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Today's Lecture Objectives

After this lecture you should be able to

Implement Decision Trees and Random Forests for classification and regression

Explain how the splitting criterion depend on optimized loss function

Tell how Random Forests differ from Gradient Boosted Decision Trees
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Decision Trees
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Decision Trees

The idea of decision trees is to partition the input space into regions and solving each region
with a simpler model.

We focus on Classification and Regression Trees (CART; Breiman et al., 1984), but there
are additional variants like ID3, C4.5, …

 

Figure 14.6 of Pattern Recognition and Machine Learning.

 

 

Figure 14.5 of Pattern Recognition and Machine Learning.
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Inference and Training

 

https://medium.com/analytics-vidhya/decision-trees-
explained-in-simple-steps-39ee1a6b00a2

Inference

Just follow the branching rules until you reach a leaf.

Output a prediction (real value/distribution/predicted class)
based on the leaf.

Training
Training data is stored in tree leaves -- the leaf prediction is
based on what is data items are in the leaf.

At the beginning the tree is a single leaf node.

Adding a node = leaf  decision node + 2 leaves

The goal of training = finding the most consistent leaves for the prediction

Later, we will show that the consistency measures follow from the loss function, we are
optimizing.

→
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Regression Decision Trees

Assume we have an input dataset , . At the beginning, the decision tree is

just a single node and all input examples belong to this node. We denote  the set of training

example indices belonging to a node .

For each leaf (a node without children), our model predicts the average of the training examples
belonging to that leaf, .

We use a criterion  telling us how uniform or homogeneous the training examples of a node 

 are – for regression, we employ the sum of squares error between the examples belonging to

the node and the predicted value in that node; this is proportional to the variance of the
training examples belonging to the node , multiplied by the number of the examples. Note

that even if it is not mean squared error, it is sometimes denoted as MSE.
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Tree Construction

To split a node, the goal is to find

1. A feature and (i.e., a for loop over all features)

2. Its value (i.e., a for loop over all unique feature values)

such that when splitting a node  into  and , the resulting regions decrease the overall

criterion value the most, i.e., the difference  is the lowest.
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Tree Construction: Heuristics

We usually employ several constraints, the most common ones are:

maximum tree depth: we do not split nodes with this depth;

minimum examples to split: we only split nodes with this many training examples;

maximum number of leaf nodes: we split until we reach the given number of leaves.

The tree is usually built in one of two ways:

if the number of leaf nodes is unlimited, we usually build the tree in a depth-first manner,
recursively splitting every leaf until one of the above constraints is invalidated;
if the maximum number of leaf nodes is given, we usually split such leaf  where the

criterion difference  is the lowest.

 
Terminological note: Decision tree with unlimited size can be considered a non-parametric
model: it is a way of building an index. With a limited size, it has a fixed number of parameters
to be learned and it can be considered a parametric model.
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Classification Decision Trees

For multi-class classification, we predict the class which is the most frequent in the training
examples belonging to a leaf .

To define the criteria, let us denote the average probability for class  in a region  as .

For classification trees, one of the following two criteria is usually used:

Gini index, also called Gini impurity, measuring how often a randomly chosen element
would be incorrectly labeled if it was randomly labeled according to :

Entropy Criterion
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From Loss Function to Splitting Criterion

Training GLMs and MLPs is formulated as optimizing a loss function.

For an already constructed decision tree, we can do it the same way. For each leaf, do the
optimization and find the best parameter.

So far, we were always interested in , i.e., parameters that minimize the loss.

If we plug the  value in the loss function, we get the minimum reachable loss for

the given tree structure.

By splitting a leaf, we want to decrease the minimum reachable loss  the minimum node

loss is the splitting criterion.

arg min

arg min

⇒
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Gini and Entropy Losses
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Binary Gini as (M)SE Loss

Recall that  denotes the set of training example indices belonging to a leaf node , let 

 be the number of examples with target value 0,  be the number of examples with

target value 1, and let .

Consider sum of squares loss .

By setting the derivative of the loss to zero, we get that the  minimizing the loss fulfills 

, i.e., .

The value of the loss is then
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Entropy as NLL Loss

Again let  denote the set of training example indices belonging to a leaf node , let 

be the number of examples with target value , and let .

Consider a distribution  on  classes and non-averaged NLL loss .

By setting the derivative of the loss with respect to  to zero (using a Lagrangian with

constraint ), we get that the  minimizing the loss fulfills .

The value of the loss with respect to  is then
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Random Forests
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Random Forests

Bagging of data combined with a random subset of features (sometimes called feature bagging).

 

https://tex.stackexchange.com/questions/503883/illustrating-the-random-forest-algorithm-in-tikz
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Random Forests

Bagging
Every decision tree is trained using bagging (on a bootstrapped dataset).

Random Subset of Features
During each node split, only a random subset of features is considered when finding the best
split. A fresh random subset is used for every node.

Extra Trees
The so-called extra trees are even more randomized, not finding the best possible feature value
when choosing a split, but considering uniformly random samples from a feature's empirical
range (minimum and maximum in the training data).

Demo
https://cs.stanford.edu/~karpathy/svmjs/demo/demoforest.html
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Today's Lecture Objectives

After this lecture you should be able to

Implement Decision Trees and Random Forests for classification and regression

Explain how the splitting criterion depends on optimized loss function

Tell how Random Forests differ from Gradient Boosted Decision Trees
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