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Today's Lecture Objectives

After this lecture you should be able to

Theoretically explain Singular Value Decomposition (SVD), prove it exists and explain what
the Eckart-Young theorem says

Theoretically explain Principal Component Analysis (PCA) and say how it explains the
variance in the data based on SVD

Use SVD or PCA for dimensionality reduction, data visualization and data whitening

Implement the -means algorithm and use it for clusteringk
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Unsupervised Machine Learning

 

https://thejenkinscomic.files.wordpress.com/2022/09/screen-shot-2022-09-22-at-9.49.35-pm.png
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Matrix Decompositions

 tell us how to construct  using columns of 

 tell us how to construct  using rows of 

 
 could be our (training) data matrix. If we managed to get decomposition with orthogonal

columns/rows, it would tell us something like (statistical) independent parts the dataset consists
of.

Rows are data points

Columns are features

X = AB

B M A

A M B

X
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Linear Algebra Refresh – Eigenvalues and Eigenvectors

Let  be an  matrix.

A vector  is a (right) eigenvector, if there exists an eigenvalue , such that

If  is a real symmetric matrix, then it has  real eigenvalues and  real

eigenvectors, which can be chosen to be orthonormal.

Quick (almost) proof of orthogonality

, we transpose both sides and get 

Multiply by  from right, we get , but  is symmetric and , so

, resulting in

A ∈ CN×N N × N

v ∈ CN λ ∈ C

Av = λv.

A ∈ RN×N N N

Av  =1 λ  v  1 1 (Av  ) =1
T λ  v  1 1

T

v  2 v  A v  =1
T T

2 λ  v  v  1 1
T

2 A A =T A

v  (Av  ) =1
T

2 λ  v  v  ⇒2 1
T

2 λ  v  v  =2 1
T

2 λ  v  v  1 1
T

2

(λ  −2 λ  )(v  v  ) =1 1
T

2 0.
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Linear Algebra Refresh – Eigenvalue Decomposition

We can express real symmetric  using the eigenvalue decomposition

where:

 is a matrix, whose columns are the orthonormal eigenvectors ;

 is a diagonal matrix with the eigenvalues  on the diagonal.

Quick derivation

Because  is orthonormal , so  and .

A

A = V ΛV ,T

V v  ,v  , … ,v  1 2 N

Λ λ  ,λ  , … ,λ  1 2 N

AV = ΛV = V Λ

AV V =T V ΛV T

V V =T V −1 V V =T 1 A = V ΛV T
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Singular Value Decomposition

Every (even a rectangular) matrix  of dimenion  and rank  can be factorized as

 is a  orthonormal matrix

 is a  diagonal matrix with non-negative values, so-called singular values, chosen to

be in decreasing order

 is a  orthonormal matrix

X m × n r

X = UΣV T

U m × m

Σ m × n

V n × n

XV = UΣ ⇒ Xv  =k σ  u  ∀k =k k 1, … , r

X    =
⋮

v  ⋯v  ⋯v  1 r n

⋮

      

⋮
u  ⋯u  ⋯u  1 r m

⋮

    

σ  1

⋱

0
σ  r

0

0
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SVD: Proof

Assuming SVD exists, we can write  and  as eigenvector decomposition of row and column

similarities:

Let's take  orthonormal eigenvectors of  and set , then, 

. (  because  is positive semi-definite.)

The decomposition says that . To make it work, we need to show

that  is indeed an eigenvector of  with the same eigenvalue .

U V

XX =T (UΣV )(UΣV ) =T T T UΣ(V V )Σ U =T T T UΣΣ UT T

X X =T (UΣV ) (UΣV ) =T T T VΣ(U U)Σ V =T T T VΣ ΣVT T

V = [v  , … ,v  ]1 r X XT σ  =k  λ  k

X Xv  =T
k σ  v  k

2
k λ  ≥k 0 XXT

Xv  =k σ  u  ⇒k k u  =k  

σ  k

Xv  k

u  k XXT λ  k

XX u  =T
k XX  =T

def. of u  k

  (
σ  k

Xv  k ) X  =

v   is eigenvector of X Xk
T

  (
σ  k

X Xv  

T
k) X  =

σ  k

σ  v  k
2

k
σ   =k

2

def. of u  k

  (
σ  k

Xv  k ) σ  u  k
2

k

8/31NPFL129, Lecture 11 LinearAlgebra SVD PCA Whitening PowerIteration Clustering KMeans



Interpretation of SVD

Vectors of  are the components rows consists of, vectors of  are the same for the

colums.

