

Multiclass Logistic Regression, Multilayer Perceptron

Jindřich Libovický (reusing materials by Milan Straka)

■ October 21, 2024

Today's Lecture Objectives

- Implement **muticlass classification** with softmax.
- Reason about linear regression, logistic regression and softmax classification in a single probabilistic framework: with different target distributions, activation functions and training using maximum likelihood estimate.
- Explain multi-layer perceptron as a further generalization of linear models.

Refresh from the Last Week

Logistic Regression

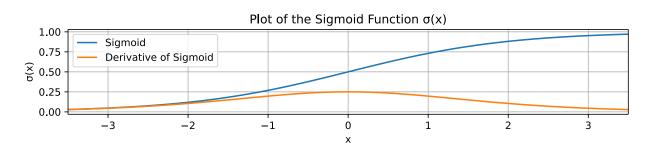
An extension of perceptron, which models the conditional probabilities of $p(C_0|\mathbf{x})$ and of $p(C_1|\mathbf{x})$. (It can in fact handle also more than two classes, which we will see shortly.)

Logistic regression employs the following parametrization of the conditional class probabilities:

$$egin{aligned} p(C_1|oldsymbol{x}) &= \sigma(oldsymbol{x}^Toldsymbol{w} + b) \ p(C_0|oldsymbol{x}) &= 1 - p(C_1|oldsymbol{x}), \end{aligned}$$

where σ is the **sigmoid function**

$$\sigma(x) = \frac{1}{1 + e^{-x}}.$$



It can be trained using the SGD algorithm.

Logistic Regression

We denote the output of the "linear part" of the logistic regression as $\bar{y}(\boldsymbol{x};\boldsymbol{w}) = \boldsymbol{x}^T\boldsymbol{w}$ and the overall prediction as $y(\boldsymbol{x};\boldsymbol{w}) = \sigma(\bar{y}(\boldsymbol{x};\boldsymbol{w})) = \sigma(\boldsymbol{x}^T\boldsymbol{w})$.

The logistic regression output $y({m x};{m w})$ models the probability of class C_1 , $p(C_1|{m x})$.

To give some meaning to the output of the linear part $\bar{y}({m x};{m w})$, starting with

$$p(C_1|oldsymbol{x}) = \sigma(ar{y}(oldsymbol{x};oldsymbol{w})) = rac{1}{1+e^{-ar{y}(oldsymbol{x};oldsymbol{w})}},$$

we arrive at

$$ar{y}(oldsymbol{x};oldsymbol{w}) = \log\left(rac{p(C_1|oldsymbol{x})}{1-p(C_1|oldsymbol{x})}
ight) = \log\left(rac{p(C_1|oldsymbol{x})}{p(C_0|oldsymbol{x})}
ight),$$

which is called a **logit** and it is a logarithm of odds of the probabilities of the two classes.

Logistic Regression

To train the logistic regression, we use MLE (the maximum likelihood estimation). Its application is straightforward, given that $p(C_1|\mathbf{x};\mathbf{w})$ is directly the model output $y(\mathbf{x};\mathbf{w})$.

Therefore, the loss for a minibatch $\mathbb{X} = \{(\boldsymbol{x}_1, t_1), (\boldsymbol{x}_2, t_2), \dots, (\boldsymbol{x}_N, t_N)\}$ is

$$E(oldsymbol{w}) = rac{1}{N} \sum_i -\log(p(C_{t_i}|oldsymbol{x}_i;oldsymbol{w})).$$

Input: Input dataset $(m{X} \in \mathbb{R}^{N imes D}$, $m{t} \in \{0, +1\}^N)$, learning rate $lpha \in \mathbb{R}^+$.

- ullet $oldsymbol{w} \leftarrow oldsymbol{0}$ or we initialize $oldsymbol{w}$ randomly
- until convergence (or patience runs out), process a minibatch of examples \mathbb{B} :

$$egin{array}{ll} \circ ~ oldsymbol{g} \leftarrow rac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}}
abla_{oldsymbol{w}} \Big(-\log ig(p(C_{t_i} | oldsymbol{x}_i; oldsymbol{w}) ig) \Big) \Big) \end{array}$$

$$\circ \boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \boldsymbol{g}$$

Generalized Linear Models

Generalized Linear Models

The logistic regression is in fact an extended linear regression. A linear regression model, which is followed by an **activation function** a, is called **generalized linear model**:

$$p(t|oldsymbol{x};oldsymbol{w},b)=y(oldsymbol{x};oldsymbol{w},b)=aig(oldsymbol{x};oldsymbol{w},b)=aig(oldsymbol{x}^Toldsymbol{w}+big).$$

Name	Activation	Distribution	Loss	Gradient
linear regression	identity	?	$ ext{MSE} \propto \mathbb{E}(y(oldsymbol{x}) - t)^2$	$\Big ig(y(oldsymbol{x}) - t ig) oldsymbol{x} \Big $
logistic regression	$\sigma(ar{y})$	Bernoulli	$ ext{NLL} \propto \mathbb{E} - \log(p(t m{x}))$?

