NPFL129, Lecture 3

Perceptron and Logistic Regression

Jindřich Libovický (reusing materials by Milan Straka)

■ October 14, 2024

Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

After this lecture you should be able to

- Think about binary classification using **geometric intuition** and use the **perceptron** algorithm.
- Define the main concepts of information theory (entropy, cross-entropy, KL-divergence) and prove their properties.
- Derive training objectives using the maximum likelihood principle.
- Implement and use **logistic regression** for binary classification with SGD.

Perceptron

NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression 3/32

Binary Classification

Binary classification is a classification in two classes.

The simplest way to evaluate classification is **accuracy**, which is the ratio of input examples that were classified correctly $-$ i.e., where the predicted class and the target class match.

To extend linear regression to binary classification, we might seek a **threshold** and then classify an input as negative/positive depending on whether $y(\bm{x}; \bm{w}) = \bm{x}^T\bm{w} + b$ is smaller/larger than a given threshold.

Zero value is usually used as the threshold, both because of symmetry and also because the bias parameter acts as a trainable threshold anyway.

The set of points with prediction 0 is called a **decision boundary**.

Geometric Intuition

NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression 5/32

Perceptron

The perceptron algorithm is probably the oldest one for training weights of a binary classification. Assuming the target value $t \in \{-1, +1\}$, the goal is to find weights \bm{w} such that for all train data,

$$
\text{sign}(y(\bm{x}_i;\bm{w})) = \text{sign}(\bm{x}_i^T\bm{w}) = t_i,
$$

or equivalently,

$$
t_i y(\boldsymbol{x}_i; \boldsymbol{w}) = t_i \boldsymbol{x}_i^T \boldsymbol{w} > 0.
$$

Note that a set is called **linearly separable**, if there exists a weight vector \boldsymbol{w} such that the above equation holds.

Perceptron

The perceptron algorithm was invented by Rosenblatt in 1958.

 $\mathbf{Input:}$ Linearly separable dataset $(\boldsymbol{X} \in \mathbb{R}^{N \times D}, \, \boldsymbol{t} \in \{-1, +1\}^{N}).$ $\mathbf{Output: }$ Weights $\boldsymbol{w} \in \mathbb{R}^D$ such that $t_i \boldsymbol{x}_i^T \boldsymbol{w} > 0$ for all $i.$

- \bullet *w* \leftarrow 0
- until all examples are classified correctly, process example i :
	- $y \leftarrow \boldsymbol{x}_i^T \boldsymbol{w}$
	- if $t_i y \leq 0$ (incorrectly classified example):
		- \blacksquare *w* \leftarrow *w* + *t*_{*i*}*x*_{*i*}

We will prove that the algorithm always arrives at some correct set of weights \boldsymbol{w} if the training set is linearly separable.

Proof of Perceptron Convergence

Let be some weights correctly classifying (separating) the training data, and let *w*[∗] *w^k* be the weights after k nontrivial updates of the perceptron algorithm, with \boldsymbol{w}_0 being 0.

We will prove that the angle α between \boldsymbol{w}_{*} and \boldsymbol{w}_{k} decreases at each step. Note that

$$
\cos(\alpha) = \frac{\boldsymbol{w}_*^T \boldsymbol{w}_k}{\|\boldsymbol{w}_*\| \cdot \|\boldsymbol{w}_k\|}.
$$

Proof of Perceptron Convergence

Assume that the maximum norm of any training example $\|\boldsymbol{x}\|$ is bounded by R , and that is the minimum margin of \bm{w}_* , so for each training example (\bm{x}, t) , First consider the dot product of \boldsymbol{w}_{*} and \boldsymbol{w}_{k} : $\|\boldsymbol{x}\|$ is bounded by R , γ is the minimum margin of \bm{w}_* , so for each training example (\bm{x},t) , $t\bm{x}^T\bm{w}_*\geq \gamma.$

$$
\boldsymbol{w}_*^T\boldsymbol{w}_k = \boldsymbol{w}_*^T(\boldsymbol{w}_{k-1}+t_k\boldsymbol{x}_k) \geq \boldsymbol{w}_*^T\boldsymbol{w}_{k-1} + \gamma.
$$

