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Abstract 

Spoken Language Understanding (SLU) and more specifically, semantic parsing is an indispensable task in each speech-enabled 
application. In this survey, we review the current research on SLU and semantic parsing with emphasis on machine learning techniques 
used for these tasks. Observing the current trends in semantic parsing, we conclude our discussion by suggesting some of the most 
promising future research trends. 
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1. Introduction 

Around half a century ago, Alan Turing proposed the 
first model for machine understanding. From that time 
on, there has been a growing interest in developing 
technologies for machine understanding in different 
modalities. Speech, specifically, as one of the most 
elementary and natural communication medium, has 
attracted much attention. It brings together seemingly 
unrelated areas of science, from speech processing in 
electrical engineering and natural language processing in 
computer science to machine learning in artificial 
intelligence all together to challenge the task of Natural 
Language Understanding (NLU). In this survey, we focus 
on speech-enabled NLU or simply Spoken Language 
Understanding (SLU) as well as semantic parsing.  

NLU and SLU are both designed to find conceptual 
representation of natural language sentences and 
utterances. What distinguishes SLU and NLU is the fact 
that SLU’s input is an utterance, which in addition to 
prosody and speaker identity contains situational and 
contextual information. In plain words, the function of 
SLU component is to convert an utterance to a 
representation of the user’s intention which is referred to 
as semantic representation. Semantic representations are 
usually in logical forms. Logical forms are detailed, 
context-independent, fully specified and unambiguous 
expressions which cover the utterance’s arguments and 
predicates using an artificial language. This artificial 
language or technically formalism can be of different 
sorts, such as λ-Calculus (Church, 1936, 1941; Carpenter, 
1997), first order fragments (Bird et al., 2009), robot 
controller language (Matuszek et al., 2012), etc. 

SLU components are mostly used in Spoken Dialogue 
Systems (SDS) (Jurčíček et al., 2014; Young et al., 2013; 
Lee and Eskenazi, 2013), spoken information retrieval 
systems (speech mining) (De Jong et al., 2000) and 
automated speech translation (Xiaodong et al., 2013). The 
current expansion in the market of smart phones, smart 
watches (e.g. Google’s and Apple’s watches) and myriad 
of other speech-enabled gadgets such as digital personal 
assistants, home entertainment, and security systems 
opens up a great opportunity for more challenging efforts 
in SLU research and development.  Apple’s Siri, Google 

Now, Amazon’s Echo, Microsoft’s Cortana, Clarity Lab’s 
Sirius, Nuance's Dragon Go and many other successful 
speech understanding applications are already true 
samples of such efforts. SLU has been the overall or 
partial focus of numerous research projects including 
ATIS (1989-1995), Verbmobile (1996-2000), How may I 
help you? (2001), AMITIES (2001-2004), TALK (2009-
2011), Classic (2008-2011), Parlance (2011-2014), 
Carnegie Mellon Communicator (1999-2002), 
Companions (2006-2010) and Alex (2012-current), to 
name a few. 

We organized the remaining of this survey into the 
following sections. After having an overview on the 
subject matter in Section 2, we review SLU sub-tasks in 
Section 3 and machine learning techniques for them in 
Section 4. Before we conclude in Section 6, we introduce 
two widely used parsing techniques and formalisms in 
Section 5.  

2. SLU Overview 
SLU components can typically be categorized into three 

systems as hand-crafted, data-driven or a combination 
thereof in hybrid systems. Hand-crafted systems are 
based on symbolic analysis of language while data-driven 
and more specifically, statistical systems are mostly 
based on the notions of information theory. 

The hand-crafted paradigm is mostly advocated in 
artificial intelligence. In this paradigm, a common 
approach is to build intelligent agents which mimic the 
human brain for language understanding. Hand-crafted 
systems still have some strong proponents and basically 
many commercial applications today make use of them 
extensively. However, the advocates of the data-driven 
paradigm argue that mimicking biological organisms in 
mechanical machines is a fruitless effort. Fred Jelinek, 
the pioneer of statistical methods, once made an analogy 
between birds and air planes by arguing that airplanes do 
not flap their wings like birds and they still can fly.   

Data-driven approaches benefit from a learning model 
which makes them language independent. Language 
independency is a significant advantage for data-driven 
systems over the hand-crafted ones. Efficient language- 
independent models in one language will work in another 
language provided that the features representing the new 



language are fed into the model through a set of training 
data.  

