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Course Objectives: Where are we now?

After this course you should…

Be able to reason about task/problems suitable for ML
Know when to use classification, regression and clustering
Be able to choose from this method Linear and Logistic Regression, Multilayer
Perceptron, Nearest Neighbors, Naive Bayes, Gradient Boosted Decision Trees, -means

clustering

Think about learning as (mostly probabilistic) optimization on training data
Know how the ML methods learn including theoretical explanation

Know how to properly evaluate ML
Think about generalization (and avoiding overfitting)
Be able to choose a suitable evaluation metric
Responsibly decide what model is better

Be able to implement ML algorithms on a conceptual level

Be able to use Scikit-learn to solve ML problems in Python

k
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Today's Lecture Objectives

After this lecture you should be able to

Implement and use -nearest neighbors for classification and regression

Explain the very basic principles of Bayesian thinking

Implement and use Naive Bayes Classifier

k
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k-Nearest Neighbors
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k-Nearest Neighbors

???

 

https://upload.wikimedia.org/wikipedia/commons/e/e7/KnnClassification.svg

A simple but sometimes effective nonparametric method for
both classification and regression is -nearest neighbors

algorithm.

The training phase of the -nearest neighbors algorithm is

trivial: only storing the whole train set (the so-called lazy
learning).

For a given test example, the main idea is to use the
targets of the most similar training data to perform the
prediction.

k

k
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k-Nearest Neighbors: Hyperparameters

???

 

https://upload.wikimedia.org/wikipedia/commons/e/e7/KnnClassification.svg

Several hyperparameters influence the behavior of the
prediction phase:

k: consider  most similar training examples (higher 

usually decreases variance, but increases bias);

metric: a function used to find the nearest neighbors;
common choices are metrics based on  norms (usual

values of : , , , ). For , the distance

is measured as , where

weights: optionally, more similar examples get higher weights:
uniform: all  nearest neighbors weighted equally;

inverse: the weights are proportional to the inverse of distance;
softmax: the weights are proportional to the  of negative distances.
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k-Nearest Neighbors

Regression

To perform regression when  nearest neighbors have values  and weights , we predict

Classification

For uniform weights, we can use voting during prediction – the most frequent class is predicted
(with ties broken arbitrarily).

Otherwise, we weight the categorical distributions  (classification into  target classes

represented using one-hot encoding), predicting a distribution

The predicted class is the one with the largest probability, i.e., .
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k-Nearest Neighbors

A trivial implementation of the -nearest neighbors algorithm is extremely demanding during

the inference, requiring to measure distances of a given example to all training instances.

However, there exist several data structures that can speed up the -nearest neighbor search,

such as

-  trees, which allow both a static or dynamic construction and can perform nearest

neighbor queries of uniformly random points in logarithmic time on average, but which
become inefficient for high-dimensional data;

ball trees, R-trees, …

k

k

k d
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Applications of Nearest Neighbors

Typically in combination with representation learning
Recommendation systems (e.g., for similar videos)
Anonymous face recognition in photo collections
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Bayesian Probability
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Bayesian Probability

Until now, we considered the so-called frequentist probability, where the probability of an event
is considered a limit of its frequency.

In Bayesian probability interpretation, probability is a quantification of uncertainty. Bayesian
probability is the so-called evidential probability, where hypotheses have some initial prior
probability, which is then updated in light of new data into posterior probability.

This update of prior probability into posterior probability is performed using the Bayes theorem

P (A∣B) =  .
P (B)

P (B∣A)P (A)
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Textbook Example

1 of 10,000 products has a rare defect. We can detect it with both sensitivity and specificity of
99%. What is ?

Now, we need to compute the denomniator  by splitting into joint probabilities:

Together

P (defect∣positive)

P (def∣pos) =  

P (pos)
 P (def) P (pos∣def)

sensitivity

P (pos)

P (pos, def) + P (pos, ¬def) = P (pos∣def)P (def) + (1 −  )(1 −

specificity

 P (¬pos∣¬def) P (def))

P (def∣pos) =  ≈
.99 ⋅ 10 + (1 − .99)(1 − 10 )−4 −4

.99 ⋅ 10−4

0.98%
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Textbook Example: How accurate do we need to be?

99.0% 99.2% 99.4% 99.6% 99.8% 100%

 

 

https://www.explainxkcd.com/wiki/index.php/2545:_Bayes%27_Theorem

Moral: seemingly high-performing classifier might not be that high-performing.
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Librarian or Farmer

As you consider the next question, please assume that Steve was selected at random
from a representative sample. An individual has been described by a neighbor as follows:
“Steve is very shy and withdrawn, invariably helpful but with little interest in people or
in the world of reality. A meek and tidy soul, he has a need for order and structure, and
a passion for detail.” Is Steve more likely to be a librarian or a farmer?

