
Wild Experimenting in MT

Aleš Tamchyna, Jan Berka, Ondřej Bojar

February 17, 2012

1 Quick Preview of Addicter

Change to Addicter directory:

cd ~/../clara43/addicter

Add necessary modules to Perl path:

export PERL5LIB="`pwd`/../lib:$PERL5LIB"

Run Addicter server with some high port number:

./server.pl 9000

Copy the outputted link to web browser (Opera or Firefox, not Konqueror) and start using
Addicter.

1.1 Warm-up exercises

1. Using Addicter, find the Tamil translation of the English word ’film’.

2. Find the meaning of the Tamil word ’watikai’. (Don’t give up too early, try mentally running
IBM Model 1.)

3. Can you find the Tamil translation of the English word ’railway’? Why / Why not?

4. We want our system to translate better. On what should we focus first (what is the biggest
problem of current translation)?

2 eman

2.1 Getting eman

Check out from UFAL’s repository:

cd # go back to your home dir

svn co --username public --depth empty \

https://svn.ms.mff.cuni.cz/svn/statmt/trunk statmt

• Choose ’accept permanently’ when asked about server certificate validation (i.e. press p).

• Password is ’public’.

• Ignore all the KWallet logs printed in your console.

1

• Press ’Cancel’ in KWallet pop-up window when it appears.

• Type yes in the console when asked if the password should be stored unencrypted.

Get all the necessary subdirectories:

cd statmt

svn update playground scripts addicter perl src

svn update --set-depth empty projects

svn update projects/clara

2.2 Setting Up the Environment

Create the file ~/.bash_profile that sources your .bashrc:

echo "source ~/.bashrc" >> ~/.bash_profile

Add eman to your PATH and set the PATH in your .bashrc):

export PATH="$PATH:$HOME/statmt/scripts"

echo "export PATH=\"\$PATH:$HOME/statmt/scripts\"" >> ~/.bashrc

Add paths to necessary Perl modules:

export PERL5LIB="$PERL5LIB:$HOME/../clara44/perl5/lib/perl5/"

echo "export PERL5LIB=\"\$PERL5LIB:$HOME/../clara44/perl5/lib/perl5/\"" >> ~/.bashrc

2.3 Seeds

An experiment is composed of steps, such as preparing the data, training a language model etc.
Eman uses seeds to specify the step. Seeds are special bash scripts (in principle, any executable file
would work but the current support is aimed at bash). Bash variables are used to pass arguments
to them. By itself, eman does not have any seeds. However, it supposes that it will be run in a
playground that contains the directory eman.seeds. Our playground has seeds that correspond
to common tasks in SMT, such as lm creation or mert optimization.

3 Baseline Experiment

3.1 Required Tools

You will need Moses toolkit, GIZA++ and SRILM for your experiments. Use eman command
add-remote to include an existing playground where these programs are already prepared.

cd ~/statmt/playground

eman add-remote ~/../clara44/statmt/playground binaries

eman reindex

In the first command, eman creates a symlink named binaries in your playground and registers
it as one more playground, i.e. a place where step directories are. The second command scans all
registered playgrounds and indexes their steps. You can now query these steps and use them in
your experiments. The following command means ”list steps of type srilm that are done”. Full
syntax is described in the manpage (use eman --man to view it).

eman select t srilm d

You can see the remote step in the output. The trick with remote playground saved you about
10 minutes of compilation.

2

3.2 Corpora

The SMT playground includes corpman, a tool for managing and deriving corpora. A corpus can
contain several languages, each of them can have various factors (e.g. the lemma, morphological
tag, or anything you wish to explicitly model). We are going to import English-Tamil parallel data
into corpman as corpora called en-ta-train, en-ta-dev and en-ta-test, with languages en and
ta and the single factor called form in each language to start with. The seed corpus can create
a corpus from data you have somewhere on your disk. Try initializing it without any arguments
to see its synopsis:

eman init corpus

eman will print a list of variables recognized by the seed and will complain that some mandatory
arguments were not supplied.

