SVD, PCA, K-Means

Jindřich Libovický (reusing materials by Milan Straka)

甸 December 12, 2023

After this lecture you should be able to

- Theoretically explain Singular Value Decomposition (SVD), prove it exists and explain what the Eckart-Young theorem says
- Theoretically explain Principal Component Analysis (PCA) and say how it explains the variance in the data based on SVD
- Use SVD or PCA for dimensionality reduction, data visualization and data whitening
- Implement the k-means algorithm and use it for clustering

$$
X=A B
$$

- \boldsymbol{B} tell us how to construct \boldsymbol{M} using columns of \boldsymbol{A}
- \boldsymbol{A} tell us how to construct \boldsymbol{M} using rows of \boldsymbol{B}
\boldsymbol{X} could be our (training) data matrix. If we managed to get decomposition with orthogonal columns/rows, it would tell us something like (statistical) independent parts the dataset consists of.
- Rows are data points
- Columns are features

Let $\boldsymbol{A} \in \mathbb{C}^{N \times N}$ be an $N \times N$ matrix.

- A vector $\boldsymbol{v} \in \mathbb{C}^{N}$ is a (right) eigenvector, if there exists an eigenvalue $\lambda \in \mathbb{C}$, such that

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

- If $\boldsymbol{A} \in \mathbb{R}^{N \times N}$ is a real symmetric matrix, then it has N real eigenvalues and N real eigenvectors, which can be chosen to be orthonormal.

Quick (almost) proof of orthogonality

$\boldsymbol{A} \boldsymbol{v}_{1}=\lambda_{1} \boldsymbol{v}_{1}$, we transpose both sides and get $\left(\boldsymbol{A} \boldsymbol{v}_{1}\right)^{T}=\lambda_{1} \boldsymbol{v}_{1}^{T}$
Multiply by \boldsymbol{v}_{2} from right, we get $\boldsymbol{v}_{1}^{T} \boldsymbol{A}^{T} \boldsymbol{v}_{2}=\lambda_{1} \boldsymbol{v}_{1}^{T} \boldsymbol{v}_{2}$, but \boldsymbol{A} is symmetric and $\boldsymbol{A}^{T}=\boldsymbol{A}$, so
$\boldsymbol{v}_{1}^{T}\left(\boldsymbol{A} \boldsymbol{v}_{2}\right)=\lambda_{2} \boldsymbol{v}_{1}^{T} \boldsymbol{v}_{2} \Rightarrow \lambda_{2} \boldsymbol{v}_{1}^{T} \boldsymbol{v}_{2}=\lambda_{1} \boldsymbol{v}_{1}^{T} \boldsymbol{v}_{2}$, resulting in

$$
\left(\lambda_{2}-\lambda_{1}\right)\left(\boldsymbol{v}_{1}^{T} \boldsymbol{v}_{2}\right)=0
$$

Linear Algebra Refresh - Eigenvalue Decomposition

We can express real symmetric \boldsymbol{A} using the eigenvalue decomposition

$$
\boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{T}
$$

where:

- \boldsymbol{V} is a matrix, whose columns are the orthonormal eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N}$;
- $\boldsymbol{\Lambda}$ is a diagonal matrix with the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ on the diagonal.

Quick derivation

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{V}=\boldsymbol{\Lambda} \boldsymbol{V}=\boldsymbol{V} \boldsymbol{\Lambda} \\
& \boldsymbol{A} \boldsymbol{V} \boldsymbol{V}^{T}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{T}
\end{aligned}
$$

Because \boldsymbol{V} is orthonormal $\boldsymbol{V}^{T}=\boldsymbol{V}^{-1}$, so $\boldsymbol{V} \boldsymbol{V}^{T}=1$ and $\boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{T}$.

