

Introduction to Machine Learning

Jindřich Libovický (reusing materials by Milan Straka)

■ September 30, 2024

Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

Course Objectives: What you will learn

After this course you should…

- Be able to reason about task/problems suitable for ML
	- \circ Know when to use classification, regression and clustering
	- Be able to choose from these methods: Linear and Logistic Regression, Multilayer Perceptron, Nearest Neighbors, Naive Bayes, Gradient Boosted Decision Trees, *k*-means clustering
- **•** Think about learning as (mostly probabilistic) optimization on training data \circ Know how the ML methods learn including theoretical explanation
- Know how to properly **evaluate** ML
	- \circ Think about generalization (and avoiding overfitting)
	- \circ Be able to choose a suitable evaluation metric
	- \circ Responsibly decide what model is better
- Be able to *implement ML algorithms* on a conceptual level
- Be able to use Scikit-learn to solve ML problems in Python

- Data Science How to (ethically, legally, effeciently, etc.) get data and how to clean data.
- More advanced neural networks $-$ this is covered in [NPFL138](https://ufal.mff.cuni.cz/courses/npfl138)
- Details about Large Languge Models $-$ this is covered in $NPEL140$
- How to apply ML in your specific field / your business

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 3/33

Organization

Course Website: <https://ufal.mff.cuni.cz/courses/npfl129>

Slides, recordings, assignments, exam questions \bullet

Course Repository: <https://github.com/ufal/npfl129>

• Templates for the assignments, slide sources.

Piazza

Piazza will be used as a communication platform.

You can post questions or notes,

- \circ **privately** to the instructors,
- **publicly** to everyone (signed or anonymously). \circ
	- Other students can answer these too, which allows you to get faster response.
	- However, do not include even parts of your source code in public questions. \blacksquare
- Please use Piazza for **all communication** with the instructors.
- You will get the invite link after the first lecture.

Piazza Screenshot

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 5/33

ReCodEx

https://recodex.mff.cuni.cz

- The assignments will be evaluated automatically in ReCodEx.
- If you have a MFF SIS account, you should be able to create an account using your CAS credentials and should automatically see the right group.
- Otherwise, there will be **instructions** on **Piazza** how to get ReCodEx account (generally you will need to send me a message with several pieces of information and I will send it to ReCodEx administrators in batches).

Course Requirements

Practicals

- There will be about 2-3 assignments a week, each with a 2-week deadline. \circ There is also another week-long second deadline, but for fewer points.
- After solving the assignment, you get non-bonus points, and sometimes also bonus points.
- To pass the practicals, you need to get 70 non-bonus points. There will be assignments for at least 105 non-bonus points.
- If you get **more than 70 points** (be it bonus or non-bonus), they will be *transferred to the* exam (but at most 40 points are transferred).

Lecture

You need to pass a written exam.

- All questions are publicly listed on the course website.
- There are questions for 100 points in every exam, plus at most 40 surplus points from the practicals and plus at most 10 surplus points for **community work** (improving slides, ...).
- You need $60/75/90$ points to pass with grade $3/2/1$.

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 7/33

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 8/33

After this lecture you should be able to

- Explain to a non-expert what machine learning is \bullet
- Explain the difference between classification and regression
- Implement a simple linear-algebra-based algorithm for training linear regression

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 9/33

What is Machine Learning?

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 10/33

Definition of Machine Learning

A possible definition of learning from Mitchell (1997):

A computer program is said to learn from **experience E** with respect to some class of tasks T and performance measure P , if its performance at tasks in T , as measured by P, improves with experience E.

Task T

classification: assigning one of k categories to a given input

- *regression*: producing a number $x \in \mathbb{R}$ for a given input
- \circ structured prediction, denoising, density estimation, ...
- Measure P
	- \circ accuracy, error rate, F-score, ...
- Experience E
	- supervised: usually a dataset with desired outcomes (labels or targets)
	- unsupervised: usually data without any annotation (raw text, raw images, ...)
	- \circ reinforcement learning, semi-supervised learning, ...