All our data are in statmt/projects/clara/english-tamil. They can be imported as cor-
pora using this simple script:

#!/bin/bash

for section in train dev test; do

for lang in en ta; do

OUTCORP=en-ta-$section OUTLANG=$lang OUTFACTS=form \

OUTLINECOUNT=$(wc -l < ../projects/clara/english-tamil/$lang.$section) \

TAKE_FROM_COMMAND="cat ../../projects/clara/english-tamil/$lang.$section" \

eman init --start corpus

done

done

Paste its code into a file (e.g. import_corpora.sh) in the playground, allow it to be executed
and run it:

chmod +x import_corpora.sh

./import_corpora.sh

The script runs eman 6 times (3 corpora times 2 languages). In each iteration, a new step
based on seed corpus is initialized by the init command and immediately executed (thanks to
the --start option). All the required variables are provided in the script: the name of the corpus,
the output language name, the output factors’ names, the expected linecount (for a sanity check)
and the Unix command that emits the actual data on its standard output.

Each time a step is initialized, eman creates a directory, e.g. s.corpus.12a3456b.20120217-1400
with the following files:

• eman.seed – the seed corpus copied from playground/eman.seeds/

• eman.vars – the list of variables defined for the step

• eman.status – the state of the step

• eman.command – the actual code that will run when the step is started, this file is generated
by the seed using the variables provided at init

• eman.deps – the list of steps that this step depends on

• eman.tag – the set of step tags, user defined or automatically inserted by the seed

• eman.init_env – the list of all variables defined when the step was initialized, mainly for
debugging

3

Eman recognizes whether it runs on a cluster with Grid Engine (in which case it submits steps
using qsub, assuring that dependent steps wait for each other), or locally (steps are run directly in
the background on your machine and eman ensures subsequent steps will wait in a sleeping loop
until the prerequisites finish).

You can use eman to access step data, using commands like eman vars, eman deps etc.
There are a couple of ways to check progress or status of an eman step. First, go to the step

directory (alternatively, stay in playground and use step directory instead of ’.’ in the following
commands).

cd s.corpus.12a3456b.20120217-1400

Current step status:

eman status .

Status of this step and all step it depends on:

eman traceback --status .

you can also use the abbreviated form: eman tb --stat .

Follow step logging output (on cluster, one more log file is created and used, log.o12345):

tail -f log

(Hit CTRL-C to exit tail -f.)
Given that we just created six steps, we might like to see the status of all of them:

eman select t corpus --status

3.3 Experiment Pipeline

Defining all steps by hand or writing a script for each experiment would be tedious. The preferred
workflow in eman is to create a pipeline once and then use eman’s features to make modifications
to it and run multiple scenarios based on it.

The key is the command eman clone. It can create copies of individual steps or whole
scenarios (somewhat modified, if you wish), assuring that existing steps are re-used wherever
possible (based on values of their variables). We are going to clone a scenario that describes
the baseline experiment, thus avoiding the need to manually create all the steps (lm, align,
tm, model, mert, translate, eval). A scenario can be stored as a traceback generated by
eman tb --vars LASTSTEP. Clone the baseline experiment:

cd ../ # go back to the playground directory

eman clone < ../projects/clara/en-ta.tb

Examine the command output. Notice that:

• The corpus steps we created were re-used.

• The remote steps were also re-used (mosesgiza and srilm).

• The full traceback with step statuses was printed.

You can now run the whole pipeline using:

4

eman start s.eval.... # the last step of the pipeline

(It appears at the top of the traceback.)

You can monitor the progress:

eman tb --status s.eval....

Very soon, all steps before MERT will be finished and MERT will take some time to run. To
check how many iterations were completed, you can simply look inside the step:

ls s.mert..../mert-tuning

You can also instruct eman to wait for the step to finish and send you an e-mail with the full
traceback of statuses afterwards:

eman wait s.mert... \

; eman tb --stat s.mert... | mail -s "s.mert... finished" yourself@somewhere.edu

Once MERT finishes, evaluation data will be translated and translation quality measured using
BLEU. You can view the horribly low result by looking in the file BLEU in the s.eval.... step
directory.