Every (even a rectangular) matrix \boldsymbol{X} of dimenion $m \times n$ and rank r can be factorized as

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
$$

- \boldsymbol{U} is a $m \times m$ orthonormal matrix
- $\boldsymbol{\Sigma}$ is a $m \times n$ diagonal matrix with non-negative values, so-called singular values, chosen to be in decreasing order
- \boldsymbol{V} is a $n \times n$ orthonormal matrix

$$
\boldsymbol{X} \boldsymbol{V}=\boldsymbol{U} \boldsymbol{\Sigma} \quad \Rightarrow \quad \boldsymbol{X} \boldsymbol{v}_{k}=\sigma_{k} \boldsymbol{u}_{k} \quad \forall k=1, \ldots, r
$$

$$
\boldsymbol{X}\left[\begin{array}{c}
\vdots \\
\boldsymbol{v}_{1} \cdots \boldsymbol{v}_{r} \cdots \boldsymbol{v}_{n} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
\boldsymbol{u}_{1} \cdots \boldsymbol{u}_{r} \cdots \boldsymbol{u}_{m} \\
\vdots
\end{array}\right]\left[\begin{array}{ccc|c}
\sigma_{1} & & & \\
& \ddots & & \mathbf{0} \\
& & \sigma_{r} & \\
\hline & \mathbf{0} & & 0
\end{array}\right]
$$

Assuming SVD exists, we can write \boldsymbol{U} and \boldsymbol{V} as eigenvector decomposition of row and column similarities:

$$
\begin{aligned}
\boldsymbol{X} \boldsymbol{X}^{T} & =\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)^{T}=\boldsymbol{U} \boldsymbol{\Sigma}\left(\boldsymbol{V}^{T} \boldsymbol{V}\right) \boldsymbol{\Sigma}^{T} \boldsymbol{U}^{T}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{T} \boldsymbol{U}^{T} \\
\boldsymbol{X}^{T} \boldsymbol{X} & =\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)^{T}\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)=\boldsymbol{V} \boldsymbol{\Sigma}\left(\boldsymbol{U}^{T} \boldsymbol{U}\right) \boldsymbol{\Sigma}^{T} \boldsymbol{V}^{T}=\boldsymbol{V} \boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
\end{aligned}
$$

Let's take $\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right]$ orthonormal eigenvectors of $\boldsymbol{X}^{T} \boldsymbol{X}$ and set $\sigma_{k}=\sqrt{\lambda_{k}}$, then, $\boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{v}_{k}=\sigma_{k}^{2} \boldsymbol{v}_{k} .\left(\lambda_{k} \geq 0\right.$ because $\boldsymbol{X} \boldsymbol{X}^{T}$ is positive semi-definite.)
The decomposition says that $\boldsymbol{X} \boldsymbol{v}_{k}=\sigma_{k} \boldsymbol{u}_{k} \Rightarrow \boldsymbol{u}_{k}=\frac{\boldsymbol{X} \boldsymbol{v}_{k}}{\sigma_{k}}$. To make it work, we need to show that \boldsymbol{u}_{k} is indeed an eigenvector of $\boldsymbol{X} \boldsymbol{X}^{T}$ with the same eigenvalue λ_{k}.

$$
\boldsymbol{X} \boldsymbol{X}^{T} \boldsymbol{u}_{k}=\boldsymbol{X} \boldsymbol{X}^{T} \underbrace{\left(\frac{\boldsymbol{X} \boldsymbol{v}_{k}}{\sigma_{k}}\right)}_{\text {def. of } \boldsymbol{u}_{k}}=\boldsymbol{X} \underbrace{\left(\frac{\boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{v}_{k}}{\sigma_{k}}\right)}_{\boldsymbol{v}_{k} \text { is eigenvector of } \boldsymbol{X}^{T} \boldsymbol{X}}=\boldsymbol{X} \frac{\sigma_{k}^{2} \boldsymbol{v}_{k}}{\sigma_{k}}=\sigma_{k}^{2} \underbrace{\left(\frac{\boldsymbol{X} \boldsymbol{v}_{k}}{\sigma_{k}}\right)}_{\text {def. of } \boldsymbol{u}_{k}}=\sigma_{k}^{2} \boldsymbol{u}_{k}
$$

