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Today's Lecture Objectives

After this lecture you should be able to

Implement training of multi-layer perceptron using SGD

Explain the theoretical foundation behind the softmax activation function (including the
necessary math)

Choose a suitable evaluation metric for various classification tasks
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Multilayer Perceptron
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Multilayer Perceptron

x3 h3

h4

h1

h2

x4

x1

x2 y1

y2

Input layer Hidden layer
activation  f

Output layer
activation  a

The computation is performed analogously:

or in matrix form

and for batch of inputs  and .
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Training MLP – Computing the Derivatives
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Output layer
activation  aAssume we have an MLP with input of size , weights , 

, hidden layer of size  and activation  with weights 

, , and finally an output layer of size  with activation .

To compute the gradient of the loss  with respect to all weights, proceed

gradually:

first compute ,

then compute , where  are the inputs to the output layer (i.e., before applying

activation function ; in other words, ),

then compute  and , which allows us to obtain  and

analogously ,

followed by  and ,

and finally using  and  to compute  and .
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General Backpropagation Algorithm

input
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The computation can be represented as a graph with tensors and operations

Computing the gradients corresponds to a backward path in the graph, nodes replaced with
their derivatives
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Hidden Layer Interpretation and Initialization

One way how to interpret the hidden layer is:

the part from the hidden layer to the output
layer is the previously used generalized linear
model (linear regression, logistic regression, …);

the part from the inputs to the hidden layer can
be considered automatically constructed features.
The features are a linear mapping of the input values followed by a nonlinearity, and the
theorem on the next slide proves they can always be constructed to achieve as good a fit of
the training data as is required.

Note that the weights in an MLP must be initialized randomly. If we used just zeros, all the
constructed features (hidden layer nodes) would behave identically and we would never
distinguish them.

Using random weights corresponds to starting with random features, which allows the SGD to
make progress (improve the individual features).
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Regularization Using Dropout

 

Srivastava et al. (2014), Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Fig. 1

A trick by Srivastava et al., 2014 -- randomly zero-out neurons during training, typically 10-
50%

Decreases the efficient capacity during training, keeps the capacity at test time

Intuition: more robust features because the information needs to survive damaging a part of
the network
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Universal Approximation Theorem
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Universal Approximation Theorem '89

Let  be a nonconstant, bounded and nondecreasing continuous function.  

(Later a proof was given also for  and even for any nonpolynomial function.)

For any  and any continuous function , there exists , , 

 and , such that if we denote

where  is applied elementwise, then for all :

φ(x) : R → R
φ = ReLU

ε > 0 f : [0, 1] →D R H ∈ N v ∈ RH
b ∈ RH W ∈ RD×H

F (x) = v φ(x W +T T b) =  v  φ(x W  +
i=1

∑
H

i
T

∗,i b  ),i

φ x ∈ [0, 1]D

∣F (x) − f(x)∣ < ε.
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Universal Approximation Theorem for ReLUs

Sketch of the proof:

If a function is continuous on a closed interval, it can be approximated by a sequence
of lines to arbitrary precision.

However, we can create a sequence of  linear segments as a sum of  ReLU units – on

every endpoint a new ReLU starts (i.e., the input ReLU value is zero at the endpoint), with
a tangent which is the difference between the target tangent and the tangent of the
approximation until this point.

k k
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Where Are We

We have seen the gradual development of machine learning systems to neural networks.

linear regression → Perceptron → (multinomial) logistic regression → MLP

 

Figure 1.5 of "Deep Learning" book, https://www.deeplearningbook.org.

 

 

https://imgs.xkcd.com/comics/machine_learning_2x.png

12/37NPFL129, Lecture 5 MLP UniversalApproximation LagrangeM Softmax F-score



Lagrange Multipliers
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Constrained Optimization

 

https://upload.wikimedia.org/wikipedia/commons/e/ed/Lagrange_very_simple.svg

Given a function , we can find a minimum/maximum with respect to a vector , by

investigating the critical points .

Consider now finding a minimum subject to a constraint .

