Slide 1

```
\(4 \mathbf{e U}+\) )
```


Introduction

```
Class \#6, March 212023
Silvie Cinková cinkova@ufal.mff.cuni.cz
```

Slide 2

$$
4 \Leftrightarrow \text { (}
$$

Information extraction

- on structured data
- Semantic Web (standards to make Web machine-readable)
- knowledge bases/ontologies in general
- on unstructured data (texts)
- population of ontologies
- dialog systems
- ..

Data Analytics for Students of Social Studies and Humanities https:///fal.mff.cuni.cz/courses//npfl134

I am going to argue for using the linguistic markup for information extraction from unstructured data (text, usually). Present the difference of information extraction from structured data first, then get to the unstructured data.

Slide 3

$4 \mathrm{eU}+$ (2)

Information extraction on structured data

- Resource Description Framework (RDF), Web Ontology Language (OWL)
- concepts: city, tree, event, ..
- entities Sophia Loren, Bible, Volkswagen Beetle, Coca-Cola
- relations between entities: part of, place of birth, occupation, date of beginning
- categories: humans, animals

Slide 4

A completely free knowledge base of Wikipedia, with links to other structured knowledge bases (national bibliographies etc.) The Wikidata repository consists of items, each one having a label and a description.

Slide 5

Item label starts with Q. When you describe an item, you make statements, which consist of the item, its properties and their values. The value of a property is very often another item.

Slide 6

Part of Wikidata entry of André Mazon with a few properties.

Slide 7


```
#slavists living between 1860-1988
SELECT ?person ?personLabel ?dob ?dod ?placeBirthLabel ?GPS ?surnameLabel
wHERE
{person wdt:P101 wd:0156864
?person wdt:P734 ?surname. Slavic studies (Q156864)
?person wdt:P570 ?dod. studies of Slavic peoples,
?person wdt:P569 ?dob. languages and culture
?person wdt:P19 ?placeBirth.
    ?placeBirth wdt:P625 ?GPS.
FILTER("1988-01-01"^^xsd:dateTime >= ?dod && "1860-01-01"^^xsd:dateTime <= ?dob).
SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }
}
ORDER BY ?surnameLabel
```

Who were Mazon's professional contemporaries and where were they from? Slavists who were one generation older to two generations younger.
SPARQL Semantic query language for databases able to retrieve and manipulate data stored in RDF;
Display the names, birth and death dates and birthplaces of people whose field of work (P101) was Slavic studies and limit the query to people who lived between 1860-1988 and were thus Mazon's contemporaries (one generation older or two generations younger).
Also provide the GPS coordinates of the birth places.

Slide 8

The results in the alphabetical order of surnames. Error in the entry of Zinaida Udalcova. She appears first because her surname is missing in the entry. After her all are alphabetically sorted. Duplicates are annoying, due to small differences in GPS coordinates in different language versions of WikiData. You apparently cannot simply say unique person ID in SPARQL.

Slide 9

WikiData Query Service offers some plotting options beside table. Map with details and optional images (when available)

Slide 10

| Kucharski | Eugeniusz Kucharski | Drohobych | 1880 |
| :--- | :--- | :--- | :--- | :--- | :--- |

The author(s) of the Mazon WikiData entries did not use the property field of work (P101). Nor did they use any other label that would have explicitly something to do with Slavic studies

This query retrieves all properties and their values associated with the given item. The relevant ones are displayed here - no explicit mention of Slavic studies or philology. Now imagine that you could go through the real Wikipedia and automatically complete the missing properties.

André Mazon

Article Discussion
Lire

André Mazon (André Auguste Mazon), né le 7 septembre 1881 à Paris 2^{e} et mort le 13 juillet 1967 dans le 15^{e} arrondissement de Paris ${ }^{1}$, est un slaviste français, professeur au Collège de France (1923) et membre de l'Académie des inscriptions et belles-lettres (1941). Ses travaux portent sur la littérature en slavon et en russe classique, sur la langue russe et la langue tchèque, ainsi que sur le folklore slave.

But when you read the more verbose entry on Wikipedia, you immediately understand that Mazon was a slavist. Explicitly said and also some implicit hints.