- Vectors of \boldsymbol{U} are the components rows consists of, vectors of \boldsymbol{V} are the same for the colums.
- It defines a decomposition of \boldsymbol{X} (with rank r) as a sum of rank 1 matrices of dimension $m \times n$

$$
\boldsymbol{X}=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{T}+\ldots+\sigma_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}^{T}
$$

- Reduced version of SVD: We can throw away σ_{k} for $k>r$ and use smaller \boldsymbol{U} and \boldsymbol{V}
- σ are in the decreasing order \Rightarrow we can approximate \boldsymbol{X} by taking $k<\min (m, n)$

$$
\tilde{\boldsymbol{X}}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}
$$

Eckart-Young theorem: This is the best rank k approximation w.r.t. Frobenius norm (we flatten the matrix to a vector and do L^{2} norm).
$\boldsymbol{X} \in \mathbb{R}^{n \times m}$ and $\boldsymbol{X}_{k}=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T}+\ldots+\sigma_{k} \boldsymbol{u}_{k} \boldsymbol{v}_{k}^{T}$ its approximation using SVD. For each $\boldsymbol{B} \in \mathbb{R}^{n \times m}$ of rank k

$$
\left\|\boldsymbol{X}-\boldsymbol{X}_{k}\right\|_{F} \leq\|\boldsymbol{X}-\boldsymbol{B}\|_{F}
$$

Argument why it is a good idea

- $\|\boldsymbol{X}\|_{F}=\sqrt{\sum_{i}^{n} \sum_{j}^{m} x_{i j}^{2}}=\sqrt{\operatorname{trace}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)}$ (trace is the sum of the diagonal)
- Multiplying by orthonormal matrix does not change the norm

$$
\|\boldsymbol{U} \boldsymbol{A}\|_{F}^{2}=\operatorname{trace}\left((\boldsymbol{U} \boldsymbol{A})^{T} \boldsymbol{U} \boldsymbol{A}\right)=\operatorname{trace}(\boldsymbol{A}^{T} \underbrace{\boldsymbol{U}^{T} \boldsymbol{U}}_{\boldsymbol{I}} \boldsymbol{A})=\operatorname{trace}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=\|\boldsymbol{A}\|_{F}^{2}
$$

- The Frobenius norm is the L^{2} norm of the diagonal of $\boldsymbol{\Sigma}$
- The best strategy to keep the most of the norm is removing the smallest values

Image Compression using SVD

400 components 200 components 100 components 50 components 10 components

- You have a matrix of what users like what content on a streaming platform.
- A user can be represented by a vector of content they liked, content can be represented by a vector of user that liked it.
- Such a matrix is huge and noisy: SVD can be used to reduce the noise (throw away small singular values).
- Low-dimensional representation of users and content in terms "eigenusers" and "eigencontent".
- In practice, slightly modified version of SVD are used.

From SVD to Principal Component Analysis

So far, SVD had geometric interpretation, let's add statistical interpretation.
When we apply SVD on mean-centered data $\boldsymbol{X}-\overline{\boldsymbol{x}}$, singular values get a new interpretation: components explaining variability in the data.

$$
\|\boldsymbol{X}-\overline{\boldsymbol{x}}\|_{F}^{2}=\operatorname{trace} \underbrace{\left((\boldsymbol{X}-\overline{\boldsymbol{x}})^{T}(\boldsymbol{X}-\overline{\boldsymbol{x}})\right)}_{N \operatorname{Cov}(\boldsymbol{X})}=N \sum_{i}^{D} \operatorname{Var}\left(\boldsymbol{X}_{:, i}\right)
$$

Approximating the matrix in terms of Frobenius norm means keeping the most variance from the data. Components are ordered by how much variablity in the data they capture.