Logistic Regression Gradient

We start by computing the gradient of the $\sigma(x)$.

$$egin{aligned} rac{\partial}{\partial x} \sigma(x) &= rac{\partial}{\partial x} rac{1}{1 + e^{-x}} \ &= rac{rac{\partial}{\partial x} - (1 + e^{-x})}{(1 + e^{-x})^2} \ &= rac{1}{1 + e^{-x}} \cdot rac{e^{-x}}{1 + e^{-x}} \ &= \sigma(x) \cdot rac{e^{-x} + 1 - 1}{1 + e^{-x}} \ &= \sigma(x) \cdot (1 - \sigma(x)) \end{aligned}$$

$$rac{\partial}{\partial x}rac{1}{g(x)}=-rac{rac{\partial}{\partial x}g(x)}{g(x)^2}$$

$$\frac{\partial}{\partial x}e^{g(x)} = e^{g(x)} \cdot \frac{\partial}{\partial x}g(x)$$

Logistic Regression Gradient

Consider the log-likelihood of logistic regression $\log p(t|\boldsymbol{x};\boldsymbol{w})$. For brevity, we denote $\bar{y}(\boldsymbol{x};\boldsymbol{w}) = \boldsymbol{x}^T\boldsymbol{w}$ just as \bar{y} in the following computation.

Remembering that for $t \sim \text{Ber}(\varphi)$ we have $p(t) = \varphi^t (1 - \varphi)^{1-t}$, we can rewrite the log-likelihood to:

$$egin{aligned} \log p(t|m{x};m{w}) &= \log \sigma(ar{y})^t ig(1-\sigma(ar{y})ig)^{1-t} \ &= t \cdot \log ig(\sigma(ar{y})ig) + (1-t) \cdot \log ig(1-\sigma(ar{y})ig) \end{aligned}$$

Logistic Regression Gradient

$$egin{aligned}
abla_{m{w}} - \log p(t|m{x};m{w}) &= \ &=
abla_{m{w}} \Big(-t \cdot \log ig(\sigma(ar{y})ig) - (1-t) \cdot \log ig(1-\sigma(ar{y})ig) \Big) \end{aligned}$$

$$\frac{\partial}{\partial x} \log g(x) = \frac{1}{g(x)} \cdot \frac{\partial}{\partial x} g(x)$$

$$= -t \cdot \frac{1}{\sigma(\bar{y})} \cdot \nabla_{\boldsymbol{w}} \sigma(\bar{y}) - (1 - t) \cdot \frac{1}{1 - \sigma(\bar{y})} \cdot \nabla_{\boldsymbol{w}} (1 - \sigma(\bar{y}))$$

$$\frac{\partial}{\partial x} f(g(x)) = \frac{\partial}{\partial g(x)} f(g(x)) \cdot \frac{\partial}{\partial x} g(x) = \frac{\partial}{\partial z} f(z) \cdot \frac{\partial}{\partial x} g(x)$$

$$\nabla_{\boldsymbol{w}}\sigma(\bar{y}) = \frac{\partial}{\partial \bar{y}}\sigma(\bar{y}) \cdot \nabla_{\boldsymbol{w}}\bar{y}$$

$$= -t \cdot \frac{1}{\sigma(\bar{y})} \cdot \sigma(\bar{y}) \cdot \left(1 - \sigma(\bar{y})\right) \cdot \nabla_{\boldsymbol{w}}\bar{y} + (1 - t) \cdot \frac{1}{1 - \sigma(\bar{y})} \cdot \sigma(\bar{y}) \cdot \left(1 - \sigma(\bar{y})\right) \cdot \nabla_{\boldsymbol{w}}\bar{y}$$