The given description corresponds more to a librarian than to a farmer.

However, there are many more farmers than librarians (for example, in 2016 there were 4.33k
librarians and 130.3k regular agricultural workers in the Czech Republic, a 30:1 ratio).

The description being more fitting for a librarian is in fact a likelihood, while the base rates of
librarians and farmers play the role of a prior, and the whole question asks about the posterior:

 
The example is taken from the Thinking, Fast and Slow by D. Kahneman

P (librarian∣description) ∝ P (description∣librarian) ⋅ P (librarian).
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Maximum A Posteriori Estimation
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Maximum A Posteriori Estimation

We demonstrate the Bayesian probability on model fitting.

Recall the maximum likelihood estimation

In the Bayesian interpretation, we capture our initial assumptions about  using a prior

probability . The effect of observing the data  can be then expressed as

The quantity  is evaluated using fixed data  and quantifies how probable the

observed data is with respect to various values of the parameter . It is therefore a likelihood,

because it is a function of .

w  =MLE  p(X;w) =
w

arg max  p(X∣w).
w

arg max

w

p(w) X

p(w∣X) =  .
p(X)

p(X∣w)p(w)

p(X∣w) X

w

w
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Maximum A Posteriori Estimation

Therefore, we get that

where the symbol  means “up to a multiplicative factor”.

Using the above Bayesian inference formula, we can define maximum a posteriori (MAP)
estimate as

To utilize the MAP estimate for model training, we need to specify the parameter prior ,

our preference among models.

Bayesian view on overfitting: it is just a problem of not using priors and that suitable priors
would avoid it.

 ∝

posterior

 p(w∣X)  ⋅

likelihood

 p(X∣w)  ,

prior

 p(w)

∝

w  =MAP  p(w∣X) =
w

arg max  p(X∣w)p(w).
w

arg max

p(w)
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L2 Regularization as MAP

Frequently, the mean is assumed to be zero, and the variance is assumed to be . Given that

we have no further information, we employ the maximum entropy principle, which provides us
with , so that  Then

By substituting the probability of the Gaussian prior, we get

which is in fact the -regularization.

σ2

p(w  ) =i N (w  ; 0,σ )i
2 p(w) =  N (w  ; 0,σ ) =∏i=1

D
i

2 N (w;0,σ I).2

  

w  MAP =  p(X∣w)p(w)
w

arg max

=   p(x  ∣w)p(w)
w

arg max∏
i=1

N

i

=   ( − log p(x  ∣w) − log p(w)).
w

arg min∑
i=1

N

i

w  =MAP   ( −
w

arg min∑
i=1

N
log p(x  ∣w)+  log(2πσ ) +i 2

D 2
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2σ2
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Conjugate Distributions

In Bayesian thinking, we typically think about distribution over parameters.
After one coin toss (Bernoulli distribution), we do not believe there is a 100% probability of
what happened because we had a prior belief of how a coin behaves.
We believed the parameter  was distributed somehow and after the observation we believe

in something else (by applying the Bayes theorem).
Conjugate distribution: prior and posterior are of the same family.
Instead of confidence intervals, credibility intervals over the parameters.

p
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Naive Bayes Classifier
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Naive Bayes Classifier: Overview

So far, our classifiers were so-called discriminative and had a form

Instead, we might use the Bayes' theorem, and rewrite the conditional probability to

Then, classification could be performed as

Therefore, instead of modeling , we model

the prior  according to the distribution of classes in the data, and

the distribution .

p(C  ∣x) =k p(C  ∣x  ,x  , … ,x  ).k 1 2 D

p(C  ∣x) =k  .
p(x)

p(x∣C  )p(C  )k k

 p(C  ∣x) =
k

arg max k   =
k

arg max
p(x)

p(x∣C  )p(C  )k k
 p(x∣C  )p(C  ).

k

arg max k k

p(C  ∣x)k

p(C  )k
p(x∣C  )k
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Naive Bayes Classifier: The Naive Assumption

 

https://medium.datadriveninvestor.com/naive-bayes-
d36e57d80652

Modeling the distribution  is difficult –  can be high-

dimensional structured data.

