
NPFL129, Lecture 2

Linear Regression II, SGD

Jindřich Libovický (reusing materials by Milan Straka)

October 7, 2024

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Today's Lecture Objectives

After this lecture you should be able to

Reason about overfitting in terms of model capacity.

Use -regularization to control model capacity.

Explain what the difference between parameters and hyperparameters is.

Tell what the basic probability concepts are (joint, marginal, conditional probability;
expected value, mean, variance).

Mathematically describe and implement the stochastic gradient descent algorithm.

Use both numerical and categorical features in linear regression.

L2

2/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Refresh from last week

3/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Linear Regression

Given an input value , linear regression computes predictions as:

The bias can be considered one of the weights if convenient.

We learn the weights by minimizing an error function between the real target values and their
predictions, notably sum of squares:

Various minimization approaches exist, but for linear regression an explicit solution exists:

x ∈ RD

y(x;w, b) = x w +1 1 x w +2 2 … + x w +D D b = x w +
i=1

∑
D

i i b = x w+T b.

b w

 (y(x ;w) −
2
1

i=1

∑
N

i t)i
2

w = (X X) X t.T −1 T

4/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Linear Regression Example

Assume we want to predict a for a given . If we train the linear regression with

“raw” input vectors , only straight lines could be modeled.

However, if we consider input vectors

 for a given

, the linear regression can

model polynomials of degree ,

because the prediction is then
computed as

The weights are coefficients of a
polynomial of degree .

t ∈ R x ∈ R
x = (x)

x = (x ,x , … ,x)0 1 M

M ≥ 0
M

w x +0
0 w x +1

1 … + w x .M
M

M

5/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Linear Regression Example

Figure 1.5 of Pattern Recognition and Machine Learning.

To plot the error, the root mean squared error is frequently used.

The displayed error illustrates two
main challenges in machine learning:

underfitting
overfitting

RMSE = MSE

6/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Regularization

7/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Model Capacity

We can control whether a model underfits or overfits by modifying its capacity.

representational capacity
effective capacity

Figure 5.3 of "Deep Learning" book, https://www.deeplearningbook.org

8/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Linear Regression Overfitting

Employing more data usually alleviates overfitting (the relative capacity of the model is
decreased).

Figure 1.6 of Pattern Recognition and Machine Learning.

9/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Regularization

Regularization = any change that is designed to reduce generalization error (but not
necessarily its training error) in a machine learning algorithm.

We already saw that limiting model capacity can work as regularization.

10/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

L2 Regularization

-regularization: one of the oldest regularization techniques; tries to prefer “simpler” models

by endorsing models with smaller weights.

-regularization (also called weight decay) penalizes models with large weights by utilizing

the following error function:

The -regularization is usually not applied to the bias, only to the “proper” weights, because

we cannot really overfit via the bias. Without penalizing the bias, linear regression with -

regularization is invariant to shifts (i.e., adding a constant to all the targets results in the same
solution, only with the bias increased by that constant; if the bias were penalized, this would
not hold).

We will not explicitly exclude the bias from the -regularization penalty in the slides.

L2

L2

 (y(x ;w) −
2
1

i=1

∑
N

i t) +i
2

 ∥w∥ .
2
λ 2

L2

L2

L2

11/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

L2 Regularization

https://miro.medium.com/max/2880/1*0-
fsK9RkqL3rogo2SnZPCg.png

One way to look at -regularization: it promotes smaller changes of

the model (the gradient of linear regression with respect to the inputs
are exactly the weights, i.e.,).

Considering the data points on the right, we present mean squared
errors and norms of the weights for three linear regression models:

https://miro.medium.com/max/2880/1*DVFYChNDMNlS_7CVq2PhSQ.png

https://miro.medium.com/max/2880/1*UolRlKXikCz7SFsPfSZrYQ.png

L2

∇ y(x;w) =x w

L2

12/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

L2 Regularization

The effect of -regularization can be seen as limiting the effective capacity of the model.