Programming

- We can **formally describe** a problem with clear concepts
- Program $=$ unambiguous set of **instructions** that handles the concepts

Example - e-shop: Concepts: goods, store, customer, order, … Simple algorithms: place an order, send an order, …

Machine Learning

- We have data and a measure how our problem is solved
- Typically, we do not know how to write code that solves the problem

Example - machine translation there is no set of formal instruction how to translate, but there is a large amount of data

Supervised Machine Learning

Figure 4 of "ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky et al.

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 13/33

Unsupervised Machine Learning

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 14/33

Brief Machine Learning History

Basic Methodology & Notation

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 16/33

Basic ML Tasks

Assume input of $\boldsymbol{x} \in \mathbb{R}^D$. The two basic ML tasks are:

- 1. ${\sf Regression}$: The goal is to predict a real-valued target variable $t\in \mathbb{R}$ for given \bm{x} .
- 2. $\sf{Classification:}$ Assuming a fixed set of K labels, the goal is to choose a corresponding label/class for given \bm{x} .
	- \circ We can predict the class only.
	- \circ We can predict the whole distribution of all classes probabilities.

We usually have a training set:

- Consists of examples of (*x*,*t*)
- Probabilistic interpretation: Generated independently from a data-generating distribution

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 17/33

- **Optimization** $=$ match the training set as well as possible
- ML's goals is generalization $=$ match previously unseen data as well as possible

↓ $? \square$?

We typically estimate it using a **test set** of examples independent of the training set. (in probabilistic interpretation generated by the same data-generating distribution)

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 18/33

Notation

- $a, \, \boldsymbol{a}, \, \boldsymbol{A}, \, \boldsymbol{A}$: scalar (integer or real), vector, matrix, tensor
	- all vectors are always column vectors \circ
	- transposition changes a column vector into a row vector, so \boldsymbol{a}^T is a row vector
	- we denote the $\textbf{dot} \; \textbf{(scalar)}$ $\textbf{product} \; \text{of}$ the vectors \boldsymbol{a} and \boldsymbol{b} using $\boldsymbol{a}^T \boldsymbol{b}$
		- we understand it as matrix multiplication

\n- the
$$
\|\boldsymbol{a}\|_2
$$
 or just $\|\boldsymbol{a}\|$ is the Euclidean (or L^2) norm
\n- $\|\boldsymbol{a}\|_2 = \sqrt{\sum_i a_i^2}$
\n

- a, a, A : scalar, vector, matrix random variable
- ${\mathbb A}$: set; ${\mathbb R}$ is the set of real numbers, ${\mathbb C}$ is the set of complex numbers
- $\frac{df}{dx}$: derivative of f with respect to x
- $\frac{\partial f}{\partial x}$: partial derivative of f with respect to x
- $\nabla_{\bm{x}} f(\bm{x})$: gradient of f with respect to \bm{x} , i.e., $\left(\frac{\partial f(\bm{x})}{\partial x_1}, \frac{\partial f(\bm{x})}{\partial x_2}, \ldots, \frac{\partial f(\bm{x})}{\partial x_n}\right)$ ∂x_2 ∂*f*(*x*) $\left(\frac{\partial f(\boldsymbol{x})}{\partial x_n}\right)^n$

Example Dataset

Assume we have the following data, generated from an underlying curve by adding a small amount of noise.

Input Data

Usually, ML algorithms are trained using the $\mathbf{train}\ \mathbf{set}\ \boldsymbol{X}\in\mathbb{R}^{N\times D}$: a collection of N instances, each represented by D real numbers.

In supervised learning, we also have a $target t$ for every instance,

- a real number for regression, $\boldsymbol{t} \in \mathbb{R}^N;$
- a class for classification, $\boldsymbol{t} \in \{0,1,\ldots,K-1\}^N$.

The input to ML learning algorithms is frequently preprocessed, i.e., the algorithms do not always work directly on the input \boldsymbol{X} , but on some modification of it. These are called features.

In some literature, processed inputs are called a \mathbf{design} $\mathbf{matrix} \; \mathbf{\Phi} \in \mathbb{R}^{N \times M}$, we will denote everything as \boldsymbol{X} .