It defines a decomposition of  (with rank ) as a sum of rank 1 matrices of dimension 

Reduced version of SVD: We can throw away  for  and use smaller  and 

 are in the decreasing order  we can approximate  by taking 

Eckart-Young theorem: This is the best rank  approximation w.r.t. Frobenius norm (we flatten

the matrix to a vector and do  norm).

U V

X r

m × n

X = σ  u  v  +1 1 1
T σ  u  v  +2 2 2

T … + σ  u  v  r r r
T

σ  k k > r U V

σ ⇒ X k < min(m,n)

=X
~

 σ  u  v  

i=1

∑
k

i i i
T

k

L2
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Eckart-Young Theorem

 and  its approximation using SVD. For each 

 of rank 

Argument why it is a good idea

 (trace is the sum of the diagonal)

Multiplying by orthonormal matrix does not change the norm

The Frobenius norm is the  norm of the diagonal of 

The best strategy to keep the most of the norm is removing the smallest values

X ∈ Rn×m X  =k σ  u  v  +1 1 1
T … + σ  u  v  k k k

T

B ∈ Rn×m k

∣∣X −X  ∣∣  ≤k F ∣∣X −B∣∣  .F

∣∣X∣∣  =F  =  x  ∑i
n∑j

m
ij
2

 trace(X X)T

∣∣UA∣∣  =F
2 trace((UA) UA) =T trace(A  A) =T

I

 U UT trace(A A) =T ∣∣A∣∣  F
2

L2 Σ
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Image Compression using SVD

400 components 200 components 100 components 50 components 10 components

actually bigger 1.2× smaller 2.4× smaller 4.8× smaller 24× smaller
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SVD in Recommender Systems

You have a matrix of what users like what content on a streaming platform.

A user can be represented by a vector of content they liked, content can be represented by a
vector of user that liked it.

Such a matrix is huge and noisy: SVD can be used to reduce the noise (throw away small
singular values).

Low-dimensional representation of users and content in terms “eigenusers” and
“eigencontent”.

In practice, slightly modified version of SVD are used.
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From SVD to Principal Component Analysis

So far, SVD had geometric interpretation, let's add statistical interpretation.

When we apply SVD on mean-centered data , singular values get a new interpretation:

components explaining variability in the data.

Approximating the matrix in terms of Frobenius norm means keeping the most variance from
the data. Components are ordered by how much variablity in the data they capture.

 
Let , then PCA of  are the eigenvectors of , i.e., the  matrix

of the SVD decomposition of .

Note the  term scales down the eigenvalues compared to SVD, but keeps the eigenvectors

unchanged.

X − x̄

∣∣X − ∣∣  =x̄ F
2 trace  =

N Cov(X)

 (X − ) (X − )( x̄ T x̄ ) N  Var(X  )
i

∑
D

:,i

S =  (X −
N
1 ) (X −x̄ T )x̄ X S V

X − x̄

 N
1
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Plot Example

 

https://en.wikipedia.org/wiki/Principal_component_analysis#/media/File:GaussianScatterPCA.svg

Principle components in data sampled from a
2D Gaussian.  is SVD decomposition of

mean-centered data matrix .

Vectors of  define the directions of the

components, so called loadings.

Each vector of  represents one corresponding

centered example  as distances in

a coordinate system given by the loadings.

UΣV
X

(ΣV )

U

X ∈ X − x̄
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Principal Component Analysis

The principal component analysis, PCA, is a linear transformation used for

dimensionality reduction,
feature extraction,
whitening,
data visualization.

To motivate the dimensionality reduction, consider a dataset consisting of a randomly translated
and rotated image.

 

Figure 12.1 of Pattern Recognition and Machine Learning.

