NPFL129, Lecture 4

Multiclass Logistic Regression, Multilayer Perceptron

Jindřich Libovický (reusing materials by Milan Straka)

i October 24, 2023

Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

- Implement **muticlass classification** with softmax.
- Reason about linear regression, logistic regression and softmax classification in a **single probablistic framework**: with different target distributions, activation functions and training using maximum likelihood estimate.
- Explain **multi-layer perceptron** as a further generalization of linear models.

Logistic Regression

An extension of perceptron, which models the conditional probabilities of $p(C_0|\boldsymbol{x})$ and of $p(C_1|\boldsymbol{x})$. (It can in fact handle also more than two classes, which we will see shortly.)

Logistic regression employs the following parametrization of the conditional class probabilities:

$$egin{aligned} p(C_1 | oldsymbol{x}) &= \sigma(oldsymbol{x}^T oldsymbol{w} + b) \ p(C_0 | oldsymbol{x}) &= 1 - p(C_1 | oldsymbol{x}), \end{aligned}$$

It can be trained using the SGD algorithm.

Logistic Regression

We denote the output of the "linear part" of the logistic regression as $\bar{y}(\boldsymbol{x}; \boldsymbol{w}) = \boldsymbol{x}^T \boldsymbol{w}$ and the overall prediction as $y(\boldsymbol{x}; \boldsymbol{w}) = \sigma(\bar{y}(\boldsymbol{x}; \boldsymbol{w})) = \sigma(\boldsymbol{x}^T \boldsymbol{w})$.

The logistic regression output $y(m{x};m{w})$ models the probability of class C_1 , $p(C_1|m{x})$.

To give some meaning to the output of the linear part $ar{y}(m{x};m{w})$, starting with

$$p(C_1|oldsymbol{x}) = \sigma(ar{y}(oldsymbol{x};oldsymbol{w})) = rac{1}{1+e^{-ar{y}(oldsymbol{x};oldsymbol{w})}},$$

we arrive at

$$ar{y}(oldsymbol{x};oldsymbol{w}) = \log\left(rac{p(C_1|oldsymbol{x})}{1-p(C_1|oldsymbol{x})}
ight) = \log\left(rac{p(C_1|oldsymbol{x})}{p(C_0|oldsymbol{x})}
ight),$$

which is called a logit and it is a logarithm of odds of the probabilities of the two classes.

Logistic Regression

Ú F_ÅL

To train the logistic regression, we use MLE (the maximum likelihood estimation). Its application is straightforward, given that $p(C_1|\boldsymbol{x}; \boldsymbol{w})$ is directly the model output $y(\boldsymbol{x}; \boldsymbol{w})$.

Therefore, the loss for a minibatch $\mathbb{X} = \{(\boldsymbol{x}_1, t_1), (\boldsymbol{x}_2, t_2), \dots, (\boldsymbol{x}_N, t_N)\}$ is

$$E(oldsymbol{w}) = rac{1}{N}\sum_i -\log(p(C_{t_i}|oldsymbol{x}_i;oldsymbol{w})).$$

Input: Input dataset ($m{X} \in \mathbb{R}^{N imes D}$, $m{t} \in \{0,+1\}^N$), learning rate $lpha \in \mathbb{R}^+$.

- $oldsymbol{w} \leftarrow oldsymbol{0}$ or we initialize $oldsymbol{w}$ randomly
- until convergence (or patience runs out), process a minibatch of examples \mathbb{B} :

$$\circ ~~ oldsymbol{g} \leftarrow rac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}}
abla_{oldsymbol{w}} \Big(-\logig(p(C_{t_i} | oldsymbol{x}_i; oldsymbol{w}) ig) \Big)$$

 $\circ \boldsymbol{w} \leftarrow \boldsymbol{w} - lpha \boldsymbol{g}$

Generalized Linear Models

The logistic regression is in fact an extended linear regression. A linear regression model, which is followed by an **activation function** a, is called **generalized linear model**:

$$p(t|oldsymbol{x};oldsymbol{w},b) = y(oldsymbol{x};oldsymbol{w},b) = aig(oldsymbol{x};oldsymbol{w},b)ig) = a(oldsymbol{x}^Toldsymbol{w}+b).$$

Name	Activation	Distribution	Loss	Gradient
linear regression	identity	?	$ ext{MSE} \propto \mathbb{E}(y(oldsymbol{x}) - t)^2$	$ig(y(oldsymbol{x})-tig)oldsymbol{x}$
logistic regression	$\sigma(ar{y})$	Bernoulli	$ ext{NLL} \propto \mathbb{E} - \log(p(t m{x}))$?