 
 
 
On the left, there is an example with 

and the constraint , which can be

represented as .

f(x) x ∈ RD
∇  f(x) =x 0

g(x) = 0

f(x, y) = x+ y

x +2 y =2 1
g(x, y) = x +2 y −2 1
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Lagrange Multipliers – Equality Constraints

 

https://upload.wikimedia.org/wikipedia/commons/e/ed/L

 

 

Figure E.1 of Pattern Recognition and Machine
Learning.

Let  be a function. We seek its minimum subject to

an equality constraint  for .

Note that  is orthogonal to the surface of the constraint,

because if  and a nearby point  lie on the surface, from the

Taylor expansion  we get 

.

For the desired minimum,  must also be orthogonal to the

constraint surface (or else moving in the direction of the derivative
would increase the value).

Therefore, there must exist  such that .

Consequently, the sought minimum either fulfills 

for some , or it is an unconstrained minimum – in that case, the

equation also holds with .

f(x) : R →D R
g(x) = 0 g(x) : R →D R

∇  g(x)x

x x+ ε

g(x+ ε) ≈ g(x) + ε ∇  g(x)T
x

ε ∇  g(x) ≈T
x 0

∇  f(x)x

λ ∇  f =x λ∇  gx

∇  f −x λ∇  g =x 0
λ

λ = 0
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Minimization – Equality Constraint

Let  be a function that has a minimum (or a maximum) in  subject to

equality constraint . Assume that both  and  have continuous partial derivatives

and that .

Then there exists a , such that the Lagrangian function

has a zero gradient in both  and .

In detail,

 leads to ;

 is the previously derived .

f(x) : R →D R x

g(x) = 0 f g

∇  g(x) =x  0

λ ∈ R

L(x,λ) =def
f(x) − λg(x)

x λ

 =∂λ
∂L 0 g(x) = 0
∇  L =x 0 ∇  f −x λ∇  g =x 0
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Minimization – Multiple Equality Constraints

We can use induction if there are multiple equality constraints, resulting in the following
generalization.

Let  be a function that has a minimum (or a maximum) in  subject to

equality constraints . Assume that  have continuous

partial derivatives and that the gradients  are linearly independent.

Then there exist , such that the Lagrangian function

has a zero gradient in both  and .

This strategy of finding constrained minima is known as the method of Lagrange multipliers.

f(x) : R →D R x

g  (x) =1 0, … , g  (x) =m 0 f , g  , … , g  1 m

∇  g  (x), … , ∇  g  (x)x 1 x m

λ  ∈1 R, … ,λ  ∈m R

L(x,λ) =
def
f(x) −  λ  g  (x)

i=1

∑
m

i i

x λ
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Example of Minimization with Equality Constraint

Assume we want to find a categorical distribution  with maximum entropy.

Then we want to minimize  under the constraints

 for all ,

.

Ignoring the first constraint for the time being, we form a Lagrangian

Computing the derivative with respect to  and setting it equal to zero, we get

Therefore, all  must be the same, and the constraint  yields .

p = (p  , … , p  )1 n

−H(p)

p  ≥i 0 i

 p  =∑i=1
n

i 1

L = (  p  log p  ) −
i

∑ i i λ(  p  −
i

∑ i 1).

p  i

0 =  =
∂p  i

∂L
1 ⋅ log(p  ) +i p  ⋅i  −

p  i

1
λ = log(p  ) +i 1 − λ.

p  =i eλ−1
 p  =∑i=1

n
i 1 p  =i  

n
1
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Softmax as Maximum Entropy Classifier
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Derivation of Softmax using Maximum Entropy

Let  be training data of a -class classification, with 

 and .

We want to model it using a function  so that  gives a distribution of

classes for input .

