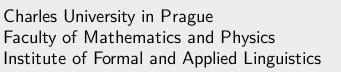
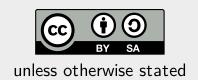


Correlation, Model Combination

Jindřich Libovický (reusing materials by Milan Straka)

■ November 20, 2025





Today's Lecture Objectives

After this lecture you should be able to

- ullet Explain and implement different ways of measuring correlation: Pearson's correlation, Spearman's correlation, Kendall's au.
- Decide if correlation is a good metric for your model.
- Measure inter-annotator agreement and draw conclusions for data cleaning and for limits of your models.
- Use correlation with human judgment to validate evaluation metrics.

NPFL129, Lecture 8 Covariance Correlation Correlation in ML 2/22

Covariance

NPFL129, Lecture 8 Covariance Correlation Correlation in ML 3/22

Covariance

Given a collection of random variables x_1, \ldots, x_N , we know that

$$\mathbb{E}\left[\sum_i \mathrm{x}_i
ight] = \sum_i \mathbb{E}ig[\mathrm{x}_iig].$$

But how about $Var(\sum_i x_i)$?

$$egin{aligned} \operatorname{Var}\left(\sum_{i} \mathbf{x}_{i}
ight) &= \mathbb{E}\left[\left(\sum_{i} \mathbf{x}_{i} - \sum_{i} \mathbb{E}[\mathbf{x}_{i}]
ight)^{2}
ight] \ &= \mathbb{E}\left[\left(\sum_{i} \left(\mathbf{x}_{i} - \mathbb{E}[\mathbf{x}_{i}]
ight)^{2}
ight] \ &= \mathbb{E}\left[\sum_{i} \sum_{j} \left(\mathbf{x}_{i} - \mathbb{E}[\mathbf{x}_{i}]
ight)\left(\mathbf{x}_{j} - \mathbb{E}[\mathbf{x}_{j}]
ight)
ight] \ &= \sum_{i} \sum_{j} \mathbb{E}\left[\left(\mathbf{x}_{i} - \mathbb{E}[\mathbf{x}_{i}]
ight)\left(\mathbf{x}_{j} - \mathbb{E}[\mathbf{x}_{j}]
ight)
ight]. \end{aligned}$$

NPFL129, Lecture 8

Covariance

Correlation

Correlation in ML

Covariance

We define **covariance** of two random variables x, y as

$$\mathrm{Cov}(\mathrm{x},\mathrm{y}) = \mathbb{E}\Big[ig(\mathrm{x} - \mathbb{E}[\mathrm{x}]ig) ig(\mathrm{y} - \mathbb{E}[\mathrm{y}]ig) \Big].$$

Then,

$$\operatorname{Var}\left(\sum
olimits_{i} \mathrm{x}_{i}
ight) = \sum_{i} \sum_{j} \operatorname{Cov}(\mathrm{x}_{i}, \mathrm{x}_{j}).$$

Note that Cov(x, x) = Var(x) and that we can write covariance as

$$\begin{aligned} \operatorname{Cov}(\mathbf{x}, \mathbf{y}) &= \mathbb{E} \Big[\big(\mathbf{x} - \mathbb{E}[\mathbf{x}] \big) \big(\mathbf{y} - \mathbb{E}[\mathbf{y}] \big) \Big] \\ &= \mathbb{E} \big[\mathbf{x} \mathbf{y} - \mathbf{x} \mathbb{E}[\mathbf{y}] - \mathbb{E}[\mathbf{x}] \mathbf{y} + \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}] \big] \\ &= \mathbb{E} \big[\mathbf{x} \mathbf{y} \big] - \mathbb{E} \big[\mathbf{x} \big] \mathbb{E} \big[\mathbf{y} \big]. \end{aligned}$$

Correlation

NPFL129, Lecture 8 Covariance Correlation Correlation in ML 6/22

Correlation

Random variables x, y are uncorrelated if Cov(x, y) = 0; otherwise, they are correlated.