Slide 13

```
de France (1923-1951). Il dirige l'Institut d'études slaves de Paris à
partir de 1937, devient vice-président du Comité international des
slavistes (1958-1967).
André Mazon est cofondateur et membre du comité de rédaction de la Revue des études slaves (1921).

With Jirka, you will learn how to formulate such templates with a corpus query language, next lesson. I am going to tell you more about the information extraction strategies and the currently most common markup.
\[
4 \mathrm{eU}+\left(\mathrm{D}^{2}\right)
\]

Information extraction/Text Mining with linguistic information
1. Conceptualize your research question
- someone is a slavist/slavicist, works with Slavic studies
2. Operationalize your concepts
- his name co-occurs with activities and works related to Slavic studies
- teaches or translates from Slavic languages (list them)
3. Implement your operationalizations in corpus queries
" use a corpus query language and linguistic markup

Data Analytics for Students of Social Studies and Humanities https://ufal.mff.cuni.cz/courses/nof1134

To extract conceptual information from unstructured text, you will have to rely on linguistic structures: how do people usually/typically refer to a concept? Guesswork with evidence.


Two projects a decade ago: they populate a knowledge base with templates made on a very large corpus. Strudel: structured dimension extraction and labeling.
Property P, Concept C. They started with a number of nouns and wrote templates to capture context that could help characterize each noun.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{Table 2} \\
\hline \multicolumn{5}{|l|}{Examples of Strudel output with type sketches} \\
\hline Concept & Property & Log-likelihood & & \\
\hline child & parent-n & 11,726.7 & P_of_C (40\%), P_with_C (1 & \\
\hline child & parent-v & 120.8 & P_C (79\%) & \\
\hline lion & mane-n & 259.1 & C_'s_P (50\%), , C_with_P (1 & of_C (10\% \\
\hline wolf & forest-n & 78.3 & C_in_P (32\%), P_of_C (31\%) & \\
\hline wolf & pack-n & 251.2 & P_of_C (70\%), C_in_P (15\%) & \\
\hline egg & female-n & 1,603.4 & P_produce_C (13\%), C_by_ & \\
\hline breakfast & croissant-n & 257.2 & P_for_C (46\%), C_of_P (34 & \\
\hline beach & walk-v & 687.6 & P_C (29\%), P_from_C (24\%) & _C (13\%) \\
\hline grass & green-a & 277.6 & P_C (58\%), C_is_P (25\%), & \\
\hline \multicolumn{5}{|c|}{Data Analytics for Students of Social Studies and} \\
\hline
\end{tabular}

For each unique property collocate they computed how typical it was for the given noun (compared to all other nouns, using the log-likelihood ratio).

Slide 17

\section*{Read the Web \\ Research Project at Carnegie Mellon University \\ \begin{tabular}{|c|c|c|c|c|}
\hline Home & Project Overview & Resources \& Data & Publications & People \\
\hline \multicolumn{5}{|l|}{NELL: Never-Ending Language Learning} \\
\hline Can co that at Since Learner - Firs mill & rs learn to read? We to create a computer y 2010, our compute been running continuo tempts to "read," or ex web pages (e.g., pla & \begin{tabular}{l}
so. "Read the Web" is em that learns over tim em called NELL (Neve attempting to perform \\
facts from text found in trument (George_Harr
\end{tabular} & \begin{tabular}{l}
earch project read the web. ing Language ks each day: \\
reds of guitar))
\end{tabular} & \\
\hline \multicolumn{4}{|r|}{atempts to improve its reading competence, so that tomorrow it} & Brows \\
\hline
\end{tabular} \\ extract more facts from the web, more accurately. \\ So far, NELL has accumulated over 50 million candidate beliefs by reading the web, and it is considering these at different levels of NEL \\ more about our technical spproach, or join the discussion group.}

Slide 18
\[
4 \Leftrightarrow \text { ( }
\]

information extraction is a crucial element in dialog systems: developers write templates that capture what the computer is supposed to watch out for hearing.

Semantic grammar PHOENIX
- Grammar \#1:

ORIGIN_CITY \(\rightarrow\) [from | beginning in ] [Atlanta | Pittsburgh | Boston | ...]
- Grammar \#2:

DEPARTURE_TIME \(\rightarrow\) [leaving at | on ] TIME_EXPRESSION TIME_EXPRESSION \(\rightarrow\) [DAY_OF_WEEK]
TIME_EXPRESSION \(\rightarrow\) [DAY_OF_WEEK] [TIME_OF_DAY]


Information extraction from non-fiction: usually content. In other contexts, style can be more interesting.
Interesting: style + pragmatics (content + form, context)
Biber: investigating linguistic variation in texts. Extracted 67 English linguistic patterns (e. g. past tense, perfect tense, definite noun) from 481 texts across genres, also spoken.
Features for co-occurrence clusters: passive and nominalizations vs. \(2^{\text {nd }}\) person + contracted verb forms
Each text got a score for each feature according to feature frequency per 100 words multidimensional space, features clustered - statistical reduction of the dimensions.
When you have that, you can say about an unknown text to which text genres or registers it is similar (e. g. this is probably an academic text by style).

\section*{Expression of stance}
- Speaker reports X and indicates
- truth estimate (true vs. false, observed vs. heard, likely vs. unlikely)
For so I know he is, they know he is - a most arch heretic, a pestilence
I mean that with my soul I love thy daughter
I could find in my heart that I had not a hard heart
I learn in this letter that Don Pedro of Aragon comes this night to Messina
- or evaluation of X (good-bad)

It is a problem that you don't approve of this.
\[
4 \mathrm{eU}+\text { (-) }
\]

Narrativity
- + simple past tense
- - \(2^{\text {nd }}\) person
- + past/present progressive tense
- - simple present tense
- - passive voice

\section*{}

\section*{Descriptivity}

CLSINFRA
- + adjectives in attributive positions
- + relative clauses
- + copula predicates
- + present tense
- - progressive tense
- - modal verbs
```