3.4 (Auto)tags

Tags are labels that describe a step. They are either automatically generated (autotags) or assigned
manually.

eman generates autotags based on rules in the file playground/eman.autotags. No default
rules are defined in our playground, but there is a prepared set of rules in the file “eman.autotags-
.sample-clara2012”. Copying it in eman.autotags will “activate” the rules:

cp eman.autotags.sample-clara2012 eman.autotags

eman reindex # implies re-tagging, i.e. applying the rules from eman.autotags

View the autotags of your mert steps:

eman sel t mert --tag

You can define your own rules in eman.autotags.
Assigning tags manually is useful for making notes about a particular step. For example, we

label the eval step as “baseline”:

eman add-tag baseline s.eval...

The command eman add-tag can take a while, because it is also reindexing in order to prop-
agate both manual tags as well as autotags along the traceback. If you would like to check this
out, add a tag to one of your corpus steps and which all steps will show it when you list all your
steps and their tags:

eman tag # this lists all steps and their tags, you can e.g. grep in this

5

4 Collecting Results

Checking results of experiments by manually viewing files inside steps is possible, but eman im-
plements a more convenient way. It supports summarizing results based on rules (eman collect)
and creating user-defined tables with experiment results (eman tabulate).

eman collect looks for rules in the file eman.results.conf. There is an example configuration
file in the SMT playground that we are going to use:

cp eman.results.conf.sample eman.results.conf

eman collect

eman created a file eman.results with a summary of scores of all experiments. For now,
the file is concise and readable, but if you create more scenarios, it will become hard to find a
particular result. On the other hand, you can grep or sort your results easily in this format.

Also, eman.results serves as an additional “index” for eman – you can now specify steps by
their results. If your BLEU score was e.g. 2.65, the following command would identify the step:

eman guess 2.65

and this command would show you all the details of the experiment:

eman tb --vars --log 2.65

eman tabulate also needs a configuration file. Run these commands to create file eman.niceresults:

cp eman.tabulate.sample-clara2012 eman.tabulate

eman tabulate

The configuration file playground/eman.tabulate can define any number of tables, each of
them can be configured to give you a different insight into your experiments. In our example, the
rows are defined by the order of the language model and the columns by word alignment factors
(form, stem). This file will become more interesting as you progress with your experiments.

5 Word Alignment on Stems

Aligning on a different form requires only a slight change of the current experiment. Get the
traceback of the existing scenario:

eman tb --vars s.eval... > baseline.traceback

Examine the traceback file in your favourite text editor and globally change the following
variable values:

• SRCALIAUG=en+form to SRCALIAUG=en+stem4

• TGTALIAUG=ta+form to TGTALIAUG=ta+stem4

• ALILABEL=en-form-ta-form to ALILABEL=en-stem4-ta-stem4

Save the file as align_stems.traceback.
Examine the file corpman.rules to find out how the stems are created. corpman will use the

matching rule and generate new corpus steps to generate the required factors.
Clone the modified traceback and start the experiment:

6

eman clone --start < align_stems.traceback

Running a cloned experiment right away is generally not a good idea – if the result of cloning
is different from your expecations, you are left with a number of broken steps that you have to
manually remove (after first finding them) and reindex both eman and corpman.

eman supports an option --dry-run that causes the cloning command to only simulate step
initialization so that you can check the result. So the recommended procedure is:

eman clone --dry-run < align_stems.traceback

Check if the clone is at all possible, how many steps would be created etc. Only once you are
happy, actually init the steps:

eman clone < align_stems.traceback

Now examine the initialized steps. If everything seems correct, run the cloned scenario:

eman start THE-TOPMOST-STEP

On the other hand, the modification and cloning can all actually be done on one line (if you
are really sure or you don’t mind cleaning up the rubbish of failed attempts):

eman tb s.eval... -s '/(ALIAUG=..)\+form/$1\+stem4/' \

-s '/en-form-ta-form/en-stem4-ta-stem4/' | eman clone --start

You can add a tag to the new eval step or rely on the autotags to distinguish between the
different experiments.