Although current data-driven approaches are proved 
more efficient in terms of development efforts and 
accuracy, similar to the hand-crafted ones, they are 
mostly domain-dependent, i.e. designed to recognize and 
work with specific notions and functions relating to a 
single topic. For instance, the air travel domain is a 
limited domain in which only a few notions such as 
departure_time or flight_number and a few functions 
such as flight_booking are recognized. However, open-
domain systems capable of performing conversations in 
wider range of topics are more desirable. In open-domain 
applications, the number of the notions and the functions 
is practically unbounded. This is the reason why the 
design of Meaning Representation Language (MRL) for 
such systems poses a big challenge 

In essence, data-driven and fully statistical SLU 
components provide us with an approach for easier 
adaptation to new domains and more robust performance 
as well as less deployment cost. In this survey, we 
concentrate on statistical and data-driven methods.    

3. SLU Sub-Tasks 

SLU implementations generally include three main 
components including domain detection, intent 
determination and slot filling components (Li et al., 
2012). 

3.1. Domain Detection 

The Meaning Representation Languages (MRL) in most 
semantic parsers is designed to represent notions limited 
to a specific domain. Therefore, given an utterance, the 
first task of an SLU component is to recognize the 
relevant domain. This process is applied for multi-domain 
SLUs, while for single-domain SLUs, it suffices to detect 
out-of-domain utterances and handle them appropriately. 

3.2. Intent Determination 
In each domain, there is a set of pre-defined intentions 

which are specific to that domain. For instance, in the air 
traffic domain, ‘ticket reservation’ is a common intention 
and the intent determination component is expected to 
recognize this intention in user’s utterance.  

Until recently, all MRLs used for semantic parsing in 
different SLU components were limited to domain-
dependent representations (Zelle and Mooney, 1996). It 
was because of their inherent limitation on the number of 
the lexicon they recognized and the number of the 
grammatical rules they realized to compose their lexicons 
into valid sentences. However, currently, there is huge 
interest in academics and in industry for open-domain 
MRLs and systems with unbound lexicons and grammar.  

3.3. Slot Filling 

SLUs may be used as a component in SDS (Black and 
Eskenazi, 2009), speech information retrieval (Hafen and 
Henry, 2012), spoken language translation (García et al., 
2012) or spoken question answering system (Zettlemoyer 
and Collins, 2005), each of which interprets the task of 
slot filling in slightly different way. In the case of 
question answering for instance, slot filling is the task of 
mapping natural language utterances into their 

appropriate logical slots to form its logical representation 
(Zelle and Mooney, 1996) 

Due to limited expressive power of current MRLs, these 
logical forms are limited to specific domains and 
expanding logical forms for larger domains or, ideally, 
for open-domain applications have been attracting special 
interest recently. It requires a learning capacity which 
makes systems able to recognize unbounded number of 
lexicons and grammar.  Such broad coverage and learning 
capacity paves the way for semantic parsing in open-
domain dialogue systems, open-domain question 
answering and open-domain information extraction. 

4. Machine Learning Techniques 
In the history of semantic parsing, different models, 

grammars, and techniques are examined for different 
SLU sub-tasks including generative models (e.g., Hidden 
Markov Models (HMM) (Schwartz et al. 1996)), 
discriminative techniques (Wang and Acero, 2006), or 
probabilistic context free grammars (Ward and Issar, 
1994). All of these models and techniques have their own 
pros and cons; while generative models, for instance, are 
flexible in mapping individual words to their 
corresponding semantic tree nodes, they are limited in 
modeling local dependencies and co-related features. In 
contrast, latent-variable discriminative models are able to 
learn representations with long dependencies. To have 
more elaboration on such techniques, we briefly review 
some of the most practical machine learning methods for 
semantic parsing in the following sections. 

 4.1. CRF 
State-of-the-art semantic parsing approaches use 

statistical machine learning techniques such as 
Conditional Random Fields (CRF) (Lafferty et al., 2001). 
CRFs are a class of discriminative sequence labeling 
models. They are essentially undirected graphical models. 
They are flexible in dealing with overlapping features and 
for this reason, CRFs usually outperform generative 
models such as HMM (Yao et al., 2013).  

In contrast to Maximum Entropy Markov Model 
(MEMM) (Ratnaparkhi, 1998) classifiers which are left-
to-right probabilistic models for sequence labeling, 
CRFs-based models provide global conditional 
distribution. Using this feature in CRFs,  Xu and Sarikaya 
(2013 a, b) proposed a joint model for domain detection 
and intent determination which enhanced the SLU 
performance by decreasing the effect of error propagation 
in the SLU pipeline. 