Every member of the dataset can be described just by three quantities – horizontal and vertical
offsets and a rotation. We usually say that the data lie on a manifold of dimension three.
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PCA Applications – Whitening aka Sphering

The PCA formula allows us to perform whitening aka sphering, which is a linear
transformation of the given data so that the resulting dataset has zero mean and an
identity covariance matrix.

Notably, if  are the eigenvectors of  and  is the diagonal matrix of the corresponding

eigenvalues (i.e., ), we can define the transformed data as

Then, the mean of  is zero and the covariance is given by

V S Σ2

SV = VΣ2

z  i =def Σ V (x  −−1 T
i ).x̄

z  i

  

  z  z  

N

1

i

∑ i i
T =   Σ V (x  − )(x  − ) VΣ

N

1

i

∑ −1 T
i x̄ i x̄ T −1

= Σ V SVΣ = Σ Σ Σ = I.−1 T −1 −1 2 −1
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PCA Applications – Whitening or Sphering

 

Figure 12.6 of Pattern Recognition and Machine Learning.

The red components that are askew and different length become the  and  axis and have the

same length.

x y
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Data Visualization

Word embeddings from neural machine translation.

 

Marecek, D., Libovický, J., Musil, T., Rosa, R., & Limisiewicz, T. (2020). Hidden in
the Layers: Interpretation of Neural Networks for Natural Language Processing. ISBN:

978-80-88132-10-3. Figure 4.
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PCA versus Supervised ML

Note that PCA does not have access to supervised labels, so it may not give a solution
favorable for further classification. PCA = projecting on the magenta line, which does not help
the classification.

 

Figure 12.7 of Pattern Recognition and Machine Learning.
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Computing PCA — The Power Iteration Algorithm

If we want only the first (or several first) principal components, we might use the power
iteration algorithm.

The power iteration algorithm can be used to find a dominant eigenvalue (an eigenvalue with
an absolute value strictly larger than absolute values of all other eigenvalues) and the
corresponding eigenvector (it is used for example to compute PageRank). It works as follows:

Input: Real symmetric matrix  with a dominant eigenvalue. 

Output: The dominant eigenvalue  and the corresponding eigenvector , with probability

close to 1.

Initialize  randomly (for example each component from ).

Repeat until convergence (or for a fixed number of iterations):

If the algorithm converges, then , so  is an eigenvector with eigenvalue .

A

λ v

v U [−1, 1]

v ← Av

λ ← ∥v∥
v ← v/λ

v = Av/λ v λ
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Computing PCA — The Power Iteration Algorithm

In order to analyze the convergence, let  be the eigenvalues of , in the

descending order of absolute values, so , where the strict

equality is the consequence of the dominant eigenvalue assumption.

If we express the vector  in the basis of the eigenvectors as , then 

 is in the basis of the eigenvectors:

Coordinates  go to zero with . Normalization during the algorithm prevents the 

term from exploding.

If the initial  had a nonzero first coordinate  (which has probability very close to 1), then

repeated multiplication with  converges to the eigenvector corresponding to .

(λ  ,λ  ,λ  , …)1 2 3 A

∣λ  ∣ >1 ∣λ  ∣ ≥2 ∣λ  ∣ ≥3 …

v a  u  +1 1 a  u  +2 1 a  u  …3 1

Av

Av = λ  a  u  +1 1 1 λ  a  u  +2 2 2 λ  a  u  …3 3 3

A v =k λ  a  u  +1
k

1 2 λ  a  u  +2
k

2 2 λ  a  u  … =3
k

3 3 λ  a  u  +  a  u  +  a  u  + …1
k ( 1 1

λ  1
k

λ  2
k

2 2
λ  1
k

λ  3
k

3 3 )

 

λ  1
k

λ  i
k

k → ∞ λ  1
k

v a  1

A λ  1
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Computing PCA — The Power Iteration Algorithm

After we get the largest eigenvalue  and its eigenvector , we can modify the matrix  to

“remove the eigenvalue ”. Consider :

multiplying it by  returns zero:

multiplying it by other eigenvectors  gives the same result as multiplying :

Therefore,  has the same set of eigenvectors and eigenvalues, except for , which

now has eigenvalue 0.