We impose the following conditions on :

X = {(x  , t  ), (x  , t  ), … , (x  , t  )}1 1 2 2 N N K

x  ∈i RD t  ∈i {1, 2, … ,K}

π : R →D RK π(x)
x

π

for 1 ≤ k ≤ K :  π(x)  ≥k 0,

 π(x)  =
k=1

∑
K

k 1,

for 1 ≤ k ≤ K :   π(x  )  x  =
i=1

∑
N

i k i  [t  =
i=1

∑
N

i k]x  .i
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Derivation of Softmax using Maximum Entropy

There are many such , one particularly bad is

where  is a one-hot encoding of  (vector of zeros, except for position , which is equal to 1).

Therefore, we want to find a more general  – consequently, we turn to the principle of

maximum entropy and search for  with maximum entropy.

π

π(x) =   {
1  t  i

1  1

if there exists i : x  = x,i

otherwise,

1  i i i

π

π
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Derivation of Softmax using Maximum Entropy

We want to minimize  given

,

,

.

We therefore form a Lagrangian (ignoring the first inequality constraint):

−  H(π(x  ))∑i=1
N

i

for 1 ≤ i ≤ N,  1 ≤ k ≤ K :  π(x  )  ≥i k 0
for 1 ≤ i ≤ N :   π(x  )  =∑k=1

K
i k 1

for 1 ≤ j ≤ D,  1 ≤ k ≤ K :   π(x  )  x  =∑i=1
N

i k i,j  [t  =∑i=1
N

i k]x  i,j

  

L =   π(x  )  log(π(x  )  )
i=1

∑
N

k=1

∑
K

i k i k

−   λ  (  π(x  )  x  − [t  = k]x  )
j=1

∑
D

k=1

∑
K

j,k
i=1

∑
N

i k i,j i i,j

−  β  (  π(x  )  − 1).
i=1

∑
N

i

k=1

∑
K

i k
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Derivation of Softmax using Maximum Entropy

We now compute partial derivatives of the Lagrangian, notably the values

We arrive at

Setting the derivative of the Lagrangian to zero, we obtain

Such a form guarantees , which we did not include in the conditions.

 L.
∂π(x  )  i k

∂

 L =
∂π(x  )  i k

∂
log(π(x  )  ) +i k 1 − x  λ  −i

T
∗,k β  .i

π(x  )  =i k e .x  λ  +β  −1i
T

∗,k i

π(x  )  >i k 0
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Derivation of Softmax using Maximum Entropy

In order to find out the  values, we turn to the constraint

from which we get

yielding

β  i

 π(x  )  =
k

∑ i k  e =
k

∑ x  λ  +β  −1i
T

∗,k i 1,

e =βi
 ,

 e∑k
x  λ  −1i
T

∗,k

1

π(x  )  =i k e =x  λ  +β  −1i
T

∗,k i
 =

 e∑k′
x  λ  i
T

∗,k′

ex  λ  i
T

∗,k

softmax(x  λ)  .i
T

k
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F-Score
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-scoreF  1

relevant elements

selected elements

false positivestrue positives

false negatives true negatives

 

https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

When evaluating binary classification, we have used accuracy so far.

However, there are other metrics we might want to consider.
One of them is -score.

Consider the following confusion matrix:

Target positive Target negative

Predicted 

positive
True Positive (TP) False Positive (FP)

Predicted 

negative
False Negative (FN) True Negative (TN)

Accuracy can be computed as

F  1

accuracy =  .
TP+ TN+ FP+ FN

TP+ TN
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-scoreF  1
relevant elements

selected elements

false positivestrue positives

false negatives true negatives

 

https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

Precision = Recall =

How many selected

items are relevant?

How many relevant

items are selected?

 

https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

Target positive Target negative

Predicted 

positive
True Positive (TP) False Positive (FP)

Predicted 

negative
False Negative (FN) True Negative (TN)

In some cases, we are mostly interested in positive examples.

We define precision (percentage of correct predictions in
predicted examples) and recall (percentage of correct
predictions in the gold examples) as

  

precision =

recall =

 ,
TP+ FP
TP

 .
TP+ FN
TP
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-scoreF  1

 

https://modtools.files.wordpress.com/2020/01/roc_pr-1.png

The precision and recall go “against each other”:
decreasing the classifier threshold usually increases
recall and decreases precision, and vice versa.