Linear Regression

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 22/33

Linear Regression

Given an input value $\bm{x} \in \mathbb{R}^D$, one of the simplest models to predict a target real value is linear regression:

$$
y(\boldsymbol{x};\boldsymbol{w},b)=x_1w_1+x_2w_2+\ldots+x_Dw_D+b=\sum_{i=1}^D x_iw_i+b=\boldsymbol{x}^T\boldsymbol{w}+b.
$$

The \boldsymbol{w} are usually called weights and b is called bias.

Sometimes it is convenient not to deal with the bias separately. Instead, we might enlarge the input vector \bm{x} by padding a value 1, and consider only $\bm{x}^T\bm{w}$, the bias is encoded by the last weight. Therefore, "weights" often contain both weights and biases.

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 23/33

Separate Bias vs. Padding *X* with Ones

Using an explicit bias term in the form of $y(x) = \boldsymbol{x}^T\boldsymbol{w} + b.$

$$
\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots \\ x_{n1} & x_{n2} \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} + b = \begin{bmatrix} w_1x_{11} + w_2x_{12} + b \\ w_1x_{21} + w_2x_{22} + b \\ \vdots \\ w_1x_{n1} + w_2x_{n2} + b \end{bmatrix}
$$

With extra 1 padding in \boldsymbol{X} and an additional b weight representing the bias.

$$
\begin{bmatrix} x_{11} & x_{12} & 1 \\ x_{21} & x_{22} & 1 \\ & \vdots & \\ x_{n1} & x_{n2} & 1 \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ b \end{bmatrix} = \begin{bmatrix} w_1x_{11} + w_2x_{12} + b \\ w_1x_{21} + w_2x_{22} + b \\ \vdots \\ w_1x_{n1} + w_2x_{n2} + b \end{bmatrix}
$$

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 24/33

Linear Regression

We have a dataset of N input values $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N$ and targets t_1,\ldots,t_N .

Find weight values $=$ minimize an error function between the real target values and their predictions.

A popular and simple error function is mean squared error:

$$
\text{MSE}(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^N \big(y(\boldsymbol{x}_i; \boldsymbol{w}) - t_i\big)^2.
$$

Often, sum of squares

$$
\frac{1}{2}\sum_{i=1}^N \big(y(\bm{x}_i;\bm{w})-t_i\big)^2
$$

is used instead. Minimizing it is equal to minimizing MSE, but the math comes out nicer.

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 25/33

Linear Regression

Several ways how to minimize the error function – linear regression $+$ sum of squares error have an explicit solution.

Our goal is to minimize:

$$
\tfrac{1}{2}\sum_i^N(\boldsymbol{x}_i^T\boldsymbol{w}-t_i)^2.
$$

If we denote $\bm{X}\in\mathbb{R}^{N\times D}$ the matrix of input values with \bm{x}_i on a row i and $\bm{t}\in\mathbb{R}^N$ the vector of target values, we can write it as

$$
\tfrac{1}{2}\|\boldsymbol{X}\boldsymbol{w}-\boldsymbol{t}\|^2,
$$

because

$$
\|\boldsymbol{X}\boldsymbol{w}-\boldsymbol{t}\|^2=\sum_i \big((\boldsymbol{X}\boldsymbol{w}-\boldsymbol{t})_i\big)^2=\sum_i \big((\boldsymbol{X}\boldsymbol{w})_i-t_i)\big)^2=\sum_i (\boldsymbol{x}_i^T\boldsymbol{w}-t_i)^2.
$$

Minimization – Unconstrained, Single Real Variable

Assume we have a function and we want to find its minimum.

https://commons.wikimedia.org/wiki/File:Extrema_example_original.svg

We usually use the Fermat's theorem (interior extremum theorem):

Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function. If it has a minimum (or a maximum) in x and if it has a derivative in x , then $\frac{\partial f}{\partial x} = 0$.

