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Today's Lecture Objectives

After this lecture you should be able to

Think about binary classification using geometric intuition and use the perceptron
algorithm.

Define the main concepts of information theory (entropy, cross-entropy, KL-divergence)
and prove their properties.

Derive training objectives using the maximum likelihood principle.

Implement and use logistic regression for binary classification with SGD.
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Perceptron
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Binary Classification

Binary classification is a classification in two classes.

The simplest way to evaluate classification is accuracy, which is the ratio of input examples
that were classified correctly – i.e., where the predicted class and the target class match.

To extend linear regression to binary classification, we might seek a threshold and then classify
an input as negative/positive depending on whether  is smaller/larger

than a given threshold.

Zero value is usually used as the threshold, both because of symmetry and also because the
bias parameter acts as a trainable threshold anyway.

The set of points with prediction 0 is called a decision boundary.

y(x;w) = x w+T b
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Geometric Intuition

 

Figure 4.1 of Pattern Recognition and Machine Learning.
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Perceptron

 

Figure 4.4 of Pattern Recognition and Machine Learning.

The perceptron algorithm is probably the oldest one for training weights of a binary
classification. Assuming the target value , the goal is to find weights  such that

for all train data,

or equivalently,

Note that a set is called linearly separable, if there exists a
weight vector  such that the above equation holds.

t ∈ {−1, +1} w

sign(y(x  ;w)) =i sign(x  w) =i
T t  ,i

t  y(x  ;w) =i i t  x  w >i i
T 0.

w
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Perceptron

The perceptron algorithm was invented by Rosenblatt in 1958.

Input: Linearly separable dataset ( , ). 

Output: Weights  such that  for all .

until all examples are classified correctly, process example :

if  (incorrectly classified example):

We will prove that the algorithm always arrives at some correct set of weights  if the training

set is linearly separable.

X ∈ RN×D t ∈ {−1, +1}N

w ∈ RD t  x  w >i i
T 0 i

w ← 0
i

y ← x  wi
T

t  y ≤i 0
w ← w+ t  x  i i

w
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Proof of Perceptron Convergence

Let  be some weights correctly classifying (separating) the training data, and let 

be the weights after  nontrivial updates of the perceptron algorithm, with  being 0.

We will prove that the angle  between  and  decreases at each step. Note that

w  ∗ w  k

k w  0

α w  ∗ wk

cos(α) =  .
∥w  ∥ ⋅ ∥w  ∥∗ k

w  w  ∗
T

k
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Proof of Perceptron Convergence

Assume that the maximum norm of any training example  is bounded by , and that 

 is the minimum margin of , so for each training example , 

First consider the dot product of  and :

By iteratively applying this equation, we get

Now consider the length of :

Because  was misclassified, we know that , so 

When applied iteratively, we get .

∥x∥ R

γ w  ∗ (x, t) tx w  ≥T
∗ γ.

w  ∗ w  k

w w  =∗
T

k w  (w  +∗
T

k−1 t  x  ) ≥k k w  w  +∗
T

k−1 γ.

w  w  ≥∗
T

k kγ.

w  k

  

∥w  ∥k 2 = ∥w  + t  x  ∥ = ∥w  ∥ + 2t  x  w  + ∥x  ∥ .k−1 k k
2

k−1
2

k k
T

k−1 k
2

x  k t  x  w  ≤k k
T

k−1 0 ∥w  ∥ ≤k
2 ∥w  ∥ +k−1

2 R .2

∥w  ∥ ≤k
2 k ⋅ R2
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Proof of Perceptron Convergence

Putting everything together, we get

Therefore, the  increases during every update. Because the value of  is at most

one, we can compute the upper bound on the number of steps when the algorithm converges as

cos(α) =  ≥
∥w  ∥ ⋅ ∥w  ∥∗ k

w  w  ∗
T

k
 .

 ∥w  ∥kR2
∗

kγ

cos(α) cos(α)

1 ≥   or k ≤
 ∥w  ∥R2

∗

 γk
 .

γ2

R ∥w  ∥2
∗

2
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Perceptron Issues

Perceptron has several drawbacks:

If the input set is not linearly separable, the algorithm never finishes.

The algorithm performs only prediction, it is not able to return the probabilities of
predictions.