By iteratively applying this equation, we get

$$
\boldsymbol{w}_*^T \boldsymbol{w}_k \geq k \gamma.
$$

Now consider the length of \boldsymbol{w}_k :

$$
\|\bm{w}_k\|^2=\|\bm{w}_{k-1}+t_k\bm{x}_k\|^2=\|\bm{w}_{k-1}\|^2+2t_k\bm{x}_k^T\bm{w}_{k-1}+\|\bm{x}_k\|^2.
$$

Because \bm{x}_k was misclassified, we know that $t_k\bm{x}_k^T\bm{w}_{k-1}\leq 0$, so $\|\bm{w}_k\|^2\leq \|\bm{w}_{k-1}\|^2+R^2.$ When applied iteratively, we get $\|\boldsymbol{w}_k\|^2 \leq k\cdot R^2$.

Proof of Perceptron Convergence

Putting everything together, we get

$$
\cos(\alpha) = \frac{\boldsymbol{w}_*^T \boldsymbol{w}_k}{\|\boldsymbol{w}_*\| \cdot \|\boldsymbol{w}_k\|} \geq \frac{k \gamma}{\sqrt{k R^2} \|\boldsymbol{w}_*\|}.
$$

Therefore, the $\cos(\alpha)$ increases during every update. Because the value of $\cos(\alpha)$ is at most one, we can compute the upper bound on the number of steps when the algorithm converges as

$$
1\geq \frac{\sqrt{k}\gamma}{\sqrt{R^2}\|\boldsymbol{w}_*\|} \text{ or } k\leq \frac{R^2\|\boldsymbol{w}_*\|^2}{\gamma^2}.
$$

NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression 10/32

Perceptron Issues

Perceptron has several drawbacks:

- If the input set is not linearly separable, the algorithm never finishes. \bullet
- The algorithm performs only prediction, it is not able to return the probabilities of predictions.
- \bullet Most importantly, Perceptron algorithm finds *some* solution, not necessarily a good one, because once it finds some, it cannot perform any more updates.

Basics of Probability

NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression 12/32

Bernoulli Distribution

The Bernoulli distribution is a distribution over a binary random variable. It has a single parameter $\varphi \in [0,1]$, which specifies the probability that the random variable is equal to 1.

$$
P(x) = \varphi^x (1-\varphi)^{1-x} \\ \mathbb{E}[x] = \varphi \\ \text{Var}(x) = \varphi(1-\varphi)
$$

NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression 13/32

Common Probability Distributions

Categorical Distribution

Extension of the Bernoulli distribution to random variables taking one of K different discrete outcomes. It is parametrized by $\boldsymbol{p} \in [0,1]^K$ such that $\sum_{i=0}^{K-1} p_i = 1$.

We represent outcomes as vectors $\in \{0, 1\}^K$ in the **one-hot encoding**. Therefore, an outcome $x \in \{0,1,\ldots,K-1\}$ is represented as a vector

$$
\mathbf{1}_x\stackrel{\text{\tiny def}}{=} \big([i=x]\big)_{i=0}^{K-1}=\big(\underbrace{0,\ldots,0}_{x},1,\underbrace{0,\ldots,0}_{K-x-1}\big).
$$

The outcome probability, mean, and variance are very similar to the Bernoulli distribution.

$$
P(\boldsymbol{x}) = \prod\nolimits_{i=0}^{K-1} p_i^{x_i} \\ \mathbb{E}[x_i] = p_i \\ \text{Var}(x_i) = p_i(1-p_i)
$$

Information Theory

NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression 15/32

Self Information

Amount of **surprise** when a random variable is sampled.

