
The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009

EDITORIAL BOARD

Special issue guest editors

Ondřej Bojar, Chris Callison-Bruch, Jan Hajič, Philipp Koehn

Editor-in-Chief

Eva Hajičová

Editorial staff

Pavel Schlesinger
Pavel Straňák

Editorial board

Nicoletta Calzolari, Pisa
Walther von Hahn, Hamburg
Jan Hajič, Prague
Eva Hajičová, Prague
Erhard Hinrichs, Tübingen
Aravind Joshi, Philadelphia
Jaroslav Peregrin, Prague
Patrice Pognan, Paris
Alexander Rosen, Prague
Petr Sgall, Prague
Marie Těšitelová, Prague
Hans Uszkoreit, Saarbrücken

Published twice a year by Charles University in Prague

Editorial office and subscription inquiries:
ÚFAL MFF UK, Malostranské náměstí 25, 118 00, Prague 1, Czech Republic
E-mail: pbml@ufal.mff.cuni.cz

ISBN 978-80-904175-1-9
ISSN 0032-6585

© 2009 PBML. All rights reserved.

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009

CONTENTS

Editorial 5

Articles
Improved Minimum Error Rate Training in Moses
Nicola Bertoldi, Barry Haddow, Jean-Baptiste Fouet

7

Memory-Based Machine Translation and Language Modeling
Antal van den Bosch, Peter Berck

17

PostCAT – Posterior Constrained Alignment Toolkit
João Graça, Kuzman Ganchev, Ben Taskar

27

An Open Source Rule Induction Tool for Transfer-Based SMT
Yvette Graham, Josef van Genabith

37

Decoding in Joshua
Open Source, Parsing-Based Machine Translation
Zhifei Li, Chris Callison-Burch, Sanjeev Khudanpur, Wren Thornton

47

apertium-cy – a collaboratively-developed free RBMT system
for Welsh to English
Francis Tyers, Kevin Donnelly

57

Grammar based statistical MT on Hadoop
An end-to-end toolkit for large scale PSCFG based MT
Ashish Venugopal, Andreas Zollmann

67

© 2009 PBML. All rights reserved.

PBML 91 JANUARY 2009

Z-MERT: A Fully Configurable Open Source Tool for Minimum
Error Rate Training of Machine Translation Systems
Omar F. Zaidan

79

Unsupervised Generation of Parallel Treebanks through
Sub-Tree Alignment
Ventsislav Zhechev

89

Instructions for Authors 99

List of Authors 101

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009

EDITORIAL

Special Issue on Open Source Machine Translation Tools

We live in exciting times for machine translation. e field is making rapid progress due
to the refinement of statistical methods and the convergence of statistical, rule-based, and
knowledge-based approaches and increased linguistic sophistication of the employed mod-
els. Machine translation has found its way to everyday use through web based services such as
by Systran and Google. An increasing number of research papers are published by a growing
research community.

While the growing complexity and refinement of methods leads to advances in the field,
there is also the danger that it becomes too hard for a newcomer to build a machine translation
system in her garage (or, more commonly, her graduate research office): there are just toomany
tools to be build and methods to be mastered. We believe that it is essential for maintaining
machine translation as a vivid academic research field that tools and resources are most widely
shared. e history of the field so far has shown that advances come from many different
directions, oen from newcomers entering the field. is is possible due to a environment of
shared tools and resources.

e goal of a serious of annual workshops called “Machine Translation Marathon” that
started in 2007 under the EU-funded EuroMatrix project (Framework Programme 6) has been
to disseminatemethods and tools formachine translation. is year, theirdMachine Trans-
lationMarathon, held January 26–30 in Prague, also hosts a open source convention. We hope
to encourage the sharing of open source resources by providing a such a forum.

We solicited papers that describe open source tools for machine translation. We selected
among the submissions nine papers that are assembled in this special issue of the Prague Bul-
letin of Mathematical Linguistics (PBML No. 91). e papers cover different approaches to
machine translation — ranging from rule-based to statistical — and describe full systems and
specialized methods. All the papers describe tools that are readily available, and thus enable
future research to start novel research in the field without spending too much time catching up
with the state of the art.

Phillipp Koehn
Co-editor of the special issue
pkoehn@inf.ed.ac.uk

© 2009 PBML. All rights reserved.

PBML 91 JANUARY 2009

Note:
e index to the volumes 81–90 (2004–2008) will be published in the next regular issue of the
PBML No. 92 (2009).

Eva Hajičová
Editor-in-Chief
hajicova@ufal.mff.cuni.cz

6

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009 7–16

Improved Minimum Error Rate Training in Moses

Nicola Bertoldi, Barry Haddow, Jean-Baptiste Fouet

Abstract
Wedescribe an open-source soware forminimum error rate training (MERT) for statistical machine

translation (SMT). is was implemented within the Moses toolkit, although it is essentially standsalone,
with the aim of replacing the existing implementation with a cleaner, more flexible design, in order to
facilitate further research in weight optimisation. A description of the design is given, as well as experi-
ments to compare performance with the previous implementation and to demonstrate extensibility.

1. Introduction

1.1. Background

In StatisticalMachine Translation (SMT), probabilisticmodels are used to find the best pos-
sible target translation e∗ of a given source sentence f, amongst all possible translations e. e
search for the best translation is known as decoding. e probabilistic models are estimated
from bilingual and monolingual training data, and may include translation models, language
models, reordering models, etc. In order to combine evidence from different models, it is stan-
dard practice to use a discriminative linear model, with the log probabilities as features. If the
features of themodel areh1, . . . , hr, which depend on e and f, then the best translation is given
by

e∗(λ) = argmax
e

r∑
i=1

λihi(e, f)

and depends on the feature weights λ1, . . . , λr.
e advantage of combining log probabilities in such a linear model is that the features can

be arbitrary functions of the source and target sentences, and are not limited to just being log
probabilities. For instance, a word count feature can be added which will penalize long or short
sentences depending on the sign of the corresponding weight.

© 2009 PBML. All rights reserved.
Please cite this article as: Nicola Bertoldi, Barry Haddow, Jean-Baptiste Fouet, Improved Minimum Error
Rate Training in Moses. The Prague Bulletin of Mathematical Linguistics No. 91, 2009, 7–16.

PBML 91 JANUARY 2009

e problem then arises of how to optimize the feature weights, in other words how to find
a set of weights which will offer the best translation quality. e standard solution is to use
minimum error rate training (MERT), a procedure introduced by Och (2003), which searches
for weights minimizing a given error measure, or, equivalently, maximizing a given translation
metric. is algorithm enables the weights to be optimized so that the decoder produces the
best translations (according to some automatic metric Err and one or more references ref) on
a development set of parallel sentences.

λ∗ = argmin
λ

Err(e∗(λ); ref)

emain feature of Och’s approach is the exploitation of n-best translation alternatives (for
each input sentence), that allows for fast convergence of the optimization process. e trans-
lation metric most commonly employed as the objective in MERT is the  score (Papineni
et al., 2001), although any automatic metric could in principle be used.

e weight optimization algorithm introduced in Och (2003) (and more fully described
in Koehn (forthcoming)) is a form of coordinate ascent, where the search updates the feature
weight which appears most likely to offer improvements, then iterates. Since calculation of the
objective (in other words, the translation metric) is quite expensive, as much of it as possible
is pre-calculated before running the optimization. Because the error surface is highly non-
convex, MERT is always at risk of being trapped at local maxima; and because it uses n-best
lists as an approximation for the decoder output, it cannot explore the actual parameter space.
However, despite its limitations, MERT tends to produce good results.

MERT is the subject of ongoing research, for example to reduce the local maxima problem
using regularization and stochastic search (Cer et al., 2008), to make convergence faster and
more robust by selecting starting points by random walks (Moore and Quirk, 2008), and to
replace the n-best lists by lattices (Macherey et al., 2008) and thereby improve the estimates of
the expected translation score.

e MERT implementation discussed in this article is a subproject of Moses (Koehn et al.,
2007), one of the leading open source implementations of phrase-based machine translation
(Koehn et al., 2003). Having a state-of-the art SMT system available as open source has been
proved to be a successful way of enabling and stimulating research in the area, as researchers
do not have to invest large amounts of effort in reimplementing the work of others. In order to
improve on the current best systems, they can take Moses as starting point, learn from its open
code, and implement their own proposed improvements on top of it.

1.2. Motivations for New Soware

As stated in the previous Section, MERT is a crucial step for optimally tuning any SMT
system based on a discriminative linear model. Consequently, any possible enhancement of
MERT could improve the overall performance of an SMT system.

Moreover, an effective and efficient implementation of MERT is fundamental per se, and
essentially independent from the MT engine. In fact, weight optimization is still an open issue

8

N. Bertoldi, B. Haddow, J.-B. Fouet Improved MERT (7–16)

which theMT community continues researching on, especially in regard to convergence issues.
e availability of a flexible and modular open source soware could help this research.

Finally, the original implementation ofMERT provided withMoses is a collection of scripts
written in several programming language and in different periods. e interaction of the mod-
ules is not optimal, and consequently its efficiency is quite limited. e old version of MERT
strongly relies on  (Papineni et al., 2001) as an automatic MT measure, and on the weight
optimization criterion proposed by (Och, 2003); adding new automatic MT measures or new
optimization algorithms would have been hard.

For these reasons, during the Second MT Marathon¹ held in Berlin in 2008, it was decided
to implement MERT in a new standalone open-source soware and to isolate it from Moses as
much as possible. e new implementation was defined from scratch aiming at i) improving
efficiency in terms of computation time, runtime memory consumption, storage disk space,
etc.; ii) increasing modularity and flexibility to easily allow for new scoring measures and new
optimization criteria; iii) parallelizing some steps of the optimization process. e core of the
soware was written in C++. e new MERT soware is licensed under the LGPL².

A detail documentation how to use the soware can be found online³.

2. Design and Implementation

2.1. System Outline

Using a small (typically 500-1000) set of parallel sentences (the tuning set) MERT attempts
to find a set of feature weights which maximize the decoder performance on this set. e
full MERT algorithm consists of an outer loop and an inner loop (as illustrated in Figure 1).
e outer loop runs the decoder over the source sentences in the tuning set with a given set of
feature weights, generatingn-best lists of translations, and then calls the inner loop to optimize
the weights based on those n-best lists, repeating until the weights no longer change. In the
inner loop, an iterative line optimization algorithm (Och, 2003, Koehn, forthcoming) is applied
to search for the highest scoring feature weights using estimates of the decoder score derived
using the n-best lists.

To ensure that the n-best lists are as diverse as possible, the n-best lists produced by each
run of the decoder are merged with those produced by the previous runs. e number of
previous n-best lists can be chosen at runtime.

Within Moses, the outer loop was implemented using a perl script (mert-moses.pl) and
the original implementation of the inner loop (score-nbest.py and cmert) consisted of
perl, python and C programs. e main focus of the improved MERT was the inner loop,
which was completely rewritten from scratch, although a new version of the outer loop script
(mert-moses-new.pl) was also created as it was necessary to change the interface between
the inner and outer loops.

¹http://www.statmt.org/mtm2/
²http://www.gnu.org/licenses/lgpl.html
³http://www.statmt.org/moses/?n=FactoredTraining.Tuning

9

PBML 91 JANUARY 2009

Moses Optimizerinput

models

n-best

refs

Scorer

weights inner loop

outer loop

optimal

weights

scoretype

statistics

Figure 1. Outer and inner loops of MERT

Conceptually the inner loop consists of two components — the scorer and the optimizer —
which are made explicit by the object-oriented design of the new MERT. e job of the scorer
is to use an automatic metric (e.g. , , ) to score a given ranking of the n-best
lists, whilst the optimizer performs the actual parameter optimization. For efficiency purposes,
as much of the metric calculation as possible is performed prior to running the optimization,
because the optimizer will have to score a large number of translation hypothesis. For the 
scorer, for example, all the n-gram statistics are precalculated. e newMERT implementation
is currently split into two processes; extractor, which does the scoring precalculations, and
mert, which does the optimization. e extractor also has the job of extracting the feature
values corresponding to each hypothesis in the n-best list, and making them available to the
optimizer mert.

ere is also a regression testing framework for the new MERT, which simulates the outer
loop with pre-prepared data and makes it possible to check that the optimized weights agrees
with the expected. e testing framework produces timing information to enable the monitor-
ing of MERT runtime performance.

2.2. Object Model

In Figure 2 the main classes in the new MERT implementation are shown, using UML⁴.
e Scorer class is the abstract base class of all scorers, and currently has two concrete sub-
classes; BleuScorer, which implements , and PerScorer, which implements position-
independent recognition rate. e main work of the Scorer is done in the two statistics pre-
calculation methods (setReferenceFiles() and prepareStats()) and the main scoring
method (score()), which is used by the optimizer. In the scoring class hierarchy there is also
another abstract class (StatisticsBasedScorer). is is used to abstract out common
features of automatic translation metrics that are calculated by adding some statistics across all
examples in the test set and then performing a calculation on the totals.

e optimization strategy is also encapsulated in a class, the Optimizer, which
currently has one concrete subclass which implements the line optimization algorithm

⁴Unified Modelling Language - see www.uml.org for more information.

10

N. Bertoldi, B. Haddow, J.-B. Fouet Improved MERT (7–16)

ScoreStats
ScoreArray

ScoreData

FeatureStats
FeatureArray

FeatureData
OptimizerFactory

ScorerFactory

Optimizer

TrueRun()

StatisticsBasedScorer

BleuScorer PerScorer

RandomOptimizer SimpleOptimizer

Scorer

setReferenceFiles()
prepareStats()
score()

1

1..*

11..*

1 1..*

1

1..*

creates

creates

read/write data

read data

score

Figure 2. Class diagram for the MERT implementation

(SimpleOptimizer) and another which merely performs a baseline random optimization.
Another optimization strategy could easily be added by subclassing Optimizer and overrid-
ing theTrueRun()method. Both the scoring strategy classes and the optimizer strategy classes
have corresponding factories which are used to construct an instance of the appropriate type.

In addition to scoring and optimization, the other important set of classes are those that
concern input/output, and these are the Score* and Feature* classes found at the top of
Figure 2. Recall that at the start of the inner loop, the extractor processes the n-best lists,
extracting scoring statistics and feature values, and passes them to the mert process. e file
system is used to interface between these two processes, and the input/output classes are used
to load and save the data in either textual or binary format. e former is easier to debug,
whilst the latter offers better performance. extractor also transforms data from/to textual
and binary formats.

3. Evaluation
In this Section we compare the old and new implementations of MERT. First, we check that

they are similarly effective, i.e. that they provide similar optimized weights, and consequently
achieve similar translation performance. en, we measure the efficiency of the two versions
in terms of disk occupancy and computation time. Finally, we present an add-on of MERT
confirming the ease of extensibility of the new implementation.

3.1. Translation Performance
In order to verify that the new MERT works correctly, it was tested on two French-English

translation tasks using data provided for the ird Workshop on Statistical Machine Transla-

11

PBML 91 JANUARY 2009

tion (WMT08) (Callison-Burch et al., 2008), and the results compared to those achieved by
the old MERT implementation. In the first experiment, Moses was trained on the 2007 release
of the news-commentary (nc) parallel training set, using the target side of this for language
modelling. e nc-dev07 set was used for tuning on 100-best lists and the decoder was tested
on nc-devtest07, nc-test07 and newstest08. e  scores for the old and new MERT imple-
mentations are shown in Table 1.

nc-devtest07 nc-test07 newstest08
old mert 24.42 25.55 15.50
new mert 24.87 25.70 15.54

Table 1. Comparison of performance (bleu) of old and new MERT implementations,
using the news commentary training and test data.

e second experiment also used French-English data from the WMT08 workshop, but
this time Moses was trained, tuned and tested on europarl extracts. e training data was the
europarl v3 release, the tuning set was dev06 and the test sets were devtest06, test06 and test07.
Again both the new and old MERT implementations were used for tuning with 100-best lists.
e  scores are shown in Table 2. From the results of these two experiments, it can be

devtest06 test06 test07
old mert 32.75 32.67 33.23
new mert 32.86 32.79 33.19

Table 2. Comparison of performance (bleu) of old and new MERT implementations,
using the europarl training and test data.

seen that the weights learnt by the old MERT and new MERT lead to translation performances
which are virtually indistinguishable.

3.2. Space and Time Performance
We also compared the efficiency of the old and new MERT implementations in terms of

disk occupancy and computation time, we ran the two versions on a development data (dev06)
of the Spanish-English translation tasks ofWMT08workshop. Moses was trained in a standard
way on the data provided for this task. At each iteration we generated 200-best alternatives for
each of the 2000 input sentences in the tuning set. Extraction of score statistics and weight
optimization were performed on one 64bit Intel Xeon CPU 3.20GHz machine.

e number of n-best lists used by the new MERT soware to optimize weights, is con-
figurable at runtime: in addition to the last generated list, it can exploit from 0 to all previous
ones. We ran the new MERT soware in three different conditions, namely using 1, 3, and all
previous n-best lists. Each iteration of the optimization process of the four MERT configura-
tions, namely old, new-all, new-3, new-1, produces a set of weights, and hence a specific
system. ese systems are evaluated both on the dev06 and the test08; BLEU scores are shown
in Figure 3, respectively.

12

N. Bertoldi, B. Haddow, J.-B. Fouet Improved MERT (7–16)

For some reason to investigatemore deeply, the second iteration of the newMERTproduces
very bad weights, which gives performance close to 0. In any case, this behavior was already
observed byMacherey et al. (2008), who attribute the performance drop to an overfitting issue.

 20

 20.5

 21

 21.5

 22

 22.5

 23

 0 5 10 15 20

BL
EU

 (%
)

iteration

old
new-all
new-3
new-1

 20

 20.5

 21

 21.5

 22

 22.5

 23

 0 5 10 15 20

BL
EU

 (%
)

iteration

old
new-all
new-3
new-1

Figure 3. bleu score of different versions of MERT on dev06 (left) and test08 (right).

Both MERT implementations converges aer 5/6 iterations, when using all the previous
n-best lists; while convergence is slower and less stable if new MERT uses fewer.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 2 4 6 8 10 12 14 16 18 20

Si
ze

 (M
b)

iteration

old
new-all
new-3
new-1

Figure 4. Global size (in Mbytes) of the files needed to the MERT implementations
at each iterations.

Figure 4 reports the total size (in Mbytes) of files needed to store all the required statistics
for the weight optimization at a given iteration. Figures are given for compressed⁵ files for
the old versions and for the binary files of the new one. New implementation requires twice a
bigger disk occupancy; but limiting the number of previous n-best lists taken in consideration
for optimization allows to maintain the disk usage constant.

e plot on the le of Figure 5 shows time (in seconds) to perform a single iteration, ex-
cluding time for decoding and generating the actual n-best list because independent from the

⁵Compression is performed by the gzip command of Linux with its default compression level (6).

13

PBML 91 JANUARY 2009

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 2 4 6 8 10 12 14

tim
e

(s
ec

on
ds

)

iteration

old, total
new-all, total
new-3, total
new-1, total

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 2 4 6 8 10 12 14

tim
e

(s
ec

on
ds

)

iteration

old, phase 1
old, phase 2

new-all, phase 1
new-all, phase 2

Figure 5. Time for performing a single iteration (left). Time for extracting features
and computing score statistics (phase 1), and for optimizing weights (phase 2)

(right).

inner loop of any MERT implementations. e plot on the right reports separately the time
of the two phases which the inner loop is divided in: 1) extracting feature scores, computing
score statistics and saving on the disk, and 2) optimizing weights.

In phase 1 the old MERT implementation sorts actual translation candidates and removes
duplicates of those already observed in previous iterations; instead, the new one computes and
stores information for all candidates of the actual n-best list. Consequently, in phase 2 the old
version searches the best weights over a smaller set of candidates than the new one. Hence,
the former takes a time proportional to the stored candidates in both phases; while the latter
requires a constant time for the first phase and a larger time for the second one. e gap slightly
expands as the number of iterations (and candidates) increases. Again, the new MERT imple-
mentation easily allows to bound computation time by taking into account fewer iterations.

It is worth noticing that new MERT soware is still under development, and the removal
of duplicates has the highest priority in the agenda of enhancements.

3.3. Extensibility

Since one of the aims of the re-implementation of MERT was to provide a cleaner design
and so improve the extensibility of the codebase, a useful opportunity to test this extensibility
was presented by some recently published improvements to theMERT algorithm. It was shown
by Cer et al. (2008) that by using a form of “regularization”, the risk of MERT being misled by
spurious maxima (i.e. spikes in the error surface) could be reduced, leading to improvements
in translation performance. e central idea is that, when performing a line search for the best
 score, instead of taking the  scores at each point, the  scores are “smoothed
out” across a neighborhood of the point. is smoothing out is accomplished by one of two
strategies; taking the minimum or taking the average.

When implementing the regularization method (Cer et al., 2008), it was clear that it was
not just applicable to , and so was implemented higher up the class hierarchy (in Statis-

14

N. Bertoldi, B. Haddow, J.-B. Fouet Improved MERT (7–16)

ticsBasedScorer - see Figure 2) so that it could be used with other scoring schemes. e
implementation was a straightforward addition to the score()method.