Figure 1.7 of Pattern Recognition and Machine Learning.

Figure 1.8 of Pattern Recognition and Machine Learning.

L2

13/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Regularizing Linear Regression

In a matrix form, the regularized sum of squares error for linear regression amounts to

When repeating the same calculation as in the unregularized case, we arrive at

where is an identity matrix.

Input: Dataset (,), constant .

Output: Weights minimizing MSE of regularized linear regression.

The matrix is always invertible for (you can show that the matrix is positive

definite).

 ∥Xw−2
1 t∥ +2

 ∥w∥ .2
λ 2

(X X +T λI)w = X t,T

I

X ∈ RN×D t ∈ RN λ ∈ R+

w ∈ RD

w ← (X X +T λI) X t.−1 T

X X +T λI λ > 0

14/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Hyperparameters

15/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Choosing Hyperparameters

Hyperparameters are not adapted by the learning algorithm itself.

A validation set or development set is used to estimate the generalization error, allowing us
to update hyperparameters accordingly. If there is not enough data (well, there is always not
enough data), more sophisticated approaches can be used.

So far: two hyperparameters, and .

Figure 1.5 of Pattern Recognition and Machine Learning.

Figure 1.8 of Pattern Recognition and Machine Learning.

M λ

16/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

What went wrong? (1/5)

Too small model capacity.

17/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

What went wrong? (2/5)

This is overfitting like crazy.
(We increased the capacity by adding polynomial features.)

18/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

What went wrong? (3/5)

Nothing, this looks pretty good.
(We added L2 regularization to the previous model.)

19/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

What went wrong? (4/5)

The outlier steers the line away.

20/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

What went wrong? (5/5)

After adding L2 regularization, it is a little better.

21/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Random Variables

22/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Random Variables

A random variable is a result of a random process, and it can be either discrete or

continuous.

Probability Distribution
A probability distribution describes how likely are the individual values that a random variable
can take.

The notation stands for a random variable having a distribution .

For discrete variables, the probability that takes a value is denoted as or explicitly as

. All probabilities are nonnegative, and the sum of the probabilities of all possible

values of is .

For continuous variables, the probability that the value of lies in the interval is given by

, where is the probability density function, which is always nonnegative and

integrates to 1 over the range of all values of .

x

x ∼ P x P

x x P (x)
P (x = x)

x P (x =∑x x) = 1

x [a, b]
 p(x) dx∫

a

b
p(x)

x

23/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Joint, Conditional, Marginal Probability

For two random variables, a joint probability
distribution is a distribution of all possible pairs of
outputs (and analogously for more than two):

Marginal distribution is a distribution of one
(or a subset) of the random variables and can be
obtained by summing over the other variable(s):

Conditional distribution is a distribution of one (or a subset) of the random variables, given
that another event has already occurred:

If or , random variables and are independent.

P (x = x , y =2 y).1

P (x = x) =2 P (x =∑
y

x , y =2 y).

P (x = x ∣y =2 y) =1 P (x = x , y =2 y)/P (y =1 y).1

P (x, y) = P (x) ⋅ P (y) P (x∣y) = P (x) x y

24/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Random Variables

Expectation
The expectation of a function with respect to a discrete probability distribution is

defined as:

For continuous variables, the expectation is computed as:

If the random variable is obvious from context, we can write only , , or even .

Expectation is linear, i.e., for constants :

f(x) P (x)

E [f(x)]x∼P =def
 P (x)f(x).

x

∑

E [f(x)]x∼p =
def

 p(x)f(x) dx.∫
x

E [x]P E [x]x E[x]

α, β ∈ R

E [αf(x) +x βg(x)] = αE [f(x)] +x βE [g(x)].x

25/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Random Variables

Variance
Variance measures how much the values of a random variable differ from its mean .

It is easy to see that

because .

Variance is connected to , the second moment of a random variable – it is in fact a

centered second moment.