$$=ig(-t+t\sigma(ar{y})+\sigma(ar{y})-t\sigma(ar{y})ig)$$

$$= (y(\boldsymbol{x}; \boldsymbol{w}) - t)\boldsymbol{x}$$

Generalized Linear Models

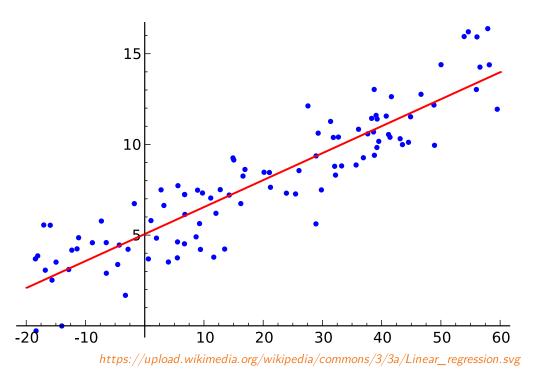
The logistic regression is in fact an extended linear regression. A linear regression model, which is followed by some **activation function** a, is called **generalized linear model**:

$$p(t|oldsymbol{x};oldsymbol{w},b)=y(oldsymbol{x};oldsymbol{w},b)=aig(oldsymbol{x};oldsymbol{w},b)=aig(oldsymbol{x}^Toldsymbol{w}+big).$$

Name	Activation	Distribution	Loss	Gradient
linear regression	identity	?	$ ext{MSE} \propto \mathbb{E}(y(oldsymbol{x}) - t)^2$	$\Big ig(y(oldsymbol{x}) - t ig) oldsymbol{x} \Big $
logistic regression	$\sigma(ar{y})$	Bernoulli	$ ext{NLL} \propto \mathbb{E} - \log(p(t m{x}))$	$(y(oldsymbol{x})-t)oldsymbol{x}$

Mean Square Error as Maximum Likelihood Estimation

Mean Square Error as MLE



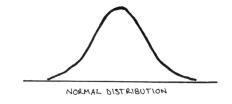
During regression, we predict a number, not a probability distribution. To generate a distribution, we might consider a distribution with the mean of the predicted value and a fixed variance σ^2 – the most general such a distribution is the normal distribution.

Mean Square Error as MLE

Therefore, assume our model generates a distribution $p(t|\boldsymbol{x};\boldsymbol{w}) = \mathcal{N}(t;y(\boldsymbol{x};\boldsymbol{w}),\sigma^2)$.

Now we can apply the maximum likelihood estimation and get

$$rg \max_{oldsymbol{w}} p(oldsymbol{t}|oldsymbol{X};oldsymbol{w}) = rg \min_{oldsymbol{w}} \sum_{i=1}^N -\log p(t_i|oldsymbol{x}_i;oldsymbol{w})$$



$$= rg\min_{oldsymbol{w}} - \sum_{i=1}^N \log \sqrt{rac{1}{2\pi\sigma^2}} e^{-rac{(t_i - y(oldsymbol{x}_i; oldsymbol{w}))^2}{2\sigma^2}}$$

$$a = rg\min_{oldsymbol{w}} -N\log(2\pi\sigma^2)^{-1/2} - \sum_{i=1}^N -rac{ig(t_i-y(oldsymbol{x}_i;oldsymbol{w})ig)^2}{2\sigma^2}$$
 http://

$$\mathbf{x} = rg\min_{oldsymbol{w}} \sum_{i=1}^{N} rac{ig(t_i - y(oldsymbol{x}_i; oldsymbol{w})ig)^2}{2\sigma^2} = rg\min_{oldsymbol{w}} rac{1}{N} \sum_{i=1}^{N} ig(y(oldsymbol{x}_i; oldsymbol{w}) - t_iig)^2.$$

Generalized Linear Models

We have therefore extended the GLM table to

Name	Activation	Distribution	Loss	Gradient
linear regression	identity	Normal	$NLL \propto MSE$	$\Big ig(y(oldsymbol{x}) - t ig) oldsymbol{x} \Big $
logistic regression	$\sigma(ar{y})$	Bernoulli	$ ext{NLL} \propto \mathbb{E} - \log(p(t m{x}))$	$(y(oldsymbol{x})-t)oldsymbol{x}$