Note that two independent random variables are uncorrelated, because

$$egin{aligned} \operatorname{Cov}(\mathbf{x},\mathbf{y}) &= \mathbb{E}\Big[ig(\mathbf{x} - \mathbb{E}[\mathbf{x}]ig)ig(\mathbf{y} - \mathbb{E}[\mathbf{y}]ig)\Big] \ &= \sum_{x,y} P(x,y)ig(x - \mathbb{E}[x]ig)ig(y - \mathbb{E}[y]ig) \ &= \sum_{x,y} P(x)ig(x - \mathbb{E}[x]ig)P(y)ig(y - \mathbb{E}[y]ig) \ &= igg(\sum_x P(x)ig(x - \mathbb{E}[x]ig)igg)igg(\sum_y P(y)ig(y - \mathbb{E}[y]ig) \ &= \mathbb{E}_\mathbf{x}ig[\mathbf{x} - \mathbb{E}[\mathbf{x}]ig]\mathbb{E}_\mathbf{y}ig[\mathbf{y} - \mathbb{E}[\mathbf{y}]ig] = 0. \end{aligned}$$

However, dependent random variables can be uncorrelated – random uniform x on [-1,1] and y = |x| are not independent (y is completely determined by x), but they are uncorrelated.

There are several ways to measure correlation of random variables x, y.

Pearson correlation coefficient, denoted as ρ or r, is defined as

$$ho \stackrel{ ext{def}}{=} rac{ ext{Cov}(ext{x}, ext{y})}{\sqrt{ ext{Var}(ext{x})}\sqrt{ ext{Var}(ext{y})}} \ r \stackrel{ ext{def}}{=} rac{\sum_i (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_i (x_i - ar{x})^2}\sqrt{\sum_i (y_i - ar{y})^2}},$$

where:

- ρ is used when the full expectation is computed (population Pearson correlation coefficient);
- \bullet r is used when estimating the coefficient from data (sample Pearson correlation coefficient);
 - \circ \bar{x} and \bar{y} are sample estimates of the respective means.

NPFL129, Lecture 8 8/22 Covariance Correlation Correlation in ML

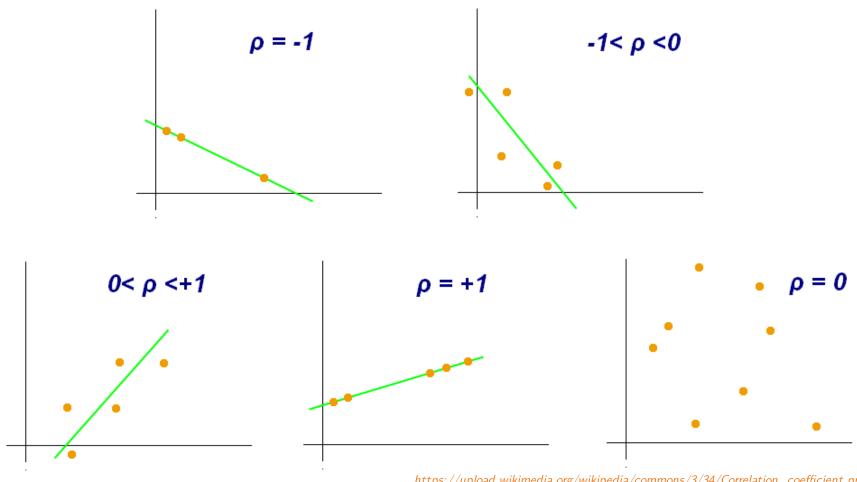
The value of Pearson correlation coefficient is in fact normalized covariance, because its value is always bounded by $-1 \le \rho \le 1$ (and the same holds for r).

The bound can be derived from

$$\begin{split} 0 &\leq \mathbb{E} \left[\left(\frac{(\mathbf{x} - \mathbb{E}[\mathbf{x}])}{\sqrt{\mathrm{Var}(\mathbf{x})}} - \rho \frac{(\mathbf{y} - \mathbb{E}[\mathbf{y}])}{\sqrt{\mathrm{Var}(\mathbf{y})}} \right)^2 \right] \\ &= \mathbb{E} \left[\frac{(\mathbf{x} - \mathbb{E}[\mathbf{x}])^2}{\mathrm{Var}(\mathbf{x})} \right] - 2\rho \mathbb{E} \left[\frac{(\mathbf{x} - \mathbb{E}[\mathbf{x}])}{\sqrt{\mathrm{Var}(\mathbf{x})}} \frac{(\mathbf{y} - \mathbb{E}[\mathbf{y}])}{\sqrt{\mathrm{Var}(\mathbf{y})}} \right] + \rho^2 \mathbb{E} \left[\frac{(\mathbf{y} - \mathbb{E}[\mathbf{y}])^2}{\mathrm{Var}(\mathbf{y})} \right] \\ &= \frac{\mathrm{Var}(\mathbf{x})}{\mathrm{Var}(\mathbf{x})} - 2\rho \cdot \rho + \rho^2 \frac{\mathrm{Var}(\mathbf{y})}{\mathrm{Var}(\mathbf{y})} = 1 - \rho^2, \end{split}$$

which yields $\rho^2 \leq 1$.