6 True Tamil Stems for Word Alignment

6.1 Prepare the Data

We are going to use Treex (indirectly) in this section.
It is assumed that Treex is present in your Perl modules path.
Go to the directory with the original data:

cd ~/statmt/projects/clara/english-tamil

Examine the script ../split.pl. It is a simple wrapper script that calls a Treex tool for
splitting Tamil affixes for each line in its input. Optionally, it can restore split Tamil to its
original form.

Concatenate the Tamil files, pass them as input into the script and separate them again:

cat ta.train ta.dev ta.test | ../split.pl > ta_split

cat ta_split | sed "s/ +[^]*//g" > ta_stems

head -5000 ta_split > ta_split.train

tail -600 ta_split | head -300 > ta_split.dev

tail -300 ta_split > ta_split.test

head -5000 ta_stems > ta_stems.train

tail -600 ta_stems | head -300 > ta_stems.dev

tail -300 ta_stems > ta_stems.test

7

Notice that we created two sets of corpora:

• ta_split containing roots and suffixes (marked by ’+’).

• ta_stems containing only word roots.

We are going to use the first set later on.
Go back to the playground and import a new language ta_split and a new factor of language

ta truestem into the existing corpora. Create another simple bash script to do it:

#!/bin/bash

for section in train dev test; do

OUTCORP=en-ta-$section OUTLANG=ta OUTFACTS=truestem \

OUTLINECOUNT=$(wc -l < ../projects/clara/english-tamil/ta_stems.$section) \

TAKE_FROM_COMMAND="cat ../../projects/clara/english-tamil/ta_stems.$section" \

eman init --start corpus

OUTCORP=en-ta-$section OUTLANG=ta_split OUTFACTS=form \

OUTLINECOUNT=$(wc -l < ../projects/clara/english-tamil/ta_split.$section) \

TAKE_FROM_COMMAND="cat ../../projects/clara/english-tamil/ta_split.$section" \

eman init --start corpus

done

Store it in import_split_tamil.sh. Use chmod to allow its execution and run it.

chmod +x import_split_tamil.sh

./import_split_tamil.sh

6.2 Run the Experiment

Open the file baseline.traceback and change the variables as follows:

• SRCALIAUG=en+form to SRCALIAUG=en+stem4

• TGTALIAUG=ta+form to TGTALIAUG=ta+truestem

• ALILABEL=en-form-ta-form to ALILABEL=en-stem4-ta-truestem

Save the file as align_truestems.traceback, clone it and run the experiment:

eman clone --start < align_truestems.traceback

It might now be interesting to view the new results:

eman retag && eman collect && eman tabulate && cat eman.niceresults

7 Translating into ta split

Edit the baseline traceback once more. Specific occurrences of ta need to be changed, i.e. the
traceback needs to be hacked a bit this time. The following sed pipeline does the job for you but
make sure you understand it:

8

cat baseline.traceback \

| sed -e "s/AUG=ta+/AUG=ta_split+/" \

-e "s/LANG=ta/LANG=ta_split/" \

-e "s/ta\./ta_split./" \

-e "s/ta-form/ta_split-form/" \

> ta_split.traceback

Clone the traceback and start the experiment:

eman clone --start < ta_split.traceback

7.1 Evaluation

Go to the eval step of this experiment. The following command will compare your joined output
with the original Tamil reference:

cat corpus.translation | ../../projects/clara/split.pl -r \

| ./testbleu ../../projects/clara/english-tamil/ta.test

In order to see the results correctly in eman.niceresults, back up the existing file BLEU and
redirect the output of testbleu into it.

8 Reordered English

8.1 Create the Data

In this step, we are going to take advantage of Treex again. Download the analyzed English data
in Treex format:

cd ~/statmt/project/clara/english-tamil

wget http://ufallab.ms.mff.cuni.cz/~tamchyna/clara/english-tamil-en.analyzed

Run a Treex scenario that applies your reordering block (or the reference solution) on this
data:

cat english-tamil-en.analyzed \

| treex Read::Treex language=en from=- \

| Util::SetGlobal language=en \

| Util::Eval anode='$anode->set_no_space_after(0);' \

| Your::Reordering::Block \

| A2W::ConcatenateTokens \

| Write::Sentences > en_reord

You can also use A2A::ReorderHeadFinal instead of your implementation.