Let $\boldsymbol{S}=\frac{1}{N}(\boldsymbol{X}-\overline{\boldsymbol{x}})^{T}(\boldsymbol{X}-\overline{\boldsymbol{x}})$, then PCA of \boldsymbol{X} are the eigenvectors of \boldsymbol{S}, i.e., the \boldsymbol{V} matrix of the SVD decomposition of $\boldsymbol{X}-\overline{\boldsymbol{x}}$.
Note the $\frac{1}{N}$ term scales down the eigenvalues compared to SVD, but keeps the eigenvectors unchanged.

Principle components in data sampled from a
 2D Gaussian. $\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}$ is SVD decomposition of mean-centered data matrix \boldsymbol{X}.

- Vectors of $(\boldsymbol{\Sigma} \boldsymbol{V})$ define the directions of the components, so called loadings.
- Each vector of \boldsymbol{U} represents one corresponding centered example $\boldsymbol{X} \in \boldsymbol{X}-\overline{\boldsymbol{x}}$ as distances in a coordinate system given by the loadings.

[^0]The PCA formula allows us to perform whitening aka sphering, which is a linear transformation of the given data so that the resulting dataset has zero mean and an identity covariance matrix.
Notably, if \boldsymbol{V} are the eigenvectors of \boldsymbol{S} and $\boldsymbol{\Sigma}^{2}$ is the diagonal matrix of the corresponding eigenvalues (i.e., $\boldsymbol{S} \boldsymbol{V}=\boldsymbol{V} \boldsymbol{\Sigma}^{2}$), we can define the transformed data as

$$
\boldsymbol{z}_{i} \stackrel{\text { def }}{=} \boldsymbol{\Sigma}^{-1} \boldsymbol{V}^{T}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right) .
$$

Then, the mean of \boldsymbol{z}_{i} is zero and the covariance is given by

$$
\begin{aligned}
\frac{1}{N} \sum_{i} \boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T} & =\frac{1}{N} \sum_{i} \boldsymbol{\Sigma}^{-1} \boldsymbol{V}^{T}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T} \boldsymbol{V} \boldsymbol{\Sigma}^{-1} \\
& =\boldsymbol{\Sigma}^{-1} \boldsymbol{V}^{T} \boldsymbol{S} \boldsymbol{V} \boldsymbol{\Sigma}^{-1}=\boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}^{2} \boldsymbol{\Sigma}^{-1}=\boldsymbol{I}
\end{aligned}
$$

The red components that are askew and different length become the x and y axis and have the same length.

Word embeddings from neural machine translation.

[^1]Note that PCA does not have access to supervised labels, so it may not give a solution favorable for further classification. PCA = projecting on the magenta line, which does not help the classification.

If we want only the first (or several first) principal components, we might use the power iteration algorithm.
The power iteration algorithm can be used to find a dominant eigenvalue (an eigenvalue with an absolute value strictly larger than absolute values of all other eigenvalues) and the corresponding eigenvector (it is used for example to compute PageRank). It works as follows:

Input: Real symmetric matrix \boldsymbol{A} with a dominant eigenvalue.
Output: The dominant eigenvalue λ and the corresponding eigenvector \boldsymbol{v}, with probability close to 1 .

- Initialize v randomly (for example each component from $U[-1,1]$).
- Repeat until convergence (or for a fixed number of iterations):
$\circ \boldsymbol{v} \leftarrow \boldsymbol{A v}$
- $\lambda \leftarrow\|\boldsymbol{v}\|$
- $\boldsymbol{v} \leftarrow \boldsymbol{v} / \lambda$

If the algorithm converges, then $\boldsymbol{v}=\boldsymbol{A} \boldsymbol{v} / \lambda$, so \boldsymbol{v} is an eigenvector with eigenvalue λ.

