
NPFL129, Lecture 10

Gradient Boosted Decision Trees

Jindřich Libovický (reusing materials by Milan Straka)

December 01, 2024

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Today's Lecture Objectives

After this lecture you should be able to

Explain second-order optimization methods

Implement gradient boosted decision trees for regression and classification

Decide what supervised machine learning approach is suitable for particular problems

2/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Gradient Boosting

3/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Gradient Boosting Decision Trees

Figure 1 of "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754

The gradient boosting decision trees also train a collection of decision trees, but unlike random
forests, where the trees are trained independently, in GBDT they are trained sequentially to
correct the errors of the previous trees.

If we denote as the

prediction function of the

 tree, the prediction of

the whole collection is then

where is a vector of

parameters (leaf values, to
be concrete) of the tree.

y t

tth

y(x) =i y (x ;w),
t=1

∑
T

t i t

w t

tth

4/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Gradient Boosting for Regression

Considering a regression task first, we define the overall loss as

where

 are the parameters (leaf values) of the trees;

 is an per-example loss, for regression;

the is the usual -regularization strength.

E(w) = ℓ(t , y(x ;w))+
i

∑ i i λ w ,
t=1

∑
T

2
1

t
2

w = (w , … ,w)1 T

ℓ(t , y(x ;w))i i (t −i y(x ;w))i
2

λ L2

5/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Gradient Boosting for Regression

To construct the trees sequentially, we extend the definition to

In the following text, we drop the parameters of and for brevity.

The original idea of gradient boosting was to set

as a direction minimizing the residual loss and then finding a suitable constant , which would

minimize the loss

E (w ;w) =(t)
t 1..t−1 [ℓ(t , y (x ;w) +

i

∑ i
(t−1)

i 1..t−1 y (x ;w))] +t i t λ w .
2
1

t
2

y(t−1) y t

y (x) ←t i − =
∂y (x)(t−1)

i

∂ℓ(t , y (x))i
(t−1)

i −

∂y
∂ℓ(t , y)i

y=y (x)(t−1)
i

γ t

 [ℓ(t , y (x) +
i

∑ i
(t−1)

i γ y (x))] +t t i λ w .
2
1

t
2

6/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Newton’s Root-Finding Method

7/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

First-order and Second-order Methods

Until now, we used mostly SGD for finding a minimum, by performing

A disadvantage of this (so-called first-order method) is that we need to specify the learning
rates by ourselves, usually using quite a small one, and perform the update many times.

However, in some situations, we can do better.

w ← w− α∇E(w).

8/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Newton’s Root-Finding Method

Modification of https://commons.wikimedia.org/wiki/File:Newton–
Raphson_method.svg

Assume we have a function and we want to find its root. An SGD-like algorithm

would always move “towards” zero by taking small steps.

Instead, we could consider the linear local approximation
(i.e., consider a line “touching” the function in a given
point) and perform a step so that our linear local
approximation has a value 0:

Finding Minima
The same method can be used to find minima, because a
minimum is just a root of a derivative, resulting in:

f : R → R

x ←′ x− .
f (x)′

f(x)

x ←′ x− .
f (x)′′

f (x)′

9/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Newton’s Method

The following update is the Newton’s method of searching for extremes:

It is a so-called second-order method, but it is just an SGD update with a learning rate .

Derivation from Taylor’s Expansion
The same update can be derived also from the Taylor’s expansion (is a fixed point and is now the

variable that moves)

which we can minimize for by (i.e., the minimum of the approximation)

x ←′ x− .
f (x)′′
f (x)′

 f (x)′′
1

x ϵ

f(x+ ε) ≈ f(x) + εf (x) +′
 ε f (x) +

2
1 2 ′′ O(ε),3

ε

0 = ≈
∂ε

∂f(x+ ε)
f (x) +′ εf (x), obtaining x+′′ ε = x− .

f (x)′′

f (x)′

10/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Training MLPs with the Newton’s Method

Note that the second-order methods (methods utilizing second derivatives) are impractical
when training MLPs (and GLMs) with many parameters. The problem is that there are
too many second derivatives – if we consider weights ,

the gradient has elements;

however, we have a matrix with all second derivatives, called the Hessian :

For completeness, the Taylor expansion of a multivariate function then has the following form:

from which we obtain the following second-order method update:

w ∈ RD

∇E(w) D

D × D H

H i,j =def
 .

