further disambiguation. Since no preposition requires nominative, only accusative readings will be retained.

Figure 3 shows the results of applying the full set of syntactic heuristics to the set of 327 NPs identified in Figure 2.

<table>
<thead>
<tr>
<th>count of NPs</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>unique reading</td>
<td>223</td>
</tr>
<tr>
<td>ambiguous gender</td>
<td>6</td>
</tr>
<tr>
<td>nondisambiguated case</td>
<td>98</td>
</tr>
</tbody>
</table>

Figure 3: Disambiguation with Syntactic Heuristics

The combination of syntactic heuristics and morphological disambiguation, thus, yield a total of 396 unique readings for the 500 NPs in the test corpus. Since gender ambiguities never play a role in the determination of dependency relations, the number of NPs that have a unique value for the determination of syntactic dependencies is actually slightly higher (402). Thus, in 80.4% of all cases, a unique reading can serve as input to the dependency parsing module of GRIP.

7 Conclusion

The present paper has shown that morphological disambiguation constitutes a crucial step in narrowing down the search space for the correct assignment of dependency structures. A quantitative evaluation on a German test corpus has shown that application of XIP disambiguation rules in conjunction with heuristics about the syntactic context of German NPs yields unique morphological analyses as input for assigning dependency relations in 80.4% of all cases. For those NPs that still have multiple readings, the lexical resources (CELEX and IMS-LEX), which are used by the dependency parsing module of GRIP and which give subcategorization information for German verbs, can provide further constraints for disambiguation. A quantitative analysis of such disambiguation at the level of dependency parsing itself will be the subject of future research.

References