E[x]

Var(x)

Var (f(x))x∼P

E (x− E[x]) , or more generally,=def
[

2
]

E (f(x) − E[f(x)]) .=def
[

2
]

Var(x) = E x − 2x ⋅ E[x] + (E[x]) =[2 2
] E x −[2] (E[x]) ,

2

E[2x ⋅ E[x]] = 2(E[x])2

E[x]2

26/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Stochastic Gradient Descent

27/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Gradient Descent

Figure 4.1 of "Deep Learning" book, https://www.deeplearningbook.org

Sometimes it is more practical to search for the best model weights in an
iterative/incremental/sequential fashion. Either because there is too much data, or the direct
optimization is not feasible.

Assuming we are minimizing an error function

we may use gradient descent:

The constant is called a learning rate and

specifies the “length” of a step we perform in
every iteration of the gradient descent.

 E(w),
w

arg min

w ← w− α∇ E(w)w

α

28/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Gradient Descent Variants

Let , be the training data, and denote .

Assume that the error function can be computed as an expectation over the dataset:

(Standard/Batch) Gradient Descent: We use all training data to compute .

Stochastic (or Online) Gradient Descent: We estimate using a single random

example from the training data. Such an estimate is unbiased, but very noisy.

Minibatch SGD: Trade-off between gradient descent and SGD – the expectation in

 is estimated using random independent examples from the training data.

X ∈ RN×D t ∈ RN (x, t)p̂data =def

N

∣{i:(x,t)=(x ,t)}∣i i

E(w) = E L(y(x;w), t), so that ∇ E(w) =(x,t)∼ p̂data w E ∇ L(y(x;w), t).(x,t)∼ p̂data w

∇ E(w)w

∇ E(w)w

∇ E(w) ≈w ∇ L(y(x;w), t) for a randomly chosen (x, t) from .w p̂data

∇ E(w)w B

∇ E(w) ≈w ∇ L(y(x ;w), t) for a randomly chosen (x , t) from .
B

1
∑

i=1

B

w i i i i p̂data

29/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Gradient Descent Convergence

Assume that we perform a stochastic gradient descent, using a sequence of learning rates ,

and using a noisy estimate of the real gradient :

It can be proven (under some reasonable conditions; see Robbins and Monro algorithm, 1951)
that if the loss function is convex and continuous, then SGD converges to the unique

optimum almost surely if the sequence of learning rates fulfills the following conditions:

Note that the third condition implies that .

For nonconvex loss functions, we can get guarantees of converging to a local optimum only.

α i

J(w) ∇ E(w)w

w ←i+1 w −i α J(w).i i

L

α i

∀i : α >i 0, α =
i

∑ i ∞, α <
i

∑ i
2 ∞.

α →i 0

30/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Gradient Descent Convergence

Convex functions mentioned on the previous slide are such that for and real ,

https://upload.wikimedia.org/wikipedia/commons/c/c7/ConvexFunction.svg

https://commons.wikimedia.org/wiki/File:Partial_func_eg.svg

A twice-differentiable function of a single variable is convex iff its second derivative is always
nonnegative. (For functions of multiple variables, the Hessian must be positive semi-definite.)

A local minimum of a convex function is always the unique global minimum.

Well-known examples of convex functions are , , , and also the sum of squares.

u,v 0 ≤ t ≤ 1

f(tu+ (1 − t)v) ≤ tf(u) + (1 − t)f(v).

x2 ex − log x
31/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Solving Linear Regression using SGD

To apply SGD on linear regression, we usually minimize one half of the mean squared error:

If we also include regularization, we get

We then estimate the expectation by a minibatch of examples with indices as

which gives us an estimate of a gradient

E(w) = E [(y(x;w) −(x,t)∼ p̂data 2
1 t)] =2 E [(x w−(x,t)∼ p̂data 2

1 T t)].2

L2

E(w) = E [(x w−(x,t)∼ p̂data 2
1 T t)]+2

 ∥w∥ .2
λ 2

B

 ((x w−
∣B∣
1

i∈B
∑ 2

1
i
T t)) +i

2
 ∥w∥ ,2

λ 2

∇ E(w) ≈w ((x w−
∣B∣
1

i∈B
∑ i

T t)x) +i i λw.