Most importantly, Perceptron algorithm finds some solution, not necessarily a good one,
because once it finds some, it cannot perform any more updates.
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Basics of Probability
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Common Probability Distributions

Bernoulli Distribution
The Bernoulli distribution is a distribution over a binary random variable. It has a single
parameter , which specifies the probability that the random variable is equal to 1.φ ∈ [0, 1]

  

P (x)

E[x]

Var(x)

= φ (1 − φ)x 1−x

= φ

= φ(1 − φ)
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Common Probability Distributions

Categorical Distribution
Extension of the Bernoulli distribution to random variables taking one of  different discrete

outcomes. It is parametrized by  such that .

We represent outcomes as vectors  in the one-hot encoding. Therefore, an outcome

 is represented as a vector

The outcome probability, mean, and variance are very similar to the Bernoulli distribution.

K

p ∈ [0, 1]K  p  =∑i=0
K−1

i 1

∈ {0, 1}K

x ∈ {0, 1, … ,K − 1}

1  x =def
([i = x])  =

i=0
K−1

(  , 1,  ).
x

 0, … , 0

K−x−1

 0, … , 0

  

P (x)

E[x  ]i
Var(x  )i

=  p  ∏
i=0

K−1

i
x  i

= p  i

= p  (1 − p  )i i
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Information Theory
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Information Theory

Self Information
Amount of surprise when a random variable is sampled.

Should be zero for events with probability 1.
Less likely events are more surprising.
Independent events should have additive information.

I(x) =def − logP (x) = log  

P (x)
1
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Information Theory

Entropy
Amount of surprise in the whole distribution.

for discrete : 

for continuous : 

Because , for  we consider 

 to be zero.

Note that in the continuous case, the continuous entropy
(also called differential entropy) has slightly different
semantics, for example, it can be negative.

For binary logarithms, the entropy is measured in bits.
However, from now on, all logarithms are natural logarithms with base e (and then the entropy
is measured in units called nats).

H(P ) =def E  [I(x)] =x∼P −E  [logP (x)]x∼P

P H(P ) = −  P (x) logP (x)∑x

P H(P ) = − P (x) logP (x) dx∫

lim  x log x =x→0 0 P (x) = 0
P (x) logP (x)

17/32NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression



Information Theory

Cross-Entropy

Gibbs Inequality

Proof: Consider 

Using the fact that  with equality only for , we get

For the equality to hold,  must be 1 for all , i.e., .

H(P ,Q) =def −E  [logQ(x)]x∼P

H(P ,Q) ≥ H(P )
H(P ) = H(P ,Q) ⇔ P = Q

H(P ) − H(P ,Q) =  P (x) log  .∑x P (x)
Q(x)

log x ≤ (x− 1) x = 1

 P (x) log  ≤
x

∑
P (x)
Q(x)

 P (x)  − 1 =
x

∑ (
P (x)
Q(x)

)  Q(x) −
x

∑  P (x) =
x

∑ 0.

 P (x)
Q(x)

x P = Q
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Information Theory

Kullback-Leibler Divergence (KL Divergence)
Sometimes also called relative entropy.

consequence of Gibbs inequality: ,  iff 

generally 

D  (P∥Q)KL =def
H(P ,Q) − H(P ) = E  [logP (x) −x∼P logQ(x)]

D  (P∥Q) ≥KL 0 D  (P∥Q) =KL 0 P = Q

D  (P∥Q) =KL  D  (Q∥P )KL
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Common Probability Distributions

Normal (or Gaussian) Distribution
Distribution over real numbers, parametrized by a mean  and variance :

For standard values  and  we get .

 

Figure 3.1 of "Deep Learning" book, https://www.deeplearningbook.org.

μ σ2

N (x;μ,σ ) =2
 exp −   

2πσ2

1
(

2σ2

(x− μ)2

)

μ = 0 σ =2 1 N (x; 0, 1) =  e 2π
1 −  2

x2
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Why Normal Distribution

Central Limit Theorem
The sum of independent identically distributed random variables with finite variance converges
to normal distribution.

Principle of Maximum Entropy
Given a set of constraints, a distribution with maximal entropy fulfilling the constraints can be
considered the most general one, containing as little additional assumptions as possible.

Considering distributions with a given mean and variance, it can be proven (using variational
inference) that such a distribution with maximum entropy is exactly the normal distribution.
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation

Let  be training data drawn independently from the data-generating

distribution .

We denote the empirical data distribution as , where

Let  be a family of distributions.

If the weights are fixed,  is a probability distribution.

If we instead consider the fixed training data , then

is called the likelihood. Note that even if the value of the likelihood is in range , it is

not a probability, because the likelihood is not a probability distribution.

