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Today's Lecture Objectives

After this lecture you should be able to

Explain foundations of statistical hypothesis testing.

Reason about multiple comparison problem.

Use Bootstrap Resampling and Permutation Tests to compare machine learning models.
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Statistical Hypothesis Testing

Assume we have a hypothesis testable using observed outcomes of random variables.

There are two slightly differing views on statistical hypothesis testing:

1. In the first one, we assume we have a null hypothesis , and we are interested in

whether we can reject it using the observed data.

The result is statistically significant, if it is very unlikely that the observed data have
occurred given the null hypothesis.

The significance level of a test is the threshold of this unlikeliness.

2. In the second view, we have two hypotheses, a null hypothesis  and an alternative

hypothesis , and we want to distinguish among them.

We consider only two outcomes of the test:
either we “reject” the null hypothesis, if the data is very unlikely to have occurred given
the null hypothesis; or
we cannot reject the null hypothesis.

In simple cases when  is just a negation of , rejecting  amounts to accepting .
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Type I and Type II Errors

Consider the courtroom trial example, which is similar to a criminal trial, where the defendant is
considered not guilty until their guilt is proven.

In this setting,  is “not guilty” and  is “guilty”.

 is true 

Truly not guilty

 is true 

Truly guilty

Not proven guilty 

Not rejecting 

Correct decision 

True negative

Wrong decision 

False negative 

Type II Error

Proven guilty 

Rejecting 

Wrong decision 

False positive 

Type I Error

Correct decision 

True positive

Our goal is to limit the Type 1 errors – the test significance level is the type 1 error rate.
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Statistical Hypothesis Testing
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The crucial part of a statistical test is the test statistic. It is some summary of the observed
data, very often a single value (like mean), which can be used to distinguish the null and the
alternative hypothesis.

It is crucial to be able to compute the distribution of the test statistic, which allows the p-
values to be calculated.

A p-value is the probability of obtaining test statistic value at least as extreme as the one
actually observed, assuming validity of the null hypothesis. A very small p-value indicates that
the observed data are very unlikely under the null hypothesis.

Given a test statistic, we usually perform one of

a one-sided right-tail test, when the p-value of  is ;

a one-sided left-tail test, when the p-value of  is ;

a two-sided test, when the p-value of  is twice the minimum of 

 and . For a symmetrical

centered distribution,  can also be used.

t P (test statistic > t∣H  )0

t P (test statistic < t∣H  )0

t

P (test statistic < t∣H  )0 P (test statistic > t∣H  )0

P (abs(test statistic) > abs(t)∣H  )0
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Statistical Hypothesis Testing

Therefore, the whole procedure consists of the following steps:

1. Formulate the null hypothesis , and optionally the alternative hypothesis .

2. Choose the test statistic.

3. Compute the observed value of the test statistic.

4. Calculate the p-value, which is the probability of a test statistic value being at least as
extreme as the observed one, under the null hypothesis .

5. Reject the null hypothesis  (in favor of the alternative hypothesis ), if the p-value is

less than the chosen significance level  (a standard is to use  at most 5%; common

choices include 5%, 1%, 0.5% or 0.1%, but vary a lot in different fields).

H  0 H  1

H  0

H  0 H  1

α α
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Test Statistics

There are several kinds of test statistics:

one-sample tests, where we sample values from one distribution.

Common one-sample tests usually check for
the mean of the distribution to be greater than/lower than/equal to zero;
the goodness of fit (that the data comes from a normal or categorical distribution of
given parameters).

two-sample tests, where we sample independently from two distributions.

paired tests, in which case we also sample from two distributions, but the samples are
paired (i.e., evaluating several models on the same data).

In paired tests, we usually compute the difference between the paired members and perform
a one-sample test on the mean of the differences.
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Parametric Test Statistics Distributions

There are many commonly used test statistics, with different requirements and conditions. We
only mention several commonly-used ones, but it is by no means a comprehensive treatment.

Z-Test is a test, where the test statistic can be approximated by a normal distribution. For
example, it can be used when comparing a mean of samples with known variance to a given
value.

In Student's t-test the test statistic follow a Student's t-distribution (where Student is the
pseudonym used by the real author W. S. Gosset), which is the distribution of a sample
mean of normally-distributed population with unknown variance.