4eU+(%)
Interactivity
- 2nd person
- questions
- vocatives
- imperatives

```

Uncertainty or distance
- + hedge expressions (maybe, basically, a bit)
- + indefinite pronouns (some, any)
- + some modal verbs (can, may)
- + conditional markers (would, if, when, whether)

Slide 27
\(4 \mathrm{CU}+\) (2)
<|1/>
Emotionality
- + interjections
- + exclamation marks
- Shakespeare: short lines by one speaker - one verse in his iambic pentameter is comprised of several speakers' lines
```

40}\mathrm{ Corpus Search
CQL Query: [lemma="woman"] |lemma = "of" [{0,3} within
9 results · ipm: 8.44
Tags: UD POS Tag National POS Tag Features Lemma Dependency relation Dependency head
context her reported to be a woman of an invincible spirit. But it shall be
context maid's aunt, the fat woman of Brentford, has
context He cannot abide the old woman of Brentford. He swears she's a witch
context was't not the wise woman of Brentford?
FALSTAFF/ Ay, marry,
context gossip Report be an honest woman of her word. SoLANIO | | would she were
context to desire to be a woman of the world. | Enter two Pages.| Here
context deried, which longs |To women of all fashion; lastly, huried | Here to
context to bear, | Making them women of good carriage. This is she
context man. The vows of women Of no more bondage be to where they are

```

You collect the text of interest into a corpus and query the corpus things you want to know. Either you read the matches individually, or you extract them in a big amount and further process to make some automatic decisions. Like here, we are trying to find out how Shakespeare characterized women and we had known, that the attribute could be expressed by of and something coming after it. (besides adjective before woman of course).

Slide 29


With full linguistic markup, you can abstract from the word order and grab the noun governed by the preposition of. You can also say that you do not want to match proper nouns after of.
Tree query language: you write a query and can see all matches. You can display them all at once or ask for an aggregation and then select which to view. You can even view (and edit) the syntactic trees.


With the morphological markup, each sentence is a tree diagram in which you can see that each word syntactically depends as "child" on another word - its "parent". The parent is modified by the child; e.g., warm modifies weather; in chair of wood, wood modifies chair; in read a book the book modifies read.
Warm is an adjectival attribute of weather, book is a direct object of read. When Peter reads a book, Peter is the nominal subject of read. These relations are encoded as labels on the children and denote their syntactic dependency on the parent. You can imagine them as the edges (the lines) in the graph. The words are obviously its nodes (the points). Each node can only have one parent. The main predicate is the top of the tree (it has the root label); and it hangs on a technical node. Each node stores some additional information: the actual word form, the lemma (dictionary form), the part of speech (noun, verb), and morphological details such as case and number in nouns and tense in verbs. These are called morphological features.


This is a modern formalism of language description that is universal across languages. It uses the same labels for parts of speech for all languages, and a common pool of features and their values. But these are selected and interpreted in a language-specific way. Some languages do not have cases in nouns, or just some, or they do not have gender in verbs, some languages have special polite forms in verbs or pronouns, etc. The authors struggle to keep the syntax universal, but some languages insist of their language-specific ways, sometimes with very solid arguments to do so. Anyway, it is much easier to handle than learning totally different tagsets and description principles for each language separately. We will use English examples, but the Russian, Italian, and French description would be very similar.

Slide 32


\section*{Slide 33}


Again a tree. Main predicate, subject, auxiliary verb always child of the full verb; in this formalism. This is just a visualization. In the reality, the format is plain text.

Slide 34


This is the actual format. Like a table with a few commented lines. Each row represents one word (token). ID (word order in the sentence) Form, lemma, Universal POS, traditional POS tag (just ignore), universal features; ID of the parent node and the syntactic relation to the parent. I is a child of heard. So is have, her, and reported.


Once again, let's compare the rows to the tree.


Slide 37


Slide 38



Slide 40

\section*{}

Morphological categories
- Universal Parts of Speech (upos)
- Universal Features (feats)
- NOUN, PROPN
- morphological categories relevant to the given upos
- ADJ, ADV
- ADJ, ADV
- PRON, DET, NUM
- SCONJ, CCONJ, ADP
- PART, INTJ
- PUNCT, SYM, X

\begin{tabular}{|c|c|c|}
\hline 4eu+ &  & \\
\hline \multirow[t]{8}{*}{NOUN vs. PROPN vs. neither} & strawberries & NOUN \\
\hline & cat & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(4 \mathrm{Cu}+\) &  &  \\
\hline \multirow{8}{*}{NOUN vs. PROPN vs. neither} & strawberries & NOUN \\
\hline & cat & NOUN \\
\hline & small & \\
\hline & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline \multirow[t]{5}{*}{NOUN vs. PROPN vs. neither} & strawberries & NOUN \\
\hline & cat & NOUN \\
\hline & small & neither \\
\hline & Peter & PROPN \\
\hline & butter & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline eU+ &  & \\
\hline \multirow{8}{*}{\begin{tabular}{l}
NOUN \\
vs. \\
PROPN \\
vs. \\
neither
\end{tabular}} & strawberries & NOUN \\
\hline & cat & NOUN \\
\hline & small & neither \\
\hline & Peter & PROPN \\
\hline & butter & NOUN \\
\hline & beer & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 4 eut &  & vesiv \\
\hline \multirow[t]{8}{*}{NOUN vs. PROPN vs. neither} & strawberries & NOUN \\
\hline & cat & NOUN \\
\hline & small & neither \\
\hline & Peter & PROPN \\
\hline & butter & NOUN \\
\hline & beer & NOUN \\
\hline & Dutchman & PROPN \\
\hline & until & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 4eu+ & \multicolumn{2}{|l|}{} \\
\hline \multirow{8}{*}{\begin{tabular}{l}
NOUN \\
vs. PROPN vs. neither
\end{tabular}} & strawberries & NOUN \\
\hline & cat & NOUN \\
\hline & small & neither \\
\hline & Peter & PROPN \\
\hline & butter & NOUN \\
\hline & beer & NOUN \\
\hline & Dutchman & PROPN \\
\hline & until & neither \\
\hline
\end{tabular}

Slide 50


\begin{tabular}{|c|c|c|}
\hline 4 eu+ &  & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
VERB \\
vs. AUX \\
vs. \\
neither
\end{tabular}} & are & AUX \\
\hline & can & AUX \\
\hline & (He) did (it) & \\
\hline & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 4 U + &  &  \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
VERB \\
vs. AUX \\
vs. \\
neither
\end{tabular}} & are & AUX \\
\hline & can & AUX \\
\hline & (He) did (it) & VERB \\
\hline & Do (you smoke?) & AUX \\
\hline & (be) flying & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline eU+ &  & \\
\hline \multirow{8}{*}{\begin{tabular}{l}
VERB \\
vs. AUX vs. \\
neither
\end{tabular}} & are & AUX \\
\hline & can & AUX \\
\hline & (He) did (it) & VERB \\
\hline & Do (you smoke?) & AUX \\
\hline & (be) flying & VERB \\
\hline & (He) used (to swim) & VERB \\
\hline & (She is) going (to win.) & VERB \\
\hline & (You) ought (to smile). & VERB \\
\hline
\end{tabular}




