

UFAL Probes in a Taxonomy of Factored Di Pitfalls Undřej Bojar Bushra Jawaid Amir Kamran, surname@ufal.mff cupi cz

Ondřej Bojar, Bushra Jawaid, Amir Kamran surname@ufal.mff.cuni.cz Charles University in Prague, Faculty of Mathe

Direct Experiments

With different target-side factors.
With different language models.
...to improve target morphological coherence

Language Models BLEU

form + lemma + tag form + tag form + tag form form form

 13.05 ± 0.44 13.01 ± 0.44 12.99 ± 0.44 12.42 ± 0.44 12.19 ± 0.44

 12.08 ± 0.45

=> Additional factors bound to hurt unless used in a LM.

Combinatorial Explosion of Translation Options

Vocabulary Sparseness

- The main problem when handling morphologically rich languages
Direct setups can produce only forms seen in the parallel data

Ambiguity

Instead of just "police -> policie", we get more target-side entries due to the extra police -> policie sg police -> policie pl

- Translation options are generated before the main search.
- All possible combinations of lemmas and tags are considered, best ones preserved.
- No context available during this generation.
- => Relevant translation options pruned before LM can promote them.

Two-Step Experiments

• With different properties captured in the "middle" language. • With just one or two factors in the middle language. ...to avoid the combinatorial explosion while producing forms beyond what was seen in the parallel data.

- The division into two searches allows to consider linear context and apply a LM in the middle language. - The first step performs lexical translation and reordering. - The second search is monotone: => Can use max-phrase-length of just 1.

=> Can handle large number of possible target forms.

=> Can make use of larger (monolingual) data.

Target

zeleného (masc, genitive) zelený+NSAzelenému (masc, dative) zelenou (fem, accusative)

- Bad result due to too short outputs (even content words dropped). ...and this was due to a (1-TER)-optimized hypothesis in the combination.

- Arc scores specify e.g.:
- the percentage of systems traversing that arc,
- indicators for each system, if it served as the skeleton
- indicator if the arc was traversed by the skeleton system

Different Granularity of LOF and MOT

Word Fo	rm LOF ₀	LOF ₁	MOT ₀	MOT ₁	MOT ₂	Gloss	O ve	rg
lidé by neočekáv	člověk být vali očekávat	~	NNMP1A1 Vc VpMPXR-NA	NPA- c	V	would	-	U tr
			1 –	-		_		U

One or Two Factors in the Middle Language

Middle Factors	1	2
	+	
$LOF_0 + MOT_0$	11.11 ± 0.48	12.42 ± 0.48
$LOF_1 + MOT_1$	12.10 ± 0.48	11.85 ± 0.42
$LOF_1 + MOT_2 $	11.87 ± 0.51	12.47 ± 0.51

- MOT1 performs better in single-factor setup. - The more fine-grained MOTs 0 and 2 perform better when they can be disregarded. - All our two-step setups below the baseline.

Data

Dataset	Sents (cs/en)	Tok
Small	197k parallel	4.2
Large	14.8M parallel	205
Mono	18M/50M	317N

Source ks (cs/en) 2M/4.8M CzEng 1.0 news 5M/236M CzEng 1.0 all M/1.265G WMT12 mono - All experiments used Small data only. - All submitted systems use Large and Mono data.

Omitted Training Data

- We forgot to include WMT12's Czech-English para data (News Commentary and Europarl) - This makes our system more comparable to
- CU-TectoMT.

and Physics, Institute of Formal and Applied Linguistics

Single-Step Experiments

Translate lemma and morphological tag separately.
With different factors and LMs used.

- Optionally with an alternative decoding path: tF-FaLaT.