Therefore, the t-test is used when comparing a mean of samples with unknown variance to
a given value, or to a mean of samples from another distribution with the same sample size
and variance.

Chi-squared test utilizes a test statistic with a chi-squared distribution, which is a
distribution of a sum of squares of  independent normally distributed variables.

The essential Pearson's chi-squared test can be used to evaluate a goodness of fit of 

random categorical samples with respect to a given categorical distribution.

k

k
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Multiple Comparisons Problem

A multiple comparisons problem (or multiple testing problem) arises, if we consider many
statistical hypotheses tests using the same observed data.

 

https://imgs.xkcd.com/comics/significant.png
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Multiple Comparisons Problem
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Multiple Comparisons Problem
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Multiple Comparisons Problem
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It is problematic if we perform many statistical tests,
and only report the ones with statistically significant
results.
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Family-Wise Error Rate

There are several ways to handle the multiple comparison problem; one of the easiest (but often
overly conservative) is to limit the family-wise error rate, which is the probability of at least
one type 1 error in the family.

One way of controlling the family-wise error rate is the Bonferroni correction, which rejects
the null hypothesis of a test in the family of size  when .

Assuming such a correction and utilizing the Boole's inequality , we

get that

Note that there exist many more powerful methods like Holm-Bonferroni or Šidák correction.

FWER = P(  (p  ≤
i

⋃ i α)).
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Model Comparison

The goal of model comparison is to test whether some model delivers better performance on
unseen data than another one.

However, we usually only have a single fixed-size test set. For the rest of the lecture, we assume
the test set instances are independently sampled from the data-generating distribution.

Even if comparing the models on the given test set is unbiased, we would like to obtain some
significance level of the result.

Therefore, we perform a statistical test with an alternative hypothesis that a model  is better

than a model ; therefore, the null hypothesis is that the model  is the same or worse than the

model .

However, we only have one sample (the result of a model on the test set). We therefore turn to
bootstrap resampling.

y

z y

z
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Bootstrap Resampling

In order to obtain multiple samples of model performance, we exploit the fact that the test set
consists of a collection of examples.

Therefore, we can generate different test sets by bootstrap resampling. Notably, we obtain a
same-sized test set by sampling the original test set examples with replacement. Naturally, we
can easily measure the performance of any given model on such generated test sets.

Input: Test set , model predictions , metric 

, number of resamplings . 

Output:  samples of model performance.

repeat  times:

sample  test set examples with replacements, together with corresponding model

predictions
measure the performance of the sampled data using the metric , and append the

result to 

{(x  , t  ), … , (x  , t  )}1 1 N N {y(x  ), … , y(x  )}1 N

E R

R

performances ← [ ]
R

N

E

performances
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Bootstrap Resampling – Confidence Intervals

When using bootstrap resampling on a single model, we can measure the confidence intervals of
model performance.

For a given confidence level (95% is the most common value), the confidence interval is an
estimate of a value range of some unknown parameter (like a mean performance of some model
on unseen data), such that the confidence interval contains the true value of the unknown
parameter with the frequency given by the confidence level.

When given the empirical distribution of model performances produced by bootstrap resampling,
we can estimate the 95% confidence interval as a range from the 2.5 percentile and 97.5
percentile of the empirical distribution (the so-called percentile bootstrap).
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Paired Bootstrap Test

An analogous approach is sometimes used to perform model comparison – a procedure
sometimes called the paired bootstrap test.

Even if a two-sample test could be used, such a test does not consider the fact that some of
the inputs might be more difficult than others, and takes into account cases when a weaker
model achieves higher performance on a simpler test set than a stronger model on a more
difficult test set. Therefore, we perform a paired test.

Our alternative hypothesis is that the mean of the model performance differences is larger than
zero, and the null hypothesis is that it is less than or equal to zero. We then repeatedly sample
a test set with repetition, and compute the difference of the model performances on the
sampled test set. Finally, we compute the quantile of the performance difference 0.
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Paired Bootstrap Test Algorithm

Input: Test set , model predictions , 

model predictions , metric , number of resamplings . 