4.2. Neural Networks 
Artificial Neural Networks (NN) have been recently 

successfully applied in SLU tasks. Compared to previous 
discriminative state-of-the-art models such as CRFs and 
SVMs, simple NNs such as Recurrent Neural Networks 
(RNN) and Convolutional Neural Networks (CNN) have 
significantly higher performance in some tasks, such as 
sequence labeling. (Collobert et al., 2011; Yao et al., 
2014) 

An RNN models a short-term memory and saves the 
current state of the network using recurrent connections. 
Long Short-Term Memory (LSTM) (Hochreiter and 
Schmidhuber, 1997) is an advanced RNN model which 
has a forgetting gate with linear activation function and a 



memory cell in addition to input, output and hidden 
layers in regular RNNs.  Thanks to the memory cells, 
LSTMs can find and exploit long-range dependencies in 
the data better than simple RNNs. 

The performance of NNs in many Natural Language 
Processing (NLP) applications is very promising and 
nowadays different architectures of NNs are being used 
for different NLP tasks. These tasks include but not 
limited to POS tagging, semantic parsing, dependency 
parsing, machine translation, etc.  

NNs have shown a promising capacity in automatic 
feature learning, too (Mesnil et al., 2013); non-NN SLU 
approaches typically use handcrafted features (Liu and 
Sarikaya, 2014), such as N-gram patterns or bag-of-
words. These features need to be designed by hand before 
the model can be trained. The problem of using such 
features is that for a typical utterance containing 10 words 
for instance, there would be tens of thousands features. 
Processing such an immense amount of features is very 
computationally expensive.  

Instead, NNs can automatically learn efficient and 
dense features in the form of word embeddings. A word 
embedding projects a high-dimensional word 
representation vector into a dense low-dimensional one. 
This capacity of NNs in feature generation can be 
integrated into classical models, and some studies show 
that it enhances their performances significantly. For an 
instance, Xu and Sarikaya (2013a) exploited feature 
learning mechanism in neural networks and applied it to 
their joint model of intent detection and slot filling in 
SLU. 

NNs have also gained vast popularity in classification, 
sequence labeling tasks and other tasks in SLU 
components. Deoras and Sarikaya (2013) and  Sarikaya et 
al. (2014b) suggested the use of Deep Belief Networks 
(DBN) as a variant of NNs in semantic parsing. DBNs are 
stacks of Restricted Boltzmann Machines (RBM) which 
are basically probabilistic models. RBMs are trained in a 
process called contrastive divergence, in which each 
RBM layer is trained by using previous layers’ hidden 
unit as its input unit. This process provides RBM layers 
with their initial weights. DBN is then tuned using the 
back-propagation algorithm. In contrast to CRFs, which 
estimate the global probability of a sequence of words, in 
DBN-based approaches, the conditional probability of a 
slot sequence is decomposed into a product of local 
probability functions. Each of these probabilities models 
the distribution of a particular slot tag given the context at 
that time stance. Deoras et al., (2013) expanded the DBN 
model in (Deoras and Sarikaya, 2013) for joint intent 
detection and slot filling. 
 
4.3. Deep Learning (DL) 

The DL approach encompasses many layers of non-
linear information processing in Deep Neural Networks 
(DNN) with many hidden layers. A DNN is basically a 
stack of large number of simple NNs stacked on top of 
each other. 
Deep Learning techniques is shown to improve the state-
of-the-art in some SLU tasks such as slot filling (Sarikaya 
et al., 2014a,b; Mesnil et al., 2013). Recently Mesnil et 
al., (2013) investigated the task of slot filling in RNN by 
implementing different architectures (Elman-type, Jordan 
type and their variants) and they showed that their RNN 

architectures outperforms state-of-the-art CRF models for 
slot filling task. 

4.4. Unsupervised / Distributional Methods 
Supervised approaches in SLU have their own 

drawbacks. First, most supervised SLU systems today 
limit their application to narrowly defined domains. 
Second, high accuracy in supervised SLU methods is 
dependent on annotated samples which in many cases are 
costly to produce and subsequently, very sparse. 
Therefore, the trend of research on statistical SLU in 
recent years has shifted toward semi-supervised (Tür et 
al., 2005, Celikyilmaz et al., 2013) or unsupervised 
learning (Lorenzo et al., 2013) learning.   

To continue our discussion about unsupervised learning 
in semantic parsing, we concentrate on distributional 
semantics theory. In Section 4.2, we talked about making 
use of embeddings as a model of feature representation in 
vector space. Here we use the notion of distributional 
semantics to define word meaning representation in 
vector space. Vector space representation in DNN is 
optimized to maximize the performance given the 
objective function. Vector Space Representation has 
recently received a growing body of research efforts and 
has been proved successful in many tasks. Notably in 
NLP tasks, Collobert et al. (2011) showed that low-
dimensional word vectors learned by Neural Network 
Language Models (NNLM) are beneficial for many NLP 
tasks. However, low-dimensional distributional 
representation of meaning suffers from scalability issues 
due to data sparseness. To address such scalability issues 
in vector space, Mikolov et al. (2013) proposed highly 
scalable high-dimensional word vectors: They introduced 
Word2Vec for continuous word representation, which 
takes text as input and learns features of the words in the 
text –the word embeddings- as latent variables.  