```

4\mathbf{Cu}+@)

```
\begin{tabular}{lll} 
VERB vs. & (a) winning (strategy) & VERB \\
\begin{tabular}{l} 
AUX vs. \\
neither
\end{tabular} & (a) lotting (tooth) & VERB \\
& (a) rotten (tooth) & \begin{tabular}{l} 
Veither \\
(adjective)
\end{tabular} \\
& Let('s dance.) &
\end{tabular}

\section*{}

VERB vs. AUX vs. neither
(a) winning (strategy) VERB
(a) rotting (tooth) VERB
(a) lost (war) VERB
(a) rotten (tooth)

Let('s dance.)
neither (adjective)
(She) wants (food)
\begin{tabular}{|c|c|}
\hline 4eU+@ & \\
\hline \multicolumn{2}{|l|}{VERB vs. AUX vs. neither} \\
\hline (a) winning (strategy) & VERB \\
\hline (a) rotting (tooth) & VERB \\
\hline (a) lost (war) & VERB \\
\hline (a) rotten (tooth) & neither (adjective) \\
\hline Let('s dance.) & VERB \\
\hline (She) wants (food) & VERB \\
\hline (She) wants (to win) & VERB \\
\hline (H0) herame (nrofoccor) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 4eU+@ & \\
\hline \multicolumn{2}{|l|}{VERB vs. AUX vs. neither} \\
\hline (a) winning (strategy) & VERB \\
\hline (a) rotting (tooth) & VERB \\
\hline (a) lost (war) & VERB \\
\hline (a) rotten (tooth) & neither (adjective) \\
\hline Let('s dance.) & VERB \\
\hline (She) wants (food) & VERB \\
\hline (She) wants (to win) & VERB \\
\hline (H0) herame (nrofoccor) & VERR \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \(4 \mathrm{Cu}+\) & \multicolumn{2}{|l|}{} \\
\hline ADJ vs. & ADV vs. n & \\
\hline & green & ADJ \\
\hline & happily & \\
\hline & & \\
\hline
\end{tabular}

Slide 67

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{4 \(\mathrm{CU}+\) -}} \\
\hline & & \\
\hline & green & ADJ \\
\hline & happily & ADV \\
\hline & my & neither \\
\hline & many & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 4 eut & \multicolumn{2}{|l|}{} \\
\hline \multicolumn{3}{|l|}{ADJ vs. ADV vs. neither} \\
\hline & green & ADJ \\
\hline & happily & ADV \\
\hline & my & neither \\
\hline & many & ADJ \\
\hline & oldest & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline ADJ vs. ADV vs. neither & \\
\hline green & ADJ \\
\hline happily & ADV \\
\hline my & neither \\
\hline many & ADJ \\
\hline oldest & ADJ \\
\hline (the) third (year) & ADJ \\
\hline (the) poor & ADJ \\
\hline where & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline ADJ vs. ADV vs. neither & \\
\hline green & ADJ \\
\hline happily & ADV \\
\hline my & neither \\
\hline many & ADJ \\
\hline oldest & ADJ \\
\hline (the) third (year) & ADJ \\
\hline (the) poor & ADJ \\
\hline where & ADV \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|}
\hline 4 eu+ &  & \\
\hline \multirow[t]{8}{*}{ADJ vs. ADV vs. neither} & twice & ADV \\
\hline & (take) off (phrasal verb) & neither \\
\hline & (write) down & ADV \\
\hline & sometime & ADV \\
\hline & yes & neither \\
\hline & none & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|}
\hline  &  & \\
\hline \multirow[t]{8}{*}{ADJ vs. ADV vs. neither} & twice & ADV \\
\hline & (take) off (phrasal verb) & neither \\
\hline & (write) down & ADV \\
\hline & sometime & ADV \\
\hline & yes & neither \\
\hline & none & neither \\
\hline & how & ADV \\
\hline & twice & ADV \\
\hline
\end{tabular}

\section*{Slide 82}


Subordinating conjunctions link constructions by making one of them a constituent of the other (e. g. an attribute, an adverbial...). Coordinating conjunctions links words or larger constituents and expresses a semantic relation between them (and, but, or)

\section*{Slide 83}


Subordinating conjunctions link constructions by making one of them a constituent of the other (e. g. an attribute, an adverbial...). Coordinating conjunctions links words or larger constituents and expresses a semantic relation between them (and, but, or)

\section*{Slide 84}


Subordinating conjunctions link constructions by making one of them a constituent of the other (e. g. an attribute, an adverbial...). Coordinating conjunctions links words or larger constituents and expresses a semantic relation between them (and, but, or)

Slide 85
\begin{tabular}{|c|c|c|}
\hline \(4 \mathrm{eu}+\) &  & \\
\hline \multirow[t]{4}{*}{SCONJ vs. CCONJ vs. neither} & (I hope) that (she will come) & SCONJ \\
\hline & (good) and (bad) & CCONJ \\
\hline & (nobody) but (you) & CCONJ \\
\hline & (this) or (that) & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Subordinating conjunctions link constructions by making one of them a constituent of the other (e. g. an attribute, an adverbial...). Coordinating conjunctions links words or larger constituents and expresses a semantic relation between them (and, but, or)

\section*{Slide 86}