Pearson correlation coefficient quantifies linear dependence of the two random variables.



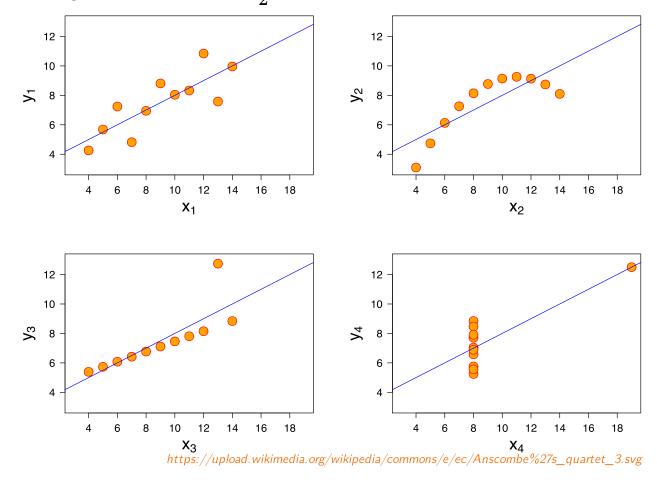
https://upload.wikimedia.org/wikipedia/commons/3/34/Correlation_coefficient.png

Pearson correlation coefficient quantifies linear dependence of the two random variables.



NPFL129, Lecture 8 Covariance Correlation Correlation in ML 11/22

The four displayed variables have the same mean 7.5, variance 4.12, Pearson correlation coefficient 0.816 and regression line $3 + \frac{1}{2}x$.

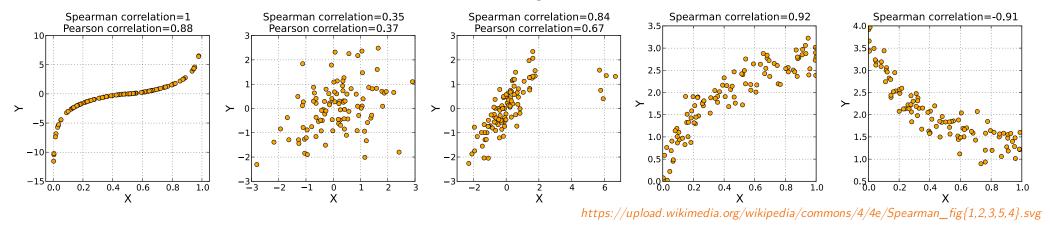


Nonlinear Correlation – Spearman's ρ

To measure also nonlinear correlation, two coefficients are commonly used.

Spearman's rank correlation coefficient ρ

Spearman's ρ is Pearson correlation coefficient measured on **ranks** of the original data, where a rank of an element is its index in sorted ascending order.



NPFL129, Lecture 8 Covariance Correlation Correlation in ML 13/22

Nonlinear Correlation – Kendall's au

Kendall rank correlation coefficient au

Kendall's τ measures the amount of concordant pairs (pairs where y increases/decreases when x does), minus the discordant pairs (where y increases/decreases when x does the opposite):

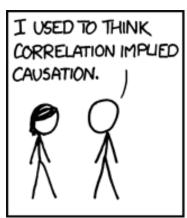
$$au \stackrel{ ext{def}}{=} rac{|\{ ext{pairs } i
eq j : x_j > x_i, y_j > y_i\}| - |\{ ext{pairs } i
eq j : x_j > x_i, y_j < y_i\}|}{\binom{n}{2}} \ = rac{\sum_{i < j} ext{sign}(x_j - x_i) ext{sign}(y_j - y_i)}{\binom{n}{2}}.$$

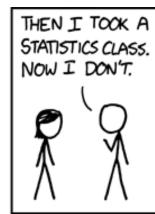
There is no clear consensus on whether to use Spearman's ρ or Kendall's τ . When there are no/few ties in the data, Kendall's τ offers two minor advantages $-\frac{1+\tau}{2}$ can be interpreted as a probability of a concordant pair, and Kendall's τ converges to a normal distribution faster.