8.2 Import the Corpora

Split the data into sections:

head -5000 en_reord > en_reord.train

tail -600 en_reord | head -300 > en_reord.dev

tail -300 en_reord > en_reord.test

9

Go back to playground and create a script import_reordered.sh:

#!/bin/bash

for section in train dev test; do

OUTCORP=en-ta-$section OUTLANG=en_reord OUTFACTS=form \

OUTLINECOUNT=$(wc -l < ../projects/clara/english-tamil/en_reord.$section) \

TAKE_FROM_COMMAND="cat ../../projects/clara/english-tamil/en_reord.$section" \

eman init --start corpus

done

Import the reordered English as an additional language by running the script:

chmod +x import_reordered.sh

./import_reordered.sh

8.3 Run the Experiment

Edit the file baseline.traceback and replace occurrences of en with en_reord or use the following
sed pipeline:

cat baseline.traceback \

| sed -e ’s/AUG=en+/AUG=en_reord+/’ \

-e ’s/LANG=en/LANG=en_reord/’ \

-e ’s/en\./en_reord./’ \

-e ’s/en-form/en_reord-form/’ \

> en_reord.traceback

Clone the traceback and start the experiment:

eman clone --start < en_reord.traceback

9 Excercises

9.1 Other Metrics

Re-run all your eval steps and replace them with seed evaluator. This seed runs Moses evaluator
that is slower, but supports a number of MT metrics.

9.2 Higher Order of Language Model

Run a series of experiments (cloned, based on the baseline) that evaluate translation performance
with different order of target language model. You can try values 4, 5 and further as long as you
get improvement.

9.3 Varying Stem Lengths

We used stem length 4 in the first attempt to improve MT quality. How would the results look
for different lengths? Run a series of experiments to find out. Note that you are going to have to
add rules to playground/corpman.rules for length other than 4 and 5.

10

9.4 Inverse Translation Direction

So far we only experimented with English→Tamil. What is the simplest way to invert the transla-
tion direction? Apply the necessary modifications and try a baseline experiment. (Manual hacking
of traceback will be needed.)

9.5 Hindi

Reordering on the source side (English) has been shown to improve translation quality for Hindi.
All data are available in the directory:

~/statmt/projects/clara/english-hindi/

Pre-analyzed English data can be downloaded here:

http://ufallab.ms.mff.cuni.cz/~tamchyna/clara/english-hindi-en.analyzed

Create two experiments:

• Baseline with stem4-stem4 alignment.

• Reordered English in the source, stem4-stem4 alignment.

Note that you will need to import the corpora similarly as we did in the previous experiments.

9.6 Hack eman.tabulate

Look into the file playground/eman.tabulate. Try to swap columns and rows in the first table.
Try to define more tables that would provide meaningful insight into your results.

10 Addicter

Addicter was installed along with SMT tools during your checkout of statmt repository.

10.1 Experiment Preparation

Go to the cgi folder:

cd addicter/cgi

Create the experiment folder (folder name will be then understood by Addicter as the experi-
ment name):

mkdir en_ta_stemalign

10.1.1 Data

For each experiment, you need to supply the following data to Addicter:

• Training data:

– Source: s.tm.../corpus/corpus.src.gz

– Target: s.tm.../corpus/corpus.tgt.gz

– Word alingment: s.tm.../alignment.custom

11

• Test data:

– Source: s.translate.../corpus.src

– Reference: s.eval.../corpus.reference

– MT output: s.translate.../translated.gz

Test data are mandatory for automatic error detection and classification, while training data
are needed for Word Explorer.