λ  1 v  1 A

λ  1 A− λ  v  v  1 1 1
T

v  1

(A− λ  v  v  )v  =1 1 1
T

1 λ  v  −1 1 λ  v =1 1

1

v  v  1
T

1 0,

v  i A

(A− λ  v  v  )v  =1 1 1
T

i Av  −i λ  v   =1 1

0

 v  v  1
T

i Av  .i

A− λ  v  v  1 1 1
T v  1
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Computing PCA — The Power Iteration Algorithm

We are now ready to formulate the complete algorithm for computing the PCA.

Input: Matrix , desired number of dimensions .

Compute the mean  of the examples (the rows of ).

Compute the covariance matrix .

for  in :

Initialize  randomly.

Repeat until convergence (or for a fixed number of iterations):

Return , where the columns of  are .

X M

μ X

S ←  (X −N
1 μ) (X −

T
μ)

i {1, 2, … ,M}
v  i

v  ←i Sv  i

λ  ←i ∥v  ∥i
v  ←i v  /λ  i i

S ← S − λ  v  v  i i i
T

XV V v ,v  , … ,v  1 2 M
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Clustering

Clustering is an unsupervised machine learning technique, which given input data tries to divide
them into some number of groups, or clusters.

The number of clusters might be given in advance, or we should infer it.

When clustering documents, we usually normalize TF-IDF so that each feature vector has
length 1 (i.e., L2 normalization), because then

1 − cosine similarity(x,y) =  ∥x−
2
1

y∥ .2
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K-Means Clustering

Let  be a collection of  input examples, each being a -dimensional vector 

. Let , the number of target clusters, be given.

Let  be binary indicator variables describing whether an input example  is

assigned to cluster , and let each cluster be specified by a point , usually called

the cluster center.

Our objective function , which we aim to minimize, is

x  ,x  , … ,x  1 2 N N D

x  ∈i RD K

z  ∈i,k {0, 1} x  i

k μ  , … ,μ  1 K

J

J =   z  ∥x  −
i=1

∑
N

k=1

∑
K

i,k i μ  ∥ .k
2
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K-Means Clustering

Input: Input points , number of clusters .

Initialize  as  random input points.

Repeat until convergence (or until patience runs out):
Compute the best possible . It is easy to see that the smallest  is achieved by

Compute the best possible . By computing a

derivative with respect to , we get

x  , … ,x  1 N K

μ  , … ,μ  1 K K

z  i,k J

z  =i,k   {
1
0

  if k = arg min  ∥x  − μ  ∥ ,j i j
2

  otherwise.

μ  =k arg min   z  ∥x  −μ∑i i,k i μ∥2

μ

μ  =k  .
 z  ∑i i,k

 z  x  ∑i i,k i
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K-Means Clustering

 

Figure 9.1 of Pattern Recognition and Machine Learning.
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K-Means Clustering

 

Figure 9.2 of Pattern Recognition and Machine Learning.

It is easy to see that:

updating the cluster assignment 

decreases the loss  or keeps it the

same;
updating the cluster centers again
decreases the loss  or keeps it the

same.

K-Means clustering therefore converges
to a local optimum. However, it is quite sensitive to the starting initialization:

It is common practice to run K-Means algorithm multiple times with different initialization
and use the result with the lowest  (scikit-learn uses n_init=10 by default).

Instead of using random initialization, k-means++ initialization scheme might be used,
where the first cluster center is chosen randomly and others are chosen proportionally to the
square of their distance to the nearest cluster center. It can be proven that with this
initialization, the solution has  approximation ratio in expectation.

z  i,k

J

J

J

O(logK)
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K-Means Clustering

 

Figure 9.3 of Pattern Recognition and Machine Learning.
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Gaussian Mixture vs K-Means

It could be useful to consider that different clusters might have different radii or even be
ellipsoidal.

 

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
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Today's Lecture Objectives

After this lecture you should be able to

Theoretically explain Singular Value Decomposition (SVD), prove it exists and explain what
the Eckart-Young theorem says

Theoretically explain Principal Component Analysis (PCA) and say how it explains the
variance in the data based on SVD

Use SVD or PCA for dimensionality reduction, data visualization and data whitening

Implement the -means algorithm and use it for clusteringk
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