To test the effect of the regularization on translation performance, experiments were per-
formed using the WMT08 data for the language pairs French-English and German-English.
e europarl parallel training set was used for training, with the europarl monolingual for lan-
guage modelling, dev06 for tuning, and the resulting system tested on devtest06, test06 and
test07. e translation scores are shown in Table 3. Unfortunately no clear pattern is visible in

en-fr en-de
Method Window devtest06 test06 test07 devtest06 test06 test07
none n/a 32.86 32.79 33.19 27.54 27.67 28.07
minimum ±1 32.70 32.65 33.20 27.51 27.79 28.00

±2 32.81 32.75 33.21 27.75 27.85 28.10
±3 32.83 32.76 32.93 27.70 27.92 27.96
±4 32.88 32.77 33.24 27.70 27.87 28.02

average ±1 32.79 32.77 33.29 27.44 27.81 28.00
±2 32.89 32.83 33.28 27.63 27.73 27.98
±3 32.78 32.67 33.19 27.53 27.67 27.87
±4 32.81 32.79 33.25 27.81 28.01 28.22

Table 3. Experiments with mert regularization

the results in Table 3. Examination of the error surfaces explored by MERT suggests that they
are fairly smooth and not prone to the sort of sudden spikes that this regularisation is designed
to smooth out. It is hypothesised that for unrelated language pairs (such as Chinese-English)
these kind of irregularities in the error surface are more common than for related (and there-
fore easier) language pairs such as German-English and French-English. Further investigation
would be required to confirm this hypothesis.

Developers have already added Position Independent Error Rate () as an alternative
automatic translation score. Results are not reported, because they essentially confirm those
achieved by exploiting .

4. Conclusion and Future Work

In this paper we presented a new open-source soware implementing MERT. Although it
is still distributed under Moses toolkit, it is essentially a standalone piece of soware. e most
important characteristic of the distribution is its modularity which allows an easy extensibility
to new error measures and enhanced optimization algorithms. At the moment,  score
and  are implemented and two optimization criteria can be chosen: a (possibly smoothed)
line-wise optimization, and a dummy random optimization.

New version of MERT actually requires more disk usage and is slightly slower than the
previous one, because it does not remove duplicate translations from the n-best lists. is
issue will be addressed very soon. e parallelization of portions of the algorithm is also in the
close-term agenda, to reduce computational time.

15

PBML 91 JANUARY 2009

In the close future, developers will also work on i) adding new automatic measures, like
WER and NIST score, and combination of them, ii) constraining the space of the feature
weights, iii) adding priors to weights and iv) implementing the lattice optimization as proposed
by Macherey et al. (2008).

Bibliography

Callison-Burch, Chris, Philipp Koehn, Christof Monz, Josh Schroeder, and Cameron Shaw Fordyce, ed-
itors. 2008. Proceedings of the ird Workshop on Statistical Machine Translation. Association for
Computational Linguistics, Columbus, Ohio.

Cer, Daniel, Dan Jurafsky, and Christopher D. Manning. 2008. Regularization and search for minimum
error rate training. In Proceedings of the ird Workshop on Statistical Machine Translation, pages
26–34, Columbus, Ohio.

Koehn, Philipp. forthcoming. Statistical Machine Translation. Cambridge University Press.

Koehn, Philipp, HieuHoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation.
In Proceedings of ACL Demo Session, pages 177–180, Prague, Czech Republic.

Koehn, Philipp, Franz J. Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Proceed-
ings of HLT-NAACL, pages 127–133, Edmonton, Canada.

Macherey, Wolfgang, Franz Och, Ignacio ayer, and Jakob Uszkoreit. 2008. Lattice-based minimum
error rate training for statistical machine translation. In Proceedings of EMNLP, pages 725–734, Hon-
olulu, Hawaii.

Moore, Robert C. and Chris Quirk. 2008. Random restarts in minimum error rate training for statistical
machine translation. In Proceedings of Coling, pages 585–592, Manchester, UK.

Och, Franz Josef. 2003. Minimum error rate training in statistical machine translation. In Proceedings of
ACL, pages 160–167, Morristown, NJ, USA.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2001. Bleu: a method for automatic
evaluation of machine translation. Research Report RC22176, IBM Research Division, omas J.
Watson Research Center.

16

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009 17–26

Memory-Based Machine Translation and Language Modeling

Antal van den Bosch, Peter Berck

Abstract
We describe a freely available open source memory-based machine translation system, . Its

translation model is a fast approximate memory-based classifier, trained to map trigrams of source-
language words onto trigrams of target-language words. In a second decoding step, the predicted tri-
grams are rearranged according to their overlap, and candidate output sequences are ranked according
to a memory-based language model. We report on the scaling abilities of the memory-based approach,
observing fast training and testing times, and linear scaling behavior in speed and memory costs. e
system is released as an open source soware package¹, for which we provide a first reference guide.

1. Introduction

Recently, several independent proposals have been formulated to integrate discrete classi-
fiers in phrase-based statistical machine translation, to filter the generation of output phrases
(Bangalore, Haffner, and Kanthak, 2007, Carpuat andWu, 2007, Giménez and Màrquez, 2007,
Stroppa, Van den Bosch, and Way, 2007), all reporting positive effects. is development ap-
pears an interesting step in the further development of statistical machine translation. ese
same developments can also be employed to produce simple but efficient stand-alone transla-
tion models.

In this paper, we introduce,memory-basedmachine translation. ememory-based
approach, based on the idea that new instances of a task can be solved by analogy to similar
instances of the task seen earlier in training and stored in memory as such, has been used
successfully before in various NLP areas; for an overview, see (Daelemans and Van den Bosch,
2005).

M is a stand-alone translation model with a simple decoder on top that relies on a
memory-based language model. With a statistical word alignment as the starting point, such

¹http://ilk.uvt.nl/mbmt

© 2009 PBML. All rights reserved.
Please cite this article as: Antal van den Bosch, Peter Berck, Memory-Based Machine Translation and
Language Modeling. The Prague Bulletin of Mathematical Linguistics No. 91, 2009, 17–26.

PBML 91 JANUARY 2009

De stemming vindt vanavond plaats .

The vote will take place this evening .

_ De stemming _ The vote

De stemming vindt The vote will

stemming vindt vanavond vote will take

vindt vanavond plaats

vanavond plaats . take place this

plaats . _ evening . _

this evening .

Figure 1. An example training pair of sentences, converted into six overlapping
trigrams with their aligned trigram translations.

as produced by ++ (Och and Ney, 2003),  is shown to be very fast both in training
and translation.

e overall architecture of the system is described in Section 2. A brief evaluation and
reference guide of the system is provided in Section 3. e language modeling module, also
made available as a separate language modeling toolkit, is described in Section 4. We wrap up
in Section 5.

2. Memory-based machine translation

Memory-based machine translation (Van den Bosch, Stroppa, andWay, 2007) can be char-
acterized as an instantiation of example-based machine translation (), as it essentially
follows ’s basic steps (Carl and Way, 2003): given a sentence in the source language to be
translated, it searches the source side of the corpus for close matches and their equivalent tar-
get language translations. en, it identifies useful source–target fragments contained in those
retrieved examples; and finally, it recombines relevant target language fragments to derive a
translation of the input sentence.

e scope of the matching function implied in the first step is an important choice. We
take a simplistic approach that assumes no linguistic knowledge; we use overlapping trigrams
of words as the working units, both at the source language side and the target language side.

e process of translating a new sentence is divided into a local phase (corresponding to
the first two steps in the  process) in which memory-based translation of source trigrams
to target trigrams takes place, and a global phase (corresponding to the third  step) in
which a translation of a sentence is assembled from the local predictions. We describe the two
phases in the following two subsections.

2.1. Local classification

Both in training and in actual translation, when a new sentence in the source language is
presented as input, it is first converted into windowed trigrams, where each token is taken as
the center of a trigram once. e first trigram of the sentence contains an empty le element,
and the last trigram contains an empty right element. At training time, each source language
sentence is accompanied by a target language translation. We assume that word alignment has

18

A. van den Bosch and P. Berck Memory-Based Machine Translation (17–26)

zin no point in

the sense that

in terms of

this respect ,

no sense to

that sense ,

...

185

98

72

56

56

48

geen no point in 151

no sense to 50

no sense in 19

make sense to 11

not want to 10

no sense for 10

...

om no point in 43

no sense to 14

no sense in 6

make sense to 4

not worth our 2

The vote on 6

...
die the sense that 63

this respect , 53

that sense , 47

this regard , 28

this sense , 26

in mind , 13

.........

zink omdat no point in 1

is meaningless because 1

legal point of 1

, zinc and

or zinc .

on zinc-risk analysis

using calcium-zinc compounds

1

1

1

1

... ...

Figure 2. Excerpt of an mbmt igtree structure, zooming in on the path represented
by the input trigram “geen zin om”, translatable to “no point in”, among others.

taken place, so that we know for each source word whether it maps to a target word, and if
so, to which. Examples are only generated for source words that align to target words. Given
the alignment, each source trigram is mapped to a target trigram of which the middle word
is the target word to which the word in the middle of the source trigram aligns. e le and
right neighboringwords of the target trigramare the centerword’s actual neighbors in the target
sentence. Figure 1 exemplifies the conversion of a training translation to six trigrammappings.

During translation, source trigrams are matched against the training set of stored source
trigrams with a known mapping to a target trigram. e matching is carried out as a dis-
crete classification. To this purpose we make use of ² (Daelemans, Van den Bosch, and
Weijters, 1997), which compresses a database of labeled examples into a lossless-compression
decision-tree structure that preserves the labeling information of all training examples. Fig-
ure 2 displays a fragment of the decision tree trained on the translation of Dutch trigrams
to English. It highlights one path in the tree, representing the Dutch trigram “geen zin om”
(translatable, among others, into “no point in” and “no sense to”). e tree encodes all possi-
ble trigram translations of, respectively, the middle word “zin”, the bigram “geen zin”, and the
full trigram. is order reflects the information-gain weights of the three words with respect
to predicting the output class.

During translation, ’s classification algorithm traverses the decision tree, matching
the middle, le, and right words of each new trigram to a path in the tree. Two outcomes are
possible: (1)  finds a complete matching path, upon which it returns the most probable
output trigram; (2)  fails to match a value along the way, upon which it returns the most
probable output trigram given the matching path so far. Instead of the most probable path, it
is also possible for  to return the full distribution of possible trigrams at the end of a
matching path.

When translating new text, trigram outputs are generated for all words in each new source
language sentence to be translated, since our system does not have clues as to which words
would be aligned by statistical word alignment.

²http://ilk.uvt.nl/timbl

19

PBML 91 JANUARY 2009

2.2. Global search

To convert the set of generated target trigrams into a full sentence translation, the overlap
between the predicted trigrams is exploited. Figure 3 illustrates a perfect case of a resolution
of the overlap (drawing on the example of Figure 1), causing words in the English sentence to
change position with respect to their aligned Dutch counterparts. e first three English tri-
grams align one-to-one with the first three Dutch words. e fourth predicted English trigram,
however, overlaps to its le with the fih predicted trigram, in one position, and overlaps in
two positions to the right with the sixth predicted trigram, suggesting that this part of the En-
glish sentence is positioned at the end. Note that in this example, the “fertility” words take and
this, which are not aligned in the training trigram mappings (cf. Figure 1), play key roles in
establishing trigram overlap.

In contrast to the ideal situation sketched in Figure 3, where one translation is produced, in
practice many different candidate output sequences can be generated due to two reasons: first,
each (potentially partially or fully incorrect) trigram may overlap with more than one trigram
to the le or right, and second, the classifier may produce more than one output trigram at a
single position, when it reaches a non-ending node with equally-probable trigram classes.

To select the most likely output among the potentially large pool of candidate outputs, we
employ a memory-based target language model (Van den Bosch, 2006). is model, called
, described in more detail in Section 4, is a word prediction  system trained on
a monolingual target language corpus, which produces perplexity scores for each candidate
output sequence presented to it.

W provides the language model in a different way than most standard models do. Most
models, like for example  (Stolcke, 2002), estimate probabilities of words in context and
build a back-off model containing n-grams to unigrams. W uses a trigram model (it is
not limited to trigrams, it could use any size and any context) but, because it uses the 
algorithm, stores exceptions to default values rather than all n-grams. Other language models
could be used, but we prefer to use  because it uses the same  model also used
as the core translation engine in the  system. e model is described in more detail in
Section 4.

As the number of possible output sequences may be large,  currently applies Monte
Carlo sampling to generate candidate output sequences to be scored by . is sampling
is subject to a patience threshold p that halts the generation of new candidates when no im-
provement in perplexity scores is observed for p sample steps. By default, p = 100.

3. Evaluation and an Annotated Example

For the purpose of a brief evaluation, we first focus on the translation of Dutch to En-
glish, using the  corpus, part of the Opus open source parallel corpus³. e  corpus
contains documents from the European Medicines Agency⁴. Texts in this corpus are of a re-

³http://urd.let.rug.nl/tiedeman/OPUS/ – downloaded in June 2008.
⁴http://www.emea.europa.eu/

20

A. van den Bosch and P. Berck Memory-Based Machine Translation (17–26)

this evening .

_ The vote

The vote will

vote will take

take place this

evening . _

Figure 3. Producing a global solution by resolving the overlap between six
trigrams. Italicized words are not aligned with source words.

stricted genre, consisting of quite formal, exact, and largely controlled language. We used the
first 749,602 lines of text (approximately 9.0 million English and Dutch words). e corpus
was split into a final 1,000-sentence test set and a training set containing the remainder of the
data. e training sets were word-aligned using the ++ algorithm (Och and Ney, 2003).
No decapitalization was performed. e -based language model used for translation is
a single model trained on the first 112 million words of the Reuters RCV1 corpus.

We performed a learning curve experiment on the  training set. We start at a training
set size of 100,000 tokens, and increment with steps of 100,000 until 1 million tokens; then,
we increment with steps of 1 million tokens up to the maximal training set size of 9 million
tokens. e learning curve experiment serves to get an idea of the scaling abilities of 
in terms of performance; we also measure training and testing speeds and memory footprint.
e learning curve experiment on the  corpus produced performance curves of which we
combine two in the le graph of Figure 4: the  and  (exact) scores. Both curves
show a steady but somewhat weakening increase when the dataset doubles in size (note that
the x axis is logarithmic).

Second, the middle graph of Figure 4 displays the number of seconds it takes to construct
a decision tree, and to test. Testing occurs in a few seconds (up to eight seconds for 1,000 sen-
tences, with an approximately linear increase of one second of testing timewith each additional
million training examples); the test graph virtually coincides with the x axis. Training times are
more notable. e relation between training times and number of training examples appears
to be linear; on average, each additional million of training examples makes training about 130
seconds slower.

ird, the right graph of Figure 4 shows a similar linear trend of the memory footprint
needed by  and its decision tree, in terms of Megabytes. At 9 million training examples,
the decision tree needs about 40 Mb, an average increase of 4.4 Mb per additional million
examples.

As a second evaluation, we compare against the performance and training and testing times
of  on the  corpus at the maximal training set size. Table 1 lists the performance
on the test data according to word error rate, position-independent word error rate, ,
Meteor, and . As is apparent from the results,  performs at a markedly higher level

21

PBML 91 JANUARY 2009

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100000 1e+06

M
T

 e
va

lu
at

io
n

m
et

ric

Number of training tokens

BLEU
METEOR

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8 9

S
ec

on
ds

Number of training tokens (x million)

Training
Testing

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9

M
eg

ab
yt

es

Number of training tokens (x million)

Figure 4. Learning curves on the emea corpus in terms of MT evaluation (bleu and
meteor, left, with a logarithmic x-axis), seconds to train and test (middle; the test

graph virtually coincides with the x axis), and memory needed (right), with
increasing amounts of training material available.

of performance, but does so at the cost of a longer translation time:  is about 20 times
as fast. Training  is about 10 times as fast as training ; in both cases, the ++
process has already been performed and is not included here.

System WER PER BLEU Meteor NIST Training (h:m:s) Test (m:s)
 72.7 63.6 0.238 0.460 4.97 20:17 0:08
 46.6 39.4 0.470 0.650 7.06 3:10:06 2:51

Table 1. Comparing mbmt agains moses on the emea corpus, in terms of five MT
evaluation metrics, and training and testing times (elapsed wallclock time).

Annotated Example

e  soware assumes a ++-style A3 file, i.e. a word alignment file containing
all aligned source and target training sentences, as training material. e soware will convert
this training file into an  decision tree, and is then capable of translating a raw text file in
the source language (tokenized, one sentence per line) into a translated raw text file in the tar-
get language (also one sentence per line). e commandline functionality is currently limited
to the identification of the A3 training file, and the source-language test text, plus the optional
setting of the patience threshold to a non-default setting, e.g. p = 50, with the -p switch:

mbmt -t EMEA.9m.train.A3.final -t EMEA-dutch.test.txt -p50

During runtime,  generates several intermediary files. First, the A3 file is converted to
a training file suited for , mapping source-language trigrams to aligning target-language
trigrams (cf. Figure 1). Subsequently, this file is compressed into an  decision tree, at

22

A. van den Bosch and P. Berck Memory-Based Machine Translation (17–26)

a typical compression rate of about 95%. e test set is also converted into trigram instances
(one instance per word), which are then classified by . is output is stored in a file of
which the first line looks as follows:

na de behandeling ? after_the_end { after_the_end 3.00000,
,_the_rate 3.00000, after_the_treatment 3.00000 }

eDutch trigram na de behandeling (“aer the treatment”) is classified by  as map-
ping to three equally likely trigram translations. ese three translations will be carried along
to the final phase, where all predicted trigrams are used to generate possible translations, using
a Monte Carlo sampling method with a halting criterion governed by the patience parameter
p. Each candidate output sequence is scored by , the memory-based language model.

4. Memory-based language modeling

e  system generates a candidate number of translations for each input sentence.
e typical approximate solution to picking the best translation is to use a language model to
determine which translation fits best in the target language, e.g. selecting the candidate string
with the lowest perplexity score.

In the  system,  is the language model. It is a word predictor based on ,
trained to predict the next word in a sentence (Van den Bosch, 2006). To calculate the per-
plexity of a sentence, we feed it to  and see which words it predicts for each word in the
sentence. e perplexity is calculated from the estimated probabilities of each prediction. A
prediction is a classification by  based on a local context of preceding words. In con-
trast with how  is used in the  translation module, the word predictor classifier
in  produces class distributions (with more than one class if the classification occurs at a
non-ending node).

us,  usually returnsmore than one word for a given sequence, together with a prob-
ability based on frequency counts. is distribution of possible answers is used to calculate a
perplexity value. ere are three possibilities: (1) If the distribution returned by  con-
tains the correct word, we take the probability of the word in the distribution; (2) If the dis-
tribution does not contain the correct word, we check if it is in the lexicon. If it is, the lexical
probability is taken; (3) If it is not in the lexicon, a probability for unseen items is used that is
estimated through Good-Turing smoothing. W calculates the sum of−p log2(p) of all the
probabilities (one for each word in the sentence), and divides this by the number of words to
obtain the average over the sentence. e perplexity value is two to the power of this sum.

Annotated Example

Besides its language modeling functionalities of predicting words and measuring perplex-
ities,  also provides the necessary tools to prepare the data, create datasets and train its
prediction models. e following shows how a memory-based language model can be created
starting from plain text data. Let us assume the file is called corpus1.txt. W commands

23

PBML 91 JANUARY 2009

generally have two parameters. e first one, -r tells  which subroutine or tool to run.
e second parameter, -p is a comma separated list of keyword:value pairs which specify
the different parameters.

As a first step,  is used to create a lexicon, which in this case is a list of words and
their frequency in the corpus. It also generates a list with “counts of counts”, which is used in
Good-Turing smoothing of probabilities.

wopr -r lexicon -p filename:corpus1.txt

W creates output file names based on the input file name and the command that is ex-
ecuted. In this case, it creates two files called corpus1.txt.lex and corpus1.txt.cnt.
Next, we generate our windowed dataset. In this example we use a window size of three previ-
ous words. e resulting file is called corpus1.txt.ws3.

wopr -r window_s -p filename:corpus1.txt,ws:3

We want to discard words with a frequency of five or less from our data set, and replace
them with a special token <unk>. is is done with the following command:

wopr -r hapax -p filename:corpus1.txt.ws3,lexicon:corpus1.txt.lex,
hpx:5

We then train our instance base. W is used as a wrapper in this case, and most of the
work is done by . is could take some time, depending on the size of the data, but once
the decision tree has been created and saved, it can easily be read in and used again.

wopr -r make_ibase -p corpus1.txt.ws3.hpx5,timbl:"-a1 +D"

Now we are ready to run our word predictor on a test file. e command to do this is as
follows:

wopr -r pplxs -p filename:test1.txt.ws3.hpx5,ibasefile:
corpus1.txt.ws3.hpx5.ibase,timbl:"-a1 +D"

e test data is prepared in the same way as the training data. e following shows a line
of output from . It shows an instance (I would like), the following word (to) and the
–in this case correct– guess from the predictor, to.