Therefore, the so-called Naive Bayes classifier assumes that

all  are independent given ,

so we can rewrite

to

Modeling  is substantially easier because it is a distribution over a single-dimensional

quantity.

p(x∣C  )k x

x  d C  k

p(x∣C  ) =k p(x  ∣C  )p(x  ∣C  ,x  )p(x  ∣C  ,x  ,x  ) ⋯ p(x  ∣C  ,x  ,x  , …)1 k 2 k 1 3 k 1 2 D k 1 2

p(x∣C ) =k  p(x  ∣C  ).∏
d=1

D

d k

p(x  ∣C  )d k
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Naive Bayes Classifier

There are in fact several naive Bayes classifiers, depending on the distribution .

Gaussian Naive Bayes

In Gaussian naive Bayes, we expect a continuous feature to have normal distribution for a given 

, and model  as a normal distribution .

Assuming we have the training data  together with -class classification targets ,

the “training” phase consists of estimating the parameters  and  of the distributions 

 for , , employing the maximum likelihood estimation.

Now let feature  and class  be fixed and let  be the training data

corresponding to the class . We already know that maximum likelihood estimation using 

samples drawn from a Gaussian distribution  amounts to

p(x  ∣C  )d k

C  k p(x  ∣C  )d k N (μ  ,σ  )d,k d,k
2

X K t

μ  d,k σ  d,k
2

N (μ  ,σ  )d,k d,k
2 1 ≤ d ≤ D 1 ≤ k ≤ K

d k x  ,x  , … ,x  1 2 N  k

k N  k

N (μ  ,σ  )d,k d,k
2

  log(2πσ ) +
μ  ,σ  d,k d,k

arg min
2
Nk

d,k
2

  .
i=1

∑
N  k

2σ  d,k
2

(x  − μ  )i,d d,k
2
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Gaussian Naive Bayes

Setting the derivative with respect to  to zero results in

which we can rewrite to .

Similarly, zeroing out the derivative with respect to  gives

from which we obtain .

However, the variances are usually smoothed (increased) by a given constant  to avoid too

sharp distributions (in Scikit-learn, the default value of  is  times the largest variance of

all features).

μ  d,k

0 =   ,∑
i=1

N  k

2σ  d,k
2

−2(x  − μ  )i,d d,k

μ  =d,k   x  

N  k

1 ∑i=1
N  k

i,d

σ  d,k
2

0 =  −
2σ  d,k

2
N  k

  (x  −
2(σ  )d,k

2 2

1
∑

i=1

N  k

i,d μ  ) ,d,k
2

σ  =d,k
2

  (x  −N  k

1 ∑i=1
N  k

i,d μ  )d,k
2

α

α 10−9
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Gaussian Naive Bayes Example

 

Means and standard deviations estimated by Gaussian NB on a subset of the MNIST dataset.
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Bernoulli Naive Bayes

When the input features are binary, the  might be modeled using a Bernoulli

distribution

We can therefore write

and by computing a logarithm we get

where the constant  does not depend on  and is therefore not needed for prediction

p(x  ∣C  )d k

p(x  ∣C  ) =d k p  ⋅d,k
x  d (1 − p  ) .d,k

(1−x  )d

p(C ∣x) ∝k (  p  ⋅∏
d=1

D

d,k
x  d (1 − p  ) )p(C  ),d,k

(1−x  )d
k

log p(C  ∣x) +k c = log p(C  ) +k  (x  log  +∑
d

d 1−p  d,k

p  d,k log(1 − p  )) =d,k b  +k x w  ,T
k

c C  k

arg max  log p(C  ∣x) =k k arg max  b  +k k x w  .T
k
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Bernoulli Naive Bayes Estimation: Derivation

To estimate the probabilities , we turn again to the maximum likelihood estimation. The

log-likelihood of  samples drawn from Bernoulli distribution with parameter  is

Setting the derivative with respect to  to zero, we obtain

giving us .

p  d,k

N  k p  d,k

 log (p  (1 −∑
i=1

Nk

d,k
x  i,d p  ) ) =d,k

1−x  i,d
 (x  log p  +∑

i=1

N  k

i,d d,k (1 − x  ) log(1 −i,d p  )).d,k

p  d,k

0 =   −  =∑
i=1

N  k

(
p  d,k

x  i,d

1 − p  d,k

1 − x  i,d )  ((1 −
p  (1 − p  )d,k d,k

1
∑

i=1

N  k

p  )x  −d,k i,d p  (1 −d,k x  )),i,d

p  =d,k   x  

N  k

1 ∑i=1
N  k

i,d
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Bernoulli Naive Bayes Estimation: Smoothing

We could therefore estimate the probabilities  as

However, if a feature  is always set to one (or zero) for a given class , then  (or 0).