Minimization – Unconstrained, Multiple Real Variables

The previous theorem can be generalized to the multivariate case:

Let $f:\mathbb{R}^D\to \mathbb{R}$ be a function. If it has a minimum or a maximum in $\bm{x}=(x_1,x_2,\ldots,x_D)$ and if it has a derivative in \bm{x} , then for all i , $\frac{\partial f}{\partial x_i} = 0$. In other words, $\nabla_{\bm{x}} f(\bm{x}) = \bm{0}$.

https://commons.wikimedia.org/wiki/File:Partial_func_eg.svg

NPFL129, Lecture 1 **Organization What is Machine Learning?** Basic Methodology & Notation Linear Regression Summary 28/33

https://commons.wikimedia.org/wiki/File:Partial_func_eg.svg

Linear Regression

In order to find a minimum of $\frac{1}{2}\sum_{i}^{N}(\boldsymbol{x}_{i}^{T}\boldsymbol{w}-t_{i})^{2}$, we can inspect values where the derivative of the error function is zero, with respect to all weights w_j . *i* $\frac{T}{i}\bm{w}-t_i)^2$

$$
\frac{\partial}{\partial w_j}\frac{1}{2}\sum_i^N(\boldsymbol{x}_i^T\boldsymbol{w}-t_i)^2=\frac{1}{2}\sum_i^N\left(2(\boldsymbol{x}_i^T\boldsymbol{w}-t_i)x_{ij}\right)=\sum_i^N x_{ij}(\boldsymbol{x}_i^T\boldsymbol{w}-t_i)
$$

Therefore, we want for all j that $\sum_i^N x_{ij} (\boldsymbol{x}_i^T \boldsymbol{w} - t_i) = 0$. ij ($\boldsymbol{x}_{\bar{i}}$ $T_i^T\boldsymbol{w}-t_i)=0.$

We can rewrite the explicit sum into $\bm{X}_{*,j}^T(\bm{X}\bm{w}-\bm{t})=0$, then write the equations for all j $\mathbf{y} = \mathbf{0}$ as the rewrity interpoon as $\boldsymbol{X}^T(\tilde{\boldsymbol{X}}\boldsymbol{w}-\boldsymbol{t}) = \boldsymbol{0}$, and finally, rewrite to

$$
\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{w}=\boldsymbol{X}^T\boldsymbol{t}.
$$

The matrix $\boldsymbol{X}^T\boldsymbol{X}$ is of size $D\times D$. If it is invertible, we can compute its inverse and therefore

 $w = (X^T X)^{-1} X^T t.$

NPFL129, Lecture 1 **Organization What is Machine Learning?** Basic Methodology & Notation Linear Regression Summary 29/33

Linear Regression

 $\mathsf{Input:}\ \mathsf{D}$ ataset $(\boldsymbol{X}\in\mathbb{R}^{N\times D},\ \boldsymbol{t}\in\mathbb{R}^{N}).$ $\bm{\mathsf{Output}}$: Weights $\bm{w} \in \mathbb{R}^D$ minimizing MSE of linear regression.

$$
\bullet\;\; \bm{w}\leftarrow (\bm{X}^T\bm{X})^{-1}\bm{X}^T\bm{t}.
$$

The algorithm has complexity $\mathcal{O}(ND^2)$, assuming $N\geq D.$ When the matrix $\boldsymbol{X}^T\boldsymbol{X}$ is singular, we can solve $\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{w} = \boldsymbol{X}^T\boldsymbol{t}$ using SVD.

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 30/33

Linear Regression Example: Polynomial Features

We want to predict a $t\in\mathbb{R}$ for a given $x\in\mathbb{R}.$ Linear regression with "raw" input vectors $\boldsymbol{x} = (x)$ can only model straight lines.

If we consider input vectors $\boldsymbol{x}=1$ $f(x^0, x^1, \ldots, x^M)$ for a given $M \geq 0$, the linear regression is able to model polynomials of degree M . The prediction is then computed as

$$
w_0x^0+w_1x^1+\ldots+w_Mx^M.
$$

The weights are the coefficients of a polynomial of degree M .

Linear Regression Example

To plot the error, the *root mean squared error* $\mathrm{RMSE} = \sqrt{\mathrm{MSE}}$ is frequently used.

The displayed error nicely illustrates two main challenges in machine learning:

- underfitting
- overfitting

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 32/33

After this lecture you should be able to

- Explain to a non-expert what machine learning is \bullet
- Explain the difference between classification and regression \bullet
- Implement a simple linear-algebra-based algorithm for training linear regression \bullet

NPFL129, Lecture 1 Organization What is Machine Learning? Basic Methodology & Notation Linear Regression Summary 33/33