- Should be zero for events with probability 1.
- Less likely events are more surprising. \bullet
- Independent events should have additive information. \bullet

$$
I(x) \stackrel{\text{\tiny def}}{=} -\log P(x) = \log \frac{1}{P(x)}
$$

Information Theory

Entropy

Amount of **surprise** in the whole distribution.

$$
H(P) \stackrel{\text{\tiny def}}{=} \mathbb{E}_{\mathrm{x} \sim P} [I(x)] = - \mathbb{E}_{\mathrm{x} \sim P} [\log P(x)]
$$

- for discrete P : $H(P) = -\sum_x P(x) \log P(x)$
- for continuous $P\colon H(P) = -\int P(x)\log P(x)\,\mathrm{d}x$

 $\operatorname{Because\ } \lim_{x\to 0} x\log x =0,$ for $P(x)=0$ we consider $P(x)\log P(x)$ to be zero.

Note that in the continuous case, the continuous entropy (also called *differential entropy*) has slightly different semantics, for example, it can be negative.

For binary logarithms, the entropy is measured in bits. x However, from now on, all logarithms are natural logarithms with base e (and then the entropy is measured in units called nats).

NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression 17/32

Cross-Entropy

$$
H(P,Q) \stackrel{\text{\tiny def}}{=} -\mathbb{E}_{\mathrm{x} \sim P}[\log Q(x)]
$$

Gibbs Inequality

- \bullet *H*(*P*, *Q*) \geq *H*(*P*)
- \bullet *H*(*P*) = *H*(*P*, *Q*) \Leftrightarrow *P* = *Q*

Proof: Consider $H(P) - H(P, Q) = \sum_x P(x) \log \frac{Q(x)}{P(x)}.$

Using the fact that $\log x \leq (x-1)$ with equality only for $x=1$, we get

$$
\sum_x P(x) \log \frac{Q(x)}{P(x)} \leq \sum_x P(x) \left(\frac{Q(x)}{P(x)}-1\right) = \sum_x Q(x) - \sum_x P(x) = 0.
$$

For the equality to hold, $\frac{Q(x)}{P(x)}$ must be 1 for all x , i.e., $P=Q.$

NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression 18/32

Information Theory

Kullback-Leibler Divergence (KL Divergence)

Sometimes also called relative entropy.

$$
D_{\mathrm{KL}}(P\|Q) \stackrel{\text{\tiny def}}{=} H(P,Q) - H(P) = \mathbb{E}_{\mathrm{x} \sim P}[\log P(x) - \log Q(x)]
$$

- R consequence of Gibbs inequality: $D_{\text{KL}}(P\|Q)\geq 0$, $D_{\text{KL}}(P\|Q)=0$ iff $P=Q$
- $p_{\text{KL}}(P\|Q) \neq D_{\text{KL}}(Q\|P)$

Normal (or Gaussian) Distribution

Distribution over real numbers, parametrized by a mean μ and variance σ^2 :

$$
\mathcal{N}(x; \mu, \sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)
$$

For standard values $\mu=0$ and $\sigma^2=1$ we get $\mathcal{N}(x;0,1)=\sqrt{\frac{1}{2\pi}}e^{-\frac{x^2}{2}}$.

Why Normal Distribution

Central Limit Theorem

The sum of independent identically distributed random variables with finite variance converges to normal distribution.

Principle of Maximum Entropy

Given a set of constraints, a distribution with maximal entropy fulfilling the constraints can be considered the most general one, containing as little additional assumptions as possible.

Considering distributions with a given mean and variance, it can be proven (using variational inference) that such a distribution with maximum entropy is exactly the normal distribution.

NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression 22/32

Let $\bm{X} = \{\bm{x}_1, \bm{x}_2, \dots, \bm{x}_N\}$ be training data drawn independently from the data-generating distribution $p_{\rm data}$.

We denote the $\boldsymbol{\mathsf{empirical}}$ $\boldsymbol{\mathsf{data}}$ distribution as \hat{p}_{data} , where

$$
\hat{p}_{\textrm{data}}(\boldsymbol{x}) \stackrel{\textrm{\tiny def}}{=} \frac{\big|\{i: \boldsymbol{x}_i = \boldsymbol{x}\}\big|}{N}.
$$

Let $p_{\text{model}}({\mathbf x}; {\bm{w}})$ be a family of distributions.