Output: Estimated probability of the model  performing worse or equal to  (beware that

such a quantity is not a p-value).

repeat  times:

sample  test set examples with replacements, together with the corresponding

predictions of the models
measure the performances of the models  and  on the sampled data using the

metric , and append their difference to 

return the ratio of the  which are less than or equal to zero

{(x  , t  ), … , (x  , t  )}1 1 N N {y(x  ), … , y(x  )}1 N

{z(x  ), … , z(x  )}1 N E R

y z

differences ← [ ]
R

N

y z

E differences

differences
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Paired Bootstrap Test Visualization

For illustration, consider models for the isnt_it_ironic competition utilizing either 3 (red)
or 4 (green) in-word character n-grams. On the left, there are distributions of the individual
model performances, while on the right there is a distribution of their differences.

The histograms are generated using 50 bins and 500 resamplings.
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Paired Bootstrap Test Visualization

For illustration, consider models for the isnt_it_ironic competition utilizing either 3 (red)
or 4 (green) in-word character n-grams. On the left, there are distributions of the individual
model performances, while on the right there is a distribution of their differences.

The histograms are generated using 50 bins and 5000 resamplings.
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Paired Bootstrap Test Visualization

For illustration, consider models for the isnt_it_ironic competition utilizing either 4 (red)
or 5 (green) in-word character n-grams. On the left, there are distributions of the individual
model performances, while on the right there is a distribution of their differences.

The histograms are generated using 50 bins and 5000 resamplings.
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Paired Bootstrap Test Problems

Unfortunately, the value returned by the algorithm is not really a p-value.

The reason is that the distribution of differences was obtained under the true distribution.

However, to perform the statistical test, we require the distribution of the test statistic under
the null hypothesis.

Nevertheless, you can encounter such paired bootstrap tests “in the wild”.
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Permutation Test

To obtain a principled p-value for a model comparison, we can turn to a permutation test.

The main idea is that

If the models are equally good, it does not matter if we utilize predictions from the first
or the second one.

Therefore, if we consider all possible choices of prediction origins, we obtain a distribution of
performances under the hypothesis that the models are equally good.

Finally, the p-value is the quantile of the performance of the model in question.

Of course, enumerating all assignments is not feasible. Therefore, we sample only some number
of random assignments, resulting in a random or Monte Carlo or approximate permutation
test.
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Random Permutation Test Algorithm

Input: Test set , model predictions , 

model predictions , metric , number of resamplings . 

Output: Estimated p-value assuming that the model  performance is worse or equal to .

repeat  times:

for each test set example, uniformly randomly choose which model to obtain the
prediction from
measure the performance of the obtained test set prediction using the metric , and

append the score to 

return the ratio of the  which are greater than or equal to the performance

of the model .

{(x  , t  ), … , (x  , t  )}1 1 N N {y(x  ), … , y(x  )}1 N

{z(x  ), … , z(x  )}1 N E R

y z

performances ← [ ]
R

E

performances

performances
y
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Random Permutation Test Visualization

Again considering the isnt_it_ironic models, we compare the 4-vs-3 in-word character n-
grams in the left graph and the 5-vs-4 in-word character n-grams in the right graph, using a
random permutation test with 5000 resamplings. Note that the resulting p-values are not much
different from the probabilities computed by the paired bootstrap test.
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Random Permutation Test Strikes Back

Formally, because we did not consider all possible assignments of predictions, we do not
obtain a true p-value, but just an approximation of it. In other words, if the algorithm
returns , the probability that the real p-value fulfills

is only roughly 50%.

Nevertheless, we are usually interested only in deciding whether  for a pre-defined .

In such a case, if , the probability that  does not hold converges to zero as the

number of resamplings increases (because of concentration inequalities, for example Hoeffding’s
inequality; in other words, the confidence interval of real p-value gets smaller around  as the

number of resampling increases). Therefore, it suffices to perform enough resamplings. For
details and a tight bound on the number of resamplings, see the paper

Alex Gandy: Sequential Implementation of Monte Carlo Tests With Uniformly Bounded Resampling Risk

https://arxiv.org/abs/math/0612488.

β

p < β

p < α α

β < α p < α

β
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Today's Lecture Objectives

After this lecture you should be able to

Explain foundations of statistical hypothesis testing.

Reason about multiple comparison problem.

Use Bootstrap Resampling and Permutation Tests to compare machine learning models.
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