I would like to to -0.351675 1.8461 1.27604 65 [to 768 the 34
a 20 it 12 an 12]

is is followed by a number of statistics. e logprob of the prediction is -0.351675. e
entropy of the distribution returned by  is 1.8461 (−

∑
p log2(p)). e third number

24

A. van den Bosch and P. Berck Memory-Based Machine Translation (17–26)

shows the word level perplexity (2−logprob). e last number shows the number of elements
in the distribution, in this case 65. is is followed by a top 5 of the distribution returned (with
counts).

It is also possible to run  in server mode, communicating over a socket connection
with a client; in fact, this is how it is incorporated in the  system. In server mode, 
will wait for a connection by another program and process the data it receives. e answer is
sent back over the same connection.

5. Discussion

We have released , a straightforward translation model based on a fast approxima-
tion of memory-based classification. e approach fits into the  framework; it models
the mapping of sequences of word spans (here, word trigrams) in the source language to word
trigrams in the output language. We showed that  scales well to increased amounts of
learning material. Within the current experiments we observed that training time and mem-
ory storage costs are approximately linear in the number of training examples. Translation
speed on unseen data is very fast; our test set of 1,000 sentences was processed within seconds.
Based on these results, we conclude for now that memory-based machine translation systems
may be relevant in cases in which there is a need for fast and memory-lean training and/or
classification. e low memory footprint may be additionally interesting for implementations
of such systems in limited-capacity devices.

As a separate component of  we have released the memory-based language model
soware package , which can also be used in isolation for general language modeling
purposes. W offers its functionality through command line options, but can also run in
server mode; this is how  uses .

Acknowledgments

is research is funded by NWO, the Netherlands Organisation for Scientific Research. We
are grateful to Nicolas Stroppa, Andy Way, and Patrik Lambert for discussions and help with
the comparison with Moses.

Bibliography

Bangalore, S., P. Haffner, and S. Kanthak. 2007. Statistical machine translation through global lexical
selection and sentence reconstruction. In Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics, pages 152–159, Prague, Czech Republic. Association for Computational
Linguistics.

Carl, M. and A. Way. 2003. Recent Advances in Example-Based Machine Translation, volume 21 of Text,
Speech and Language Technology. Dordrecht, the Netherlands: Kluwer.

Carpuat, M. and D. Wu. 2007. Improving statistical machine translation using word sense disambigua-
tion. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL), pages 61–72.

25

PBML 91 JANUARY 2009

Daelemans, W. and A. Van den Bosch. 2005. Memory-based language processing. Cambridge University
Press, Cambridge, UK.

Daelemans, W., A. Van den Bosch, and A. Weijters. 1997. ree: using trees for compression and
classification in lazy learning algorithms. Artificial Intelligence Review, 11:407–423.

Giménez, J. and L. Màrquez. 2007. Context-aware discriminative phrase selection for statistical machine
translation. In Proceedings of the SecondWorkshop on Statistical Machine Translation, pages 159–166,
Prague, Czech Republic, June. Association for Computational Linguistics.

Och, F.-J. and H. Ney. 2003. A systematic comparison of various statistical alignment models. Compu-
tational Linguistics, 29(1):19–51.

Stolcke, A. 2002. SRILM – An extensible language modeling toolkit. In Proceedings of the International
Conference on Spoken Language Processing, pages 901–904, Denver, CO.

Stroppa, N., A. Van den Bosch, and A. Way. 2007. Exploiting source similarity for SMT using context-
informed features. In A. Way and B. Gawronska, editors, Proceedings of the 11th International Con-
ference on eoretical Issues in Machine Translation (TMI 2007), pages 231–240, Skövde, Sweden.

Van den Bosch, A. 2006. Scalable classification-based word prediction and confusible correction. Traite-
ment Automatique des Langues, 46(2):39–63.

Van den Bosch, A., N. Stroppa, and A. Way. 2007. A memory-based classification approach to marker-
based EBMT. In F. Van Eynde, V. Vandeghinste, and I. Schuurman, editors, Proceedings of theMETIS-
II Workshop on New Approaches to Machine Translation, pages 63–72, Leuven, Belgium.

26

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009 27–36

PostCAT – Posterior Constrained Alignment Toolkit

João Graça, Kuzman Ganchev, Ben Taskar

Abstract
In this paper we present a new open-source toolkit for statistical word alignments - Posterior Con-

strained Alignment Toolkit (PostCAT). e toolkit implements three well known word alignment algo-
rithms (IBM M1, IBM M2, HMM) as well as six new models. In addition to the usual Viterbi decoding
scheme, the toolkit provides posterior decoding with several flavors for tuning the threshold. e toolkit
also provides an implementation of alignment symmetrization heuristics and a set of utilities for ana-
lyzing and pretty printing alignments. e new models have already been shown to improve intrinsic
alignment metrics and also to lead to better translations when integrated into a state of the art machine
translation system. e toolkit is developed in Java and available in source at its website ¹. We encourage
other researchers to build on our work by modifying the toolkit and using it for their research.

1. Motivation

Word alignments are a valuable resource for several areas of natural language processing
but especially for statistical machine translation (SMT) as they are a first step in most SMT
pipelines. ere has been a large quantity of research on improving word alignment models,
the impact of differentword alignments on SMTquality, and how to better useword alignments
to extract theminimal units used in SMT systems such as phrases or rules. e vast majority of
this work has unfortunately been done on in-house systems not released publicly with the result
that researchers oen have to re-implement previous work before they can improve upon it.
e notable exception is the widely used GIZA++ toolkit (Och and Ney, 2003). Unfortunately
there have been many improvements since the toolkit’s publication, and the toolkit does not
have many of the components for easy analysis of the alignment results.

We address this gap by introducing a new open-source toolkit - Posterior Constrained
AlignmentToolkit (PostCAT) - that implements improved alignmentmodelswith results proven

¹http://www.seas.upenn.edu/∼strctlrn/CAT/CAT.html

© 2009 PBML. All rights reserved.
Please cite this article as: João Graça, Kuzman Ganchev, Ben Taskar, PostCAT – Posterior Constrained
Alignment Toolkit. The Prague Bulletin of Mathematical Linguistics No. 91, 2009, 27–36.

PBML 91 JANUARY 2009

to boost SMT performance, as well as a set of utilities for the investigation of the effect of word
alignment in overall SMT systems. e new models are trained with a new training procedure,
called Constrained Expectation Maximization (Graça, Ganchev, and Taskar, 2008) that allows
the user to specify prior information such as “alignments should be symmetric” or “each word
should align to at most one word”.

is toolkit has been used by us in three peer-reviewed publications. e procedure was
introduced byGraça et al. (2008) and shown to improve intrinsicmeasures of alignment quality.
Ganchev et al. (2008) show that the new word alignments and posterior decoding improve
overall SMT quality on 6 different language pairs for different training sizes. e new models
lead to an significant improvement (as measured by BLEU (Papineni et al., 2002)) in 16 out
of 18 test cases. Finally the pretty printing and alignment statistics code was used in Graça
et al. (2008) where golden sets of word alignments were produced for all combination of 4
different languages.

is paper is organized as follows. Section 2 gives a brief presentation of the models im-
plemented in the framework. Section 3 describes the code organization, and some easy access
points for improvement. Section 4 describes how to use the code to replicate the results in our
previous papers. Section 5 describes related work and Section 6 concludes the paper.

2. Word Alignments Models

is section briefly describes the models implemented in the PostCAT. More detailed de-
scriptions are available in (Brown et al., 1994), (Vogel, Ney, and Tillmann, 1996) and (Graça,
Ganchev, and Taskar, 2008) along with derivations. Our goal here is to include enough details
to make the next section easier to understand.

2.1. Baseline Models

e “baseline” models are the well know IBM Model 1, IBM Model 2 (Brown et al., 1994)
and the HMM model proposed by (Vogel, Ney, and Tillmann, 1996). e three models can be
expressed as:

p(t, a | s) =
∏

j

pd(aj|j, aj−1)pt(tj|saj
), (1)

with the three differing in their definition of the distortion probability pd(aj|j, aj−1). Model
1 assumes that the positions of the words are not important and assigns uniform distortion
probability. Model 2 allows a dependence on the positions pd(aj|j, aj−1) = pd(aj|j) and the
HMMmodel assumes that the only the distance between the current and previous source word
are important pd(aj|j, aj−1) = pd(aj|aj − aj−1). All the models are augmented by adding
a special “null” word to the source sentence. e likelihood of the corpus, marginalized over
possible alignments is concave for Model 1, but not for the other models (Brown et al., 1994).

All these models we consider are normally trained using the Expectation Maximization
(EM) algorithm (Dempster, Laird, and Rubin, 1977). e EM algorithm attempts to maximize
the marginal likelihood of the observed data (s, t pairs) by repeatedly finding a maximal lower

28

J. Graça, K. Ganchev, B. Taskar PostCAT (27–36)

bound on the likelihood and finding themaximal point of the lower bound. e lower bound is
constructed by using posterior probabilities of the hidden alignments (a) and can be optimized
in closed form from expected sufficient statistics computed from the posteriors. e posteriors
are hardest to compute for the HMM alignment model but can be efficiently calculated by the
forward-backward algorithm.

2.2. NewModels

A well known problem when using the EM algorithm is the potential to be stuck in local
maxima of the likelihood function. More importantly for word alignment, the models are very
gross over-simplifications of the world and the optimal likelihood might not correspond to the
optimal model parameters or optimal alignments. It has been shown that increases in likeli-
hood can actually decrease alignment performance. e obvious solution to this problem is to
bring the model closer to a faithful representation of the real world. is is the approach taken
by IBM models 4+ (Brown et al., 1994) and by (Liang, Taskar, and Klein, 2006) who introduce
an agreement component into the models with an intent similar to the one we address. Un-
fortunately, these changes can make the models intractable, requiring an approximation, oen
without any approximation guarantees. Graça et al. (2008) introduce an augmentation of the
EM algorithm where the model remains unchanged, but the posteriors used during learning
are constrained to be “meaningful.” is has the advantage of allowing tractable inferencewhile
encoding prior knowledge that would be complicated to encode directly in the model.

e PostCAT provides training procedures that augment the baseline models by imposing
constrains on the posteriors that roughly encode the following intuitions: “one word should
not translate to many words” and “translation is approximately symmetric.” We call the for-
mer “substochastic” and the latter “agreement.” e class names in the PostCAT reflect this
terminology. For example “SubstochasticM1” is IBM model one trained with the constraint
that each source word should generate at most one target word in expectation. e original
paper has a more detailed description of the constrained EM framework.

2.3. Decoding

For each sentence pair, the alignment models define a distribution over alignments. For
use in an MT pipeline, we need to extract a single alignment from this distribution. e stan-
dard approach, called Viterbi decoding, is to choose the most probable alignment according
to the model. Another possibility, that sometimes works better (Liang, Taskar, and Klein,
2006, Graça, Ganchev, and Taskar, 2008, Ganchev, Graça, and Taskar, 2008) is to include the
alignment i− j if the posterior probability that word i aligns to word j is above some threshold
θ. is allows the accumulation of probability from several low-scoring alignments that agree
on one point. is accumulated probability is easily extracted from the model posteriors. Note
that this could potentially result in an alignment having zero probability under the model that
generated it. PostCAT implements both decoding strategies with a variety of ways to tune θ,
either by maximing/minimizing some intrinsic alignment metric such as alignment error rate

29

PBML 91 JANUARY 2009

(AER (Och and Ney, 2003)) or (balanced) F-1 (Fraser and Marcu, 2007) with respect to a hand
annotated corpus, or using a heuristic when aligned data is not available. One effective heuris-
tic is to tune the threshold to have roughly the same number of points as Viterbi decoding. is
trades less confident points for more confident ones.

2.4. Symmetrization

e word alignment models described above are asymmetric while most most applications
including SMT require a single alignment for each sentence pair. Typically this gap is bridged
by applying a symmetrization heuristic that takes as input two directional alignments and pro-
duces a single “consensus” alignment. e PostCAT implements the 4 most common align-
ment heuristics (Och and Ney, 2003): Intersection, Grow Diag, Grow Diag Final and Union.
Should the user want another heuristic, implementing one in the PostCAT is very straightfor-
ward.

3. Code Organization

e code is organized around 4 main packages: e corpus that contains a representation
of a sentence-aligned bilingual corpus, the alignment package containing a representation of
word alignments, symmetrization heuristics, evaluation code as well as code to output align-
ments in machine-readable or human-readable form as well as collect statistics about align-
ments. e models package which contains the implementation the algorithms for training
and extracting alignments from the models. Finally the programs package contains code to
reproduce experiments from previous work, and example applications such as training and
saving models, decoding with models and producing detailed reports of model performance.
We describe each package in mode detail.

3.1. e alignment package

A word alignment, introduced by (Brown et al., 1994), consists of an object representing
which words in a source language correspond to translations of other words in a target lan-
guage, between two parallel sentences. Figure 1 shows an example of a word alignment repre-
sented as a matrix. An English sentence of length 8 (the rows of the matrix) is the translation
of a Spanish sentence of length 9 (the columns of the matrix). Each entry of the matrix aij

contains information about whether the ith English word is the translation of the jth Spanish
word. e Alignment class stores this information and contains the identity of the respective
sentences in the corpus and only contains the identities of the corresponding words. To save
space, the String representations of the words are stored separately.

In addition to these identities, the Alignment class contains a matrix represent the word
alignment. Each entry in the matrix takes one of several values indicating if the point from the
gold standard, is obtained through decoding or has been added by a symmetrization heuristic.
e Alignment class also stores posterior alignment probability of each word pair. is is

30

J. Graça, K. Ganchev, B. Taskar PostCAT (27–36)

0 1 2 3 4 5 6 7
0 z p p p p p p p but
1 p x p p p p p p then
2 p p z p p p p p mr.
3 p p p z z z p p baldwin
4 p p p p p p z p said
5 p p p p p p p z:

cependant

, m. baldwin

avait
ensuite

déclaré
:

Figure 1. Example of a word alignment

useful for visualizations to understand how the alignment model works, as well as for more
sophisticated phrase extraction techniques. In our pretty-printer posterior probabilities are
represented by the size of the ball for each alignment entry. e class provides output methods
for themost widely used word alignment formats (NACCLworkshops, Giza++, Moses (Koehn
et al., 2007)). Human readable output is implemented in AlignerOutput for plain text and
AlignerOutputLatex for LATEX. e latter was used to generate Figure 1.

e AlignmentEvaluator class implements the metrics for evaluating an alignment or
group of alignments with respect to a gold standard. Currently implemented are precision,
recall, AER , F-1, balanced F1 as well as methods to compute the number and type of unaligned
points, useful in comparing different models. AlignmentSymetrization implements the
symmetrization heuristics forword alignments: Intersection, Union, GrowDiagonal andGrow
Diagonal Final.

3.2. e corpus package

e major class in the corpus package is BilingualCorpus which represents a parallel
corpus, including any testing and development hand-aligned data. e relevant information
about a corpus, such as file locations, existance of hand-aligned data and sentence length cutoffs
is normally read from a plain-text configuration file. We found this to be much easier to use
than passing this information piecemeal to our executables.

e class creates a dictionary for each language mapping string representations to integers
to reduce thememory footprint of the program. It also collects statistics about individual words
and creates a dictionary of word pairs that occur in the same sentence, also used for improved
efficiency (both time and size) when training the models. ere is also an option to load only
part of the corpus for experiments with part of the training data.

3.3. e model package

e word alignment algorithms in the framework are implemented inside the model pack-
age. We implement IBM Model 1 and IBM Model 2 and the hidden Markov word alignment
model, as well as constrained E-M version of these models. e constraints implemented

31

PBML 91 JANUARY 2009

for the constrained E-M versions are “substochastic constraints” and “agreement constraints.”
Substochastic constraints capture the intuition that one word on one language should not align
to many words in the other language (this mitigates the well known garbage collector effect
(Brown et al., 1993)). Agreement constraints capture the intuition that alignment should be a
roughly symmetric process so aligning with one language in source position should give the
same results as aligning with that language in target position. Each of these 9 models is in
a separate class. ere are also some classes that efficiently represent model parameters that
are shared between models. e models can be initialized with default parameters or with pa-
rameters from other models in order to boostrap complicated models from simpler ones. For
example, it is standard practice to initialize the hiddenMarkovmodel with the translation table
from IBM Model 1. e models can use smoothing add-n, specified at creation time.

3.4. e programs package

e programs package contains classes with mainmethods and can be used to reproduce
the results reported in (Graça, Ganchev, and Taskar, 2008) and (Ganchev, Graça, and Taskar,
2008) without programming. Additionally there are illustrative examples of how to use the
framework as a library. Some useful classes in the programs package:

• SaveModels - Trains a given model on a given corpus and save the trained model.
• ComputeAlignmentError - Loads a trained model and evaluates it against hand an-

notated data for a user-specified decoding scheme.
• AlignmentsForMoses - Loads a trained model and saves the alignments for different

symmetrization heuristics in a format usable by the Moses script. To use Moses with our
alignments, call the moses training script with --firstStep 4.

• PrettyPrintAlignments - Pretty prints the test set alignments for a given model and
decoding scheme. We found this very useful for getting an understating of model be-
havior.

4. How to use PostCAT

is section describes how to use the PostCAT as a program to reproduce our results as
well as how to extend it.

4.1. Getting and Installing the toolkit

e toolkit can be downloaded from its website as a gzipped tar file. It is implemented in
Java and uses the GNU Trove library ² which is distributed with the toolkit source code. e
toolkit includes an Apache Ant³ buildfile, so compiling it should just require running ant.

²http://trove4j.sourceforge.net/
³http://ant.apache.org/

32

J. Graça, K. Ganchev, B. Taskar PostCAT (27–36)

4.2. Included Example

Included with the code is some sample data in the small_data/ sub-directory. We have
written some bash scripts as illustrations of how to use the code. To run these, you will need
some auxiliary programs (e.g. tee, find, tail) that are standard on *NIX systems. If you
don’t have them, it should be easy to change the scripts or just copy the commandline. e
small_data directory contains a corpus parameters file called small_hansards.params. In
addition to the comments, the file has the following entries:

• Source and target language suffixes. For English, French we have ‘en’, ‘fr’.
• A training, word-alignment development and test file bases. e files have ‘.en’ appended

for the English side and ‘.fr’ for the French language.
• A name for the corpus. is is used when creating output directories.
We include scripts that we found useful when running our experiments. One script trains

the hidden Markov alignment models (both baseline and agreement) and saves them. An-
other script computes alignment error metrics for each model. A third included script outputs
alignments in a format accepted by the Moses SMT system. e package README file has more
details on how to run the scripts and how to integrate the output with Moses.

To reproduce the results reported in (Graça, Ganchev, and Taskar, 2008) and (Ganchev,
Graça, and Taskar, 2008) one needs to obtain the corpora separately.

4.3. Extending the toolkit

It is fairly straightforward to extend the toolkit with your own alignment model, or to pro-
duce statistics you might be interested in. In this subsection we will explain how to write the
HMM with substochastic constraints, as an example for how to extend the toolkit with new
models. We wrote a class SubstochasticHMM extends HMM to implement the model. In
the interest of space we do not describe the implementation of the straightforward methods:
the constructors and the methods to load and save the model, since their implementation is
trivial. e main difference between the substochastic HMM and the regular HMM is that
on the E-Step of the training method, we need to project the posteriors to a space where the
sum of the posteriors for each source word is smaller than or equal to one. e mathematical
derivation of the projection step is not central to the explanation of how to extend the toolkit
so we include it as Appendix A. Suffice it to say that we can implement the projection step as
a few iterations of gradient descent.

We created a copy of the public EStepStats eStep()method. Aer the computation
of the posteriors (makePosterior(forward, backward, likelihood)) we project them
onto the constraint set. e projection is implemented as the method
processPosteriors(posteriors, s, f, probCache)
where s, f and probCache are the source sentence, target sentence, and a cache of the trans-
lation probabilities respectively. e MStepmethod and inference methods are the same as in
the original HMM so we do not need to implement them and we are done.

Suppose that having implemented our new model, we decide that we would like to per-

33

PBML 91 JANUARY 2009

form a different kind of decoding. In particular, since we could perform the projection by
computing some sentence-specific translation probabilities, we might want to try using these
translation probabilities at decode time. If we want to do this, we would need to override the
posteriorDecodingAlignment method of the HMM class. e new method will be almost
identical to the old, with the exception that we would use the

processPosteriors(posteriors, s, f, probCache)

method that we implemented for eStep() in order to compute the projected posteriors right
aer the call to makePosteriors. To make a similar update to Viterbi decoding we need to
override the viterbiAlignment method. At the start of the method, we would add code
similar to the start of posteriorDecodingAlignment to compute posteriors and project
them to the constraint set. We would then replace the call to _tb.getProbability, which
currently uses the translation table to look up the translation probability and we would instead
look up the translation probability in our probCache array, which has been updated by the
call to processPosteriors.