- If the weights are fixed, $p_{\text{model}}(\mathbf{x}; w)$ is a probability distribution.
- If we instead consider the fixed training data \boldsymbol{X} , then

$$
L(\boldsymbol{w}) = p_\text{model}(\boldsymbol{X}; \boldsymbol{w}) = \prod\nolimits_{i=1}^N p_\text{model}(\boldsymbol{x}_i; \boldsymbol{w})
$$

is called the likelihood. Note that even if the value of the likelihood is in range $\left[0,1\right]$, it is not a probability, because the likelihood is not a probability distribution.

Let $\bm{X} = \{\bm{x}_1, \bm{x}_2, \dots, \bm{x}_N\}$ be training data drawn independently from the data-generating distribution $p_{\rm data}$. We denote the empirical data distribution as $\hat{p}_{\rm data}$ and let $p_{\rm model}({\bf x}; {\bm w})$ be a family of distributions.

The maximum likelihood estimation of \boldsymbol{w} is:

$$
\begin{aligned} \boldsymbol{w}_{\text{MLE}} &= \argmax_{\boldsymbol{w}} p_{\text{model}}(\boldsymbol{X}; \boldsymbol{w}) = \argmax_{\boldsymbol{w}} \prod\nolimits_{i=1}^{N} p_{\text{model}}(\boldsymbol{x}_i; \boldsymbol{w}) \\ &= \argmin_{\boldsymbol{w}} \sum\nolimits_{i=1}^{N} -\log p_{\text{model}}(\boldsymbol{x}_i; \boldsymbol{w}) \\ &= \argmin_{\boldsymbol{w}} \mathbb{E}_{\mathbf{x} \sim \hat{p}_{\text{data}}}[-\log p_{\text{model}}(\boldsymbol{x}; \boldsymbol{w})] \\ &= \argmin_{\boldsymbol{w}} H(\hat{p}_{\text{data}}(\mathbf{x}), p_{\text{model}}(\mathbf{x}; \boldsymbol{w})) \\ &= \argmin_{\boldsymbol{w}} D_{\text{KL}}(\hat{p}_{\text{data}}(\mathbf{x}) \| p_{\text{model}}(\mathbf{x}; \boldsymbol{w})) + H(\hat{p}_{\text{data}}(\mathbf{x})) \end{aligned}
$$

MLE can be easily generalized to the conditional case, where our goal is to predict t given \boldsymbol{x} :

$$
\begin{aligned} \boldsymbol{w}_{\text{MLE}} &= \argmax_{\boldsymbol{w}} p_{\text{model}}(\boldsymbol{t}|\boldsymbol{X}; \boldsymbol{w}) = \argmax_{\boldsymbol{w}} \prod_{i=1}^{N} p_{\text{model}}(t_i|\boldsymbol{x}_i; \boldsymbol{w}) \\ &= \argmin_{\boldsymbol{w}} \sum_{i=1}^{N} -\log p_{\text{model}}(t_i|\boldsymbol{x}_i; \boldsymbol{w}) \\ &= \argmin_{\boldsymbol{w}} \mathbb{E}_{(\mathbf{x}, \mathbf{t}) \sim \hat{p}_{\text{data}}}[-\log p_{\text{model}}(t|\boldsymbol{x}; \boldsymbol{w})] \\ &= \argmin_{\boldsymbol{w}} H(\hat{p}_{\text{data}}(\mathbf{t}|\mathbf{x}), p_{\text{model}}(\mathbf{t}|\mathbf{x}; \boldsymbol{w})) \\ &= \argmin_{\boldsymbol{w}} D_{\text{KL}}(\hat{p}_{\text{data}}(\mathbf{t}|\mathbf{x}) \| p_{\text{model}}(\mathbf{t}|\mathbf{x}; \boldsymbol{w})) + H(\hat{p}_{\text{data}}(\mathbf{t}|\mathbf{x})) \end{aligned}
$$