Word embeddings contain rich information about words 
linguistically and conceptually. They contain syntactic 
and semantic relationships among constituents of the text. 
However, they lack domain-dependent information which 
is of much importance in domain-constrained natural 
language queries. To address this, Celikyilmaz et al. 
(2015) extended the Mikolov et al. (2013)’s model by 
supplementing it with information about the relationship 
between entities extracted from a knowledge graph. They 
showed that their model improved performance of 
semantic tagging. They also extended the model by 
adding prior information to its objective function using 
synonymy relations between words from WordNet. 
 

5. Parsing Approaches 

Semantic representation for natural languages like 
Knowledge Representation (KR) for the phenomena in 
natural world is a hard task. There are a number of 
semantic representation formalisms, however, for the 
sake of brevity, we concentrate on λ-calculus as a widely 
used formalism for semantic representation in SLU 
components. λ-calculus represents the meaning of real 
world objects using a set of ontologies, and it uses 
syntactic rules for composition (Church, 1941).  It has 
been widely used for semantic parsing whether directly as 
λ-expressions in (Zettlemoyer and Collins, 2005) or some 
other variants such as λ-Dependency Compositional 



Semantics (λ-DCS) (Liang, 2013). We briefly introduce 
CCG and DCS which both use a variant of λ-calculus in 
their meaning representation formalism. 

5.1. CCG 

Combinatorial Categorial Grammar or CCG (Steedman, 
1996, 2000) is a parsing scheme that combines lexicons 
and constitutionality in an elegant way. CCG uses λ-
calculus as MRL and is considered a mildly context-
sensitive and lexicalized grammar. It consists of a 
collection of lexicons and combinators which combine 
these lexicons to build up the meaning of a sentence.  

CCG parsers are used in variety of applications from 
question answering (Kushman, 2014) to robot control 
(Krishnamurthy and Kollar, 2013) and semantic parsing 
(Kwiatkowski et al., 2011).  

5.2. DCS and λ-DCS 

DCS represents the formal semantics of an utterance 
using a tree structure. In DCS tree structures, lexicons are 
in the tree nodes and the dependencies among lexicons 
are captured through edges between the nodes.  

By integrating λ-calculus into DCS, Liang (2013) 
introduced λ-DCS. Like CCG, DCS can be trained using 
annotated logical forms and map new utterances to their 
equivalent logical forms. But mapping utterances to their 
logical forms is not the only way of language 
understanding. In addition, this method suffers from two 
major limitations. First, it needs large amounts of 
annotated logical forms which are costly to produce. 
Second, it is limited to the concepts in the domain as well 
as the number of logical predicates (Wong and Moony 
2007). A more desirable approach which is mostly 
referred to as ‘Grounded Language Learning’ exploits a 
more natural way of mapping utterances directly to real 
world responses like mapping questions to their correct 
answers. Liang and Potts (2015) investigated semantic 
parsing by directly mapping utterances to their 
denotations. These denotations can be of various kinds, 
such as the entries in a database, the responses from a real 
environment or even the responses generated by a 
cognitive model. 
 

6. Conclusion 
We provided a review of semantic representation 

formalisms and machine learning techniques used in 
current SLU research. In current SLU problems, moving 
from domain-dependent to open-domain systems is a 
great research and development leap. Building open-
domain SLU modules through deeper linguistic 
understanding will widen the functionality of systems to 
large number of applications. Use of Big Data 
technologies via knowledge extraction techniques from 
large knowledge graphs is one active direction for this 
purpose. Another active direction is deep learning and the 
related technologies. Still, scaling-up techniques such as 
bootstrapping or search query logs or web search (for 
either structured or unstructured documents) would be 
among interesting tracks in the future. In addition to 
SDSs, focus of SLU has changed from human-machine 
interaction and database query to general information 
retrieval tasks such as voice search. At the same time 

SLUs are improving to cover more challenging tasks 
including multi-human and human-human spontaneously 
generated speech, interaction with live ASR, use of 
multimodal features in Dialogue Act (DA) detection, 
handling different modalities including gesture and geo-
location and handling multi language for cross-lingual 
functionality. 
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