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Today's Lecture Objectives

Implement muticlass classification with softmax.

Reason about linear regression, logistic regression and softmax classification in a single
probabilistic framework: with different target distributions, activation functions and
training using maximum likelihood estimate.

Explain multi-layer perceptron as a further generalization of linear models.
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Refresh from the Last Week
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Logistic Regression

An extension of perceptron, which models the conditional probabilities of  and of 

. (It can in fact handle also more than two classes, which we will see shortly.)

Logistic regression employs the following parametrization of the conditional class probabilities:

where  is the sigmoid function

It can be trained using the SGD algorithm.
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Logistic Regression

We denote the output of the “linear part” of the logistic regression as  and

the overall prediction as 

The logistic regression output  models the probability of class , .

To give some meaning to the output of the linear part , starting with

we arrive at

which is called a logit and it is a logarithm of odds of the probabilities of the two classes.
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1 + e−  (x;w)ȳ
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Logistic Regression

To train the logistic regression, we use MLE (the maximum likelihood estimation). Its
application is straightforward, given that  is directly the model output .

Therefore, the loss for a minibatch  is

Input: Input dataset ( , ), learning rate . 

 or we initialize  randomly

until convergence (or patience runs out), process a minibatch of examples :

p(C  ∣x;w)1 y(x;w)

X = {(x  , t  ), (x  , t  ), … , (x  , t  )}1 1 2 2 N N

 

E(w) =   − log(p(C  ∣x  ;w)).
N

1

i

∑ t  i i

X ∈ RN×D t ∈ {0, +1}N α ∈ R+

w ← 0 w

B
g ←   ∇  ( −∣B∣

1 ∑i∈B w log (p(C  ∣x  ;w)))t  i i

w ← w− αg
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Generalized Linear Models

7/30NPFL129, Lecture 4 Refresh GLM MSE as MLE MulticlassLogisticReg MLP



Generalized Linear Models

The logistic regression is in fact an extended linear regression. A linear regression model, which
is followed by an activation function , is called generalized linear model:

Name Activation Distribution Loss Gradient

linear regression identity ?

logistic regression Bernoulli ?

a

p(t∣x;w, b) = y(x;w, b) = a(  (x;w, b)) =ȳ a(x w+T b).

MSE ∝ E(y(x) − t)2 (y(x) − t)x

σ(  )ȳ NLL ∝ E− log(p(t∣x))
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Logistic Regression Gradient

We start by computing the gradient of the .σ(x)

= σ(x)
∂x
∂
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∂
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e−x

 e = e ⋅  g(x)∂x
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e + 1 − 1−x
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Logistic Regression Gradient

Consider the log-likelihood of logistic regression . For brevity, we denote 

 just as  in the following computation.

Remembering that for  we have , we can rewrite the log-

likelihood to:

log p(t∣x;w)
 (x;w) =ȳ x wT  ȳ

t ∼ Ber(φ) p(t) = φ (1 −t φ)1−t

=log p(t∣x;w) log σ(  ) (1 −ȳ t σ(  ))ȳ
1−t

= t ⋅ log (σ(  ))+ȳ (1 − t) ⋅ log (1 − σ(  ))ȳ
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Logistic Regression Gradient

∇  −w log p(t∣x;w) =

= ∇  ( −w t ⋅ log (σ(  ))−ȳ (1 − t) ⋅ log (1 − σ(  )))ȳ

 log g(x) = ⋅  g(x)
∂x
∂
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1
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∂

= −t ⋅  ⋅
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1
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1 − σ(  )ȳ
1
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 f(g(x)) =  f(g(x)) ⋅  g(x) =  f(z) ⋅  g(x)
∂x
∂
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∂

∂x
∂

∂z
∂

∂x
∂

∇  σ(  ) =  σ(  ) ⋅ ∇   w ȳ ∂  ȳ
∂ ȳ w ȳ

= −t ⋅  ⋅ σ(  ) ⋅ (1 − σ(  )) ⋅ ∇   + (1 − t) ⋅  ⋅ σ(  ) ⋅ (1 − σ(  )) ⋅ ∇   

σ(  )ȳ
1

ȳ ȳ w ȳ 1 − σ(  )ȳ
1

ȳ ȳ w ȳ

= (− t+ tσ(  ) +ȳ σ(  ) −ȳ tσ(  ))xȳ

= (y(x;w) − t)x
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Generalized Linear Models

The logistic regression is in fact an extended linear regression. A linear regression model, which
is followed by some activation function , is called generalized linear model:

Name Activation Distribution Loss Gradient

linear regression identity ?

logistic regression Bernoulli

a

p(t∣x;w, b) = y(x;w, b) = a(  (x;w, b)) =ȳ a(x w+T b).