Subordinating conjunctions link constructions by making one of them a constituent of the other (e. g. an attribute, an adverbial...). Coordinating conjunctions links words or larger constituents and expresses a semantic relation between them (and, but, or)

Slide 87
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\(4 \mathbf{C u}+\bigcirc\)} \\
\hline \multirow[t]{6}{*}{SCONJ vs. CCONJ vs. neither} & (I hope) that (she will come) & SCONJ \\
\hline & (good) and (bad) & CCONJ \\
\hline & (nobody) but (you) & CCONJ \\
\hline & (this) or (that) & CCONJ \\
\hline & (this or) that & neither \\
\hline & (I know) which (to take) & \\
\hline & & \\
\hline
\end{tabular}

Subordinating conjunctions link constructions by making one of them a constituent of the other (e. g. an attribute, an adverbial...). Coordinating conjunctions links words or larger constituents and expresses a semantic relation between them (and, but, or)

Slide 88


Subordinating conjunctions link constructions by making one of them a constituent of the other (e. g. an attribute, an adverbial...). Coordinating conjunctions links words or larger constituents and expresses a semantic relation between them (and, but, or)
\begin{tabular}{|c|c|c|}
\hline  & (I hope) that (she will come) & SCONJ \\
\hline \multirow[t]{7}{*}{SCONJ vs. CCONJ vs. neither} & (good) and (bad) & CCONJ \\
\hline & (nobody) but (you) & CCONJ \\
\hline & (this) or (that) & CCONJ \\
\hline & (this or) that & neither \\
\hline & (I know) which (to take) & neither \\
\hline & (He left,) which (made her sad) & neither \\
\hline & (Ask) whether (we may leave) & SCONJ \\
\hline
\end{tabular}

Subordinating conjunctions link constructions by making one of them a constituent of the other (e. g. an attribute, an adverbial...). Coordinating conjunctions links words or larger constituents and expresses a semantic relation between them (and, but, or)

Slide 90


Pronouns are substitutes for nouns our noun phrases, so they should function like nouns. NOT those functioning like adjectives. These are tagged as determiners. Uhm... English breaks this. Possessive pronouns are PRON.
Pronouns do not act as adjectives, when they substitute a noun, even if they are relative pronouns (many languages use adjectival pronouns there, such as welcher, kotoryj)

Slide 91


Pronouns are substitutes for nouns our noun phrases, so they should function like nouns. NOT those functioning like adjectives. These are tagged as determiners. Uhm... English breaks this. Possessive pronouns are PRON.
Pronouns do not act as adjectives, when they substitute a noun, even if they are relative pronouns (many languages use adjectival pronouns there, such as welcher, kotoryj)


Pronouns are substitutes for nouns our noun phrases, so they should function like nouns. NOT those functioning like adjectives. These are tagged as determiners. Uhm... English breaks this. Possessive pronouns are PRON.
Pronouns do not act as adjectives, when they substitute a noun, even if they are relative pronouns (many languages use adjectival pronouns there, such as welcher, kotoryj)


Pronouns are substitutes for nouns our noun phrases, so they should function like nouns. NOT those functioning like adjectives. These are tagged as determiners. Uhm... English breaks this. Possessive pronouns are PRON.
Pronouns do not act as adjectives, when they substitute a noun, even if they are relative pronouns (many languages use adjectival pronouns there, such as welcher, kotoryj)


Pronouns are substitutes for nouns our noun phrases, so they should function like nouns. NOT those functioning like adjectives. These are tagged as determiners. Uhm... English breaks this. Possessive pronouns are PRON.
Pronouns do not act as adjectives, when they substitute a noun, even if they are relative pronouns (many languages use adjectival pronouns there, such as welcher, kotoryj)

Slide 95


Pronouns are substitutes for nouns our noun phrases, so they should function like nouns. NOT those functioning like adjectives. These are tagged as determiners. Uhm... English breaks this. Possessive pronouns are PRON.
Pronouns do not act as adjectives, when they substitute a noun, even if they are relative pronouns (many languages use adjectival pronouns there, such as welcher, kotoryj)


Pronouns are substitutes for nouns our noun phrases, so they should function like nouns. NOT those functioning like adjectives. These are tagged as determiners. Uhm... English breaks this. Possessive pronouns are PRON.
Pronouns do not act as adjectives, when they substitute a noun, even if they are relative pronouns (many languages use adjectival pronouns there, such as welcher, kotoryj)

Slide 97
\begin{tabular}{|c|c|c|}
\hline \(4 \mathrm{eu}+3\) &  & \\
\hline \multirow{8}{*}{NUM vs. DET vs. PRON} & we & PRON \\
\hline & Which (kids arrived?) & DET \\
\hline & (Say) which (you like) & PRON \\