5. Related Work

In a standard SMT pipeline PostCAT is a plug-in replacement for the GIZA++ toolkit and
serves the same purpose. In fact if the goal is to produce word alignments using the baseline
models we cannot recommend PostCAT over GIZA++ since the GIZA++ implementations
are faster, and GIZA++ is integrated into most MT systems scripts (e.g. Moses ⁴, Syntax Aug-
mented Machine Translation (SAMT) (Zollmann and Venugopal, 2006) ⁵). Having said that,
if the goal is to analyze the alignment results to understand how they impact translation per-
formance, PostCAT provides useful visualization and analysis tools. Additionally, it provides
a set of alignment algorithms, not implemented elsewhere and proven to work well for SMT.
Furthermore, the code is easy to read and modify so if a researcher wants to extend the mod-
els, try different decoding or symmetrization schemes, or fine-tune some aspect of alignment
this should be easy to do in PostCAT. For instance, two recent trends are the use of n-best
alignments, and the use of alignment posterior probabilities when extracting phrases. Both
of these are easily done in PostCAT since the posteriors are available within the Alignment
object. Another open source word aligner, the Berkeley Aligner, available online⁶ contains the
implementation from (Liang, Taskar, and Klein, 2006). eir contribution is a model that has a
similar intuition as our agreement constraints, but with very different realization. ey define
an intractable joint model and use an approximation to optimize model parameters.

⁴http://www.statmt.org/moses/
⁵http://www.cs.cmu.edu/~zollmann/samt/readme.html
⁶http://www.cs.berkeley.edu/~pliang/software/

34

J. Graça, K. Ganchev, B. Taskar PostCAT (27–36)

6. Conclusions and Future Work

Wehave presented thePosteriorConstrainedAlignmentToolkit (PostCAT), an open-source
toolkit for word alignment. Ongoing work on the toolkit is in three directions. Firstly the
toolkit is being extended to work over the map reduce paradigm for parallelization. Secondly,
new alignment models are being developed in the toolkit’s framework and will be available in
future versions. irdly, we are integrating newmethods for phrase extraction, and rule extrac-
tion from a word aligned corpora, using the full information available in the word alignments.

Acknowledgments

J. V. Graça was supported by a fellowship from Fundação para a Ciência e Tecnologia
(SFRH/ BD/ 27528/ 2006). K. Ganchev was supported by ARO MURI SUBTLE W911NF-
07-1-0216.

Bibliography

Brown, P. F., S. A. Della Pietra, V. J. Della Pietra, M. J. Goldsmith, J. Hajic, R. L. Mercer, and S. Mohanty.
1993. But dictionaries are data too. In Proc. HLT.

Brown, Peter F., Stephen Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. 1994. e
mathematics of statistical machine translation: Parameter estimation. Computational Linguistics,
19(2):263–311.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the
em algorithm. Royal Statistical Society, Ser. B, 39(1):1–38.

Fraser, Alexander and Daniel Marcu. 2007. Measuring word alignment quality for statistical machine
translation. Comput. Linguist., 33(3):293–303.

Ganchev, Kuzman, João V. Graça, and Ben Taskar. 2008. Better alignments = better translations? In
Proc. of ACL-08: HLT, Columbus, Ohio. Association for Computational Linguistics.

Graca, Joao, Joana Paulo Pardal, Luisa Coheur, and Diamantino Caseiro. 2008. Building a golden col-
lection of parallel multi-language word alignment. In LREC’08.

Graça, Joao, Kuzman Ganchev, and Ben Taskar. 2008. Expectation maximization and posterior con-
straints. In Proc. NIPS.

Koehn, Philipp, HieuHoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation.
In ACL. e Association for Computer Linguistics.

Liang, Percy, Ben Taskar, and Dan Klein. 2006. Alignment by agreement. In Proc. HLT-NAACL.

Och, Franz Josef and Hermann Ney. 2003. A systematic comparison of various statistical alignment
models. Comput. Linguist., 29(1):19–51.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proc. ACL.

35

PBML 91 JANUARY 2009

Vogel, Stephan, HermannNey, and Christoph Tillmann. 1996. Hmm-based word alignment in statistical
translation. In Proc. COLING.

Zollmann, Andreas and Ashish Venugopal. 2006. Syntax augmented machine translation via chart pars-
ing. In WSMT. Association for Computational Linguistics, June.

A. Derivation of Substochastic Projection

For notational convenience we encode the desired constraints in terms of some feature functions
fi(x, a) for each source word i, where x are the two sentences and a is an alignment. Each feature is as-
sociated with a source word i. e feature is a function from an alignment a to a real number, counting
how many foreign words are aligned to source word i in that particular alignment. We group all fea-
tures fi into a vector f. Note that there are only linearly many such feature functions, even though we
have exponentially many possible alignments a. e projection step is the solution to the optimization
problem:

argmin
q

KL(q(a) || pθ(a|x)) s.t. Eq [f(x, a)] − 1 ≤ 0. (2)

where KL denotes Kullback-Leibler divergence, pθ is the current model (with parameters θ) and Eq

denotes expectation with respect to the probability distribution q. For more details of why we might
want to do this we refer the reader to Graça et al. (2008). e optimization problem in Equation 2 can be
efficiently solved in its dual formulation:

argmax
λ≤0

λ
⊤1 − log

∑
a

pθ(a | x) exp {λ
⊤f(x, a)} (3)

where we have solved for the primal variables q as:

qλ(a) = pθ(a | x) exp{λ
⊤f(x, a)}/Z, (4)

with Z a normalization constant that ensures q sums to one. We have only one dual variable λi per
constraint, and we optimize them by taking a few projected gradient steps. e partial derivative of the
objective in Equation 3 with respect to parameter λi is simply 1 − Eqλ

[fi(x, a)] . So we have reduced the
problem to computing expectations of our features under the model q. For our particular features this
reduces to computing expectations under the normal HMM model. To see this, we have by the definition
of qλ and pθ ,

qλ(a) = −→
p (a | x) exp{λ

⊤f(x, a)}/Z

=
∏

j

−→
p d(aj |aj − aj−1)−→p t(tj |saj

) exp{λ
⊤f(x, a)}/Z

=
∏

j,i=aj

−→
p d(i|i − aj−1)−→p ′

t(tj |si)

Where we have let −→
p ′

t(tj |si) = −→
p t(tj |si)eλi , and retained the same form for the model. So the pro-

jection step just creates some sentence-specific translation probabilites for each word pair. e inference
procedures are other unchanged but use these updated translation probabilites. We enforce the constraint
that λ ≤ 0 by projecting to the negative orthant aer each gradient step.

36

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009 37–46

An Open Source Rule Induction Tool for Transfer-Based SMT

Yvette Graham, Josef van Genabith

Abstract
In this paper we describe an open source tool for automatic induction of transfer rules. Transfer rule

induction is carried out on pairs of dependency structures and their node alignment to produce all rules
consistent with the node alignment. We describe an efficient algorithm for rule induction and give a
detailed description of how to use the tool.

1. Introduction

Statistical Machine Translation (SMT) using deep linguistic representations for transfer
is a relatively new and growing research area (Bojar and Hajič, 2008, Graham, 2008, Bojar
et al., 2007a, Bojar and Čmejrek, 2007b, Graham et al., 2007, Ding and Palmer, 2006, Rie-
zler and Maxwell, 2006, Ding and Palmer, 2005, Ding and Palmer, 2004a, Ding and Palmer,
2004b, Cmejrek et al., 2003, Eisner, 2003, Ding and Palmer, 2003, Hajič et al., 2002, Alshawi et.
al., 2000a, Alshawi et. al., 2000b, Alshawi et. al., 1998). Training requires highly efficient algo-
rithms; the training data is hierarchical dependency graphs as opposed to surface form stings
and is therefore more complex than training data used for other methods of SMT (Brown et
al., 1993); large numbers of rules (that contain a lot of morphological information) are needed
to achieve high coverage of unseen data and rich statistical information. We provide a tool that
uses an efficient algorithm for rule induction and outputs the rules in efficient O(n) size data
structures (Graham, 2008). e rule induction tool, the parser/generator engine XLE ¹ and
transfer decoder ² constitute a complete Transfer-Based SMT system.

¹“XLE is available to a limited number of researchers ... For more information about obtaining a license, please
contact thking at parc.com.”

²e transfer decoder is currently in development and will be released as an open source tool in the near future.

© 2009 PBML. All rights reserved.
Please cite this article as: Yvette Graham, Josef van Genabith, An Open Source Rule Induction Tool for
Transfer-Based SMT. The Prague Bulletin of Mathematical Linguistics No. 91, 2009, 37–46.

PBML 91 JANUARY 2009

Figure 1. Example Transfer Rules

2. Transfer-Based SMT

Transfer-Based SMT is composed of three parts, i) parsing to linguistic structure, ii) transfer
from SL linguistic structure to TL linguistic structure and iii) generation of TL sentence. Each
step uses a statistical model to select the best output. For parsing, a disambiguation model is
used to rank the parses and select the n-best output parses. Decoding (transfer) is then done
on a parse structure (or n-best list of parse structures) via beam-search producing an n-best
list of TL structures. For generation, the input is an n-best list of TL structures and all possible
TL sentences are produced. e best TL sentence is then selected using an n-gram language
model.

3. Training

e aim of rule induction is to acquire rules useful for transferring unseen SL structures by
capturing correspondences between example training structure pairs of a parsed bilingual cor-
pus. Figure 1(a) ³ shows a rule that captures an isomorphic German-English correspondence,
while Figure 1(b) ⁴ captures a non-isomorphic correpsondence. Lexicalized nodes contain a
vector of feature value pairs storing the morphological information belonging to that node.

3.1. Transfer Rule Induction

e transfer rule induction algorithm takes as input i) a dependency structure pair and ii) a
one-to-one set of alignments between nodes of the dependency structure pair. Any alignment
method can be used to align the nodes. For example, we currently useGiza++ (Och et al., 1999)
for node alignment by constructing a bilingual training corpus from the predicate lemmas of
the dependency structure nodes of the parsed bitext. Word alignment can then be run, in both

³e LHS contains a single lexicalized node with predicate value (voran)kommen with two arguments, a subject
(X0) and an adjunct (X1) and the the RHS has the same structure but with progress as the root node.

⁴e LHS has the German predicate halten as its root node with three arguments, a subject (the lexicalized node
with predicate pro), an object (X0) and an xcomplement-predicate (the lexicalized node with predicate für and object
X1) and the RHS of the rule has be as its root node with two arguments, a subject (X0) and an xcomplement (X1).

38

Y. Graham, J. van Genabith Transfer-Based SMT Rule Induction (37–46)

language directions, as in Phrase-Based SMT (Koehn et al., 2003), followed by symmetrisation
of the word alignments. We currently use the intersection of the word alignments as this gives
a reliable set of one-to-one alignments.

3.1.1. Consistent Transfer Rules

As in Phrase-Based SMT, where a word alignment for each example sentence pair is first
established before phrases consistent with that word alignment are extracted (Och et al., 1999,
Koehn et al., 2003), we induce transfer rules that are consistent with the node alignment. We
define a consistent transfer rule using a simplification of the actual training dependency struc-
tures and temporarily consider them as tree structures by ignoring edges that cause cycles in
the graph or edges that share an end node with another edge. ⁵ Definition 1 applied to a (sim-
plified) dependency structure pair yields a set of rules containing no variables by constraining
rule induction using both the alignments between nodes and the position of the nodes within
the two structures:

Definition 1.
Given a one-to-one set of alignments A between nodes in dependency pair (F, E), (f, e) is a
rule consisting of nodes (Nf,Ne), rooted at (rf, re), with descendents (Df, De) of rf and re

in F and E respectively, if
Nf = rf ∪ Df∧
Ne = re ∪ De∧
∀fi ∈ Nf : (fi, ej) ∈ A → ej ∈ Ne∧
∀ej ∈ Ne : (fi, ej) ∈ A → fi ∈ Nf∧
∃ej ∈ Ne : (rf, ej) ∈ A∧
∃fi ∈ Nf : (fi, re) ∈ A

Definition 2.
For any rule (f, e) in dependency pair (F, E) rooted at (rf, re) consisting of nodes Nf andNe,
where (s, t) is also a rule in (F, E) rooted at (rs, rt) consisting of nodes Ns and Nt where
rs ̸= rf, rt ̸= re, if rs ∈ Nf and rt ∈ Ne then there is a rule (a, b) rooted at (rf, re)
with nodes rs and rt replaced by variable xk, where k is an index unique to the transfer rule,
consisting of nodes:

Na : Nf\Ns ∪ xk

Nb : Ne\Nt ∪ xk

To help visualize what is considered a consistent transfer rule, Figure 2(b) shows the example
dependency structure of Figure 2(a) divided into parts by a number of boxes with correspond-
ing parts of the dependency structure pair labelled with the numbers 1-6. Each consistent
transfer rule can be realized by assigning a true or false value to each pair of boxes, so that

⁵For example, if the subject of node A is also the subject of node B, one of these these edges is ignored temporarily.
is is done by labelling the nodes using an increasing index in depth first order (only labelling each node once). Edges
with an end node label less than their start node are ignored.

39

PBML 91 JANUARY 2009

Figure 2. Consistent Transfer Rules

boxes assigned true are included in the rule and boxes assigned false are le out. Combinations
of true and false values are constrained and this can be visualized by only allowing adjoining
boxes in Figure 2(b) to be labelled true for any one rule. Figures 2(c), 2(d) and 2(e) show con-
sistent rules with truth value combinations. According to Definition 1, two nodes may form
the root of a transfer rule if they both have the same non-empty set of aligned descendents (rule
root nodes are in bold in Figure 2(b)). is ensures that the entire subtree rooted at the SL root
of a transfer rule corresponds to the entire subtree rooted at the TL root. In addition, the root
nodes of a rule must each be an aligned node, i.e. each must be aligned to some node in the
other side of the rule. is ensures that unaligned nodes do not form the root of a transfer
rule and are, therefore, only included in rules that also contain their head node, giving them a
meaningful context. For example, the rule in Figure 2(e) is allowed by Definition 1, but a rule
with this LHS and a RHS rooted at of is disallowed. e node of does not have a lexical corre-
spondent in the German structure, but instead its head diversity, the dependency label adjunct

40

Y. Graham, J. van Genabith Transfer-Based SMT Rule Induction (37–46)

and node of together correspond to Vielfalt and the dependency label adjunct-gen (genative
adjunct). Definition 2 describes how rules with variables are produced by replacing both sides
of a nested rule, i.e. a rule nested inside a larger rule, with a variableXn. For example, in Figure
2, rule (d) was produced from rule (c) by replacing the nested rule (e) with variable X1. Intro-
ducing variables to transfer rules in this way potentially produces a very large number of rules.
In the worst case, when we have isomorphic structures with all nodes aligned, the number of
rules is exponential. However, in reality, dependency structures of real world parallel corpora
are very rarely entirely isomorphic with a very high number of aligned nodes. If the number of
rules induced does indeed become unmanageable, however, rule induction can be constrained
further by putting a limit on the size of rules. ⁶

3.2. Transfer Rule Induction Algorithm

e transfer rule induction algorithm works by encoding all consistent rules of the SL and
TL dependency structure pair in a single structure. e most complex part of the algorithm
decides which node pairs within the dependency structure pair form rule roots. Once the rule
roots of the dependency structure pair have been decided, the entire set of SL and TL depen-
dency triples are then simply recorded with each dependency triple slightly modified by la-
belling it with a context variable (Ai) (Maxwell and Kaplan, 1991) and by replacing the original
node labels with variables (Xi). Labelling the dependency triples with context variables allows
us to encode all rules consistent with the node alignment in a single structure. is method of
encoding allows O(2n) rules to be encoded in an O(n) size structure and is described in detail
in Graham and van Genabith (2008). e algorithm for choosing the rule root nodes of the de-
pendency structure pair is given in Figure 3. ⁷ e complexity of the algorithm is O(a2loga)
in the worst case, where a is the number of aligned node pairs.

4. Using the Rule Induction Tool

e rule induction tool requires a Prolog engine to run. e system has been developed
and tested with SICStus Prolog. Included in the download package are 4000 German-English
sample dependency structure pairs fromaportion of theEuroparl Corpus (Koehn et al., 2005). ⁸
e sample dependency structures are divided into sets, each containing 1000 sentences.

⁶We currently do not limit the size of rules as we train on a restricted sentence length of 5 to 15 words. is results
in an average number of rules induced per sentence pair of 32.47, with average sentence length 9.89 for German and
10.48 for English.

⁷e program itself is written in Prolog, and uses some of Prolog’s built-in features that are not available in other
programming languages. To keep the pseudocode as implementation independent as possible, when we use a Prolog
specific function or control structure we describe it in pseudocode using an equivalent function or control structure
available in most programming languages. For example, Prolog has a built in indexing of terms, that uses the first
argument of the term as a key to achieve an O(log n) return time when searching for that term in memory. We use
this in our Prolog implementation but where we do so we described it in pseudocode as using a hash table.

⁸e sample sentences were parsed with XLE parse engine (Kaplan et al., 2002) to Lexical Functional Grammar
(Kaplan and Bresnan, 1982, Bresnan, 2001, Dalrymple, 2001) f-structures using German and English grammars (Rie-

41

PBML 91 JANUARY 2009

Algorithm RuleRoots(List sl_nodes, List tl_nodes,
HashTable <sl_node_id,alignment_id> sl_alignments,
HashTable <tl_node_id,alignment_id> tl_alignments):

For each aligned SL node create a list
containing the alignment ids of its aligned descendents
Put lists in a Hash Table
sl_aligned_descs = new HashTable<list_of_aligned_descs,sl_node_id>
foreach s ∈ S
if exists sl_alignments.get(s.node_id) then
list = new empty list
foreach d ∈ descendents(s)
if exists sl_alignments.get(d.node_id) then

a_id = sl_alignment.get(d.node_id)
list.add(a_id)

sl_aligned_descs.put(list, s)

Likewise for TL nodes
tl_aligned_descs = new HashTable<list_of_aligned_descs,tl_node_id>
foreach t ∈ T
if exists tl_alignments.get(t.node_id) then
list = new empty list
foreach d ∈ descendents(t)
if exists tl_alignments.get(d.node_id) then

a_id = tl_alignment.get(d.node_id)
list.add(a_id)

tl_aligned_descs.put(list, t)

Find node pairs with matching sets of aligned descendents
roots = new empty List
foreach key in keys(sl_aligned_desc)
if exists tl_aligned_descs.get(key)
A pair has been found
i = sl_aligned_descs.get(key)
j = tl_aligned_descs.get(key)
roots.add(i, j)

return roots

Figure 3. Algorithm to choose the rule roots in the SL and TL dependency structures

42

Y. Graham, J. van Genabith Transfer-Based SMT Rule Induction (37–46)

1. Download the package from
http://www.computing.dcu.ie/∼ygraham/soware.html

2. Unzip ria.tar.gz and extract the files. is should produce a folder called ria.
3. Create an environment variable called RIA and set it to the location of the tool, for ex-

ample: RIA=/home/jsmith/ria; export RIA;
4. Add the location of the bin directory to your PATH environment variable, for example:

PATH=$PATH:$RIA/bin; export PATH;
5. Test the tool by typing the following command to induce all rules from set 0 of the sample

training sentences: ria 0
Afile containing the rules of set 0 should nowbewritten in the followingdirectory: $RIA/output/rules.

4.1. Output Format

e rules induced from each training dependency pair are stored in a file containing the
rules (in a single compact size structure), and a file with some additional information about
the rules. For example, the following two files store rules for sentence 123 of set 0:

• $RIA/output/rules/sents_0000/R123.pl
• $RIA/output/rules/sents_0000/I123.pl

To retrieve the rules, both of these files should be loaded by SICStus before calling the following
predicate:

• transfer_rule(+-S, +-T, +-Fs_id, +-Root_id, -LHS, -RHS, +-Options).
We include an example program ⁹ that retrieves all rules for a specified sentence pair and
records them:

• write_rules 123
e enumerated rules for sentence id 123 should now be written in:

• $RIA/output/example/R123

4.2. Running the Tool on New Training Data

Start by converting the dependency structures into the same Prolog format of the sample
structures.¹⁰ e training structures should be divided into sets of 1000 and put in directories
in the following locations:

• $RIA/data/sl_train
• $RIA/data/tl_train
• $RIA/data/alignments

zler et al., 2002, Butt et al., 2002). For node alignment, Giza++ (Och et al., 1999) was run in both language directions
and the intersection was gotten using moses (Koehn et al., 2007).

⁹e rules should be retrieved by loading the rule and information files and then calling findall on transfer_rules/7,
as is done in the example program, as it is not necessary to enumerate all rules on disk to use them.

¹⁰e sample structures are in the output format of the XLE parse engine (for further details see
http://www2.parc.com/isl/groups/nltt/xle/doc/xle.html#Prolog_Output).

43

PBML 91 JANUARY 2009

For example, SL and TL dependency structures for sentence id 134067 should be put in two
separate files;

• $RIA/data/sl_train/sents_0134/S067.pl and
• $RIA/data/tl_train/sents_0134/S067.pl,

and node alignments in a file called
• $RIA/data/alignments/sents_0134/A067.pl.

ese files can then be archived and zipped. Name them as follows:
• $RIA/data/sl_train/sents_0134.tar.gz
• $RIA/data/tl_train/sents_0134.tar.gz
• $RIA/data/alignments/sents_0134.tar.gz

Rule induction can then be run for this set of structures using the command:
• ria 134

5. Conclusion

We presented an open-source tool for automatic transfer rule induction from parsed bilin-
gual corpora. We described an efficient algorithm that induces transfer rules from dependency
structure pairs encoding rules in an efficient O(n) size data structure (Graham, 2008). We hope
that this tool is used to produce interesting research.