where the conditional entropy is defined as $H(\hat p_{\rm data}) = \mathbb E_{({\bf x},t)\sim \hat p_{\rm data}}[-\log(\hat p_{\rm data}(t|{\bm x};{\bm w}))]$ and the conditional cross-entropy as $H(\hat{p}_{\rm data}, p_{\rm model}) = \mathbb{E}_{(\mathbf{x},t) \sim \hat{p}_{\rm data}}[-\log(p_{\rm model}(t|\bm{x};\bm{w}))].$

The resulting *loss function* is called **negative log-likelihood (NLL)**, or **cross-entropy**, or Kullback-Leibler divergence.

NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression 25/32

Logistic Regression

NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression 26/32

Logistic Regression

An extension of perceptron, which models the conditional probabilities of $p(C_0|\bm{x})$ and of $p(C_1|\boldsymbol{x})$. Logistic regression can in fact handle also more than two classes, which we will see in the next lecture.

Logistic regression employs the following parametrization of the conditional class probabilities:

$$
p(C_1|\boldsymbol{x}) = \sigma(\boldsymbol{x}^T\boldsymbol{w} + b)\\ p(C_0|\boldsymbol{x}) = 1 - p(C_1|\boldsymbol{x}),
$$

where σ is a sigmoid function

$$
\sigma(x)=\frac{1}{1+e^{-x}}.
$$

It can be trained using the SGD algorithm.

Sigmoid Function

The sigmoid function has values in range $(0,1)$, is monotonically increasing and it has a derivative of $\frac{1}{4}$ at $x=0$.

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

$$
\sigma'(x)=\sigma(x)\big(1-\sigma(x)\big)
$$

Logistic Regression

We denote the output of the "linear part" of the logistic regression as

$$
\bar{y}(\bm{x};\bm{w})=\bm{x}^T\bm{w},
$$

and the overall prediction as

$$
y(\bm x;\bm w)=\sigma(\bar y(\bm x;\bm w))=\sigma(\bm x^T\bm w).
$$

Logistic Regression

To train the logistic regression, we use MLE (the maximum likelihood estimation). Its application is straightforward, given that $p(C_1|\bm{x};\bm{w})$ is directly the model output $y(\bm{x};\bm{w})$.

Therefore, the loss for a minibatch $\mathbb{X} = \{(\bm{x}_1, t_1),(\bm{x}_2, t_2),\ldots,(\bm{x}_N, t_N)\}$ is

$$
E(\boldsymbol{w}) = \frac{1}{N} \sum_i -\log(p(C_{t_i}|\boldsymbol{x}_i; \boldsymbol{w})).
$$

 ${\sf Input}\colon$ Input dataset $(\bm{X}\in\mathbb{R}^{N\times D}$, $\bm{t}\in\{0,+1\}^{N})$, learning rate $\alpha\in\mathbb{R}^{+}$.

- $\boldsymbol{w} \leftarrow \boldsymbol{0}$ or we initialize \boldsymbol{w} randomly
- until convergence (or patience runs out), process a minibatch of examples $\mathbb B_1$

$$
\circ \enspace \boldsymbol{g} \leftarrow \tfrac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}} \nabla_{\boldsymbol{w}} \Big(-\log \big(p(C_{t_i}|\boldsymbol{x}_i; \boldsymbol{w}) \big) \Big)
$$

 Ω *w* ← *w* − *αg*

Everything we learned about features and L^2 regularization holds for logistic regression too. \bigodot

NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression 31/32

After this lecture you should be able to

- Think about binary classification using geometric intuition and use the \bullet perceptron algorithm.
- Define the main concepts of information theory (entropy, cross-entropy, KL- \bullet divergence) and prove their properties.
- Derive training objectives using the maximum likelihood principle.
- Implement and use **logistic regression** for binary classification with SGD.