\hline & myself & PRON \\
\hline & mine, yours & PRON \\
\hline & my, your, his & PRON \\
\hline & every & DET \\
\hline & no (man) & \\
\hline
\end{tabular}

Pronouns are substitutes for nouns our noun phrases, so they should function like nouns. NOT those functioning like adjectives. These are tagged as determiners. Uhm... English breaks this. Possessive pronouns are PRON.
Pronouns do not act as adjectives, when they substitute a noun, even if they are relative pronouns (many languages use adjectival pronouns there, such as welcher, kotoryj)
\begin{tabular}{|c|c|c|}
\hline eut &  & \\
\hline \multirow{8}{*}{DET vs. PRON} & we & PRON \\
\hline & Which (kids arrived?) & DET \\
\hline & (Say) which (you like) & PRON \\
\hline & myself & PRON \\
\hline & mine, yours & PRON \\
\hline & my, your, his & PRON \\
\hline & every & DET \\
\hline & no (man) & DET \\
\hline
\end{tabular}

Pronouns are substitutes for nouns our noun phrases, so they should function like nouns. NOT those functioning like adjectives. These are tagged as determiners. Uhm... English breaks this. Possessive pronouns are PRON.
Pronouns do not act as adjectives, when they substitute a noun, even if they are relative pronouns (many languages use adjectival pronouns there, such as welcher, kotoryj)


Numerals express numbers and a relation to the number, e.g. quantity, sequence, frequency, or fraction. Cardinal numbers: NUM. Ordinal numbers: ADJ

Slide 100


Numerals express numbers and a relation to the number, e.g. quantity, sequence, frequency, or fraction. Cardinal numbers: NUM. Ordinal numbers: ADJ

Slide 101


Numerals express numbers and a relation to the number, e.g. quantity, sequence, frequency, or fraction. Cardinal numbers: NUM. Ordinal numbers: ADJ


Numerals express numbers and a relation to the number, e. g. quantity, sequence, frequency, or fraction. Cardinal numbers: NUM. Ordinal numbers: ADJ


Numerals express numbers and a relation to the number, e. g. quantity, sequence, frequency, or fraction. Cardinal numbers: NUM. Ordinal numbers: ADJ
\begin{tabular}{|c|c|c|}
\hline  & \(\int_{\text {Sorbonne }}^{\text {UNIVRSITE }}\) & \\
\hline \multirow[t]{8}{*}{DET vs. NUM vs. ADJ vs. ADV} & many & DET \\
\hline & two & NUM \\
\hline & first (minute) & ADJ \\
\hline & last (minute) & ADJ \\
\hline & one (man) & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Numerals express numbers and a relation to the number, e. g. quantity, sequence, frequency, or fraction. Cardinal numbers: NUM. Ordinal numbers: ADJ


Numerals express numbers and a relation to the number, e. g. quantity, sequence, frequency, or fraction. Cardinal numbers: NUM. Ordinal numbers: ADJ


Numerals express numbers and a relation to the number, e. g. quantity, sequence, frequency, or fraction. Cardinal numbers: NUM. Ordinal numbers: ADJ

Slide 107


Numerals express numbers and a relation to the number, e. g. quantity, sequence, frequency, or fraction. Cardinal numbers: NUM. Ordinal numbers: ADJ


Numerals express numbers and a relation to the number, e. g. quantity, sequence, frequency, or fraction. Cardinal numbers: NUM. Ordinal numbers: ADJ

\begin{tabular}{|c|c|c|}
\hline \(4 \mathrm{eu}+\) &  & \\
\hline \multirow{8}{*}{ADP vs. ADV vs. SCONJ} & for (you) & ADP \\
\hline & (forgive me), for (I have done wrong) & \\
\hline & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline eu+ &  & \\
\hline \multirow{8}{*}{ADP vs. ADV vs. SCONJ} & for (you) & ADP \\
\hline & (forgive me), for (I have done wrong) & SCONJ \\
\hline & ago & ADV \\
\hline & in & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline eut (0) &  & \\
\hline \multirow{7}{*}{ADP vs. ADV vs. SCONJ} & for (you) & ADP \\
\hline & (forgive me), for (I have done wrong) & SCONJ \\
\hline & ago & ADV \\
\hline & in & ADP \\
\hline & towards & ADP \\
\hline & upwards & ADV \\
\hline & as/like (a teacher) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline \multirow{8}{*}{ADP vs. ADV vs. SCONJ} & for (you) & ADP \\
\hline & (forgive me), for (I have done wrong) & SCONJ \\
\hline & ago & ADV \\
\hline & in & ADP \\
\hline & towards & ADP \\
\hline & upwards & ADV \\
\hline & as/like (a teacher) & ADP \\
\hline & (call) as (you go) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{\(4 \mathrm{eu}+\)} &  & \\
\hline & for (you) & ADP \\
\hline \multirow[t]{7}{*}{ADP vs. ADV vs. SCONJ} & (forgive me), for (I have done wrong) & SCONJ \\
\hline & ago & ADV \\
\hline & in & ADP \\
\hline & towards & ADP \\
\hline & upwards & ADV \\
\hline & as/like (a teacher) & ADP \\
\hline & (call) as (you go) & SCONJ \\
\hline
\end{tabular}

Slide 117


A trash bin in most languages. English and other Germanic languages: not particles from phrasal verbs!
```