Acknowledgments

Many thanks to John Maxwell, Joachim Wagner, Marcus Furlong, Mary Hearne, Philipp
Koehn and our reviewers.

Bibliography

Hiyan Alshawi, Srinivas Bangalore and Shona Douglas. 1998. Automatic Acquisition of Hierarchical
Transduction Models of Machine Translation. In Proceedings of COLING-ACL 1998.

Hiyan Alshawi, Srinivas Bangalore and Shona Douglas. 2000. Learing Dependency Translation Models
as Collections of Finite State Head Transducers. In Computational Linguistics, 26(1):45-60.

Hiyan Alshawi and Shona Douglas. 2000. Learning Dependency Transduction Models from Unanno-
tated Examples. In Philisophical Transactions A, e Royal Society 358:1357-1372.

Ondřej Bojar, Silvie Cinkova and Jan Ptaček. Towards English-to-CzechMT via Tectogrammatical Layer.
In Proceedings of the Sixth International Workshop on Treebanks and Linguistic eories (TLT 2007),
Bergen, Norway, December. 2007

Ondřej Bojar and Martin Čmejrek. 2007. Mathematical Model of Tree Transformations. Project Euro-
matrix Deliverable 3.2, Ufal, Charles University, Prague.

Ondřej Bojar and Jan Hajič. 2008. Phrase-Based and Deep Syntactic English-to-Czech Statistical Ma-
chine Translation. In Proceedings of the thirdWorkshop on Statistical Machine Translation, Columbus,
Ohio, June 2008.

44

Y. Graham, J. van Genabith Transfer-Based SMT Rule Induction (37–46)

Joan Bresnan. 2001. Lexical-Functional Syntax., Blackweelm Oxford, 2001.
Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra and Robert L. Mercer. 1993. e math-

ematics of statistical machine translation: parameter estimation. Computational Linguistics, 19(2):
263-311.

Miriam Butt, Helge Dyvik, Tracy H. King, Hiroshi Masuichi and Christian Rohrer. 2002. e Parallel
Grammar Project. (grammar version 2005) In Proceedings of the 19th International Conference on
Computational Linguistics (COLING’02), Workshop on Grammar Engineering and Evaluation, pages
1-7. Tapei, ROC.

Martin Cmejrek, Jan Curín and Jirí Havelka 2003 Czech-English Dependency Tree-based Machine
Translation In Proceedings of EACL 2003, pages 83-90.

Mary Dalrymple. Lexical Functional Grammar, Academic Press, San Diego, CA; London. 2001.
YuanDing, Daniel Gildea andMartha Palmer. 2003. AnAlgorithm forWord-Level Alignment of Parallel

Dependency Trees. In Proceedings of the Machine Translation Summit 2003.
Yuan Ding and Martha Palmer. 2004. Automatic Learning of Parallel Dependency Treelet Pairs. In

Proceedings of the 1st International Joint Conference on Natural Language Processing.
Yuan Ding and Martha Palmer. 2004. Synchronous Dependency Insertion Grammars A Grammar For-

malism for Syntax-Based Statistical MT. In Proceedings of COLING 2004.
YuanDing andMartha Palmer. 2005. MachineTranslationUsingProbabilistic SynchronousDependency

Insertion Grammars. In Proceedings of the 43rd Annual Meeting of the Association of Computational
Linguistics (ACL), pages 541-548, Ann Arbor, June 2005.

YuanDing andMartha Palmer. 2006. Better Learning andDecoding for Syntax Based SMtUsing PSDIG.
In Proceedings of AMTA 2006

Jason Eisner. 2003. Learning non-isomorphic tree mappings for machine translation. In Proceedings of
the 41st Annual Meeting of the Association of Computational Linguistics (ACL), pages 205-208, Sap-
pora, July 2003.

Yvette Graham, Deirdre Hogan and Josef van Genabith. 2007. Automatic Evaluation of Generation and
Parsing for Machine Translation with Automatically Acquired Transfer Rules. In Proceedings of the
2007 Workshop on Using Corpora for NLG: Language Generation and Machine Translation, at MT
Summit XI, Copenhagen, September 2007.

Yvette Graham and Josef van Genabith. 2008. Packed Rules for Automatic Transfer Rule Induction. In
Proceedings of the European Association ofMachine Translation Conference 2008, Hamburg, Germany.

Jan Hajič, Martin Čmejrek, Bonnie Dorr, Yuan Ding, Jason Eisner, Daniel Gildea, Terry Koo, Kristin
Parton, Gerald Penn, Dragomir Radev and Owen Rambow. 2002. Natural Language Generation in
the Context of Machine Translation. Technical Report. NLPWS’02, final report.

Ronald M. Kaplan, Tracy H. King and John T. Maxwell. 2002. Adapting existing grammars: the XLE
experience. In Proceedings of COLING 2002, Taipei, Taiwan.

Ronald Kaplan and Joan Bresnan. 1982. Lexical Functional Grammar, a Formal System for Grammatical
Represenation. In Bresnan, J. editor,eMental Representation of Grammatical Relations, pages 173-
281, MIT Press, Cambridge, MA.

Philipp Koehn, Franz Josef Och and Daniel Marcu. 2003. Statistical Phrase-based Translation. In Pro-
ceedings of the HLT-NAACL 2003, pages 48-54, Edmonton, May/June 2003.

45

PBML 91 JANUARY 2009

Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In Proceedings of
MT Summit 2005

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison Burch, Richard Zens, Alexandra Con-
stantin, Marcello Federico, Nicola Bertoldi, Chris Dyer, Evan Herbst, Brooke Cowen, Wade Shen,
ChristineMoran andOndřej Bojar. 2007. Moses: Open Source Toolkit for Statistical Machine Trans-
lation In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics

John T. Maxwell III and Ronald M. Kaplan. 1991. A Method for Disjunctive Constraint Satisfaction.
In Current Issues in Parsing Technology, Masaru Tomita editor, pages 173-190, Kluwer Aca demic
Publishers.

Franz Josef Och, Christoph Tillmann Hermann and Ney. 2000. Improved Alignment Models for Sta-
tistical Machine Translation. In Proceedings of the 1999 Conference on Empirical Methods in Natural
Language Processing (EMNLP’99). College Park, MD, pages 20-28.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard Crouch, John T. Maxwell, and Mark John-
son. 2002. Parsing the Wall Street Journal using Lexical Functional Grammar and discriminitive
estimation techniques . (grammar version 2005) In Proceedings of the 40th Annual Meeting of the
Association of Computational Linguistics (ACL), Philadelphia, July 2002.

Stefan Riezler and John T. Maxwell III. 2006. Grammatical Machine Translation. In Proceedings of
HLT-ACL, pages 248-255, New York.

46

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009 47–56

Decoding in Joshua
Open Source, Parsing-Based Machine Translation

Zhifei Li, Chris Callison-Burch, Sanjeev Khudanpur, Wren Thornton

Abstract
We describe a scalable decoder for parsing-based machine translation. e decoder is written in

Java and implements all the essential algorithms described in (Chiang, 2007) and (Li and Khudanpur,
2008b): chart-parsing, n-gram language model integration, beam- and cube-pruning, and k-best extrac-
tion. Additionally, parallel and distributed computing techniques are exploited to make it scalable. We
demonstrate experimentally that our decoder is more than 30 times faster than a baseline decoder written
in Python.

1. Motivation

Large-scale parsing-based statistical machine translation has made significant progress in
the last few years. e systems being developed differ in whether they use source- or target-
language syntax. For instance, the hierarchical translation system of Chiang (2007) extracts
a synchronous grammar from pairs of strings, whereas Quirk, Menezes, and Cherry (2005),
Liu, Liu, and Lin (2006) andHuang, Knight, and Joshi (2006) perform syntactic analyses in the
source-language, and Galley et al. (2006) uses target-language syntax.

A critical component in parsing-based MT systems is the decoder, which is complex to
implement and scale up for large data sets. Most of the systems described above employ tailor-
made, dedicated decoders that are not open-source, which results in a high barrier to entry
for other researchers in the field. However, with the algorithms proposed in (Huang and Chi-
ang, 2005, Chiang, 2007, Huang and Chiang, 2007), it is possible to develop a general-purpose
decoder that can be used by all the parsing-based systems. In this paper, we describe an im-
portant first-step towards an extensible, general-purpose, scalable, and open-source parsing-
based MT decoder. Our decoder is written in Java and implements all the essential algorithms
described in (Chiang, 2007): chart-parsing, n-gram language model integration, beam- and

© 2009 PBML. All rights reserved.
Please cite this article as: Zhifei Li, Chris Callison-Burch, Sanjeev Khudanpur, Wren Thornton, Decoding in
Joshua: Open Source, Parsing-Based Machine Translation. The Prague Bulletin of Mathematical Linguistics
No. 91, 2009, 47–56.

PBML 91 JANUARY 2009

cube-pruning, and unique k-best extraction. Additionally, parallel and distributed computing
techniques are exploited to make it scalable.

We demonstrate experimentally that our decoder is 38 times faster than a previous de-
coder written in Python. Furthermore, the distributed computing permits improving transla-
tion quality via large-scale language models. e decoder has been used to translate roughly
a million sentences in a parallel corpus for large-scale discriminative training experiments (Li
and Khudanpur, 2008a). e decoder has also been successfully used by other researchers.
For example, (Chen et al., 2008) have demonstrated that our decoder achieves performance
competitive with Moses (Koehn et al., 2007), another major open-source machine translation
toolkit. We hope the release of the decoder will greatly contribute the progress of the syntax-
based machine translation research.

2. Parsing-based MT Decoder

In this section, we discuss the core algorithms implemented in our decoder. ese algo-
rithms have been discussed by (Chiang, 2007) in detail, and we recapitulate the essential parts
here for completeness.¹

2.1. Grammar Formalism

Our decoder assumes a probabilistic synchronous context-free grammar (SCFG). Follow-
ing the notation in (Venugopal, Zollmann, and Vogel, 2007), a probabilistic SCFG comprises
a set of source-language terminal symbols, TS, a set of target-language terminal symbols, TT , a
shared set of nonterminal symbols, N, and a set of rules of the form

X → ⟨γ, α, ∼, w⟩ (1)

whereX ∈ N, γ ∈ [N∪TS]∗ is a (mixed) sequence of nonterminals and source terminals,α ∈
[N∪TT]∗ is a sequence of nonterminals and target terminals, ∼ is a one-to-one correspondence
or alignment between the nonterminal elements of γ and α, and w ≥ 0 is a weight assigned to
the rule. An illustrative rule for Chinese-to-English translation is

NP → ⟨NP0 的 NP1 , NP1 of NP0 ⟩

where the Chinese word的 (pronounced de or di) means of, and the alignment, encoded via
subscripts on the nonterminals, causes the two noun phrases around的 to be reordered around
of in the translation. e rule weight is omitted in this example.

A bilingual SCFG derivation is analogous to a monolingual CFG derivation. It begins with
a pair of aligned start symbols. At each step, an aligned pair of nonterminals is rewritten as the
two corresponding components of a single rule. In this sense, the derivations are generated
synchronously.

¹Most of the descriptions here are adopted from (Li and Khudanpur, 2008b).

48

Z. Li, C. Callison-Burch, S. Khudanpur, W. Thornton Decoding in Joshua (47–56)

Our decoder presently handles SCFGs of the kind extracted by Heiro (Chiang, 2007), but
is easily extensible to more general SCFGs and closely related formalisms such as synchronous
tree substitution grammars (Eisner, 2003, Chiang, 2006).

2.2. MT Decoding as Chart Parsing

Given a source-language sentence, f∗, the decoder must find the target-language yield,
e(D), of the derivation D which has the best composite weight, w(D), among all derivations
whose source-language yield, f(D), is the source-language sentence. Or equationally,

e∗ = e

(
argmax

D : f(D)=f∗
w(D)

)
(2)

e composite weight is a linear combination of feature function weights and feature function
values. General feature functions include translation model features, language model features,
and word penalty features.

e actual decoding algorithm maintains a chart, which contains an array of cells. Each
cell in turn maintains a list of proven items. e parsing process starts with the axioms, and
proceeds by applying the inference rules repeatedly to prove new items until proving a goal
item. Whenever the parser proves a new item, it adds the item to the appropriate chart cell. e
new item alsomaintains backpointers to antecedent items, which are used fork-best extraction,
as discussed in Section 2.4 below.

In a SCFG-based decoder, an item is identified by its source-language span, le-side non-
terminal label, and le- and right-contexts for the target-language n-gram LM. erefore, in
a given cell, the maximum possible number of items is O(|N| |TT |2(n−1)), and the worst case
decoding complexity is

O

(
l3 |N|K |TT |2K(n−1)

)
(3)

where K is the maximum number of nonterminal pairs per rule and l is the source-language
sentence length (Venugopal, Zollmann, and Vogel, 2007).

2.3. Pruning in a Decoder

Severe pruning is needed in order tomake the decoding computationally feasible for SCFGs
with large target-language vocabularies and detailed nonterminal sets. In our decoder, we in-
corporate two pruning techniques described by (Chiang, 2007, Huang and Chiang, 2007). For
beam pruning, in each cell, we discard all items whose weight is β-times worse than the weight
of the best item in the same cell. If too many items pass that relative threshold, then only the
top b items by weight are retained in each cell. When applying an inference rule to combine
smaller items and obtain a larger item, we use cube pruning to simulate k-best extraction in
each destination cell, discarding combinations which lead to an item whose weight is worse
than the best item in that cell by a margin of ϵ.

49

PBML 91 JANUARY 2009

2.4. Hyper-graphs and k-best Extraction

For each source-language sentence the output of the chart-parsing algorithmmay be treated
as a hyper-graph representing a set of likely derivation hypotheses. Briefly, a hyper-graph is a
set of vertices and hyper-edges, with each hyper-edge connecting a set of antecedent vertices to
a consequent vertex, and a special vertex designated as the target vertex. In parsing parlance, a
vertex corresponds to an item in the chart, a hyper-edge corresponds to a SCFG rule with the
nonterminals on the right-side replaced by back-pointers to antecedent items, and the target
vertex corresponds to the goal item².

Given a hyper-graph for a source-language sentence f∗, we use the k-best extraction algo-
rithm of (Huang and Chiang, 2005) to extract its k most likely translations. Moreover, since
many different derivationsmay lead to the same target-language yield e(D), we adopt themod-
ification described in (Huang, Knight, and Joshi, 2006) to efficiently generate the unique k best
translations of f∗.

3. Underlying Methodologies

When designing our decoder we applied principles of soware engineering to improve us-
ability and hence utility to open-source users. Our three major design goals are: extendibility,
end-to-end coherence, and scalability.

3.1. Extendibility

To make Joshua a suitable baseline for future research it is necessary that it be easily ex-
tended by other researchers. As befitting a project of its size, the Joshua code is organized into
separate packages for each major aspect of functionality (e.g. chart parsing, feature functions,
and hyper-graph algorithms). In this way it is clear which files contribute to a given func-
tionality and researchers can focus on a single package without worrying about the rest of the
system.

Illicit interactions and unseen dependencies are a common hinderance to extensibility in
large projects. To minimize these problems, all extensible components are defined by Java in-
terfaces. e interfaces are designed to beminimalistic so that they do not hinder radical depar-
tures from current implementations, such as using per-sentence or non-trie-based translation
grammars. Where there is a clear point of departure for research, a basic implementation of
each interface is provided as an abstract class to minimize the work necessary for new exten-
sions.

A non-exhaustive list of future extensions we envisioned when designing our interfaces
include:

• Using a new decoding algorithm such as agenda-based parsing, instead of the default
CKY algorithm;

²In a decoder integrating ann-gram LM, there may be multiple goal items due to different LM contexts. However,
one can image a single goal item identified by the span [0, n] and the goal nonterminal S, but not by the LM contexts.

50

Z. Li, C. Callison-Burch, S. Khudanpur, W. Thornton Decoding in Joshua (47–56)

• Addingnewpruning algorithms, beside the already implemented beam- and cube-pruning;
• Using grammars with linguistic syntax such as the grammar described in (Galley et al.,
2006, Venugopal and Zollmann, 2009), rather than Hiero-style grammars;

• Handling non-SCFG grammar formalisms, e.g. synchronous tree substitution grammars
(Eisner, 2003);

• Adding new feature functions, e.g. the source-side syntax constraints described by (Mar-
ton and Resnik, 2008);

• Using novel languagemodels like the bloom-filter LMdescribed in (Talbot andOsborne,
2007), not just ARPA backoff n-gram models;

• Addingnewalgorithms that operate on the hyper-graph, for example, hyper-graph rerank-
ing or discriminative training over the hyper-graph.

3.2. End-To-End Cohesion

ere are many components to a machine translation pipeline aside from the decoder. One
of the great difficulties with current MT pipelines is that these diverse components are oen
designed by separate groups and have different file format and interaction requirements. is
leads to a large investment in scripts to convert formats and connect the different components,
and oen leads to untenable and non-portable projects as well as hindering repeatability of
experiments.

To combat these issues, the Joshua toolkit integrates other critical components of the ma-
chine translation pipeline as well as the decoder. Two critical components being integrated
are suffix-array grammar extraction (Callison-Burch, Bannard, and Schroeder, 2005, Lopez,
2007) and minimum error rate training (MERT) (Och, 2003, Bertoldi, Haddow, and Fouet,
2009, Zaidan, 2009). Additional components we hope to integrate include tools for building
language models and generating word alignments, as well as a general infrastructure for con-
figuring and connecting segments of the pipeline.

For researchers who have already invested much work into their pipelines, the decoder can
be treated as a stand-alone tool and does not rely on the rest of the toolkit we provide.

3.3. Scalability

Our third design goalwas to ensure that the decoder is scalable to largemodels anddata sets.
e parsing and pruning algorithms are carefully implemented with dynamic programming
strategies, and efficient data structures are used to minimize overhead.

e integration of suffix-array grammar extraction and MERT also contributes to scala-
bility. Suffix arrays are compact data structures which can store many more n-grams than a
traditional phrase table with the same memory footprint. ey are also amenable to extract-
ing small per-sentence grammars on the fly, rather than needing a monolithic grammar for
the entire test set. With MERT integration we do not need to start a new decoder instance
each iteration, which means we can load the grammar into memory once (an expensive task
compared to the decoding time itself) instead of repeatedly.

51

PBML 91 JANUARY 2009

We also implement parallel decoding and a distributed language model. Parallel decoding is
able to exploitmulti-core andmulti-processor architectures by translatingmultiple sentences in
separate threads and storing the language model and translation grammar in shared memory.
Enabling the distributed language model reduces memory pressure and makes it feasible to
use large LMs by running the LM on a separate machine from the decoder or decoders. More
details on these two features are provided in (Li and Khudanpur, 2008b).

4. Using the Decoder

To produce a translation output for a test document, one needs to follow the following
general five-step procedure.

1. Train a language model using a toolkit such as the SRI LM tools (Stolcke, 2002);
2. Extract a translation grammar for the test set. is step itself involves several sub-steps,

e.g. preparing a bilingual corpus, obtaining word alignments with a tool like GIZA (Och
and Ney, 2003), and extracting the grammar using the suffix-array infrastructure;

3. Find optimal weights for combining the different models and feature functions by using
MERT or another training procedure;

4. Write the decoder’s configuration file, specifying the language model, translationmodel,
feature weights, and other options. e integrated MERT, when given an initial config-
uration file, will produce a modified configuration with the final weights. Table 1 shows
an example configuration file.

5. Finally, run the decoder to produce the k best translations for each sentence in the test
document. For an input file, test.in, an output k-best file, test.kbest, and a con-
figuration file, config, the decoder can be invoked with:

java joshua.JoshuaDecoder config test.in test.kbest

Oen it is helpful to pass additional flags to the JVM to specify the minimum and maxi-
mum size of the heap, to adjust the minimum free-heap ratio, or to enable 64-bit mode.

5. Experimental Results

In this section, we evaluate the performance of our decoder on a large-scale Chinese to
English translation task.³

5.1. System Training

We use various parallel text corpora distributed by the Linguistic Data Consortium (LDC)
for the NIST MT evaluation. e parallel data we select contains about 570K Chinese-English
sentence pairs, adding up to about 19M words on each side. To train the English language

³Again, most of the descriptions here are adopted from (Li and Khudanpur, 2008b).

52

Z. Li, C. Callison-Burch, S. Khudanpur, W. Thornton Decoding in Joshua (47–56)

lm file location
lm_file=example.trigram.lm.gz

tm file location
tm_file=example.hiero.tm.gz

lm model weight
lm 1.000000

translation model weights
phrasemodel pt 0 1.066893
phrasemodel pt 1 0.752247
phrasemodel pt 2 0.589793

wordpenalty weight
wordpenalty -2.844814

Table 1. An example configuration file. For conciseness, this file neglects some
standard configuration options (e.g.k-best size).

models, we use the English side of the parallel text and a subset of the EnglishGigaword corpus,
for a total of about 130M words.

