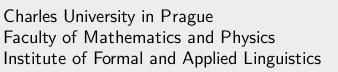
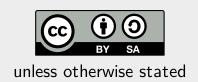


Decision Trees, Random Forests

Jindřich Libovický (reusing materials by Milan Straka)

■ November 28, 2024





Today's Lecture Objectives

After this lecture you should be able to

- Implement Decision Trees and Random Forests for classification and regression
- Explain how the splitting criterion depend on optimized loss function
- Tell how Random Forests differ from Gradient Boosted Decision Trees.

Decision Trees

The idea of decision trees is to partition the input space into regions and solving each region with a simpler model.

We focus on **Classification and Regression Trees** (CART; Breiman et al., 1984), but there are additional variants like ID3, C4.5, ...

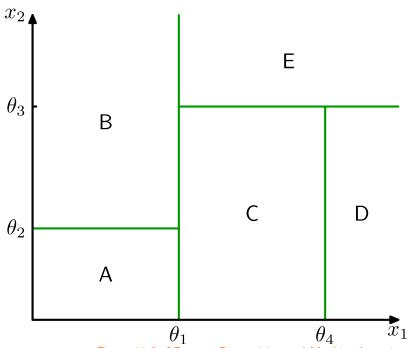
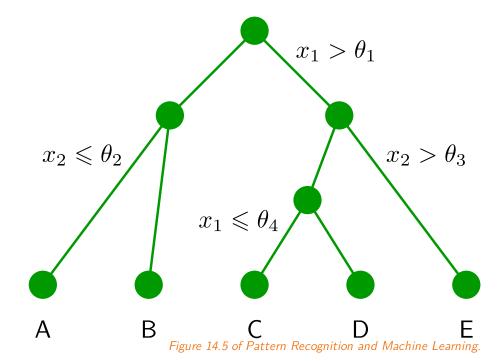


Figure 14.6 of Pattern Recognition and Machine Learning.



Inference and Training

Inference

- Just follow the branching rules until you reach a leaf.
- Output a prediction (real value/distribution/predicted class) based on the leaf.

Training

- Training data is stored in tree leaves -- the leaf prediction is based on what is data items are in the leaf.
- At the beginning the tree is a single leaf node.
- Adding a node = leaf \rightarrow decision node + 2 leaves
- The goal of training = finding the most consistent leaves for the prediction

Later, we will show that the consistency measures follow from the loss function, we are optimizing.

explained-in-simple-steps-39ee1a6b00a2

Regression Decision Trees

Assume we have an input dataset $X \in \mathbb{R}^{N \times D}$, $t \in \mathbb{R}^N$. At the beginning, the decision tree is just a single node and all input examples belong to this node. We denote $I_{\mathcal{T}}$ the set of training example indices belonging to a node \mathcal{T} .

For each leaf (a node without children), our model predicts the average of the training examples belonging to that leaf, $\hat{t}_{\mathcal{T}} = \frac{1}{|I_{\mathcal{T}}|} \sum_{i \in I_{\mathcal{T}}} t_i$.

We use a **criterion** $c_{\mathcal{T}}$ telling us how *uniform* or *homogeneous* the training examples of a node \mathcal{T} are – for regression, we employ the sum of squares error between the examples belonging to the node and the predicted value in that node; this is proportional to the variance of the training examples belonging to the node \mathcal{T} , multiplied by the number of the examples. Note that even if it is not *mean* squared error, it is sometimes denoted as MSE.

$$c_{ ext{SE}}(\mathcal{T}) \stackrel{ ext{def}}{=} \sum_{i \in I_{\mathcal{T}}} (t_i - \hat{t}_{\mathcal{T}})^2, \,\, ext{where} \,\,\, \hat{t}_{\mathcal{T}} = rac{1}{|I_{\mathcal{T}}|} \sum_{i \in I_{\mathcal{T}}} t_i.$$

Tree Construction

To split a node, the goal is to find

- 1. A feature and (i.e., a for loop over all features)
- 2. Its value (i.e., a for loop over all unique feature values)

such that when splitting a node \mathcal{T} into \mathcal{T}_L and \mathcal{T}_R , the resulting regions decrease the overall criterion value the most, i.e., the difference $c_{\mathcal{T}_L}+c_{\mathcal{T}_R}-c_{\mathcal{T}}$ is the lowest.