4@U+(M)
<||>
Interjections (INTJ)
- yes, no
- please
- well
- hi
* ok, bravo
- like
- lol
- hey
- oh, ouch

```

Exclamations, performative expressions, but not nouns: God, Thanks
\(4 \mathrm{eU}+\) (2)
Look it up in the Documentation
- Each treebank has its Documentation
- You get there from the language list at universaldependencies.org
- Look up the very treebank that was used to train the model you use to parse texts in UDPipe - there are (small) differences
- https://universaldependencies.org/treebanks/en ewt/index.html
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{4 ed}} & CLS\|INFRA \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Universal features - feats (English EWT corpus) CLSINFRA }
\end{aligned}
\]
- lexical \& grammatical properties of words
- Table: the most common eats, each feature has a set of possible values
Feature labels should be consistent across
anguages, but eac anguage can add theirs if not covered
feats: alphabetically concatenated, separated by | (vertical bar)
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Lexical features*} & \multicolumn{2}{|l|}{Infiectional features*} \\
\hline & Nomina/* & Verbal* \\
\hline Prontypen & Gender & VerbForm \\
\hline NumType & Animacy & Mood ¢ \\
\hline Poss \({ }^{\text {\% }}\) & Nounclass & Tenses \({ }^{\text {a }}\) \\
\hline Reflex & Number \({ }^{\text {a }}\) & Aspect \\
\hline Foreign \({ }^{\text {a }}\) & Case \({ }^{\text {chen }}\) & Voice \({ }^{\text {che }}\) \\
\hline Abbr \({ }^{\text {a }}\) & Definite & Evident \\
\hline Typo & Degree \({ }^{\text {a }}\) & Polarit \({ }^{\text {S }}\) \\
\hline & & Person \\
\hline & & Polite \\
\hline & & Clusivity \\
\hline
\end{tabular}

Features mostly describe only grammatical categories explicitly indicated by morphemes
- he writes Person=3, but they write does not have Person!
- is sleeping \(\neq\) present progressive tense, but 2 verbs - is

Mood=Ind|Number=Sing|Person=3|Tense=Present|Verb Form=Fin
sleeping Tense=Pres|VerbForm=Part
- Many inconsistencies:
- e. g. be: parser tries to assign person beside \(1^{\text {st }}\) and \(3^{\text {rd }}\) singula present tense, other verbs not so much.

\section*{\(4 \mathrm{CU}+\) (2)}

\section*{Case}

CLSINFRA
- Nom, Acc
- with PRON, mostly PronType=Prs (Personal pronouns)
- Nom: I, they, we, he, she... but also you, it,
- Acc: me, them, him, us, her... but also it, you, yourself, myself, themselves

\section*{Gender}

CLSINFRA
- Fem, Masc, Neut
- with PRON, PronType=Prs
- usually also co-occurs with Number, Person, Case, Poss

\section*{\(4 \mathrm{ed}+(1)\)}

\section*{Person}
- 1,2,3
- with VERB and AUX, mostly with VerbForm=Fin, Mood=Ind, Number=Sing, Tense=Pres
- with PRON, mostly with PronType=Pers, Case, Poss, and Number (any values)

\section*{}

\section*{Number}
- Plur, Sing
- with NOUN and PROPN
- with PRON, mostly with PronType=Prs, Case, Gender, Poss
- with DET, mostly with PronType=Dem

Slide 127


\section*{Tense}
- Past, Pres
- with VERB and AUX, mostly with VerbForm=Fin, Mood=Ind, Number, Person
- with SCONJ - Past: given, based, provided
```