X = {x  ,x  , … ,x  }1 2 N

p  data

  p̂data

  (x)p̂data =def
 .

N

 {i : x  = x}  i

p  (x;w)model

p  (x;w)model

X

L(w) = p  (X;w) =model  p  (x  ;w)∏
i=1

N

model i

[0, 1]
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Maximum Likelihood Estimation

Let  be training data drawn independently from the data-generating

distribution . We denote the empirical data distribution as  and let  be a

family of distributions.

The maximum likelihood estimation of  is:

X = {x  ,x  , … ,x  }1 2 N

p  data   p̂data p  (x;w)model

w

=w  MLE  p  (X;w) =
w

arg max model   p (x ;w)
w

arg max∏
i=1

N

model i

=   − log p  (x  ;w)
w

arg min∑
i=1

N

model i

=  E  [− log p  (x;w)]
w

arg min x∼   p̂data model

=  H(   (x), p  (x;w))
w

arg min p̂data model

=  D  (   (x)∥p  (x;w)) +
w

arg min KL p̂data model H(   (x))p̂data
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Maximum Likelihood Estimation

MLE can be easily generalized to the conditional case, where our goal is to predict  given :

where the conditional entropy is defined as  and

the conditional cross-entropy as .

The resulting loss function is called negative log-likelihood (NLL), or cross-entropy, or
Kullback-Leibler divergence.

t x

  

w  MLE =  p  (t∣X;w) =   p  (t  ∣x  ;w)
w

arg max model
w

arg max∏
i=1

N

model i i

=   − log p  (t  ∣x  ;w)
w

arg min∑
i=1

N

model i i

=  E  [− log p  (t∣x;w)]
w

arg min (x,t)∼   p̂data model

=  H( (t∣x), p  (t∣x;w))
w

arg min p̂data model

=  D  (   (t∣x)∥p  (t∣x;w)) + H(   (t∣x))
w

arg min KL p̂data model p̂data

H(   ) =p̂data E  [− log(   (t∣x;w))](x,t)∼   p̂data p̂data

H(   , p  ) =p̂data model E  [− log(p  (t∣x;w))](x,t)∼   p̂data model
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Logistic Regression

26/32NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression



Logistic Regression

An extension of perceptron, which models the conditional probabilities of  and of 

. Logistic regression can in fact handle also more than two classes, which we will see in

the next lecture.

Logistic regression employs the following parametrization of the conditional class probabilities:

where  is a sigmoid function

It can be trained using the SGD algorithm.

p(C  ∣x)0

p(C  ∣x)1

  

p(C  ∣x)1

p(C  ∣x)0

= σ(x w+ b)T

= 1 − p(C  ∣x),1

σ

σ(x) =  .
1 + e−x

1
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Sigmoid Function

The sigmoid function has values in range , is monotonically increasing and it has a

derivative of  at .

(0, 1)
 4

1 x = 0

σ(x) =  

1 + e−x

1

σ (x) =′ σ(x)(1 − σ(x))
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Logistic Regression

We denote the output of the “linear part” of the logistic regression as

and the overall prediction as

 (x;w) =ȳ x w,T

y(x;w) = σ(  (x;w)) =ȳ σ(x w).T
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Logistic Regression

To train the logistic regression, we use MLE (the maximum likelihood estimation). Its
application is straightforward, given that  is directly the model output .

Therefore, the loss for a minibatch  is

Input: Input dataset ( , ), learning rate . 

 or we initialize  randomly

until convergence (or patience runs out), process a minibatch of examples :

p(C  ∣x;w)1 y(x;w)

X = {(x  , t  ), (x  , t  ), … , (x  , t  )}1 1 2 2 N N

 

E(w) =   − log(p(C  ∣x  ;w)).
N

1

i

∑ t  i i

X ∈ RN×D t ∈ {0, +1}N α ∈ R+

w ← 0 w

B
g ←   ∇  ( −∣B∣

1 ∑i∈B w log (p(C  ∣x  ;w)))t  i i

w ← w− αg
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Practical note

Everything we learned about features and  regularization holds for logistic regression too.

😮�

L2
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Today's Lecture Objectives

After this lecture you should be able to

Think about binary classification using geometric intuition and use the
perceptron algorithm.

Define the main concepts of information theory (entropy, cross-entropy, KL-
divergence) and prove their properties.

Derive training objectives using the maximum likelihood principle.

Implement and use logistic regression for binary classification with SGD.
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