We use the GIZA toolkit (Och andNey, 2003), a suffix-array architecture (Lopez, 2007), the
SRILM toolkit (Stolcke, 2002), and minimum error rate training (Och, 2003) to obtain word-
alignments, a translationmodel, languagemodels, and the optimal weights for combining these
models, respectively.

5.2. Improvements in Decoding Speed

We use a Python implementation of a state-of-the-art decoder as our baseline⁴ for decoder
comparisons. For a direct comparison, we use exactly the same models and pruning parame-
ters. e SCFG contains about 3M rules, the 5-gram LM explicitly lists about 49M n-grams,
n = 1, 2, . . . , 5, and the pruning uses β = 10, b = 30 and ϵ = 0.1.

As shown in Table 2, the Java decoder (without explicit parallelization) is 22 times faster
than the Python decoder, while achieving slightly better translation quality as measured by
BLEU-4 (Papineni et al., 2002). e parallelization further speeds it up by a factor of 1.7, mak-
ing the parallel Java decoder is 38 times faster than the Python decoder.

We have also used the decoder to successfully decode about one million sentences for a
large-scale discriminative training experiment (Li and Khudanpur, 2008a), showing that the

⁴We are extremely thankful to Philip Resnik at University of Maryland for allowing us the use of their Python
decoder as the baseline. anks also go to David Chiang who originally implemented the decoder.

53

PBML 91 JANUARY 2009

Decoder Speed BLEU-4
(sec/sent) MT ’03 MT ’05

Python 26.5 34.4% 32.7%
Java 1.2 34.5% 32.9%Java (parallel) 0.7

Table 2. Decoder Comparison: Translation speed and quality on the 2003 and 2005
NIST MT benchmark tests.

decoder is stable and scalable.

5.3. Impact of a Distributed Language Model

We use the SRILM toolkit to build eight 7-gram language models, and load and call the
LMs using a distributed LM architecture as discussed before. As shown in Table 3, the 7-gram
distributed language model (DLM) significantly improves translation performance over the 5-
gram LM.However, decoding is significantly slower (12.2 sec/sent when using the non-parallel
decoder) due to the added network communication overhead.

LM type # n-grams MT ’03 MT ’05
5-gram LM 49M 34.5% 32.9%
7-gram DLM 310M 35.5% 33.9%

Table 3. Distributed language model: the 7-gram LM cannot be loaded alongside
the SCFG on a single machine; via distributed computing, it yields significant

improvement in BLEU-4 over a 5-gram.

6. Conclusions

Wehave described a scalable decoder for parsing-basedmachine translation. It is written in
Java and implements all the essential algorithms described in (Chiang, 2007) and (Li and Khu-
danpur, 2008b): chart-parsing, n-gram language model integration, beam- and cube-pruning,
and unique k-best extraction. Additionally, parallel and distributed computing techniques are
exploited tomake it scalable. We demonstrate that our decoder is 38 times faster than a baseline
decoder written in Python, and that the distributed language model is very useful to improve
translation quality in a large-scale task. e decoder has been used for decoding millions of
sentences for a large-scale discriminative training task (Li and Khudanpur, 2008b).

54

Z. Li, C. Callison-Burch, S. Khudanpur, W. Thornton Decoding in Joshua (47–56)

Acknowledgments

We would like to thank the other Joshua developers for their contributions to the code:
Chris Dyer, Lane Schwartz, Jonathan Weese, and Omar Zaidan. We also thank Adam Lopez,
SmarandaMuresan andPhilip Resnik for very helpful discussions. is researchwas supported
in part by the Defense Advanced Research Projects Agency’s GALE program under Contract
No.HR0011-06-2-0001 and the National Science Foundation under grants Numbers 0713448
and 0840112. e views and findings are the authors’ alone.

Bibliography

Bertoldi, Nicola, Barry Haddow, and Jean-Baptiste Fouet. 2009. Improved minimum error rate training
in Moses. e Prague Bulletin of Mathematical Linguistics, this volume.

Callison-Burch, Chris, Colin Bannard, and Josh Schroeder. 2005. Scaling phrase-based statistical ma-
chine translation to larger corpora and longer phrases. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL-2005), Ann Arbor, Michigan.

Chen, Boxing, Deyi Xiong, Min Zhang, Aiti Aw, and Haizhou Li. 2008. I2R multi-pass machine trans-
lation system for iwslt 2008. In Proceedings of the International Workshop on Spoken Language Tech-
nology, Honolulu, Hawaii.

Chiang, David. 2006. An introduction to synchronous grammars. Tutorial available at
http://www.isi.edu/∼chiang/papers/synchtut.pdf.

Chiang, David. 2007. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228.

Eisner, Jason. 2003. Learning non-isomorphic tree mappings for machine translation. In Proceedings of
the 41st Annual Meeting of the Association for Computational Linguistics (ACL-2003), Sapporo, Japan.

Galley, Michel, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang, and Ignacio
ayer. 2006. Scalable inference and training of context-rich syntactic translation models. In Pro-
ceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting
of the Association for Computational Linguistics (ACL-CoLing-2006), Sydney, Australia.

Huang, Liang and David Chiang. 2005. Better k-best parsing. In Proceedings of the International Work-
shop on Parsing Technologies, Vancouver, BC, Canada.

Huang, Liang and David Chiang. 2007. Forest rescoring: Faster decoding with integrated language
models. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics
(ACL-2007), Prague, Czech Republic.

Huang, Liang, Kevin Knight, and Aravind Joshi. 2006. Statistical syntax-directed translation with ex-
tended domain of locality. In Proceedings of the 7th Biennial Conference of the Association forMachine
Translation in the Americas (AMTA-2006), Cambridge, Massachusetts.

Koehn, Philipp, HieuHoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, , and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation.
In Proceedings of the ACL-2007 Demo and Poster Sessions, Prague, Czech Republic.

55

PBML 91 JANUARY 2009

Li, Zhifei and Sanjeev Khudanpur. 2008a. Large-scale discriminative n-gram language models for statis-
tical machine translation. In Proceedings of the 8th Biennial Conference of the Association for Machine
Translation in the Americas (AMTA-2008), Honolulu, Hawaii.

Li, Zhifei and Sanjeev Khudanpur. 2008b. A scalable decoder for parsing-basedmachine translation with
equivalent language model state maintenance. In In Proceedings of the Second Workshop on Syntax
and Structure in Statistical Translation, Colmbus, Ohio.

Liu, Yang, Qun Liu, and Shouxun Lin. 2006. Tree-to-string alignment templates for statistical machine
translation. In Proceedings of the 21st International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational Linguistics (ACL-CoLing-2006), Sydney,
Australia.

Lopez, Adam. 2007. Hierarchical phrase-based translation with suffix arrays. In Proceedings of the Joint
Meeting of theConferences on EmpiricalMethods inNatural Language Processing andNatural Language
Learning (EMNLP-CoNLL).

Marton, Yuval and Philip Resnik. 2008. So syntactic constraints for hierarchical phrased-based trans-
lation. In Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, Colmbus, Ohio.

Och, Franz Josef. 2003. Minimum error rate training for statistical machine translation. In Proceedings of
the 41st Annual Meeting of the Association for Computational Linguistics (ACL-2003), Sapporo, Japan.

Och, Franz Josef and Hermann Ney. 2003. A systematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL-2002), Philadelphia, Pennsylvania.

Quirk, Chris, Arul Menezes, and Colin Cherry. 2005. Dependency treelet translation: Syntactically
informed phrasal smt. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL-2005), Ann Arbor, Michigan.

Stolcke, Andreas. 2002. SRILM - an extensible language modeling toolkit. In Proceedings of the Interna-
tional Conference on Spoken Language Processing, Denver, Colorado, September.

Talbot, David and Miles Osborne. 2007. Randomised language modelling for statistical machine trans-
lation. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics
(ACL-2007), Prague, Czech Republic.

Venugopal, Ashish and Andreas Zollmann. 2009. Grammar based statistical MT on Hadoop: An end-
to-end toolkit for large scale PSCFG based statistical machine translation. e Prague Bulletin of
Mathematical Linguistics, this volume.

Venugopal, Ashish, Andreas Zollmann, and Stephan Vogel. 2007. An efficient two-pass approach to
synchronous-CFG driven statistical MT. In Proceedings of the Human Language Technology Confer-
ence of the North American chapter of the Association for Computational Linguistics (HLT/NAACL-
2007), Rochester, New York,.

Zaidan, Omar F. 2009. Z-MERT: A fully configurable open source tool for minimum error rate training
of machine translation systems. e Prague Bulletin of Mathematical Linguistics, this volume.

56

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009 57–66

apertium-cy – a collaboratively-developed free RBMT system
for Welsh to English

Francis Tyers, Kevin Donnelly

Abstract
apertium-cy (http://www.cymraeg.org.uk) is a rule-based “gisting” machine translation system

forWelsh to English, with both engine and data released under the GPL.We summarise the development
of apertium-cy, evaluate its output, and discuss the advantages of a collaborative development model
combined with rule-based MT for marginalised languages.

1. e Apertium platform

apertium-cy is a “gisting” machine translation system for Welsh to English, based on the
Apertium machine translation platform.¹ e platform was originally aimed at the Romance
languages of the Iberian peninsula, but is now being adapted for other languages (such as
Basque, and languages from the Celtic group –Welsh, Irish, Breton), withmuch of the work on
new languages being pursued by volunteers, following the increasingly common collaborative
development model used for free² and open-source soware. Apertium is licensed under the
Free Soware Foundation’s GNUGeneral Public License,³ and all the soware and data for the
17 supported language pairs (and the other pairs in development) is available for download
from the project website.

Apertium follows a shallow-transfer approach, and is very fast. Finite-state transducers
(Garrido-Alenda and Forcada, 2002, Roche and Schabes, 1997) processing up to 40,000 words
per second are used for lexical processing, first-order hiddenMarkov models (HMM) are used
for part-of-speech tagging, and multi-stage finite-state based chunking for structural transfer.

¹http://www.apertium.org
²We follow the definition of “free” used by the Free Soware Foundation - http://www.fsf.org.
³http://www.fsf.org/licensing/licenses/gpl.html, accessed 12/12/2008.

© 2009 PBML. All rights reserved.
Please cite this article as: Francis Tyers, Kevin Donnelly, apertium-cy – a collaboratively-developed free
RBMT system for Welsh to English. The Prague Bulletin of Mathematical Linguistics No. 91, 2009, 57–66.

PBML 91 JANUARY 2009

e soware behind the platform is implemented as a standard UNIX pipeline, with each
stage in the translation having a separate C++ program. Communication between each stage
uses piped text streams. XML-based formats are used to encode the linguistic data, which are
then compiled into the high-speed formats used by the engine. Further details are given in
(Armentano-Oller et al., 2006), and on the project website.

2. Background

e increasing economic and cultural importance of information technology poses a threat
to marginalised languages. Unless they have an ICT presence, along with a reasonable range
of the tools that computer-users take for granted (e.g. spelling and grammar-checkers, dictio-
naries and thesauruses, etc.), they run the risk of being shut out of this whole sector of modern
life. e result will be a further decline in their status and usage (Crystal, 2000).

In the case of Welsh, which could be said to be the healthiest of the Celtic languages, with
nearly 600,000 speakers (almost 21% of the population),⁴ requests had beenmade over a period
of years for leading soware suppliers to produce Welsh versions of their soware, but little
progress had been made. Free soware offered a way around this problem.

In 2003, the second author launched a voluntary initiative to translate soware used on
the GNU/Linux operating system into Welsh. Language tools that majority languages take for
granted would have been useful to correct mistakes and maintain quality, but unfortunately,
where such tools existed, they were not available under a licence which would enable them
to be distributed with the soware being translated (the exception being a Welsh spellchecker
which was released some time later for the Firefox browser).

e only alternative was to create these tools from scratch. is involved delaying the trans-
lation project, and working in turn on a dictionary,⁵ verb inflector,⁶ and a grammar-checker
based on An Gramadóir (Scannell, 2008).

3. Development of apertium-cy

When we started extending Apertium to create a gisting system for Welsh by using this
free data, a major issue to be tackled was revising its dictionary format to deal with perhaps
the defining feature of the Celtic languages – mutation (alteration of initial phonemes, usually
having amorphological significance). An example would be the lemma tad (father), which can
appear as dad (ei dad – his father), nhad (fy nhad – my father) and thad (ei thad – her father).
For further details, see (Ball and Müller, 1992) and (Stewart, 2004).

It also became clear that there were two main issues with the disambiguation stage in the
Apertium platform with respect to Welsh. e first was that the HMM-based POS tagger was

⁴Table WLP01 in: http://www.statistics.gov.uk/downloads/census2001/Report_on_the_Welsh_
language.pdf, accessed 12/12/2008.

⁵http://www.eurfa.org.uk
⁶http://www.konjugator.org.uk

58

F. M. Tyers, K. Donnelly apertium-cy - a free Welsh-English RBMT system (57–66)

not able to take advantage of the disambiguation properties of the mutations, and the second
was that the accuracy of a tagger trained in an unsupervised manner (without a tagged corpus)
was below what was expected.

e following phrase gives an example of mutation having an effect on disambiguation:
Mae’r modd y mae gweithwyr mudol... (e means by which migrant workers...are...). Here,
modd could be interpreted as either an unmutated form of the noun modd (means) or as a
nasally-mutated form of the noun bodd (pleasure). Linguistically there is no ambiguity – a
nasal mutation would never follow the definite article, [y]r.

Since there was no tagged corpus of Welsh available under a free licence with which to
train the tagger in a supervised manner, we examined other options for improving disam-
biguation performance. Rather than add this functionality directly to the Apertium tagger, the
first author undertook a review of free soware which might meet our needs here, and settled
on Constraint Grammar⁷, being developed by researchers at the University of Southern Den-
mark – further details are available in (Karlsson et al., 1995), and on the webpage referenced.
It proved possible to integrate this soware relatively easily, and a number of CG rules were
written to disambiguate the Welsh text before it was fed into the statistical tagger.

Version 0.1 of apertium-cy contains approximately 10,000 lemmas and 150 grammatical
rules, and has up to 94% coverage on large Welsh corpora.⁸ Work continues on 0.2, with the
key target being an initial version of an English to Welsh translator.

4. Evaluation

Previous work reported for Welsh machine translation includes (Phillips, 2001) and (Jones
and Eisele, 2006). (Somers, 2004), in a report commissioned by the Welsh Language Board on
a possible strategy for MT in Welsh, suggests (section 4.1) that one of the initial steps should
be “a small Welsh-English...system for gist translation of Welsh documents”. We would argue
that apertium-cy constitutes such a system.

4.1. Quantitative

In order to provide a comparison with the other published paper on the subject, (Jones and
Eisele, 2006), we evaluated the quality of the translations using three common metrics: word
error rate (WER), position-independent word error rate (PER), and the Bilingual Evaluation
Understudy (BLEU) (Papineni et al., 2002).

e first two metrics (WER and PER) provide a measure of post-edition effort – that is,
they measure howmuch of the text needs to be changed to achieve a translation of publishable
quality.

e third (BLEU) is a popular evaluation metric within the machine translation commu-
nity, andwe include it to give results comparable with the systemdescribed in (Jones and Eisele,

⁷http://beta.visl.sdu.dk/constraint_grammar.html, accessed 12/12/2008.
⁸Coverage for the PNAW corpus – see section 4.1 below – is 94%, and for the Welsh Wikipedia, 86%.

59

PBML 91 JANUARY 2009

2006). It should be noted that BLEU scores are not necessarily appropriate for comparing sys-
tems of different types, and have a tendency to penalise rule-based systems (Callison-Burch,
Osborne, and Koehn, 2006, Labaka et al., 2007).

Two corpora were used for evaluation. e first corpus consisting of 318 sentences (5,492
words) was selected at random from theWelshWikipedia - we have made this corpus available
for download.⁹ ese sentences were translated and then post-edited by a speaker of both
languages. We then calculated the WER, PER and BLEU scores of the system’s translations
against the post-edited references. It is worth noting that (a) sentences were filtered such that
each one is covered fully by the dictionaries, with the result that this test does not give an
indication of system vocabulary coverage, and (b) using BLEU against a post-edited reference
is a novel methodology and may lead to higher scores.

e second corpus consisted of a 10% sample (50,000 sentences) of theWelsh–English Pro-
ceedings of the National Assembly for Wales (PNAW) corpus.¹⁰ For this corpus, the sentence
sample was translated, and then the scores were calculated between the translated sentences
and the reference translations.¹¹ As with (Jones and Eisele, 2006), unknown words were le in
the translations.

e results of these evaluations are given in Table 1 – bold face represents the highest score.

WER PER BLEU
Wikipedia true-case 55.78 30.59 30.70
Wikipedia lowercased 53.40 27.22 32.21

PNAW true-case 65.99 35.44 15.12
PNAW lowercased 64.94 34.35 15.68

Table 1. WER, PER and BLEU metrics for the two corpora

As expected, considering the system is intended for “gisting translation”, the scores for the
post-edition task indicate that the system currently produces sentences with too high an error
rate to be usable for professional post-editing.

ere is less difference between the PER scores for each corpus than there is for the WER
and BLEU scores. is probably indicates (unsurprisingly given the differences in sentence
structure between Welsh and English) that more needs to be done on word-reordering, which
this particular metric does not take into account.

It is also surprising that the BLEU score for the PNAW corpus is substantially lower than
for the Wikipedia one, while the scores for WER and PER are less divergent. All of the BLEU
scores are lower than the 40.22 for Welsh to English reported in (Jones and Eisele, 2006), but

⁹http://xixona.dlsi.ua.es/~fran/welsh/cy-test-corpus.tar.gz
¹⁰See (Jones and Eisele, 2006), available from http://xixona.dlsi.ua.es/corpora/.
¹¹It is generally recommended that three references are used as a minimum for calculating BLEU scores. Unfortu-

nately three references were not available, and (Jones and Eisele, 2006) reports using a single reference translation.

60

F. M. Tyers, K. Donnelly apertium-cy - a free Welsh-English RBMT system (57–66)

given the variation in the scores we suspect, along with the previously mentioned authors, that
BLEU is not a particularly good metric for comparing unrelated MT systems.

4.2. Qualitative

e targets for apertium-cy 0.1 included the aim that “sentences of up to 5 words should
be translated reasonably well from Welsh to English”,¹² since this will allow a large number of
short, conceptually-simple sentences to be translated. is has been met quite comfortably, as
the following examples (with apertium-cy output in line b) show:

(1) a. Mae’r gath yn yr ardd, ond mae’r ci yn y cae.
b. e cat is in the garden, but the dog is in the field.

(2) a. Mi welodd y dyn y bachgen yn dod allan o’r siop.
b. e man saw the boy coming out of the shop.

(3) a. Mi fydd y trên yn hwyr yfory, oherwydd bydd y cwmni yn gweithio ar y lein.
b. e train will be late tomorrow, because the company will be working on the line.

Other sentences do not come across as well-formed English at present, and are therefore
not suitable for dissemination, but the meaning is perfectly clear:

(4) a. Bydd rhaid i ti frwsio dy ddannedd cyn mynd i’r ysgol.
b. *Necessity will be to you brush your teeth before go to the school.
c. You’ll have to brush your teeth before going to school.

(5) a. Mi gafodd yr adroddiad ei olygu gan y Pwyllgor Seneddol.
b. *e report got edit with the Parliamentary Committee.
c. e report was edited by the Parliamentary Committee.

apertium-cy 0.1 has been tested on official statements, novels, newspaper articles and non-
fiction, and also seems to work on older texts provided the spelling is modernised, as in this
example from 1865:

(6) a. Ond oherwydd na ellid disgwyl ond cylchrediad lleol i lyfr o’r fath, ac oherwydd nad
oedd gennymninnau arian i’w gwariomewn ymgymeriad felly, ofnwyd yr anturiaeth.

b. *But because nor could expect but local circulation to book of the type, and because
was notwith us us amoney to spend it in undertaking so, the adventurewere feared.

c. But since only a local circulation for a book of this kind could be expected, and
because we ourselves did not have the money to spend on such an undertaking,
the venture raised fears.

e web interface at http://www.cymraeg.org.uk gives other examples, and allows
users to enter their own text in order to come to their own conclusions about translation quality.

¹²http://wiki.apertium.org/wiki/Welsh_to_English

61

PBML 91 JANUARY 2009

5. Shortcomings

e main shortcomings of apertium-cy 0.1 fall into three main areas: phrase delimitation,
treatment of subordinate clauses, and lexical selection.