4eU+ (am)

- Imp, Ind, Sub
- with VERB and AUX, mostly with VerbForm=Fin, Number, Person, Tense

Voice

- Pass
- with VERB, mostly with VerbForm=Part, Tense=Past
- This is quite a weird feature in English. It occurs systematically in past participles, when they are combined with be as AUX (I was invited). In this case, it considers the context. Cf. (the invited experts: Voice=Pass is not there, just Tense=Past|VerbForm=Part.
- Perhaps the parser just decided to do this, based on input from some other data?
- Fin, Ger, Inf, Part
- with VERB and AUX
- with SCONJ (very little cases, maybe annotation errors)

	cosililera
Playtime!	

$4 \mathrm{eU}+(1)$

PronType - continuation

- with ADV
- Dem: then, there, here
- Int: how, why, where, when, whenever, however

Rel: when, where, how, wherein

- EMPTY: so, just, very, also, now, even, only, as, back, well
- with SCON
- Int: when, how, where, why, whenever, wherever, who

Rel: where, when, why

- EMPTY: that, if, as, because, for, of, since, before, like, with

CLSINFRA

```
- Def, Ind
- with DET
- Def: the
- Ind: an, a
- EMPTY: this, all, some, any, no, that, these, another, every, such
- Card, Frac, Mult, Ord
- with NUM:
- Card: one, two, 1,30...
- with ADJ:
- Frac: half
- Ord: first, second, third, \(16^{\text {th }}\),
- with ADV:
- Frac: half
- Mult: once, twice
- with ADJ and ADV:
- Cmp: more, better, less, bigger..
- Pos: good, great, new, far, well, soon, late, little, close..
- Sup: best, most, least, worst, cheapest, largest...

\begin{tabular}{|c|c|}
\hline \[
4 \mathbf{e U}+(1)
\] & <11/> \\
\hline \begin{tabular}{l}
Foreign (is it in a foreign language?) \\
Typo (is it a typo?) \\
Abbr (is it an abbreviation?) \\
- Yes
\end{tabular} & \\
\hline
\end{tabular}

- A mind map of features (mainly of verbs) across languages is here:
https://www.orgpad.com/o/DfIElyUSIBzY6YTaK-
pUDf?token=Dp 2WHU1pHFKcAmAsmqLeC\&open=all
- The UD documentation page on feats is here:
https://universaldependencies.org/u/feat/all.html
- Create groups and set up a list of words from your languages that would combine features and values not present in English.
- Are there word forms with ambiguous upos, such as participles in adjectival positions? Show us!
- You can consult UDPipe:
https://lindat.mff.cuni.cz
- Select an appropriate language model services/udpipe
- Create an example sentence with the candidate and check out the markup.
- If there are several models for your language, do they disagree?```