Logistic Regression Gradient

We start by computing the gradient of the $\sigma(x)$.

$$egin{aligned} &rac{\partial}{\partial x}\sigma(x)=rac{\partial}{\partial x}rac{1}{1+e^{-x}}\ &=rac{rac{\partial}{\partial x}-(1+e^{-x})}{(1+e^{-x})^2}\ &=rac{1}{1+e^{-x}}\cdotrac{e^{-x}}{1+e^{-x}}\ &=\sigma(x)\cdotrac{e^{-x}+1-1}{1+e^{-x}}\ &=\sigma(x)\cdotig(1-\sigma(x)ig) \end{aligned}$$

$$rac{\partial}{\partial x}rac{1}{g(x)}=-rac{rac{\partial}{\partial x}g(x)}{g(x)^2}
onumber \ rac{\partial}{\partial x}e^{g(x)}=e^{g(x)}\cdotrac{\partial}{\partial x}g(x)$$

NPFL129, Lecture 4

Refresh GLM

Logistic Regression Gradient

Ú_F≩L

Consider the log-likelihood of logistic regression $\log p(t|\boldsymbol{x}; \boldsymbol{w})$. For brevity, we denote $\bar{y}(\boldsymbol{x}; \boldsymbol{w}) = \boldsymbol{x}^T \boldsymbol{w}$ just as \bar{y} in the following computation.

Remembering that for $t \sim \text{Ber}(\varphi)$ we have $p(t) = \varphi^t (1 - \varphi)^{1-t}$, we can rewrite the log-likelihood to:

$$egin{aligned} \log p(t|m{x};m{w}) &= \log \sigma(ar{y})^tig(1-\sigma(ar{y})ig)^{1-t} \ &= t\cdot \logig(\sigma(ar{y})ig) + (1-t)\cdot \logig(1-\sigma(ar{y})ig) \end{aligned}$$

Logistic Regression Gradient

Generalized Linear Models

The logistic regression is in fact an extended linear regression. A linear regression model, which is followed by some **activation function** a, is called **generalized linear model**:

$$p(t|oldsymbol{x};oldsymbol{w},b) = y(oldsymbol{x};oldsymbol{w},b) = aig(oldsymbol{x};oldsymbol{w},b)ig) = a(oldsymbol{x}^Toldsymbol{w}+b).$$

Name	Activation	Distribution	Loss	Gradient
linear regression	identity	?	$ ext{MSE} \propto \mathbb{E}(y(oldsymbol{x}) - t)^2$	$ig(y(oldsymbol{x})-tig)oldsymbol{x}$
logistic regression	$\sigma(ar{y})$	Bernoulli	$ ext{NLL} \propto \mathbb{E} - \log(p(t oldsymbol{x}))$	$ig(y(oldsymbol{x})-tig)oldsymbol{x}$

Mean Square Error as MLE

https://upload.wikimedia.org/wikipedia/commons/3/3a/Linear_regression.svg

During regression, we predict a number, not a probability distribution. To generate a distribution, we might consider a distribution with the mean of the predicted value and a fixed variance σ^2 – the most general such a distribution is the normal distribution.

Mean Square Error as MLE

Generalized Linear Models

We have therefore extended the GLM table to

Name	Activation	Distribution	Loss	Gradient
linear regression	identity	Normal	$\mathrm{NLL} \propto \mathrm{MSE}$	$ig(y(oldsymbol{x})-tig)oldsymbol{x}$
logistic regression	$\sigma(ar{y})$	Bernoulli	$\mathrm{NLL} \propto \mathbb{E} - \log(p(t oldsymbol{x}))$	$ig(y(oldsymbol{x})-tig)oldsymbol{x}$

To extend the binary logistic regression to a multiclass case with K classes, we:

• generate K outputs, each with its own set of weights, so that for $oldsymbol{W} \in \mathbb{R}^{D imes K}$,

$$ar{oldsymbol{y}}(oldsymbol{x};oldsymbol{W}) = oldsymbol{x}^Toldsymbol{W}, ~~ ext{or~in~other~words}, ~~oldsymbol{ar{y}}(oldsymbol{x};oldsymbol{W})_i = oldsymbol{x}^T(oldsymbol{W}_{*,i})$$

 $\bullet\,$ generalize the sigmoid function to a softmax function, such that

$$ext{softmax}(oldsymbol{z})_i = rac{e^{z_i}}{\sum_j e^{z_j}}$$

Note that the original sigmoid function can be written as

$$\sigma(x) = ext{softmax} ig([x \hspace{0.1cm} 0] ig)_0 = rac{e^x}{e^x + e^0} = rac{1}{1 + e^{-x}}.$$

The resulting classifier is also known as **multinomial logistic regression**, **maximum entropy classifier** or **softmax regression**.