In order to analyze the convergence, let $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ be the eigenvalues of \boldsymbol{A}, in the descending order of absolute values, so $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \ldots$, where the strict
 equality is the consequence of the dominant eigenvalue assumption.
If we express the vector \boldsymbol{v} in the basis of the eigenvectors as $a_{1} \boldsymbol{u}_{1}+a_{2} \boldsymbol{u}_{1}+a_{3} \boldsymbol{u}_{1} \ldots$, then $\boldsymbol{A} \boldsymbol{v}$ is in the basis of the eigenvectors:

$$
\boldsymbol{A} \boldsymbol{v}=\lambda_{1} a_{1} \boldsymbol{u}_{1}+\lambda_{2} a_{2} \boldsymbol{u}_{2}+\lambda_{3} a_{3} \boldsymbol{u}_{3} \ldots
$$

$$
\boldsymbol{A}^{k} \boldsymbol{v}=\lambda_{1}^{k} a_{1} \boldsymbol{u}_{2}+\lambda_{2}^{k} a_{2} \boldsymbol{u}_{2}+\lambda_{3}^{k} a_{3} \boldsymbol{u}_{3} \ldots=\lambda_{1}^{k}\left(a_{1} \boldsymbol{u}_{1}+\frac{\lambda_{2}^{k}}{\lambda_{1}^{k}} a_{2} \boldsymbol{u}_{2}+\frac{\lambda_{3}^{k}}{\lambda_{1}^{k}} a_{3} \boldsymbol{u}_{3}+\ldots\right)
$$

Coordinates $\frac{\lambda_{i}^{k}}{\lambda_{1}^{k}}$ go to zero with $k \rightarrow \infty$. Normalization during the algorithm prevents the λ_{1}^{k} term from exploding.
If the initial \boldsymbol{v} had a nonzero first coordinate a_{1} (which has probability very close to 1), then repeated multiplication with \boldsymbol{A} converges to the eigenvector corresponding to λ_{1}.

Computing PCA - The Power Iteration Algorithm

After we get the largest eigenvalue λ_{1} and its eigenvector \boldsymbol{v}_{1}, we can modify the matrix \boldsymbol{A} to "remove the eigenvalue λ_{1} ". Consider $\boldsymbol{A}-\lambda_{1} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{T}$:

- multiplying it by \boldsymbol{v}_{1} returns zero:

$$
\left(\boldsymbol{A}-\lambda_{1} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{T}\right) \boldsymbol{v}_{1}=\lambda_{1} \boldsymbol{v}_{1}-\lambda_{1} \boldsymbol{v}_{1} \underbrace{\boldsymbol{v}_{1}^{T} \boldsymbol{v}_{1}}_{1}=0
$$

- multiplying it by other eigenvectors \boldsymbol{v}_{i} gives the same result as multiplying \boldsymbol{A} :

$$
\left(\boldsymbol{A}-\lambda_{1} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{T}\right) \boldsymbol{v}_{i}=\boldsymbol{A} \boldsymbol{v}_{i}-\lambda_{1} \boldsymbol{v}_{1} \underbrace{\boldsymbol{v}_{1}^{T} \boldsymbol{v}_{i}}_{0}=\boldsymbol{A} \boldsymbol{v}_{i} .
$$

Therefore, $\boldsymbol{A}-\lambda_{1} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{T}$ has the same set of eigenvectors and eigenvalues, except for \boldsymbol{v}_{1}, which now has eigenvalue 0 .

We are now ready to formulate the complete algorithm for computing the PCA.
Input: Matrix \boldsymbol{X}, desired number of dimensions M.

- Compute the mean $\boldsymbol{\mu}$ of the examples (the rows of \boldsymbol{X}).
- Compute the covariance matrix $\boldsymbol{S} \leftarrow \frac{1}{N}(\boldsymbol{X}-\boldsymbol{\mu})^{T}(\boldsymbol{X}-\boldsymbol{\mu})$.
- for i in $\{1,2, \ldots, M\}$:
- Initialize \boldsymbol{v}_{i} randomly.
- Repeat until convergence (or for a fixed number of iterations):
- $\boldsymbol{v}_{i} \leftarrow \boldsymbol{S} \boldsymbol{v}_{i}$
- $\lambda_{i} \leftarrow\left\|\boldsymbol{v}_{i}\right\|$
- $\boldsymbol{v}_{i} \leftarrow \boldsymbol{v}_{i} / \lambda_{i}$
$\circ \boldsymbol{S} \leftarrow \boldsymbol{S}-\lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{T}$
- Return $\boldsymbol{X} \boldsymbol{V}$, where the columns of \boldsymbol{V} are $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{M}$.