Tree Construction: Heuristics

We usually employ several constraints, the most common ones are:

- maximum tree depth: we do not split nodes with this depth;
- minimum examples to split: we only split nodes with this many training examples;
- maximum number of leaf nodes: we split until we reach the given number of leaves.

The tree is usually built in one of two ways:

- if the number of leaf nodes is unlimited, we usually build the tree in a depth-first manner, recursively splitting every leaf until one of the above constraints is invalidated;
- ullet if the maximum number of leaf nodes is given, we usually split such leaf ${\cal T}$ where the criterion difference $c_{{\cal T}_L}+c_{{\cal T}_R}-c_{{\cal T}}$ is the lowest.

Terminological note: Decision tree with unlimited size can be considered a non-parametric model: it is a way of building an index. With a limited size, it has a fixed number of parameters to be learned and it can be considered a parametric model.

Classification Decision Trees

For multi-class classification, we predict the class which is the most frequent in the training examples belonging to a leaf \mathcal{T} .

To define the criteria, let us denote the average probability for class k in a region $\mathcal T$ as $p_{\mathcal T}(k)$.

For classification trees, one of the following two criteria is usually used:

• Gini index, also called Gini impurity, measuring how often a randomly chosen element would be incorrectly labeled if it was randomly labeled according to p_T :

$$c_{\mathrm{Gini}}(\mathcal{T}) \stackrel{ ext{ iny def}}{=} |I_{\mathcal{T}}| \sum_k p_{\mathcal{T}}(k) ig(1 - p_{\mathcal{T}}(k)ig),$$

Entropy Criterion

$$c_{ ext{entropy}}(\mathcal{T}) \stackrel{ ext{ iny def}}{=} |I_{\mathcal{T}}| \cdot H(oldsymbol{p}_{\mathcal{T}}) = -|I_{\mathcal{T}}| \sum_{\substack{k \ p_{\mathcal{T}}(k)
eq 0}} p_{\mathcal{T}}(k) \log p_{\mathcal{T}}(k).$$

From Loss Function to Splitting Criterion

- Training GLMs and MLPs is formulated as optimizing a loss function.
- For an already constructed decision tree, we can do it the same way. For each leaf, do the optimization and find the best parameter.
- So far, we were always interested in $arg \min$, i.e., parameters that minimize the loss.
- If we plug the $rg \min$ value in the loss function, we get the minimum reachable loss for the given tree structure.
- By splitting a leaf, we want to decrease the minimum reachable loss \Rightarrow the **minimum node** loss is the splitting criterion.

Gini and Entropy Losses

Binary Gini as (M)SE Loss

Recall that $I_{\mathcal{T}}$ denotes the set of training example indices belonging to a leaf node \mathcal{T} , let $n_{\mathcal{T}}(0)$ be the number of examples with target value 0, $n_{\mathcal{T}}(1)$ be the number of examples with target value 1, and let $p_{\mathcal{T}} = \frac{1}{|I_{\mathcal{T}}|} \sum_{i \in I_{\mathcal{T}}} t_i = \frac{n_{\mathcal{T}}(1)}{n_{\mathcal{T}}(0) + n_{\mathcal{T}}(1)}$.

Consider sum of squares loss $L(p) = \sum_{i \in I_{\mathcal{T}}} (p - t_i)^2$.

By setting the derivative of the loss to zero, we get that the p minimizing the loss fulfills $|I_{\mathcal{T}}|p=\sum_{i\in I_{\mathcal{T}}}t_i$, i.e., $p=p_{\mathcal{T}}$.

The value of the loss is then

$$egin{aligned} L(p_{\mathcal{T}}) &= \sum_{i \in I_{\mathcal{T}}} (p_{\mathcal{T}} - t_i)^2 = n_{\mathcal{T}}(0) (p_{\mathcal{T}} - 0)^2 + n_{\mathcal{T}}(1) (p_{\mathcal{T}} - 1)^2 \ &= rac{n_{\mathcal{T}}(0) n_{\mathcal{T}}(1)^2}{\left(n_{\mathcal{T}}(0) + n_{\mathcal{T}}(1)
ight)^2} + rac{n_{\mathcal{T}}(1) n_{\mathcal{T}}(0)^2}{\left(n_{\mathcal{T}}(0) + n_{\mathcal{T}}(1)
ight)^2} = rac{(n_{\mathcal{T}}(1) + n_{\mathcal{T}}(0)) n_{\mathcal{T}}(0) n_{\mathcal{T}}(1)}{\left(n_{\mathcal{T}}(0) + n_{\mathcal{T}}(1)
ight)\left(n_{\mathcal{T}}(0) + n_{\mathcal{T}}(1)
ight)} \ &= \left(n_{\mathcal{T}}(0) + n_{\mathcal{T}}(1)\right)(1 - p_{\mathcal{T}})p_{\mathcal{T}} = |I_{\mathcal{T}}| \cdot p_{\mathcal{T}}(1 - p_{\mathcal{T}}). \end{aligned}$$