We therefore define a single -score as a

harmonic mean of precision and recall:

F  1

  

F  =1

=

=

 

precision + recall−1 −1
2

 

precision + recall
2 ⋅ precision ⋅ recall

 .
TP+ FP+ TP+ FN
TP      +      TP
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-score and Other Means of Precision and RecallF  1

Arithmetic mean of precision&recall is

As any mean, it is ”between“ the
input values

However,

AM(p, r) =def
 .

2
p+ r

 

min(p, r) ≤ AM(p, r),

AM(p, r) ≤ max(p, r).

AM(1%, 100%) = 50.5%.
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-score and Other Means of Precision and RecallF  1

Geometric mean of precision&recall is

It is better than the arithmetic mean,
but still

GM(p, r) =def
 .p ⋅ r

GM(1%, 100%) = 10%.
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-score and Other Means of Precision and RecallF  1

Harmonic mean of precision&recall is

In addition to being bounded by the
input values,  is also dominated

by the minimum of its input values:

For example,

HM(p, r) =def
 .

 +  

p
1

r
1

2

HM

 

min(p, r) ≤ HM(p, r),

HM(p, r) ≤ max(p, r),

HM(p, r) ≤ 2 min(p, r).

HM(1%, 100%) ≈ 2%.
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General -scoreF  β

The  score can be generalized to  score, which can be used as a metric when recall is 

times more important than precision;  favoring recall and  favoring precision are

commonly used.

The formula for  is

F  1 F  β β

F  2 F  0.5

F  β

  

F  =β

=

=

 

precision + β ⋅ recall−1 2 −1
1 + β2

 

β ⋅ precision + recall2

(1 + β ) ⋅ precision ⋅ recall2

 .
TP+ FP+ β ⋅ (TP+ FN)2

TP      +      β ⋅ TP2
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-score and Other Means of Precision and RecallF  1
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Precision-Recall Curve

 

https://modtools.files.wordpress.com/2020/01/roc_pr-1.png

Changing the threshold in logistic regression allows
us to trade off precision for recall, and vice versa.
Therefore, we can tune it on the development set
to achieve the highest possible  score, if required.

Also, if we want to evaluate -score without

considering a specific threshold, the area under
curve (AUC) is sometimes used as a metric.

F  1

F  1
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-Score in Multiclass ClassificationF  1

To extend -score to multiclass classification, we expect one of the classes to be negative and

the others to be different kinds of positive. For each of the positive classes, we compute the
same confusion matrix as in the binary case (considering all other labels as negative ones), and
then combine the results in one of the following ways:

micro-averaged  (or just micro ): we first sum all the TP, FP and FN of the

individual binary classifications and compute the final -score (this way, the frequency of

the individual classes is taken into account);

macro-averaged  (or just macro ): we first compute the -scores of the individual

binary classifications and then compute an unweighted average (therefore, the frequency of
the classes is more or less ignored).

F  1

F  1 F  1

F  1

F  1 F  1 F  1
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Binary Confusion Metric Measures Overview

Target positive Target negative

Predicted positive True Positive (TP)
False Positive (FP) 

Type I Error

precision 

 

Predicted negative
False Negative (FN) 

Type II Error
True Negative (TN)

true positive rate, recall, 

sensitivity  

false positive rate   

specificity  

-score =  

accuracy =  

 

TP+FP
TP

 

  1
  

 

TP+FN
TP

 

  1
  

 

FP+TN
FP

 

  1
  

 

TN+FP
TN

 

  

  1

F  1  =precision+recall
2⋅precision⋅recall

 

TP+FP+TP+FN
TP    +    TP

 

  2
  

 

TP+FP+FN+TN
TP+TN

 

  1
  1
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Today's Lecture Objectives

After this lecture you should be able to

Implement training of multi-layer perceptron using SGD

Explain the theoretical foundation behind the softmax activation function (including
the necessary math)

Choose a suitable evaluation metric for various classification tasks
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