5.1. Phrase delimitation

Because Apertium follows a shallow transfer approach, and does not include a full parser,
it can be difficult to delimit phrases in such a way that they can be handled as a block when the
target language requires this. Consider the following series of examples, based on the standard
Welsh genitival construction, where the sequence noun1 + def.art + noun2 is equivalent to the
English the noun1 of the noun2 or the noun2’s noun1:

(7) a. cath
[NP noun +

ddu
qual]

b. black cat
(8) a. cath

[NP noun +
y
def.art +

meddyg
noun]

b. the cat of the doctor
c. the doctor’s cat

(9) a. cath
[NP noun +

ddu
qual +

y
def.art +

meddyg
noun]

b. *black cat the doctor
c. the doctor’s black cat

(10) a. cath
[NP noun +

ddu
qual +

fawr
qual +

y
def.art +

meddyg
noun]

b. *big black cat the doctor
c. the doctor’s big black cat

(11) a. cath
[NP noun +

merch
[NP noun +

y
def.art +

meddyg
noun]]

b. *daughter cat the doctor
c. the doctor’s daughter’s cat

(12) a. cath
[NP noun +

ddu
qual +

merch
[NP noun +

y
def.art +

meddyg
noun]]

b. *daughter black cat the doctor
c. the doctor’s daughter’s black cat

(7) and (8) are well-formed English, and (9) and (10) are only missing a definite article
and the genitival of. However, in (11), the sub-phrase merch y meddyg should be translated

62

F. M. Tyers, K. Donnelly apertium-cy - a free Welsh-English RBMT system (57–66)

along the lines of (8) as the daughter of the doctor, and le in position. Instead,merch is treated
as a qualifier like ddu, and shied, as can be seen when comparing (12) and (10). Most in-
stances of problematic phrase delimitation are more complex than this, but we are confident
that adding more rules and refining existing ones, along with the planned additon of a basic
parser to Apertium some time in 2009, will resolve many of the issues.

5.2. Treatment of subordinate clauses

Marked formations and subordinate clauses, particularly relative clauses, also need more
work:

(13) a. Mi welodd y dyn y bachgen sy’n gweithio yn y siop.
b. e man saw the boy that works in the shop.

(14) a. Mi welodd y dyn y bachgen a giciodd y ci.
b. *e man saw the boy and the dog kicked.
c. e man saw the boy who kicked the dog.

(15) a. Hi yw’r ferch a welais ddoe.
b. *She the daughter is and saw yesterday.
c. She is the girl I saw yesterday.

(16) a. Ef yw’r dyn y lladdwyd ei fab.
b. *He the man is were killed its son.
c. He is the man whose son was killed.

Part of this, as in (14) and (15), relates to improving the rules so that they make use of
morphological markers where they exist (e.g. a (and) will not be followed by so mutation,
whereas a (who, which, that) will). Other work, as in (16), will involve trying to improve
number and gender agreement.

5.3. Lexical selection

Lexical selection in Apertium is under development - this would increase fluency in exam-
ples such as the following:

(17) big / great (adjective)
a. Mae hyn o bwysigrwydd mawr i Gymru ac yn hanfodol i ddyheadau’r Cynulliad.
b. *is is of big importance toWales and essential to the aspirations of the Assembly.
c. is is of great importance toWales and esssential to the aspirations of the Assem-

bly.

(18) as / like (conjunction)

63

PBML 91 JANUARY 2009

a. Mae’r adeilad hwn yn anaddas fel cartref hirdymor i’r Cynulliad.
b. *is building is inappropriate like long-term home to the Assembly.
c. is building is unsuitable as a long-term home for the Assembly.

6. Discussion

e collaborative development model adopted from the free and open-source soware
movement has a great deal to offer MT research:

1. Existing data (e.g. dictionaries, corpora) can be reused, and soware can be extended.
Improvements can be shared, thus ensuring that scarce resources are used to best effect,
and that the materials are as robust as possible by being tested in different contexts.

2. e robustness or versatility of a research model can be tested more rigorously. e
fact that Apertium can be used for language families for which it was not designed, for
instance, encourages us to believe that its architecture is broadly valid.

3. Results can be verified – the concept of reproducibility is central to the scientificmethod,
but is absent unless all of the original data and soware can be executed, examined and
changed as necessary.

It must be emphasised, however, that in order for MT research to describe itself as “open”
or “open-source” both the engines and the data (whether rules, dictionaries, grammars, cor-
pora or whatever) need to be available under an open licence. For marginalised languages, the
latter can sometimes be a problem, in that where such data exists it may not be open, due to an
immature understanding on the part of language promotion bodies of the benefits of open re-
search – see also (Streiter, Scannell, and Stuflesser, 2006, Forcada, 2006, Koster and Gradmann,
2004). Our strong view is that any materials developed with the input of public funds should
by default have at least a subset released under an open licence. During the development of
apertium-cy we have had reason to reflect on the odd situation of being able to use materials
for English developed with public money in Spain, but not materials for Welsh developed with
public money in Wales.

For SMT, given a corpus for any pair of languages, it is usually possible to arrive at a work-
ing MT system aer a relatively short training time. In contrast, RBMT systems have oen
taken years to develop, largely because of the time involved in writing the dictionaries and the
rules. We would argue that for marginalised languages the collaborative development model
improves the attractiveness of RBMT as an MT option, for a number of reasons:

1. Such languages may not have freely available aligned corpora available of the size re-
quired for SMT,¹³ but if they have dictionaries and grammars available, writing rules
based on these will be as viable as trying to generate corpora.

¹³In fact, Welsh has a large corpus (the Proceedings of the National Assembly ofWales, referred to above) that could
be used for SMT, but unfortunately it is not available under a free licence.

64

F. M. Tyers, K. Donnelly apertium-cy - a free Welsh-English RBMT system (57–66)

2. Development time for openRBMTcan be drastically reduced compared to closedRBMT
by editing and adapting any open data that is already available in some form (e.g. dic-
tionaries put together by enthusiasts). e authors are currently combining free Bre-
ton–Dutch and Breton–French dictionaries to create a unified 50,000-word resource, to
which English can be added in due course.

3. If dictionaries and rules already exist for a series of language pairs, they can be edited and
adapted to create a new pair. With Apertium, for instance, given the existing Spanish-
English and Welsh-English pairs, the data and rules could be used to create a Welsh-
Spanish MT system. Although the same point applies to SMT, translating a corpus may
be a much more demanding affair.

4. For marginalised languages, the “critical mass” of required data or language tools may
be no less than for a majority language, but the resources available (skills, time, money)
are usually much less. Compared to the balkanisation of effort represented by closed
systems, the decreased time (and therefore money!) required by open RBMT systems
make it more feasible for such languages to get machine translation systems, and for this
development to be done on a community basis.

5. Further useful tools may become available as a spin-off from the main effort – for in-
stance, the first author was able to develop a proof-of-conceptWelsh vocabulary assistant
for web-pages, Geriaoueg, based on Apertium, in a couple of days.¹⁴

7. Conclusions

We have shown how a rule-based machine translation system for Welsh was quickly de-
veloped from existing data and soware, and demonstrated that the translation quality in this
initial version of the soware is encouraging. Crucially, the materials used in the project were
all available under a free licence which allowed them to be used and adapted in a collabora-
tive development process. is also means that they are all available for review by interested
researchers. We have pointed out a number of compelling reasons why the collaborative de-
velopment model and rule-based MT systems are a good fit for marginalised languages.

Acknowledgements We are grateful to Liam Tomkins and Dafydd Francis for their support during
the development of the apertium-cy system, and to Felipe Sánchez Martínez, Gema Ramírez Sánchez,
Sergio Ortiz Rojas and Mikel L. Forcada for their comments and suggestions.

Bibliography

Armentano-Oller, Carme, Rafael C. Carrasco, AntonioM. Corbí-Bello, Mikel L. Forcada, Mireia Ginestí-
Rosell, Sergio Ortiz-Rojas, Juan Antonio Pérez-Ortiz, Gema Ramírez-Sánchez, Felipe Sánchez-

¹⁴http://elx.dlsi.ua.es/geriaoueg

65

PBML 91 JANUARY 2009

Martínez, and Miriam A. Scalco. 2006. “Open-source Portuguese-Spanish machine translation”.
Proceedings of the 7th International Workshop on Computational Processing of Written and Spoken
Portuguese, PROPOR-2006.

Ball, Martin J. and Nicole Müller. 1992. Mutation in Welsh. Routledge.

Callison-Burch, Chris, Miles Osborne, and Philipp Koehn. 2006. “Re-evaluating the role of Bleu in
machine translation research”. EACL-2006.

Crystal, David. 2000. Language Death. Cambridge University Press.

Forcada, Mikel. 2006. “Open-source machine translation: an opportunity for minor languages”. Strate-
gies for developing machine translation for minority languages (5th SALTMIL workshop on Minority
Languages), LREC-2006.

Garrido-Alenda, Alicia and Mikel L. Forcada. 2002. “Comparing nondeterministic and quasideter-
ministic finite-state transducers built from morphological dictionaries”. Procesamiento del Lenguaje
Natural (XVIII Congreso de la Sociedad Española de Procesamiento del Lenguaje Natural).

Jones, Dafydd and Andreas Eisele. 2006. “Phrase-based statistical machine translation between English
and Welsh”. Strategies for developing machine translation for minority languages (5th SALTMIL work-
shop on Minority Languages), LREC-2006.

Karlsson, F., A. Voutilainen, J. Heikkilä, and A. Anttila. 1995. Constraint Grammar: A language indepen-
dent system for parsing unrestricted text. Mouton de Gruyter.

Koster, Cornelis H. A. and Stefan Gradmann. 2004. “e Language belongs to the People”. Proceedings
of the 4th International Conference on Language Resources and Evaluation, LREC-2004.

Labaka, Gorka, Nicholas Stroppa, AndyWay, andKepa Sarasola. 2007. “Comparing rule-based and data-
driven approaches to Spanish-to-Basque machine translation”. Proceedings of the 4th International
Conference on Language Resources and Evaluation, LREC-2004.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. “BLEU: A method for auto-
matic evaluation of machine translation”. Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics.

Phillips, John D. 2001. “e Bible as a basis for machine translation”. Proceedings of PACLing 2001.

Roche, Emmanuel and Yves Schabes. 1997. Finite-State Language Processing. MIT Press.

Scannell, Kevin P. 2008. “An Gramadóir: A grammar-checking framework for the Celtic languages and
its applications”. 14th annual NAACLT conference.

Somers, Harold. 2004. Machine Translation andWelsh: eWay Forward. Welsh Language Board. Avail-
able from http://www.byig-wlb.org.uk/english/publications/publications/2302.
doc.

Stewart, T.W. 2004. Mutation as Morphology: Bases, Stems and Shapes in Scottish Gaelic. Doctoral
dissertation, Ohio State University.

Streiter, Oliver, Kevin P Scannell, and Mathias Stuflesser. 2006. “Implementing NLP Projects for Non-
Central Languages: Instructions for Funding Bodies, Strategies for Developers”. Machine Translation,
20(4).

66

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009 67–78

Grammar based statistical MT on Hadoop
An end-to-end toolkit for large scale PSCFG based MT

Ashish Venugopal, Andreas Zollmann

Abstract
is paper describes the open-source Syntax Augmented Machine Translation (SAMT) ¹on Hadoop

toolkit—an end-to-end grammar based machine statistical machine translation framework running
on the Hadoop implementation of the MapReduce programming model. We present the underlying
methodology of the SAMT approach with detailed instructions that describe how to use the toolkit to
build grammar based systems for large scale translation tasks.

1. Introduction

1.1. PSCFG approaches to Machine Translation

Syntax AugmentedMachine Translation (SAMT) (Zollmann and Venugopal, 2006) defines
a specific parameterization of the probabilistic synchronous context-free grammar (PSCFG)
approach to machine translation. PSCFG approaches take advantage of nonterminal symbols,
as in monolingual parsing, to generalize beyond purely lexical translation. Consider the exam-
ple rule below:

@VP → ne @VB1 pas # do not @VB1 : w

representing the discontiguous translation of the French words “ne” and “pas” to “do not”, in
the context of the labeled nonterminal symbol “@VB” (representing the syntactic constituent
type of Verb). ese rules seem considerably more complex than weighted word-to-word rules
(Brown et al., 1993), or phrase-to-phrase rules (Koehn, Och, and Marcu, 2003, Och and Ney,
2004) but can be viewed as natural extensions to these well established approaches. An intro-
duction to PSCFG approaches to machine translation can be found in (Chiang and Knight,
2006).

¹Released under the GNU Lesser General Public License, version 2

© 2009 PBML. All rights reserved.
Please cite this article as: Ashish Venugopal, Andreas Zollmann, Grammar based statistical MT on Hadoop:
An end-to-end toolkit for large scale PSCFG based MT. The Prague Bulletin of Mathematical Linguistics No.
91, 2009, 67–78.

PBML 91 JANUARY 2009

(Chiang, 2005) describes a procedure to learn PSCFG rules fromword-aligned parallel cor-
pora, using the phrase-pairs from (Koehn, Och, and Marcu, 2003) as a lexical basis for the
grammar. SAMT (Zollmann andVenugopal, 2006) extends the procedure from (Chiang, 2005)
to assign labels to nonterminal symbols based on target language phrase structure parse trees.

In this paper, we describe an end-to-end statistical machine translation frame-
work—SAMTonHadoop—to learn and estimate parameters for PSCFGgrammars fromword-
aligned parallel corpora (training), and perform translation (decoding) with these grammars
under a log-linear translation model (Och and Ney, 2004). While our framework specifically
implements (Chiang, 2005) and (Zollmann and Venugopal, 2006), the training and decod-
ing algorithms in our toolkit can be easily replaced to experiment with alternative PSCFG pa-
rameterizations like (Galley et al., 2006, Wu, 1997). e algorithms in this toolkit are imple-
mented upon Hadoop (Cutting and Baldeschwieler, 2007), an open-source implementation of
theMapReduce (Dean and Ghemawat, 2004) framework, which supports distribution compu-
tation on large scale data using clusters of commodity hardware. We report empirical results
that demonstrate the use of the SAMT toolkit on large scale translation tasks.

1.2. e SAMT toolkit

Our toolkit, when used in concert with other open-source components and publicly avail-
able corpora, contains all of the necessary components to build and evaluate grammar based
statistical machine translations systems. e primary components of the toolkit are listed be-
low:

• A top level push-button script that provides experimental work-flow management and
submits jobs to the underlying Hadoop framework.

• Components to build and estimate parameters for the grammars described in (Chiang,
2005) and (Zollmann and Venugopal, 2006).

• Tools to filter large translation grammars and n-gram language models to build small
sentence specific models that can be easily loaded into memory during decoding.

• A bottom-up dynamic chart parsing decoder based on (Chappelier and Rajman, 1998)
which supports grammarswithmore than 2 nonterminals symbols per rule. edecoder
outputs n-best lists with optional annotations that facilitate discriminative training.

• An implementation of Minimum Error Rate (MER) training (Och, 2003), extended to
perform feature selection.

e SAMT toolkit requires the following inputs that are easily generated by existing open-
source tools.

• Word aligned parallel corpora. For small resource tasks, word-alignments can be gener-
ated using the GIZA++ toolkit (Och and Ney, 2003), while large-resource tasks can be
aligned using (Dyer et al., 2008), a parallelizedGIZA++ implementation onMapReduce.

• (Zollmann and Venugopal, 2006) requires target language parse trees for each sentence
in the training data. SAMT on Hadoop interfaces to the parser from (Charniak, 2000)
to parse the target side of the parallel corpora on Hadoop.

• N-Gram languagemodels built via the SRILM toolkit (Stolcke, 2002) are used as features

68

A. Venugopal, A. Zollmann Grammar based statistical MT on Hadoop (67–78)

during decoding.

1.3. SAMT on Hadoop

e SAMT toolkit is built upon Hadoop (Cutting and Baldeschwieler, 2007), an open-
source implementation of the MapReduce model to distribute the estimation of PSCFG gram-
mars and to perform decoding. Training and decoding are broken up into a series of MapRe-
duce tasks, called phases, which are performed sequentially, transforming input data into a
PSCFG grammar, and using the grammar to translate development and test sentences. Phase
outputs are stored on the Hadoop Distributed File System (HDFS), a highly fault tolerant file
system that is accessible by all cluster machines. Most SAMT phases are run sequentially, us-
ing output from previous phases as input². Detailed instructions for downloading and building
the SAMT toolkit are available at the toolkit’s website³, along with examples that that can be
used to re-generate published results from (Zollmann, Venugopal, and Vogel, 2008). In the re-
mainder of this paper, we describe the SAMTmethodology and important user parameters in
our toolkit that impact translation quality and runtime. For a more formal description of the
individual MapReduce phases in the SAMT pipeline, see (Zollmann, Venugopal, and Vogel,
2008).

2. Syntax Augmented Machine Translation

2.1. Phrase and SAMT Rule Extraction

In this section, we describe Syntax Augmented Machine Translation (SAMT) (Zollmann
and Venugopal, 2006), a specific instantiation of the PSCFG formalism that is implemented
in the SAMT on Hadoop toolkit. SAMT extends the purely hierarchical grammar proposed
in (Chiang, 2005) to use nonterminal labels learned from target language parse trees. e
inputs to the SAMT rule extraction procedure are tuples, ⟨f, e, Phrases(a, f, e), π⟩, where f

is a source sentence, e is a target sentence, a is a word-to-word alignment associating words
in f with words in e, Phrases(a, e, f), are the set of phrase pairs (source and target phrases)
consistent with the alignment a (Koehn, Och, and Marcu, 2003, Och and Ney, 2004), and π

is a phrase structure parse tree of e. SAMT rule extraction associates each phrase pair from
Phrases(a, e, f) with a le-hand-side label, and then applies the rule extraction procedure
from (Chiang, 2005) to generate rules with labeled nonterminal symbols.

Consider the example alignment graph (a word alignment and target language parse tree
as defined in (Galley et al., 2006)) for the example French-to-English sentence in Figure 1. e
phrase extractionmethod from (Koehn, Och, andMarcu, 2003), extracts all phrase pairs where
no word inside the phrase pair is aligned to a word outside the phrase pair. Figure 2 gives the
initial rules extracted for our example sentence pair.

²While these scripts assume theHadoop-on-Demandmachine requisitioningmodel, the toolkit can be easilymod-
ified to submit jobs to a single global machine pool

³www.cs.cmu.edu/∼zollmann/samt

69

PBML 91 JANUARY 2009

S

qqqqqqq
MMMMMMM

NP VP

qqqqqqq
MMMMMMM

PRN AUX RB VB

he does not

qqqqqqq
MMMMMMM go

qqqqqqq

il ne va pas

Figure 1. Alignment graph (word
alignment and target parse tree)
for a French-English sentence

pair.

PRP:NP → il # he
VB → va # go

RB+VB → ne va pas # not go
VP → ne va pas # does not go
S → il ne va pas # he does not go

Figure 2. Labeled initial rules.

S → PRP:NP1 ne va pas # PRP:NP1 does not go
S → il ne VB1 pas # he does not VB1

S → il VP1 # he VP1

S → il RB+VB1 # he does RB+VB1

S → PRP:NP1 VP2 # PRP:NP1VP2

S → PRP:NP1 RB+VB2 # PRP:NP1 does RB+VB2

VP → ne VB1 pas # does not VB1

RB+VB → ne VB1 pas # not VB1

VP → RB+VB1 # does RB+VB1

Figure 3. Generalized rules.

Phrase Extraction is the first phase of the SAMT toolkit, annotating each sentence-pair of
the training corpus with a set of phrase pairs extracted from that sentence pair. We use a single
toolkit binary: MapExtractPhrases, run as Hadoop Map step (there is no Reduce step in this
phase). is binary takes a single numberical argumentwhich determines themaximum length
of the initial phrase extracted fromword-aligned data. is limit has an impact on the size and
nature of the final grammar. Typically, phrase limits are significantly smaller than the length
of the parallel sentence, preventing very long distance reordering effects from being captured
in the grammar.

e next phase, Rule Extraction includes rule indetification (Map step, binaryMapExtrac-
tRules) on a per-sentence basis, and merging and counting of identical rules (Reduce step,
binary MergeRules). SAMT assigns a le-hand-side (lhs) label to every phrase pair extracted
from the current sentence-pair, based on the corresponding target language parse treeπ, form-
ing initial rules. ese labels are assigned based on the constituent spanning the target side
word sequence in π. When the target side of the phrase-pair is spanned by a single constituent
in π, the constituent label is assigned as the lhs for the phrase pair. If the target side of the
phrase is not spanned by a single constituent in π, we use the labels of subsuming, subsumed,
and neighboring constituents in π to assign an extended label of the form C1 + C2, C1/C2,
or C2\C1 (similar in motivation to the labels in (Steedman, 1999)), indicating that the phrase
pair’s target side spans two adjacent syntactic categories (e.g., she went: NP+VB), a partial syn-

70

A. Venugopal, A. Zollmann Grammar based statistical MT on Hadoop (67–78)

tactic category C1 missing a C2 at the right (e.g., the great: NP/NN), or a partial C1 missing
a C2 at the le (e.g., great wall: DT\NP), respectively. e label assignment is attempted in
the order just described, i.e., assembling labels based on ‘+’ concatenation of two subsumed
constituents is preferred, as smaller constituents tend to be more accurately labeled. If no label
is assignable by either of these three methods, and the parameter ‘-allow_double_plus 1’ is set,
we try triple-concatenation to create a label of the form C1 + C2 + C3. If this approach do
not yield a label or if ‘-allow_double_plus 0’, a default label ‘_FAIL’ is assigned. An ambiguity
arises when unary rules N1 → ... → Nm in the target parse tree are encountered, such as
the NP→PRN subtree in Figure 1. Depending on the parameter ‘-unary_category_handling’,
we use the bottom-most label (parameter value ‘bottom’), the top-most (‘top’), or a combined
label Nm : . . . : N1 (‘all’, this is the default).

