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Introduction Motivation

Why dependency structures?

I Constituent trees have some short comings, model mainly phrasal
adjacency

I Useful in sentence analysis, can be represent agreement more
appropriately

I Preferred in free word order languages such as Czech
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Dependency Parsing Approaches Dependency Structure

What is a head and what is a dependent?

I The head determines the syntactic category of a construction, and
can sometimes replace the construction

I The head determines the semantic category of a construction, and the
dependent gives the semantic specification

I The head is obligatory, the dependent is optional

I The head selects the dependent and determines whether the
dependent is needed

I The form of the dependent depends on the head (agreement)

I The linear position of the dependent is specified with reference to the
head
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Dependency Parsing Approaches Dependency Structure

Different annotation standards

The task is essentially ill-defined and left to heuristics in many cases.
Different annotation schema require different constructions of the
dependency relation.
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Dependency Parsing Approaches Dependency evolution

Much of the current advancement started at shared task
competitions

I CoNLL Shared task dedicated to multi-lingual dependency parsing in
2006

I Later years also added domain adaptation

I 13 Languages from 7 language families

I Scores ranged from the 60% to the 90% accuracy depending on
language and data sizes
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Dependency Parsing Approaches Metrics

How do we measure success

I Unlabeled Attachment Score (UAS)

I Labeled Attachment Score (LAS)

I Compete Sentence Accuracy
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Dependency Parsing Approaches Metrics

3 major approaches to Dependency Parsing

I Transition Based
I Malt Parser
I Z-par

I Graph Base
I MSTParser

I Constituent Conversion
I Pennconverter
I Stanfordconverter
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Dependency Parsing Approaches Transition Based

Transition Based Parsing

I Pros
I Fast and efficient algorithms

I Cons
I Usually Greedy/ No global optimal search
I Error propagation is a problem especially in searches with long arc paths
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Dependency Parsing Approaches Graph Based

Graph Based Parsing

I Pros
I Global optimal search
I Tends to perform well on longer sentences since it’s search is exact

I Cons
I Poor feature representations
I Increasing parameters hurts parsing efficiency
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Dependency Parsing Approaches Constituent Based

Constituent Based Parsing

I Use state-of-the-art Constituent Parsers

I “Transform” the parse into a dependency parse

I Returns state-of-the-art dependency parsing but only tried in English
on corpora that weren’t dependency based to begin with.
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Improvements to Parsing

What is the goal of new dependency parsing research

Improve Parsing Accuracy through domain modification and annotation
structure
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Improvements to Parsing Domain Adaptation

Domain Adaptation

Domain adaptation is the task of taking a parsing model training on one
domain and applying it to an unrelated domain. This usually has both
grammar and lexicon implications.

I Domain adaptation has been shown to be effective with:
I Up-training
I Self training
I Model selection
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Improvements to Parsing Annotation Structure

Annotation Structure

Coordination and head selection
can play an important role
in parsing
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Improvements to Parsing Annotation Structure

Coordination along with other annotations may be handled
very differently

Stanford Coordination PDT Coordination
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Improvements to Parsing Annotation Structure

Noun Phrase annotation guidelines impact other
applications in the NLP Pipeline

I Noun Phrases contain possible ambiguity.

I Most current approaches treat Noun Phrase structure as flat

I Gold standard Noun Phrase annotation exist from Vadas and Curran

I Does this additional structure help either dependency parsers or NLP
applications that make use of dependency structures?

Nathan Green (MFF Charles University) Dependency Parsing June 2, 2011 16 / 29



Improvements to Parsing Annotation Structure
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Improvements to Parsing Annotation Structure

Noun Phrase results on Machine Translation (TectoMT)

I NP structure had little effect on UAS and LAS

I Bleu score did improve with statistical significance using pairwise
evaluation (95% confidence value)

I Shows that maybe Parsing should be evaluated in the NLP pipeline
and not just with accuracy measures.
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Future Direction

Where to go from here

I Domain adaptation, annotation schema, and model combination are
all valuable avenues to pursue

I Looking at the effect of Constituent parsers when the language being
parsed is not English and the test data is not constituent based

I A new direction might also be effective
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Future Direction A new motivation

A New look

Not just improve accuracy but we want to spread dependency parsing to
more languages

I Current methods for unsupervised dependency parsing have extremely
low accuracy scores

I It is a worthy goal to try to improve
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Future Direction A new motivation

Under-resourced languages
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Future Direction A new motivation

Top 5 Spoken Languages
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Future Direction A new motivation

Top 20 Spoken Languages
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Future Direction A new motivation

And all the others ...
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Future Direction A new motivation

Houston we have a problem
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Future Direction A new motivation

What is available?

I Start with the basics:
I Word forms: Always available but for under-resourced languages,

inherently sparse.
I Part-of-speech: Some annotation required but far less than dependency

relations.
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Future Direction Language Model Data

Can we determine heads and dependencies from a
POS/word cluster language model?

I Leafs are inherently less important syntactically to the structure of a
sentence

I Can a language model recognize this?
I Word forms are too sparse
I Maybe a level of POS language model that can show dependency and

the “importance” of certain words
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Conclusion

Conclusion

I We have many different ways to approach Dependency parsing each
with its own pros and cons. Overall the results are about the same.

I Improvements can be made in Domain Adaptation and model
combination

I Annotation Scheme for dependency structures may have an effect on
the overall quality of a parser. Empirical evidence for dependency
annotation would be positive for the parsing community.

I Future work may be better framed around increasing the scope of
available languages in dependency parsing rather than language
specific gains.
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Conclusion

Questions?
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