That is impractical because the resulting classifier would give probability zero to inputs with the
opposite value of such a feature.

Therefore, Laplace or additive smoothing is used, and the probability  estimated as

for some pseudo-count .

Note that even if this technique has a special name, it corresponds to using a maximum a
posteriori estimate, using  as a prior distribution.

p  d,k

p  =d,k  .
number of documents of class k

number of documents of class k with nonzero feature d

d k p  =d,k 1

p  d,k

p  =d,k  

number of documents of class k + 2α
number of documents of class k with nonzero feature d + α

α > 0

Beta(α + 1,α + 1)
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Multinomial Naive Bayes

The last variant of naive Bayes we will describe is the multinomial naive Bayes, where 

 is modeled to be multinomial distribution, .

Similarly to the Bernoulli NB case, we can write the log-likelihood as

p(x∣C  )k p(x∣C  ) ∝k  p  ∏d d,k
x  d

log p(C  ∣x) +k c = log p(C  ) +k  x  log p  =∑
d

d d,k b  +k x w  .T
k
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Multinomial Naive Bayes Estimation

As in the previous cases, we turn to the maximum likelihood estimation in order to find
out the values of . We start with the log-likelihood

To maximize this quantity with respect to a probability distribution , we need to

form a Lagrangian

Setting the derivative with respect to  to zero results in , so

p  d,k

 log(  p  ) =∑
i=1

N  k

∏
d d,k

x  i,d
 x  log p  .∑

i,d
i,d d,k

 p  =∑d d,k 1

L =  x  log p  +∑
i,d

i,d d,k λ(1 −  p  ).∑
d

d,k

p  d,k 0 =   −∑i=1
N  k

p  d,k

x  i,d λ

p  =d,k   x  =
λ

1
∑

i=1

N  k

i,d  ,  where λ is set to fulfill   p  =
  x  ∑i=1

N  k ∑d =1′
D

i,d′

 x  ∑i=1
N  k

i,d
∑

d
d,k 1.
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Multinomial Naive Bayes Estimation: Smoothing

Denoting  as the sum of features  for a class , the probabilities  could be

therefore estimated as

However, for the same reasons as in the Bernoulli NB case, we also use the Laplace smoothing,
i.e., utilize a Dirichlet prior , and instead use

with pseudo-count .

n  d,k x  d C  k p  d,k

p  =d,k  .
 n  ∑d =1′

D
d ,k′

n  d,k

Dir(α + 1)

p  =d,k  =
 (n  + α)∑d =1′

D
d ,k′

n  + αd,k
 

(  n  )+ αD∑d =1′
D

d ,k′

n  + αd,k

α > 0
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Naive Bayes Example

 

Probabilities estimated by Bernoulli NB on a subset of the MNIST dataset.

 

Probabilities estimated by multinomial NB on a subset of the MNIST dataset.

 

Means estimated by Gaussian NB on a subset of the MNIST dataset.
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Naive Bayes Conclusions

The choice among the Gaussian, Bernoulli and multinomial naive Bayes depends on the feature
values.

If we expect the individual feature values to be roughly normally distributed, Gaussian NB is
an obvious choice.

To use multinomial NB, the features should roughly follow the multinomial distribution –
they must be nonnegative, be interpretable as “counts”, and “compete” with each other.

In order to use Bernoulli NB, the features must be binary. However, an important difference
is that contrary to the multinomial NB, the absence of features is also modeled by the 

 term; the multinomial NB uses  in such a case.(1 − p  )d,k p  =d,k
0 1
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Generative and Discriminative Models
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Generative and Discriminative Models

So far, all our classification models (except for the naive Bayes) have been discriminative,
modeling a conditional distribution .

On the other hand, the generative models estimate joint distribution , often by

employing Bayes' theorem and estimating . They therefore model the probability of

the data being generated by an outcome and only transform it to  during prediction.

p(t∣x)

p(t,x)
p(x∣t) ⋅ p(t)

p(t∣x)
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Generative and Discriminative Models

Discriminative Model Generative Model

Goal Estimate Estimate 

What's 

learned
Decision boundary Probability distribution of the data

Illustration

P (t∣x) P (t,x) = P (x∣t)P (t)
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Generative and Discriminative Models: Remarks

Big topic in 2000's: Generative models are better with very little data, with enough data
discriminative models are always better.

What is now called generative (LLMs, Diffusion models) is disputable
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Today's Lecture Objectives

After this lecture you should be able to

Implement and use -nearest neighbors for classification and regression

Explain the very basic principles of Bayesian thinking

Implement and use Naive Bayes Classifier

k
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