Using the softmax function, we naturally define that

$$p(C_i | oldsymbol{x}; oldsymbol{W}) = oldsymbol{y}(oldsymbol{x}; oldsymbol{W})_i = ext{softmax}ig(oldsymbol{x}; oldsymbol{W})ig)_i = ext{softmax}(oldsymbol{x}^T oldsymbol{W})_i = rac{e^{(oldsymbol{x}^T oldsymbol{W})_i}}{\sum_j e^{(oldsymbol{x}^T oldsymbol{W})_j}},$$

Considering the definition of the softmax function, it is natural to obtain the interpretation of the linear part of the model $\bar{y}(x; W)$ as **logits** by computing a logarithm of the above:

$$ar{oldsymbol{y}}(oldsymbol{x};oldsymbol{W})_i = \log(p(C_i|oldsymbol{x};oldsymbol{W})) + c.$$

The constant c is present, because the output of the model is *overparametrized* (for example, the probability of the last class could be computed from the remaining ones). This is connected to the fact that softmax is invariant to addition of a constant:

$$ext{softmax}(oldsymbol{z}+c)_i = rac{e^{z_i+c}}{\sum_j e^{z_j+c}} = rac{e^{z_i}}{\sum_j e^{z_j}} \cdot rac{e^c}{e^c} = ext{softmax}(oldsymbol{z})_i.$$

To train K-class classification, analogously to the binary logistic regression we can use MLE and train the model using minibatch stochastic gradient descent:

Input: Input dataset ($X \in \mathbb{R}^{N \times D}$, $t \in \{0, 1, \dots, K-1\}^N$), learning rate $\alpha \in \mathbb{R}^+$. **Model**: Let w denote all parameters of the model (in our case, the parameters are a weight matrix W and maybe a bias vector b).

MLP

- $oldsymbol{w} \leftarrow oldsymbol{0}$ or we initialize $oldsymbol{w}$ randomly
- until convergence (or patience runs out), process a minibatch of examples \mathbb{B} :

$$\circ ~~ oldsymbol{g} \leftarrow rac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}}
abla_{oldsymbol{w}} \Big(-\logig(p(C_{t_i} | oldsymbol{x}_i; oldsymbol{w}) ig) \Big)$$

 $\circ \boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \boldsymbol{g}$

Note that the decision regions of the binary/multiclass logistic regression are convex (and therefore connected).

To see this, consider \boldsymbol{x}_A and \boldsymbol{x}_B in the same decision region R_k .

Any point \boldsymbol{x} lying on the line connecting them is their convex combination, $\boldsymbol{x} = \lambda \boldsymbol{x}_A + (1 - \lambda) \boldsymbol{x}_B$, and from the linearity of $\bar{\boldsymbol{y}}(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{W}$ it follows that

$$ar{oldsymbol{y}}(oldsymbol{x}) = \lambdaar{oldsymbol{y}}(oldsymbol{x}_A) + (1-\lambda)ar{oldsymbol{y}}(oldsymbol{x}_B).$$

Given that $\bar{\boldsymbol{y}}(\boldsymbol{x}_A)_k$ was the largest among $\bar{\boldsymbol{y}}(\boldsymbol{x}_A)$ and also given that $\bar{\boldsymbol{y}}(\boldsymbol{x}_B)_k$ was the largest among $\bar{\boldsymbol{y}}(\boldsymbol{x}_B)$, it must be the case that $\bar{\boldsymbol{y}}(\boldsymbol{x})_k$ is the largest among all $\bar{\boldsymbol{y}}(\boldsymbol{x})$.

What went wrong?

Generalized Linear Models

Ú_F≩L

The multiclass logistic regression can now be added to the GLM table:

Name	Activation	Distribution	Loss	Gradient
linear regression	identity	Normal	$ m NLL \propto MSE$	$ig(y(oldsymbol{x})-tig)oldsymbol{x}$
logistic regression	$\sigma(ar{y})$	Bernoulli	$\mathrm{NLL} \propto \mathbb{E} - \log(p(t oldsymbol{x}))$	$ig(y(oldsymbol{x})-tig)oldsymbol{x}$
multiclass logistic regression	$\operatorname{softmax}(oldsymbol{ar{y}})$	categorical	$ ext{NLL} \propto \mathbb{E} - \log(p(t oldsymbol{x}))$	$ig((oldsymbol{y}(oldsymbol{x}) - oldsymbol{1}_t)oldsymbol{x}^Tig)^T$

Recall that $\mathbf{1}_t = ([i = t])_{i=0}^{K-1}$ is one-hot representation of target $t \in \{0, 1, \dots, K-1\}$. The gradient $((\boldsymbol{y}(\boldsymbol{x}) - \mathbf{1}_t)\boldsymbol{x}^T)^T$ can be of course also computed as $\boldsymbol{x}(\boldsymbol{y}(\boldsymbol{x}) - \mathbf{1}_t)^T$.

Multilayer Perceptron

We can reformulate the generalized linear models in the following framework.