∂w ∂w i j

∂ E(w)2

f(x+ ε) = f(x) + ε ∇f(x) +T
 ε Hε,

2
1 T

x ← x−H ∇f(x).−1

11/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Gradient Boosting: Training

12/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Gradient Boosting

Returning to the gradient boosting decision trees, instead of using a first-order method, it was
later suggested that a second-order method could be used. Denoting

and

we can expand the objective using a second-order approximation to

g =i =
∂y (x)(t−1)

i

∂ℓ(t , y (x))i
(t−1)

i

∂y
∂ℓ(t , y)i

y=y (x)(t−1)
i

h =i =
∂y (x)(t−1)

i
2

∂ ℓ(t , y (x))2
i

(t−1)
i

 ,
∂y2

∂ ℓ(t , y)2
i

y=y (x)(t−1)
i

E(t)

E (w ;w) ≈(t)
t 1..t−1 [ℓ(t , y (x))+

i

∑ i
(t−1)

i g y (x) +i t i h y (x)] +
2
1

i t
2

i λ w .
2
1

t
2

13/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Gradient Boosting

Recall that we denote the indices of instances belonging to a leaf as , and let us denote

the prediction for the leaf as . Then we can rewrite

By setting a derivative with respect to to zero, we get

Therefore, the optimal weight for a node is

T I T

T w T

E (w ;w) ≈(t)
t 1..t−1 [g y (x) +∑

i
i t i h y (x)] +

2
1

i t
2

i λ w +
2
1

t
2

const

≈ [(g)w +
T

∑
i∈I T

∑ i T (λ+
2
1

 h)w] +
i∈I T

∑ i T
2 const.

w T

0 = =
∂w T

∂E(t)

 g +∑
i∈I T

i (λ+ h)w .∑
i∈I T

i T

T

w =T
∗ − .

λ+ h ∑i∈I T
i

 g ∑i∈I T
i

14/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Gradient Boosting

Substituting the optimum weights to the loss, we get

which can be used as a splitting criterion.

Figure 2 of "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754

E (w) ≈(t) ∗ − +
2
1

T

∑
λ+ h ∑i∈I T

i

 g (∑i∈I T
i)

2

const,

15/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Gradient Boosting

When splitting a node, the criteria of all possible splits can be effectively computed using the
following algorithm:

D

D

if
next

then

Modified from Algorithm 1 of "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754

16/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Gradient Boosting

Furthermore, gradient boosting trees frequently use:

data subsampling: either bagging or (even more commonly) only a fraction of the original
training data is utilized for training of a single tree (with 0.5 being a common value),

feature subsampling;

shrinkage: multiply each trained tree by a learning rate , which reduces the influence of

each individual tree and leaves space for future optimization.

α

17/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Gradient Boosting: Classification

18/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Binary Classification with Gradient Boosting Decision Trees

To perform classification, we train the trees to perform the linear part of a generalized linear
model.

Specifically, for a binary classification, we perform prediction by

and the per-example loss is defined as

σ(y(x)) =i σ y (x ;w) ,(
t=1

∑
T

t i t)

ℓ(t , y(x)) =i i − log [σ(y(x)) (1 −i
t i

σ(y(x)))].i
1−t i

19/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Multiclass Classification with Gradient Boosting Decision Trees

For multiclass classification, we need to model the full categorical output distribution.
Therefore, for each “timestep” , we train trees , each predicting a single value of the

linear part of a generalized linear model.