Entropy as NLL Loss

Again let $I_{\mathcal{T}}$ denote the set of training example indices belonging to a leaf node \mathcal{T} , let $n_{\mathcal{T}}(k)$ be the number of examples with target value k, and let $p_{\mathcal{T}}(k) = \frac{1}{|I_{\mathcal{T}}|} \sum_{i \in I_{\mathcal{T}}} [t_i = k] = \frac{n_{\mathcal{T}}(k)}{|I_{\mathcal{T}}|}$.

Consider a distribution $m{p}$ on K classes and non-averaged NLL loss $L(m{p}) = \sum_{i \in I_{\mathcal{T}}} -\log p_{t_i}$.

By setting the derivative of the loss with respect to p_k to zero (using a Lagrangian with constraint $\sum_k p_k = 1$), we get that the \boldsymbol{p} minimizing the loss fulfills $p_k = p_{\mathcal{T}}(k)$.

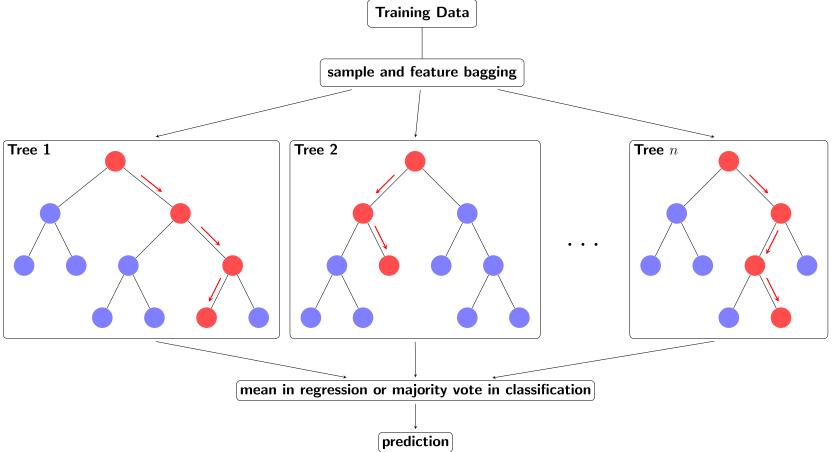
The value of the loss with respect to $oldsymbol{p}_{\mathcal{T}}$ is then

$$egin{aligned} L(oldsymbol{p}_{\mathcal{T}}) &= \sum_{i \in I_{\mathcal{T}}} -\log p_{t_i} \ &= -\sum_{\substack{k \ p_{\mathcal{T}}(k)
eq 0}} n_{\mathcal{T}}(k) \log p_{\mathcal{T}}(k) \ &= -|I_{\mathcal{T}}| \sum_{\substack{k \ p_{\mathcal{T}}(k)
eq 0}} p_{\mathcal{T}}(k) \log p_{\mathcal{T}}(k) = |I_{\mathcal{T}}| \cdot H(oldsymbol{p}_{\mathcal{T}}). \end{aligned}$$

Random Forests

Random Forests

Bagging of data combined with a random subset of features (sometimes called *feature bagging*).



https://tex.stackexchange.com/questions/503883/illustrating-the-random-forest-algorithm-in-tikz

Random Forests

Bagging

Every decision tree is trained using bagging (on a bootstrapped dataset).

Random Subset of Features

During each node split, only a random subset of features is considered when finding the best split. A fresh random subset is used for every node.

Extra Trees

The so-called extra trees are even more randomized, not finding the best possible feature value when choosing a split, but considering uniformly random samples from a feature's empirical range (minimum and maximum in the training data).

Demo

https://cs.stanford.edu/~karpathy/svmjs/demo/demoforest.html

Today's Lecture Objectives

After this lecture you should be able to

- Implement Decision Trees and Random Forests for classification and regression
- Explain how the splitting criterion depends on optimized loss function
- Tell how Random Forests differ from Gradient Boosted Decision Trees