To extend the binary logistic regression to a multiclass case with K classes, we:

ullet generate K outputs, each with its own set of weights, so that for $oldsymbol{W} \in \mathbb{R}^{D imes K}$,

$$oldsymbol{ar{y}}(oldsymbol{x};oldsymbol{W}) = oldsymbol{x}^Toldsymbol{W}, \ \ ext{or in other words}, \ \ oldsymbol{ar{y}}(oldsymbol{x};oldsymbol{W})_i = oldsymbol{x}^T(oldsymbol{W}_{*,i})$$

ullet generalize the sigmoid function to a $\operatorname{softmax}$ function, such that

$$ext{softmax}(oldsymbol{z})_i = rac{e^{z_i}}{\sum_j e^{z_j}}.$$

Note that the original sigmoid function can be written as

$$\sigma(x) = \operatorname{softmax} ig([x \ \ 0] ig)_0 = rac{e^x}{e^x + e^0} = rac{1}{1 + e^{-x}}.$$

The resulting classifier is also known as multinomial logistic regression, maximum entropy classifier or softmax regression.

Using the softmax function, we naturally define that

$$p(C_i|oldsymbol{x};oldsymbol{W}) = oldsymbol{y}(oldsymbol{x};oldsymbol{W})_i = \operatorname{softmax}ig(ar{oldsymbol{y}}(oldsymbol{x};oldsymbol{W})ig)_i = \operatorname{softmax}ig(oldsymbol{x}^Toldsymbol{W})_i = rac{e^{(oldsymbol{x}^Toldsymbol{W})_i}}{\sum_j e^{(oldsymbol{x}^Toldsymbol{W})_j}}.$$

Considering the definition of the softmax function, it is natural to obtain the interpretation of the linear part of the model $\bar{\boldsymbol{y}}(\boldsymbol{x};\boldsymbol{W})$ as **logits** by computing a logarithm of the above:

$$ar{oldsymbol{y}}(oldsymbol{x};oldsymbol{W})_i = \log(p(C_i|oldsymbol{x};oldsymbol{W})) + c.$$

The constant c is present, because the output of the model is *overparametrized* (for example, the probability of the last class could be computed from the remaining ones). This is connected to the fact that softmax is invariant to addition of a constant:

$$ext{softmax}(oldsymbol{z}+c)_i = rac{e^{z_i+c}}{\sum_i e^{z_j+c}} = rac{e^{z_i}}{\sum_i e^{z_j}} \cdot rac{e^c}{e^c} = ext{softmax}(oldsymbol{z})_i.$$

To train K-class classification, analogously to the binary logistic regression we can use MLE and train the model using minibatch stochastic gradient descent:

Input: Input dataset $(m{X} \in \mathbb{R}^{N imes D}$, $m{t} \in \{0,1,\ldots,K-1\}^N)$, learning rate $lpha \in \mathbb{R}^+$.

Model: Let w denote all parameters of the model (in our case, the parameters are a weight matrix w and maybe a bias vector b).

- ullet $oldsymbol{w} \leftarrow oldsymbol{0}$ or we initialize $oldsymbol{w}$ randomly
- until convergence (or patience runs out), process a minibatch of examples \mathbb{B} :

$$egin{array}{ll} \circ ~ oldsymbol{g} \leftarrow rac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}}
abla_{oldsymbol{w}} \Big(-\log ig(p(C_{t_i} | oldsymbol{x}_i; oldsymbol{w}) ig) \Big) \end{array}$$

$$\circ \boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \boldsymbol{g}$$

Note that the decision regions of the binary/multiclass logistic regression are convex (and therefore connected).

To see this, consider $oldsymbol{x}_A$ and $oldsymbol{x}_B$ in the same decision region R_k .

Any point ${\boldsymbol x}$ lying on the line connecting them is their convex combination, ${\boldsymbol x}=\lambda{\boldsymbol x}_A+(1-\lambda){\boldsymbol x}_B$, and from the linearity of $\bar{{\boldsymbol y}}({\boldsymbol x})={\boldsymbol x}^T{\boldsymbol W}$ it follows that