Clustering is an unsupervised machine learning technique, which given input data tries to divide them into some number of groups, or clusters.
The number of clusters might be given in advance, or we should infer it.
When clustering documents, we usually normalize TF-IDF so that each feature vector has length 1 (i.e., L2 normalization), because then

$$
1-\text { cosine similarity }(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}
$$

K-Means Clustering

Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}$ be a collection of N input examples, each being a D-dimensional vector $\boldsymbol{x}_{i} \in \mathbb{R}^{D}$. Let K, the number of target clusters, be given.

Let $z_{i, k} \in\{0,1\}$ be binary indicator variables describing whether an input example \boldsymbol{x}_{i} is assigned to cluster k, and let each cluster be specified by a point $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$, usually called the cluster center.

Our objective function J, which we aim to minimize, is

$$
J=\sum_{i=1}^{N} \sum_{k=1}^{K} z_{i, k}\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}\right\|^{2} .
$$

Input: Input points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$, number of clusters K.

- Initialize $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$ as K random input points.
- Repeat until convergence (or until patience runs out):
- Compute the best possible $z_{i, k}$. It is easy to see that the smallest J is achieved by

$$
z_{i, k}= \begin{cases}1 & \text { if } k=\arg \min _{j}\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}\right\|^{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Compute the best possible $\boldsymbol{\mu}_{k}=\arg \min _{\boldsymbol{\mu}} \sum_{i} z_{i, k}\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}\right\|^{2}$. By computing a derivative with respect to $\boldsymbol{\mu}$, we get

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{i} z_{i, k} \boldsymbol{x}_{i}}{\sum_{i} z_{i, k}}
$$

It is easy to see that:

- updating the cluster assignment $z_{i, k}$ decreases the loss J or keeps it the same;
- updating the cluster centers again decreases the loss J or keeps it the same.

Plot of the cost function J given by (9.1) after each E step (blue points) and M step (red points) of the K means algorithm for the example shown in Figure 9.1. The algorithm has converged after the third M step, and the final EM cycle produces no changes in either the assignments or the prototype vectors.

K-Means clustering therefore converges
to a local optimum. However, it is quite sensitive to the starting initialization:

- It is common practice to run K-Means algorithm multiple times with different initialization and use the result with the lowest J (scikit-learn uses $n_{\text {_ init }}=10$ by default).
- Instead of using random initialization, k-means++ initialization scheme might be used, where the first cluster center is chosen randomly and others are chosen proportionally to the square of their distance to the nearest cluster center. It can be proven that with this initialization, the solution has $\mathcal{O}(\log K)$ approximation ratio in expectation.

K-Means Clustering

Original image

Figure 9.3 of Pattern Recognition and Machine Learning

Gaussian Mixture vs K-Means

It could be useful to consider that different clusters might have different radii or even be ellipsoidal.

Different cluster analysis results on "mouse" data set:
 Original Data
 k-Means Clustering
 EM Clustering

After this lecture you should be able to

- Theoretically explain Singular Value Decomposition (SVD), prove it exists and explain what the Eckart-Young theorem says
- Theoretically explain Principal Component Analysis (PCA) and say how it explains the variance in the data based on SVD
- Use SVD or PCA for dimensionality reduction, data visualization and data whitening
- Implement the k-means algorithm and use it for clustering

[^0]: https://en.wikipedia.org/wiki/Principal_component_analysis\#/media/File:GaussianScatterPCA.svg

[^1]: Marecek, D., Libovický, J., Musil, T., Rosa, R., \& Limisiewicz, T. (2020). Hidden in the Layers: Interpretation of Neural Networks for Natural Language Processing. ISBN: 978-80-88132-10-3. Figure 4