Then, we perform prediction by

and the per-example loss for all trees is defined analogously as

so that for a tree at time ,

t K w t,k

softmax (y(x)) =i softmax y (x ;w), … , y (x ;w) ,(∑
t=1

T

t,1 i t,1 ∑
t=1

T

t,K i t,K)

K

ℓ(t ,y(x)) =i i − log(softmax (y(x))),i t i

k t

 =
∂y (x)

(t−1)
i k

∂ℓ(t ,y (x))i
(t−1)

i
(softmax (y (x))−(t−1)

i 1) .t i
k

20/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Multiclass Classification with Gradient Boosting Decision Trees

Tree 1 for class 1 Tree 1 for class 2 Tree 1 for class 3

Tree 2 for class 1 Tree 2 for class 2 Tree 2 for class 3

Tree 3 for class 1 Tree 3 for class 2 Tree 3 for class 3

proline <= 755.0
c_gb = -0.0

instances = 136
prediction=-0.0

c_gb = -18.1
instances = 84
prediction=-1.4

c_gb = -28.5
instances = 52
prediction=2.2

proline <= 755.0
c_gb = -0.0

instances = 136
prediction=-0.0

color_intensity <= 3.8
c_gb = -1.2

instances = 136
prediction=0.3

c_gb = -43.2
instances = 49
prediction=2.8

c_gb = -12.5
instances = 87
prediction=-1.1

color_intensity <= 3.9
c_gb = -0.6

instances = 136
prediction=0.2

flavanoids <= 1.2
c_gb = -1.1

instances = 136
prediction=-0.3

c_gb = -26.6
instances = 35
prediction=2.6

c_gb = -18.3
instances = 101
prediction=-1.3

flavanoids <= 1.4
c_gb = -0.6

instances = 136
prediction=-0.2

c_gb = -11.2
instances = 84
prediction=-1.2

c_gb = -13.2
instances = 52
prediction=1.4

flavanoids <= 2.3
c_gb = -0.0

instances = 136
prediction=-0.0

c_gb = -19.7
instances = 53
prediction=1.7

c_gb = -8.7
instances = 83
prediction=-1.1

alcohol <= 12.7
c_gb = -0.4

instances = 136
prediction=0.2

c_gb = -12.6
instances = 44
prediction=1.6

c_gb = -14.0
instances = 92
prediction=-1.3

hue <= 0.8
c_gb = -0.3

instances = 136
prediction=-0.2

c_gb = -9.1
instances = 76
prediction=-1.2

c_gb = -7.9
instances = 60
prediction=1.1

c_gb = -11.9
instances = 57
prediction=1.4

c_gb = -6.1
instances = 79
prediction=-1.0

c_gb = -9.5
instances = 35
prediction=1.6

c_gb = -8.3
instances = 101
prediction=-1.0

21/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Supervised Machine Learning

22/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Supervised Machine Learning

This concludes the supervised machine learning part of our course.

We have encountered:

parametric models
generalized linear models: perceptron algorithm, linear regression, logistic regression,
multinomial (softmax) logistic regression

linear models, but manual feature engineering allows solving nonlinear problems

multilayer perceptron: nonlinear, perfect approximator – Universal approx. theorem

nonparametric models
k-nearest neighbors
support vector machines (will be briefly covered in the practicals, in the state exam)

decision trees
can be both parametric or nonparametric depending on the constraints

generative models
naive Bayes

23/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Supervised Machine Learning

When training a model for a new dataset, a good start is evaluating two models:

an MLP with one/two hidden layers
works best for high-dimensional data (images, speech, text), where an individual single
dimension (feature) does not convey much meaning; use pre-trained representation if
possible;

gradient boosted decision tree
works best for lower-dimensional data (“tabular data”), where the input features have
interpretations on their own.

If there are only a few training examples with a lot of features, naive Bayes might also work
well.

Finally, if your goal is to reach the highest possible performance and you have a lot of
resources, definitely use ensembling.

24/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

Today's Lecture Objectives

After this lecture you should be able to

Explain second-order optimization methods

Implement gradient boosted decision trees for regression and classification

Decide what supervised machine learning approach is suitable for particular problems

25/25NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification Supervised ML