- Assume we have an input node for every input feature.
- Additionally, we have an output node for every model output (one for linear regression or binary classification, K for classification in K classes).
- Every input node and output node are connected with a directed edge, and every edge has an associated weight.
- Value of every (output) node is computed by summing the values of predecessors multiplied by the corresponding weights, added to a bias of this node, and finally passed through an activation function *a*:

$$y_i = a\left(\sum\nolimits_j x_j w_{j,i} + b_i
ight)$$

Input layer

or in matrix form $m{y} = a(m{x}^Tm{W} + m{b})$, or for a batch of examples $m{X}$, $m{Y} = a(m{X}m{W} + m{b})$.

GLM MSE as MLE

MulticlassLogisticReg MLP

Multilayer Perceptron

Ú F_AI

We now extend the model by adding a **hidden layer** with activation f.

• The computation is performed analogously:

$$h_i = f\left(\sum_j x_j w_{j,i}^{(h)} + b_i^{(h)}
ight), \ y_i = a\left(\sum_j h_j w_{j,i}^{(y)} + b_i^{(y)}
ight),$$

or in matrix form

$$oldsymbol{h} = fig(oldsymbol{x}^Toldsymbol{W}^{(h)} + oldsymbol{b}^{(h)}ig), \ oldsymbol{y} = aig(oldsymbol{h}^Toldsymbol{W}^{(y)} + oldsymbol{b}^{(y)}ig),$$

and for batch of inputs $\boldsymbol{H} = f\left(\boldsymbol{X}\boldsymbol{W}^{(h)} + \boldsymbol{b}^{(h)}\right)$ and $\boldsymbol{Y} = a\left(\boldsymbol{H}\boldsymbol{W}^{(y)} + \boldsymbol{b}^{(y)}\right)$.

NPFL129, Lecture 4

Refresh GLM N

MSE as MLE MulticlassLogis

Multilayer Perceptron

Note that:

- the structure of the *input* layer depends on the input features;
- the structure and the *activation* function of the *output* layer depends on the target data;
- however, the *hidden* layer has no pre-image in the data and is completely arbitrary which
 is the reason why it is called a *hidden* layer.

Also note that we can absorb biases into weights analogously to the generalized linear models.

NPFL129, Lecture 4

Refresh GLM

MSE as MLE MulticlassLogisticReg

g MLP

Output Layer Activation Functions

Ú F_AL

Output Layer Activation Functions

• regression:

• identity activation: we model normal distribution on output (linear regression)

• binary classification:

 $\circ \sigma(x)$: we model the Bernoulli distribution (the model predicts a probability)

$$\sigma(x) \stackrel{ ext{\tiny def}}{=} rac{1}{1+e^{-x}}$$

- *K*-class classification:
 - $\circ~\mathrm{softmax}(\boldsymbol{x})$: we model the (usually overparametrized) categorical distribution

$$ext{softmax}(oldsymbol{x}) \propto e^{oldsymbol{x}}, \hspace{0.2cm} ext{softmax}(oldsymbol{x})_i \stackrel{ ext{def}}{=} rac{e^{oldsymbol{x}_i}}{\sum_j e^{oldsymbol{x}_j}}$$

Refresh GLM

MSE as MLE

Hidden Layer Activation Functions

Hidden Layer Activation Functions

- no activation (identity): does not help, composition of linear mapping is a linear mapping
- σ (but works suboptimally nonsymmetrical, $rac{d\sigma}{dx}(0)=1/4)$

MSE as MLE

- tanh
 - $^{\circ}\,$ result of making σ symmetrical and making derivation in zero 1 $^{\circ}\,$ $\tanh(x)=2\sigma(2x)-1$
- ReLU
 - $\circ \max(0,x)$
 - the most common nonlinear activation used nowadays

Refresh GLM

Training MLP

The multilayer perceptron can be trained using again a minibatch SGD algorithm:

Input: Input dataset ($X \in \mathbb{R}^{N \times D}$, t targets), learning rate $\alpha \in \mathbb{R}^+$. **Model**: Let w denote all parameters of the model (all weight matrices and bias vectors).

- initialize $oldsymbol{w}$
 - $^{\circ}~$ set weights randomly
 - for a weight matrix processing a layer of size M to a layer of size O, we can sample its elements uniformly for example from the $\left[-\frac{1}{\sqrt{M}}, \frac{1}{\sqrt{M}}\right]$ range
 - the exact range becomes more important for networks with many hidden layers
 - $^{\circ}\,$ set biases to 0
- until convergence (or patience runs out), process a minibatch of examples \mathbb{B} :

$$\circ ~~ oldsymbol{g} \leftarrow rac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}}
abla_{oldsymbol{w}} \Big(-\logig(p(t_i | oldsymbol{x}_i; oldsymbol{w}) ig) \Big)$$

 $\circ \boldsymbol{w} \leftarrow \boldsymbol{w} - lpha \boldsymbol{g}$