MSE ∝ E(y(x) − t)2 (y(x) − t)x

σ(  )ȳ NLL ∝ E− log(p(t∣x)) (y(x) − t)x
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Mean Square Error as Maximum Likelihood
Estimation

13/30NPFL129, Lecture 4 Refresh GLM MSE as MLE MulticlassLogisticReg MLP



Mean Square Error as MLE

 

https://upload.wikimedia.org/wikipedia/commons/3/3a/Linear_regression.svg

During regression, we predict a number, not a probability distribution. To generate a
distribution, we might consider a distribution with the mean of the predicted value and a fixed
variance  – the most general such a distribution is the normal distribution.σ2
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Mean Square Error as MLE

Therefore, assume our model generates a distribution .

Now we can apply the maximum likelihood estimation and get

p(t∣x;w) = N (t; y(x;w),σ )2

 

https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC2465539/

= p(t∣X;w)
w
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∑
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∑
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 −  
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∑
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Generalized Linear Models

We have therefore extended the GLM table to

Name Activation Distribution Loss Gradient

linear regression identity

logistic regression Bernoulli

Normal NLL ∝ MSE (y(x) − t)x

σ(  )ȳ NLL ∝ E− log(p(t∣x)) (y(x) − t)x
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Multiclass Logistic Regression
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Multiclass Logistic Regression

To extend the binary logistic regression to a multiclass case with  classes, we:

generate  outputs, each with its own set of weights, so that for ,

generalize the sigmoid function to a  function, such that

Note that the original sigmoid function can be written as

The resulting classifier is also known as multinomial logistic regression, maximum entropy
classifier or softmax regression.

K

K W ∈ RD×K

 (x;W ) =ȳ x W ,    or in other words,     (x;W )  =T ȳ i x (W  )T
∗,i

softmax

softmax(z)  =i  .
 e∑j
z  j

ez  i

σ(x) = softmax ([x  0])  =
0

 =
e + ex 0

ex
 .

1 + e−x

1
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Multiclass Logistic Regression

Using the  function, we naturally define that

Considering the definition of the  function, it is natural to obtain the interpretation of

the linear part of the model  as logits by computing a logarithm of the above:

The constant  is present, because the output of the model is overparametrized (for example,

the probability of the last class could be computed from the remaining ones). This is connected
to the fact that softmax is invariant to addition of a constant:

softmax

p(C  ∣x;W ) =i y(x;W )  =i softmax (  (x;W ))  =ȳ
i

softmax(x W )  =T
i  .

 e∑j
(x W )  

T
j

e(x W )  

T
i

softmax
 (x;W )ȳ

 (x;W )  =ȳ i log(p(C  ∣x;W )) +i c.

c

softmax(z + c)  =i  =
 e∑j
z  +cj

ez  +ci

 ⋅
 e∑j
z  j

ez  i

 =
ec
ec

softmax(z)  .i
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Multiclass Logistic Regression

To train -class classification, analogously to the binary logistic regression we can use MLE

and train the model using minibatch stochastic gradient descent:

Input: Input dataset ( , ), learning rate . 

Model: Let  denote all parameters of the model (in our case, the parameters are a weight

matrix  and maybe a bias vector ).

 or we initialize  randomly

until convergence (or patience runs out), process a minibatch of examples :

K

X ∈ RN×D t ∈ {0, 1, … ,K − 1}N α ∈ R+

w

W b

w ← 0 w

B
g ←   ∇  ( −∣B∣

1 ∑i∈B w log (p(C  ∣x  ;w)))t  i i

w ← w− αg
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Multiclass Logistic Regression

 

Figure 4.3 of Pattern Recognition and Machine Learning.

Note that the decision regions of the binary/multiclass
logistic regression are convex (and therefore connected).

To see this, consider  and  in the same decision

region .

Any point  lying on the line connecting them is their

convex combination, , and from

the linearity of  it follows that

Given that  was the largest among  and also given that  was the largest

among , it must be the case that  is the largest among all .

x  A x  B

R  k

x

x = λx  +A (1 − λ)x  B

 (x) =ȳ x WT

 (x) =ȳ λ  (x  ) +ȳ A (1 − λ)  (x  ).ȳ B

 (x  )  ȳ A k  (x  )ȳ A  (x  )  ȳ B k

 (x  )ȳ B  (x)  ȳ k  (x)ȳ
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What went wrong?