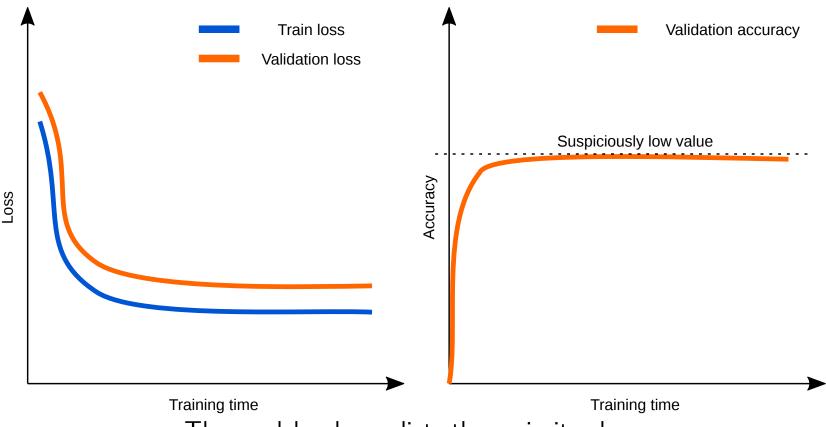
$$ar{oldsymbol{y}}(oldsymbol{x}) = \lambda ar{oldsymbol{y}}(oldsymbol{x}_A) + (1-\lambda) ar{oldsymbol{y}}(oldsymbol{x}_B).$$



Given that $\bar{\boldsymbol{y}}(\boldsymbol{x}_A)_k$ was the largest among $\bar{\boldsymbol{y}}(\boldsymbol{x}_A)$ and also given that $\bar{\boldsymbol{y}}(\boldsymbol{x}_B)_k$ was the largest among $\bar{\boldsymbol{y}}(\boldsymbol{x}_B)$, it must be the case that $\bar{\boldsymbol{y}}(\boldsymbol{x})_k$ is the largest among all $\bar{\boldsymbol{y}}(\boldsymbol{x})$.

Refresh

What went wrong?



The model only predicts the majority class. Insufficient features, too high learning rate.

Generalized Linear Models

The multiclass logistic regression can now be added to the GLM table:

Name	Activation	Distribution	Loss	Gradient
linear regression	identity	Normal	$ m NLL \propto MSE$	$ig(y(oldsymbol{x})-tig)oldsymbol{x}$
logistic regression	$\sigma(ar{y})$	Bernoulli	$ ext{NLL} \propto \mathbb{E} - \log(p(t m{x}))$	$(y(oldsymbol{x})-t)oldsymbol{x}$
multiclass logistic regression	$\operatorname{softmax}(oldsymbol{ar{y}})$	categorical	$ ext{NLL} \propto \mathbb{E} - \log(p(t m{x}))$	$\left((oldsymbol{y}(oldsymbol{x})-oldsymbol{1}_t)oldsymbol{x}^T ight)^T$

Recall that $\mathbf{1}_t = ig([i=t]ig)_{i=0}^{K-1}$ is one-hot representation of target $t \in \{0,1,\dots,K-1\}$.

The gradient $\left(({m y}({m x})-{m 1}_t){m x}^T\right)^T$ can be of course also computed as ${m x} ig({m y}({m x})-{m 1}_tig)^T$.

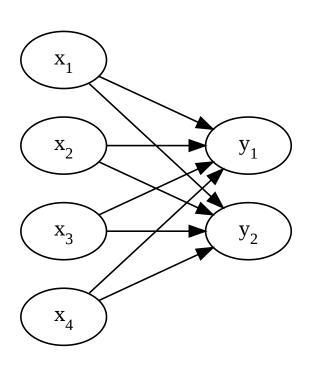
NPFL129, Lecture 4

We can reformulate the generalized linear models in the following framework.

- Assume we have an input node for every input feature.
- ullet Additionally, we have an output node for every model output (one for linear regression or binary classification, K for classification in K classes).
- Every input node and output node are connected with a directed edge, and every edge has an associated weight.
- Value of every (output) node is computed by summing the values of predecessors multiplied by the corresponding weights, added to a bias of this node, and finally passed through an activation function a:

$$y_i = a\left(\sum
olimits_j x_j w_{j,i} + b_i
ight)$$

Input layer Output layer activation *a*



or in matrix form $m{y} = a(m{x}^Tm{W} + m{b})$, or for a batch of examples $m{X}$, $m{Y} = a(m{X}m{W} + m{b})$.

We now extend the model by adding a **hidden layer** with activation f.