Decoding Paths	LMs	Avg. BLEU	Eff. Nbl. Size
tL-L+tT-T+gLaT-F:tF-FaLaT	F + L + T	13.31±0.06	12.24 ± 1.33
tL-L+tT-T+gLaT-F	F + L + T	13.30 ± 0.05	40.33 ± 3.82
tL-L+tT-T+gLaT-F	F + T	13.17 ± 0.01	39.91 ± 2.58
tL-L+tT-T+gLaT-F:tF-FaLaT, 200-best-list	F + L + T	13.15 ± 0.24	20.47 ± 5.63
tF-FaLaT	F + L + T	13.13 ± 0.06	34.28 ± 3.08
tL-L+tT-T+gLaT-F:tF-FaLaT	L + T	13.09 ± 0.06	16.65 ± 1.07
tF-FaT	F + T	13.08 ± 0.05	39.67±2.21
tL-L+tT-T+gLaT-F:tF-FaT	F + T	13.01 ± 0.43	14.87 ± 5.04
tF-F (baseline)	F	12.38 ± 0.03	43.13±0.48
tL-L+tT-T+gLaT-F:tF-F	F	12.30 ± 0.03	17.83 ± 3.27

- N-best lists often contain fewer than N unique items (e.g. different segmentations lead to the same output).
- Added ambiguity of target-side factors makes this worse.
- Alternative decoding paths make this far worse.

- Overgeneralization in Two-Step: => Omission of important source-side features in the middle language.

Systems Submitted

			Our Scoring				matrix.statmt.org		
		Test Set	newste	st-2011	newstest-2012				
		Metric	BLEU	TER*100	BLEU	TER*100	BLEU	TER	
-		CU-POOR-COMB	-used-for-	-tuning-	14.17±0.53	64.07±0.53	14.0	0.741	
a.	→cs	CU-BOJAR (tFaT-FaT, lex. r.)	18.10±0.55	62.84±0.71	16.07 ± 0.55	65.52 ± 0.59	15.9	0.759	
		As † but towards 1-TER	16.10 ± 0.54	61.64±0.59	14.13±0.54	64.28 ± 0.55	_	_	
		Large Two-Step	17.34 ± 0.57	63.47±0.66	15.37 ± 0.54	65.85 ± 0.57	—	—	
		Unused (tFaT-FaT, dist. reord.)	18.07±0.56	62.74±0.70	15.92 ± 0.57	65.50 ± 0.60	_	_	
		Unused (tF-FaT, dist. reord.)	17.85 ± 0.58	63.13±0.68	15.73 ± 0.55	65.85 ± 0.58	—	—	
		Unused (tF-F, lex. reord.)	17.73 ± 0.58	63.04 ± 0.68	15.61 ± 0.57	65.76 ± 0.58	—	—	
rallel		Unused (tFaT-F, dist. reord.)	17.62 ± 0.56	62.97 ± 0.70	15.33 ± 0.58	65.70 ± 0.59	_	_	
allel		Unused (tF-F, dist. reord.)	17.51 ± 0.57	63.32±0.69	15.48 ± 0.56	65.79±0.58	_	_	
	→en	CU-BOJAR (tF-F:tL-F, dist. reord.)	24.65±0.60	58.54±0.66	23.09±0.59	61.24±0.68	21.5	0.726	
		Unused (tF-F, dist. reord.)	24.62 ± 0.59	58.66 ± 0.66	22.90 ± 0.56	61.63±0.67	_	_	

- MERT accummulates n-best lists from decoder runs at each iteration. - Within MERT optimization, different weights are tested.
- These tests only predict from the n-best list what the final hypothesis could be. - The actual search with such weights can lead to very different results, see the drops of the red curve.
- (Such drops are common for direct as well as complicated single-step setups.)
- MERT does recover from such drops in a few iterations.
- However, a drop too close to the iteration limit is unlikely to get recovered in time.
- => Weights obtained without convergence may be much worse than we expect.

generalization

Injustified independence assumptions reduce translation quality. Overgeneralization in Direct or Single-Step setups:

The-polices investigatepl policie|sg vyšetřují|pl gets translated as: instead of the correct: policies vyšetřujes

- Issue not noticed with very rich target-side morphology and small data.

TER Emphasizes Word Precision

- cu-poor-comb won in TER, but almost lost in BLEU and also manual evaluation. - The reason are much shorter hypotheses of
- cu-poor-comb, essentially just the intersection of words produced by the combined systems.