32/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Solving Linear Regression using SGD

The computed gradient allows us to formulate the following algorithm for solving linear
regression with minibatch SGD.

Input: Dataset (,), learning rate , strength .

Output: Weights hopefully minimizing the regularized MSE of a linear regression

model.

 or we initialize randomly

repeat until convergence (or until our patience runs out):
sample a minibatch of examples with indices

either uniformly randomly,
or we may want to process all training instances before repeating them, which can
be implemented by generating a random permutation and then splitting it into
minibatch-sized chunks

the most common option; one pass through the data is called an epoch

X ∈ RN×D t ∈ RN α ∈ R+ L2 λ ∈ R
w ∈ RD

w ← 0 w

B

w ← w− α ((x w−∣B∣
1 ∑i∈B i

T t)x)−i i αλw

33/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Training course

https://www.kaggle.com/code/ryanholbrook/stochastic-gradient-descent/tutorial

34/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

What went wrong? (1/2)

Training time

Lo
ss

Train loss

Test loss

The training did not converge yet.
We need to continue training.

35/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

What went wrong? (2/2)

Training time

Lo
ss

Train loss

Test loss

The model is overfitting (zero training loss, increasing validation loss).
We should either regularize or take the best validation checkpoint (i.e., early stopping).

36/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Features

37/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Features

Recall that the input instance values are usually the raw observations and are given. However,
we might extend them suitably before running a ML algorithm, especially if the algorithm
cannot represent an arbitrary function (e.g., is linear). Such instance representations are called
features.

Example from the previous lecture: even if our training examples were and , we performed

the linear regression using features :

Figure 1.4 of Pattern Recognition and Machine Learning.

x t

(x ,x , … ,x)0 1 M

38/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Feature Types

Generally, it would be best if the ML algorithms would process only the raw inputs. However,
many algorithms can represent only a limited set of functions (e.g., linear), and in that case,
feature engineering plays a major part in the final model performance. Feature engineering is
a process of constructing features from raw inputs.

Commonly used features are:

polynomial features of degree : Given features , we might consider all

products of input values. Therefore, polynomial features of degree 2 would consist of

 and of .

categorical one-hot features: Assume that a day in a week is represented in the input as
an integer value of 1 to 7, or a breed of a dog is expressed as an integer value of 0 to 366.
Using these integral values as an input to linear regression makes little sense – instead, it
might be better to learn weights for individual days in a week or for individual dog breeds.
We might therefore represent input classes by binary indicators for every class, giving rise to
a one-hot representation, where an input integral value is represented as

binary values, which are all zero except for the one, which is one.

p (x ,x , … ,x)1 2 D

p

x ∀ii
2 x x ∀i =i j j

0 ≤ v < L L

vth

39/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Feature Normalization

Features in different scales would need different learning rates

Common solution: normalize the features
Normalization: (MinMaxScaler in Scikit-learn)

Standardization: (StandardScaler in Scikit-learn)

x =i,j
norm

 max x −min x k k,j k k,j

x −min x i,j k k,j

x =i,j
standard

 σĵ

x − i,j μ̂j

40/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

Today's Lecture Objectives

After this lecture you should be able to

Reason about overfitting in terms of model capacity.

Use -regularization to control model capacity.

Explain what the difference between parameters and hyperparameters is.

Tell what the basic probability concepts are (joint, marginal, conditional
probability; expected value, mean, variance).

Mathematically describe and implement the stochastic gradient descent
algorithm.

Use both numerical and categorical features in linear regression.

L2

41/41NPFL129, Lecture 2 Refresh Regularization Hyperparameters Random Variables SGD Features