As defined, the range of Kendall's $\tau \in [-1,1]$. However, if there are ties, its range is smaller – therefore, several corrections (not discussed here) exist to adjust its value in case of ties.

Correlation is not causation

https://timoelliott.com/blog/cartoons/yet-more-analytics-cartoons





https://xkcd.com/552/

NPFL129, Lecture 8 Covariance Correlation Correlation in ML 15/22

Correlation in Machine Learning

NPFL129, Lecture 8 Covariance Correlation Correlation in ML 16/22

Use of Correlation in Machine Learning

In ML, correlation is commonly used as

- Evaluation metric for some tasks;
- Measuring data annotation quality;
- Assessing the quality of automatic metrics by comparing them to human judgment.

NPFL129, Lecture 8 Covariance Correlation Correlation in ML 17/22

Correlation as evaluation metric

- Learning to rank (e.g., document retrieval): we do not care about the actual values
 - \circ Kendall's τ , Spearman's correlation
 - When we want the correct items to rank before incorrect ones: precision (assuming fixed) top-k, typically at 5, 10), recall (often ill-defined), mean reciprocal rank

$$\mathrm{MRR} = rac{1}{N} \sum_{i=1}^{N} rac{1}{\mathrm{rank~of~the~first~relevant~item}}$$

- Evaluating pair similarity: word embeddings, sentence embeddings
 - Similarity estimates from psycholinguistic experiments: scores for word/sentence pairs
 - Measure Pearson/Spearman correlation between embedding distances and similarity scores

NPFL129, Lecture 8 18/22 Covariance Correlation Correlation in ML

Inter-annotator agreement (1)

- Inter-annotator agreement can tell us
 - How well defined the task is
 - How reliable annotators/user ratings are
 - What data items are suspicious / difficult
- For continuous target values: Pearson's/Spearman's correlation
- ullet For classification tasks: Cohen's κ p_O is observed agreement, p_E expected agreement by chance

$$\kappa = rac{p_O - p_E}{1 - p_E}$$

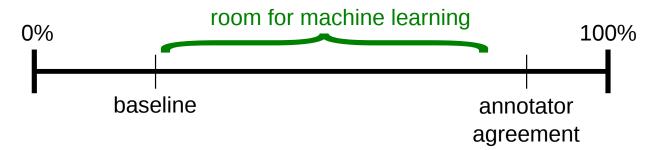
https://www.surgehq.ai/blog/the-pitfalls-of-inter-rater-reliabilityin-data-labeling-and-machine-learning

NPFL129, Lecture 8 Covariance Correlation Correlation in ML 19/22

Inter-annotator agreement (2)

- Can be used to filter out confusing data points and unreliable annotators
- Not all outliers are noise! Low IAA can reveal cultural differences.

IAA sets natural upper boundary for ML performance. Performance over IAA is suspicious!



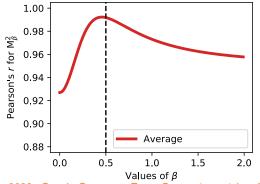
- Trivial baseline for classification: majority class, for regression average, or something based on simple rules
- Performance over IAA is more likely overfitting for the way the data is curated than superhuman performance.

NPFL129, Lecture 8 Covariance Correlation Correlation in ML 20/22

Correlation with human judgment

For some tasks, it might not be clear how to measure the model performance:

Grammar checking: the β parameter



J. Náplava, M. Straka, J. Straková, and A. Rosen. 2022. Czech Grammar Error Correction with a Large and Diverse Corpus. In TAACL, 10:452–467.

Machine translation: evaluation is subjective by definition, we design metrics to correlate with human judgment.

- SoTA machine translation metrics are typically machine-learned.
- Different metrics might be suitable for different tiers of translation quality.
- There is an annual competition in MT quality and MT metric quality.

NPFL129, Lecture 8 Covariance Correlation Correlation in ML 21/22

Today's Lecture Objectives

After this lecture you should be able to

- ullet Explain and implement different ways of measuring correlation: Pearson's correlation, Spearman's correlation, Kendall's au
- Decide if correlation is a good metric for your model
- Measure inter-annotator agreement and draw conclusions for data cleaning and for limits of your models
- Use correlation with human judgment to validate evaluation metrics

NPFL129, Lecture 8 Covariance Correlation Correlation in ML 22/22