The computation is performed analogously:

$$egin{aligned} h_i &= f\left(\sum_{j} x_j w_{j,i}^{(h)} + b_i^{(h)}
ight), \ y_i &= a\left(\sum_{j} h_j w_{j,i}^{(y)} + b_i^{(y)}
ight), \end{aligned}$$

or in matrix form

$$oldsymbol{h} = f\Big(oldsymbol{x}^Toldsymbol{W}^{(h)} + oldsymbol{b}^{(h)}\Big), \ oldsymbol{y} = a\Big(oldsymbol{h}^Toldsymbol{W}^{(y)} + oldsymbol{b}^{(y)}\Big),$$

Input layer Hidden layer Output layer activation *f* activation a X_1 h_2 \mathbf{x}_2 h_3 \mathbf{x}_3 $X_{\underline{4}}$ h_{A}

and for batch of inputs
$$m{H} = f\Big(m{X}m{W}^{(h)} + m{b}^{(h)}\Big)$$
 and $m{Y} = a\Big(m{H}m{W}^{(y)} + m{b}^{(y)}\Big)$.

Note that:

- the structure of the input layer depends on the input features;
- the structure and the activation function of the output layer depends on the target data;
- however, the *hidden* layer has no pre-image in the data and is completely arbitrary which is the reason why it is called a *hidden* layer.

Also note that we can absorb biases into weights analogously to the generalized linear models.

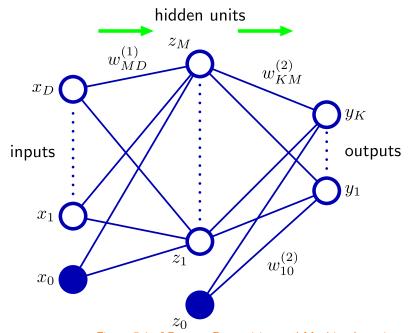


Figure 5.1 of Pattern Recognition and Machine Learning.

Output Layer Activation Functions

Output Layer Activation Functions

- regression:
 - identity activation: we model normal distribution on output (linear regression)
- binary classification:
 - \circ $\sigma(x)$: we model the Bernoulli distribution (the model predicts a probability)

$$\sigma(x) \stackrel{ ext{ iny def}}{=} rac{1}{1 + e^{-x}}$$

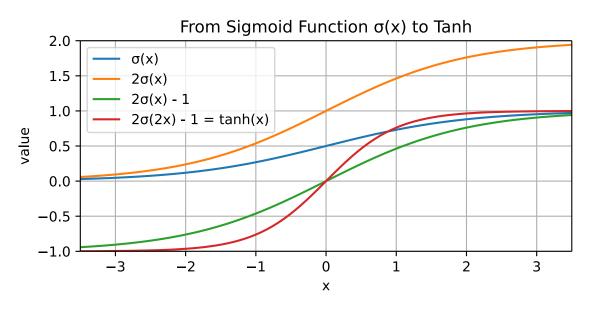
- K-class classification:
 - \circ softmax(\boldsymbol{x}): we model the (usually overparametrized) categorical distribution

$$ext{softmax}(oldsymbol{x}) \propto e^{oldsymbol{x}}, \quad ext{softmax}(oldsymbol{x})_i \stackrel{ ext{def}}{=} rac{e^{oldsymbol{x}_i}}{\sum_j e^{oldsymbol{x}_j}}$$

Hidden Layer Activation Functions

Hidden Layer Activation Functions

- no activation (identity): does not help, composition of linear mapping is a linear mapping
- ullet σ (but works suboptimally nonsymmetrical, $rac{d\sigma}{dx}(0)=1/4)$
- tanh
 - $^{\circ}$ result of making σ symmetrical and making derivation in zero 1
 - $\circ \ anh(x) = 2\sigma(2x) 1$
- ReLU
 - $\circ \max(0,x)$
 - the most common nonlinear activation used nowadays



Training MLP

The multilayer perceptron can be trained using again a minibatch SGD algorithm:

Input: Input dataset $(m{X} \in \mathbb{R}^{N imes D}$, $m{t}$ targets), learning rate $lpha \in \mathbb{R}^+$.

Model: Let w denote all parameters of the model (all weight matrices and bias vectors).

- ullet initialize $oldsymbol{w}$
 - set weights randomly
 - for a weight matrix processing a layer of size M to a layer of size O, we can sample its elements uniformly for example from the $\left[-\frac{1}{\sqrt{M}},\frac{1}{\sqrt{M}}\right]$ range
 - the exact range becomes more important for networks with many hidden layers
 - o set biases to 0
- until convergence (or patience runs out), process a minibatch of examples \mathbb{B} :

$$egin{array}{ll} \circ ~ oldsymbol{g} \leftarrow rac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}}
abla_{oldsymbol{w}} \Big(-\log ig(p(t_i | oldsymbol{x}_i; oldsymbol{w}) ig) \Big) \end{array}$$

 $\circ \boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \boldsymbol{q}$