Training time

Lo
ss

Train loss

Validation loss

Training time

A
cc

ur
ac

y

Validation accuracy

Suspiciously low value

The model only predicts the majority class. 
Insufficient features, too high learning rate.
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Generalized Linear Models

The multiclass logistic regression can now be added to the GLM table:

Name Activation Distribution Loss Gradient

linear regression identity Normal

logistic regression Bernoulli

multiclass 

logistic regression
categorical

 

Recall that  is one-hot representation of target .

The gradient  can be of course also computed as .

NLL ∝ MSE (y(x) − t)x

σ(  )ȳ NLL ∝ E− log(p(t∣x)) (y(x) − t)x

softmax(  )ȳ NLL ∝ E− log(p(t∣x)) ((y(x) − 1  )x )t
T T

1  =t ([i = t])  

i=0
K−1

t ∈ {0, 1, … ,K − 1}

((y(x) − 1  )x )t
T T

x(y(x) − 1  )t
T
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Multilayer Perceptron
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Multilayer Perceptron

x3

y1

y2

x4

x1

x2

Input layer Output layer
activation  a

We can reformulate the generalized linear models in the following framework.

Assume we have an input node for every input feature.

Additionally, we have an output node for every model
output (one for linear regression or binary classification, 

for classification in  classes).

Every input node and output node are connected with a
directed edge, and every edge has an associated weight.

Value of every (output) node is computed by summing the
values of predecessors multiplied by the corresponding
weights, added to a bias of this node, and finally passed
through an activation function :

or in matrix form , or for a batch of examples , .

K

K

a

y  =i a  x  w  + b  (∑
j

j j,i i)

y = a(x W +T b) X Y = a(XW + b)
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Multilayer Perceptron

x3 h3

h4

h1

h2

x4

x1

x2 y1

y2

Input layer Hidden layer
activation  f

Output layer
activation  a

We now extend the model by adding a hidden layer with activation .

The computation is performed analogously:

or in matrix form

and for batch of inputs  and .

f

  

h  i

y  i

= f  x  w  + b  ,(∑
j

j j,i
(h)

i
(h))

= a  h  w  + b  ,(∑
j

j j,i
(y)

i
(y))

  

h

y

= f(x W + b ),T (h) (h)

= a(h W + b ),T (y) (y)

H = f(XW +(h) b )(h) Y = a(HW +(y) b )(y)
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Multilayer Perceptron

 

Figure 5.1 of Pattern Recognition and Machine Learning.

Note that:

the structure of the input layer depends on the input features;

the structure and the activation function of the output layer depends on the target data;

however, the hidden layer has no pre-image in the data and is completely arbitrary – which
is the reason why it is called a hidden layer.

Also note that we can absorb biases into
weights analogously to the generalized linear
models.
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Output Layer Activation Functions

Output Layer Activation Functions
regression:

identity activation: we model normal distribution on output (linear regression)

binary classification:
: we model the Bernoulli distribution (the model predicts a probability)

-class classification:

: we model the (usually overparametrized) categorical distribution

σ(x)

σ(x) =
def

 

1 + e−x

1

K

softmax(x)

softmax(x) ∝ e ,    softmax(x)  

x
i =def

 

 e∑j
x  j

ex  i
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Hidden Layer Activation Functions

Hidden Layer Activation Functions
no activation (identity): does not help, composition of linear mapping is a linear mapping

 (but works suboptimally – nonsymmetrical, )

result of making  symmetrical

and making derivation in zero 1

ReLU

the most common nonlinear
activation used nowadays

σ  (0) =
dx
dσ 1/4

tanh
σ

tanh(x) = 2σ(2x) − 1

max(0,x)
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Training MLP

The multilayer perceptron can be trained using again a minibatch SGD algorithm:

Input: Input dataset ( ,  targets), learning rate . 

Model: Let  denote all parameters of the model (all weight matrices and bias vectors).

initialize 

set weights randomly
for a weight matrix processing a layer of size  to a layer of size , we can

sample its elements uniformly for example from the  range

the exact range becomes more important for networks with many hidden layers

set biases to 0

until convergence (or patience runs out), process a minibatch of examples :

X ∈ RN×D t α ∈ R+

w

w

M O

−  ,  [
 M

1
 M

1 ]

B
g ←   ∇  ( −∣B∣

1 ∑i∈B w log (p(t  ∣x  ;w)))i i

w ← w− αg
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