Copy all data into the experiment folder:

cp s.translate.../corpus.src ../addicter/cgi/en_ta_stemalign/test.src

cp s.eval.../corpus.reference ../addicter/cgi/en_ta_stemalign/test.tgt

zcat s.translate.../translated.gz > ../addicter/cgi/en_ta_stemalign/test.system.tgt

zcat s.tm.../corpus/corpus.src.gz > ../addicter/cgi/en_ta_stemalign/train.src

zcat s.tm.../corpus/corpus.tgt.gz > ../addicter/cgi/en_ta_stemalign/train.tgt

cp s.tm.../alignment.custom ../addicter/cgi/en_ta_stemalign/train.ali

10.1.2 Reference to Hypothesis Alignments

Go to the experiment folder:

cd ../addicter/cgi/en_ta_stemalign

Each alignment must be in its own subfolder. The name of the subfolder is understood by
Addicter as the name of the alignment. So, for each alignment create a folder. Each reference to
hypothesis alignment must be named as test.refhyp.ali in the given folder.

Addicter implements several monolingual alignment algorithms: LCS, HMM, Injective Greedy
alignment. All are implemented as Perl scripts in testchamber folder. All take the reference and
hypothesis translations as the input.

LCS usage:

mkdir ali_lcs

../../testchamber/align-lcs.pl test.tgt test.system.tgt > ali_lcs/test.refhyp.ali

HMM usage:

mkdir ali_hmm

../../testchamber/align-hmm.pl test.tgt test.system.tgt > ali_hmm/test.refhyp.ali

In order to use the Greedy alignment, you need morphologically analyzed data.
Addicter also implements creating reference-hypothesis alignment via source-to-reference and

source-to-hypothesis alignments. The source-to-reference alignment must be named test.ali, source-
to-hypothesis alignment must be named test.system.ali. Both files must be in experiment folder.
Unfortunately, we do not have source-to-reference neither source-to-hypothesis alignments, so we
can’t use the “via source” alignment.

10.1.3 Indexing of Training Data for Word Explorer

This step is mandatory if you want to use Word Explorer. Go to the prepare folder:

cd ../../addicter/prepare

Make an auxiliary directory for indexes:

mkdir indexes

12

Run Addicter’s indexer on your data:

./addictindex.pl -trs ../cgi/en_ta_stemalign/train.src \

-trt ../cgi/en_ta_stemalign/train.tgt \

-tra ../cgi/en_ta_stemalign/train.ali -oprf s -o indexes

Reverse the alignment:

../../../clara43/scripts/reverse_alignment.pl ../cgi/en_ta_stemalign/train.ali \

> ../cgi/en_ta_stemalign/train_reversed.ali

Run Addicter’s indexer in reversed direction:

./addictindex.pl -trs ../cgi/en_ta_stemalign/train.src \

-trt ../cgi/en_ta_stemalign/train.tgt \

-tra ../cgi/en_ta_stemalign/train_reversed.ali -oprf t -target -o indexes

You could also use test data and source-to-reference and source-to-hypothesis alignments as
options -s, -r, -h, -ra, -ha, if you had them.

Move the index files to experiment folder:

mv indexes/*index* ../cgi/en_ta_stemalign

Remove the auxiliary folder if you need to save space:

rm -r indexes

10.2 Error Detection

Go to the prepare folder:

cd addicter/prepare

For each reference-to-hypothesis alignment run the detecter.pl script:

./detecter.pl -s ../cgi/en_ta_stemalign/test.src \

-r ../cgi/en_ta_stemalign/test.tgt \

-h ../cgi/en_ta_stemalign/test.system.tgt \

-a ../cgi/en_ta_stemalign/ali_lcs/test.refhyp.ali \

-w ../cgi/en_ta_stemalign/ali_lcs

./detecter.pl -s ../cgi/en_ta_stemalign/test.src \

-r ../cgi/en_ta_stemalign/test.tgt \

-h ../cgi/en_ta_stemalign/test.system.tgt \

-a ../cgi/en_ta_stemalign/ali_hmm/test.refhyp.ali \

-w ../cgi/en_ta_stemalign/ali_hmm

If you don’t specify the alignment file (use the script without the -a option), Addicter will use
the greedy alignment.

13

10.3 Running the Server

You are now ready to view your results in web browser. Go to Addicter main folder:

cd ..

Run the server.pl script:

./server.pl 8080

Copy the link from script output into web browser (Opera or Firefox, not Konqueror). The
number is the port number. You can write a different one or completely omit it – in that case,
Addicter will choose the port randomly.

14