An alternative method of assigning labels to phrase pairs can be activated by specifying the
parameter ‘-use_only_pos’. In this variant, labeling is performed merely based on the part-of-
speech (POS) tags of the first word POS1 and last word POS2 of the target phrase, resulting in
the label ‘POS1-POS2’. In general, the SAMT approach can take advantage of any labeling tech-
niques that assigns labels to arbitrary initial phrase pairs. Alternative techniques could include
using source language constituent labels, or automatically induced labels. Based on these initial
rules, we perform the rule generalization procedure from (Chiang, 2005). Figure 3 shows the
resulting generalized rules. For each labeled rule in the grammar, we can also generate a corre-
sponding generically labeled rule as in (Chiang, 2005). We introduce an additional feature in
the log-linear translation model that allows the decoder to prefer labeled or unlabeled deriva-
tions. To suppress the creation of generic rules, pass the parameter ‘-generate_generic_variant
0’.

e number of rules generated by this procedure is exponential in the number of initial
phrases pairs, producing a grammar that is impractical for efficient translation. e following
parameters are used to restrict the number of rules extracted per sentence:

• -max_abstraction_count (default: 2): maximum number of abstractions (nonterminal
pairs) per rule.

• -max_source_symbol_count (default: 6): maximum number of symbols (terminals and
nonterminals) on the source side of the rule.

is restricted rule set can be pruned further with the following parameters forMergeRules:
• -allow_consec_nts (default: 1): if set to 0, discards rules that have consecutive nontermi-
nals on the source side.

• -allow_src_abstract (default: 1): if 0, discards rules that do not have any source terminal
symbols for example: S → NP 1VP2 # NP 2VP1. Setting this parameter to 0, drastically
reduces decoding time.

• -nonlexminfreq, -lexminfreq (defaults: 0): minimum occurrence frequency thresholds
for non-lexical and lexical rules respectively. Increasing these thresholds reduces the
size of the grammar, but oen at the cost of translation quality (Zollmann et al., 2008).

• -min_freq_given_src_arg (default: 0): minimum relative frequency of a rule given its
labeled source.

e labeling and extraction procedures defined above identify rules from the input word-

71

PBML 91 JANUARY 2009

aligned parallel corpora and associated parse trees. e occurrence counts from this extraction
process are used in estimating relative frequency features for each rule. e estimation of these
features is described in the next section.

2.2. PSCFG Features

Given a source sentence f and a PSCFG grammar, the translation task can be expressed
analogously to monolingual parsing with a CFG. We find the most likely derivation D of the
input source sentence and read off the English translation, identified by composing α from
each rule used in the derivation. is search for the most likely derivation can be defined as:

ê = tgt

(
argmax

D∈Derive(G):src(D)=f

p(D)

)
(1)

where tgt(D) refers to the sequence of target terminal symbols generated by the derivation
D, src(D) refers to the source terminal symbols of D and Derive(G) is the set of sentence
spanning derivations of grammar G. e distribution p over derivations is defined by a log-
linear model. e probability of a derivation D is defined in terms of the rules r that are used
in D:

p(D) =
pLM(tgt(D))θLM

∏
r∈D

∏m

i=1 λi(r)
θi

Z(θLM, θ1, . . . , θm)
(2)

where λi(r) refers to features defined on each rule, pLM is an n-gram language model (LM)
probability distribution over target word sequences, and Z is a normalization constant that
does not need to be computed during search under the argmax search criterion in Equation 1.
e feature weights θLM, θ1, . . . , θm are trained in concert with the languagemodel weight via
MER training. e features λi(r) are statistics estimated from rule occurrence counts.

e output of the Rule Extraction phase is a grammar with a small subset of features in λ

that has been learned automatically from the input data. e features used in the our toolkit
include those in (Chiang, 2005, Zollmann and Venugopal, 2006), and are computed in the
Rule Extraction and Filtering phase (described below). e resulting grammar is large, and
for most translations tasks, cannot be loaded directly into memory for decoding. To avoid
this problem, the SAMT toolkit filters the grammar against a specific test corpus, generating a
sentence specific grammar for each sentence in the corpus. is filtering is performed for each
corpora that we need for translation, typically development, test, and unseen test corpora are
used to train and evaluate machine translation systems.

2.3. Rule and LM Filtering

e Rule Filtering phase (binariesMapSubsampleRules, filterrules_bin) take as input: the
grammar from the Rule Extraction phase, a corpus to filter the grammar against, and addi-
tional model files (such as translation lexica) to generate additional rule features in λ. In the

72

A. Venugopal, A. Zollmann Grammar based statistical MT on Hadoop (67–78)

Map step, the grammar is filtered on a per-sentence basis bymatching the source words of each
rule to the source words in the sentence we want to translate. In the Reduce step, additional
features (documented in filterrules.pl, which is used to generate the MapReduce binary filter-
rules_bin). e Reduce step of Rule Filtering provides several options to further restrict the
grammar and to augment the additional features. ese options can be specified via the top-
level parameter: filter_params. e Rule Filtering Reduce step also adds the following system
rules to each sentence specific grammar.

• Beginning-of-sentence rule: S→ ⟨s⟩ # ⟨s⟩
• Glue rules (Chiang, 2005) for each NT N in the grammar, for example: S→
S1N2 # S1N2

• End-of-sentence rule: S→ S1⟨\s⟩ # S1⟨\s⟩
• ‘Unknown’-rules (e.g. NNP→ _UNKNOWN # _UNKNOWN) generating a limited set
of labels for the word ‘_UNKNOWN’, which the decoder substitutes for unknown source
words

eGlue rules (Chiang, 2005) play an important role in grammar based approaches toMT.
ese rules serve to simply concatenate translations of consecutive spans during decoding,
similar tomonotone decoding in a phrase based system (Koehn, Och, andMarcu, 2003). ese
Glue operations allow the system to produce translations that violate the syntactic contraints
encoded in the labels of the grammar—at a cost determined via theMER trained weight θglue.

Building sentence specific grammars allows us to estimate the parameters and features of
the grammar on large parallel corpora, while still being able to load all relevant rules to trans-
late particular sentences in a test corpus. We follow this same approach to filter large n-gram
language models in a LM Filtering phase. While the Rule Filtering phase filters rules based
on the source side of the rule, the n-gram LM must be filtered according to the possible set of
target words that can generated by applying the sentence specific grammar. For each sentence
specific grammar, a possible target vocabulary is generated, which is used by the Rule Filtering
binary (LMFilter) to produce sentence specific language models.

3. PSCFG Decoding

e runtime complexity of our decoder with an integrated n-gram LM feature is:

O
(

|f|3
[
|N ||TT |2(n−1)

]K)
(3)

where K is the maximum number of NT symbols per rule, |f| is the source sentence length,N
is the set of nonterminal labels in the grammar, TT is the set of target language terminals the in
grammar, andn is the order of the n-gram LM. Our decoder implements the Cube Pruning al-
gorithm from (Chiang, 2007), and outputs n-best lists for use inMER.e FastTranslateChart
performs translation as a Map task. e grammar restriction parameters described in Sec-
tion 2.1 have a large significant impact on decoding runtime (particulary allow_src_abstract,
allow_consec_nts, max_abstraction_count), but this search still requires additional pruning to

73

PBML 91 JANUARY 2009

produce translations in reasonable time-frames—especially when translating longer sentences.
e most important decoder parameters are described below:

• wts: corresponds to the weights θ in the translation model in Equation 2. In practice,
these weights are iteratively trained via MER.

• HistoryLength: (default 2)e number of words considered as LM history length during
decoding. When set to less than n − 1, when using an n-gram LM, decoding time is
reduced at the expense of search errors, which can reduce translation quality.

• SRIHistoryLength: is value indicates the full history length of the n-gram language
model. When using a reduced HistoryLength, this value is used to recover from search
errors in a LM-driven n-best extraction step similar to (Huang and Chiang, 2007).

• PruningMap: (default: 0-100-5-@_S-200-5): Format: lhs-b-β. Pruning parameters for
Cube Pruning (Chiang, 2007). For each nonterminal label lhs in the grammar for a
source span during decoding, this parameter restricts the number of chart items to b

items, and items that are have cost of at most β greater than the best item. lhs = 0 sets
pruning parameters for all lhs symbols that have not been explicly specified.

• ComboPruningBeamSize : (default 10000) Sets the maximum number of items gener-
ated in each cell via Cube Pruning. Reducing this value reduces decoding time when
PruningMap limits have not caused pruning.

• MaxHypsPerCell: (default 1000000000) Limits the total number of items (partial transla-
tion hypotheses) created for each span during decoding—across items that have different
lhs labels (not counting X and S items, which always pass thru this pruning filter). is
value is typically set when using grammars with a large number of lhs labels to reduce
translation runtime, but does introduce additional search error.

• MaxCostDifferencePerCell: (default inf) Max. allowed cost that an item can deviate from
the best item in its chart cell (inf: any cost allowed). Items with lhs X or S always pass
thru this filter. is and the previous parameter are the only paramters that apply pruning
across items with different nonterminal labels.

• MaxCombinationCount: (default 10) Limits the application of automatically learned
PSCFG rules to source spans less than or equal to MaxCombinationCount. Spans of
greater length are composed monotonically with Glue rules. Decoding time is linear in
sentence length once this limit is in effect.

3.1. Minimum Error Rate Training

eparameters θ are trained viaMER training tomaximize translation quality according to
a user specified automatic translation metric, like BLEU (Papineni et al., 2002) or NIST (Dod-
dington, 2002). MER training is implemented in the SAMT toolkit as a MapReduce phase
using n-best lists from the decoding phase. Our MER implementation performs feature selec-
tion, preferring solutions where θi = 0, and can be easily extended to perform random restarts
as well.

74

A. Venugopal, A. Zollmann Grammar based statistical MT on Hadoop (67–78)

Track Words (English) LM 1-N grams (N) Dev. Test1 Test2
IWSLT 632K 431,292 (5) IWSLT06 IWSLT07 N/A
67M 67M 102,924,025 (4) MT05 MT06 MT08
230M 230M 273,233,010 (5) MT05 MT06 MT08

Table 1. Training data configurations used to evaluated SAMT on Hadoop. The
number of words in the target text and the number of 1-N grams represented in
the complete model are the defining statistics that characterize the scale of each

task. For each LM we also indicate the order of the n-gram model.

System Dev. BLEU Test1 BLEU Test2 BLEU Grammar Train. (h:m) Test1 (m)
IWSLT Hier 27.0 37.0 N/A 0:12 4
IWSLT Syntax 30.9 37.2 N/A 0:26 12
67M Hier 35.19 32.98 25.88 1:10 17
67M Syntax 35.69 33.12 26.48 2:26 65
230M Hier 36.39 33.74 26.28 4:13 23
230M Syntax 37.11 34.04 26.74 7:21 53

Table 2. Translation quality as measured by IBM-BLEU% (i.e., brevity penalty based
on closest reference length) on each resource track for appropriate evaluation data
sets. Systems 67M and 230M are evaluated in lower-case, while IWSLT is evaluated
in mixed case. Training and decoding times given are based on a cluster of 100 (2

per machine) 1.9GHz Intel Xeon processors.

4. Empirical Results

We demonstrate the SAMT on Hadoop toolkit on three Chinese-to-English translation
tasks, representing a wide range of resource conditions. Each task is described in Table 1. e
IWSLT task is a limited resource, limited domain task, while 67M and 230M (named for their
respective corpora sizes), are corpora used for the annual NIST MT evaluation. For each task
we list the number of words in the target side of the corpus and the number of 1-n grams in
the n-gram LM (estimated from parallel and monolingual data).

For each resource condition, we build SAMT systems using a purely hierarchical gram-
mar (Hier) (Chiang, 2005) and a syntax augmented grammar (Syntax) from (Zollmann and
Venugopal, 2006). All experiments use a 2-gram HistoryLength length the first pass of decod-
ing, and the full LM history during the second pass n-best list search. ese grammars are
built with ‘-allow_consec_nts 0 -allow_src_abstract 0’, and the NIST MT task rules are addi-
tionally restricted by ‘-nonlexminfreq 2 -min_freq_given_src_arg α’ where α = 0.005 (Hier)
andα = 0.01 (Syntax). e Syntax based systems also use ‘-MaxHypsPerCell 1000’ to limit the
run time impact of the large number of lhs labels in these grammars.

In Table 2, we report BLEU scores on development and test data as well as run times to train

75

PBML 91 JANUARY 2009

the respective PSCFG grammars and perform translation with them. Training run times are
reported based on Hadoop MapReduce jobs running on a cluster of 50 dedicated machines,
each running 2 Map or Reduce tasks each. ese results demonstrate the ability for the SAMT
toolkit to scale to large resource data conditions. For each of the the three data conditions we
see that training the Syntax grammar takes longer to train as well as translate with. Translation
quality improvements that result fromusingmore parallel andmonolingual data are clearwhen
comparing the 67M and 230M systems. In these experiments, we see small but consistent
improvements from the introduction of SAMT labels, in line with experiments in (Zollmann
et al., 2008). Overall, translation quality results reported here are competitive with reported
results in the literature and constitute a valid baseline for further research.

5. Conclusions and Resources

In this paperwe have described the SAMTonHadoop toolkit, an end-to-end framework for
large scale grammar based statistical machine translation. We discussed the methodology of
the SAMT approach, and described important toolkit parameters that affect translation quality
and run time. Built upon the open-source Hadoop distributed computation framework, our
toolkit is able to scale to build grammars for large scale translation tasks in reasonable time
frames. e toolkit can be easily extended to experiment with alternative grammar extraction
and decoding techniques.

Bibliography

Brown, Peter F., Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. 1993. e math-
ematics of statistical machine translation: parameter estimation. Computational Linguistics.

Chappelier, J.C. and M. Rajman. 1998. A generalized CYK algorithm for parsing stochastic CFG. In
Proceedings of Tabulation in Parsing and Deduction (TAPD), pages 133–137, Paris.

Charniak, Eugene. 2000. A maximum entropy-inspired parser. In Proceedings of the Human Language
Technology Conference of the North American Chapter of the Association for Computational Linguistics
Conference (HLT/NAACL).

Chiang, David. 2005. A hierarchical phrase-based model for statistical machine translation. In Proceed-
ings of the Annual Meeting of the Association for Compuational Linguistics (ACL).

Chiang, David. 2007. Hierarchical phrase based translation. Computational Linguistics.
Chiang, David and Kevin Knight. 2006. An introduction to synchronous grammars. In Tutorials at the

Annual Meeting of the Association for Compuational Linguistics (ACL).
Cutting, Doug and Eric Baldeschwieler. 2007. Meet Hadoop. In O’Reilly Open Soware Convention,

Portland, OR.
Dean, Jeffrey and Sanjay Ghemawat. 2004. Mapreduce: Simplified data process on large cluster. In

Proceedings of Symposium on Operating System Design and Implementation.
Doddington, George. 2002. Automatic evaluation of machine translation quality using n-gram co-

occurrence statistics. In In Proceedings ARPAWorkshop on Human Language Technology.

76

A. Venugopal, A. Zollmann Grammar based statistical MT on Hadoop (67–78)

Dyer, Christopher, Aaron Cordova, Alex Mont, and Jimmy Lin. 2008. Fast, easy, and cheap: Construc-
tion of statistical machine translation models with mapreduce. In Proceedings of the Workshop on
Statistical Machine Translation, ACL.

Galley, Michael, Mark Hopkins, Kevin Knight, and Daniel Marcu. 2006. Scalable inferences and training
of context-rich syntax translation models. In Proceedings of the Human Language Technology Con-
ference of the North American Chapter of the Association for Computational Linguistics Conference
(HLT/NAACL).

Huang, Liang and David Chiang. 2007. Forest rescoring: Faster decoding with integrated language
models. In Proceedings of the Annual Meeting of the Association for Compuational Linguistics (ACL).

Koehn, Philipp, Franz J. Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Proceed-
ings of the Human Language Technology Conference of the North American Chapter of the Association
for Computational Linguistics Conference (HLT/NAACL).

Och, Franz J. 2003. Minimum error rate training in statistical machine translation. In Proceedings of the
Annual Meeting of the Association for Compuational Linguistics (ACL).

Och, Franz J. and Hermann Ney. 2003. A systematic comparison of various alignment models. Compu-
tational Linguistics.

Och, Franz J. and Hermann Ney. 2004. e alignment template approach to statistical machine transla-
tion. Computational Linguistics.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the Annual Meeting of the Association for Com-
puational Linguistics (ACL).

Steedman, Mark. 1999. Alternative quantifier scope in CCG. In Proceedings of the Annual Meeting of the
Association for Compuational Linguistics (ACL).

Stolcke, Andreas. 2002. SRILM —an extensible language modeling toolkit. In Proceedings of the Inter-
national Conferrence on Spoken Language Processing (ICSLP).

Wu, Dekai. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora.
Computational Linguistics.

Zollmann, Andreas and Ashish Venugopal. 2006. Syntax augmented machine translation via chart pars-
ing. In Proceedings of theWorkshop on Statistical Machine Translation, HLT/NAACL, New York, June.

Zollmann, Andreas, Ashish Venugopal, Franz J. Och, and Jay Ponte. 2008. A systematic comparison of
phrase-based, hierarchical and syntax-augmented statistical MT. In Proceedings of the Conference on
Computational Linguistics (COLING).

Zollmann, Andreas, Ashish Venugopal, and Stephan Vogel. 2008. e CMU Syntax-Augmented Ma-
chine Translation System: SAMT on Hadoop with N-best Alignments. In Proc. of the International
Workshop on Spoken Language Translation, pages 18–25, Hawaii, USA.

77

PBML 91 JANUARY 2009

78

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009 79–88

Z-MERT: A Fully Configurable Open Source Tool for Minimum
Error Rate Training of Machine Translation Systems

Omar F. Zaidan

Abstract
We introduce Z-MERT, a soware tool for minimum error rate training of machine translation sys-

tems (Och, 2003). In addition to being an open source tool that is extremely easy to compile and run,
Z-MERT is also agnostic regarding the evaluation metric, fully configurable, and requires no modification
to work with any decoder. We describe Z-MERT and review its features, and report the results of a series
of experiments that examine the tool’s runtime. We establish that Z-MERT is extremely efficient, making
it well-suited for time-sensitive pipelines. e experiments also provide an insight into the tool’s runtime
in terms of several variables (size of the development set, size of produced N-best lists, etc).

1. Introduction

Many state-of-the-art machine translation (MT) systems over the past few years (Och and
Ney, 2002, Koehn, Och, and Marcu, 2003, Chiang, 2007, Koehn et al., 2007) rely on several
models to evaluate the “goodness” of a given candidate translation in the target language. e
MT system proceeds by searching for the highest-scoring candidate translation, as scored by
the differentmodel components, and returns that candidate as the hypothesis translation. Each
of these models need not be a probabilistic model, and instead corresponds to a feature that is
a function of a (candidate translation,foreign sentence) pair.

Treated as a log-linearmodel, we need to assign aweight for each of the features. Och (2003)
provides empirical evidence that setting those weights should take into account the evaluation
metric by which the MT system will eventually be judged. is is achieved by choosing the
weights so as to maximize the performance of the MT system on a development set, as mea-
sured by that evaluation metric. e other insight of Och’s work is that there exists an efficient
algorithm to find such weights.

is process has come to be known as theMERT phase (forMinimum ErrorRateTraining)
in training pipelines of MT systems. e existence of a MERT module that can be integrated

© 2009 PBML. All rights reserved.
Please cite this article as: Omar F. Zaidan, Z-MERT: A Fully Configurable Open Source Tool for Minimum
Error Rate Training of Machine Translation Systems. The Prague Bulletin of Mathematical Linguistics No.
91, 2009, 79–88.

PBML 91 JANUARY 2009

with minimal effort with an existing MT system would be beneficial for the research com-
munity. For maximum benefit, this tool should be easy to set up and use and should have a
demonstrably efficient implementation. We describe here one such tool, Z-MERT, developed
with these goals in mind. Great care has been taken to ensure that Z-MERT can be used with
any MT system without modification to the code, and without the need for an elaborate¹ web of
scripts, which is a situation that unfortunately exists in practice in current training pipelines.

We first review log-linear models in MT systems and Och’s efficient method (Section 2)
before introducing Z-MERT and its usage (Section 3). We also report experimental results
that demonstrate Z-MERT’s efficiency (Section 4). Finally, we provide details on how to take
full advantage of Z-MERT’s unique features (Section 5). Readers already familiar with MERT
should feel free to skip to the last paragraph of Section 2.

2. Log-linear Models in Machine Translation

Given a sentence to translate f in the source (aka ‘foreign’) language, a MT system attempts
to produce a hypothesis translation ê in the target (aka ‘English’) language that it believes is
the best translation candidate. is is done by choosing the target sentence with the highest
probability conditioned on the given source sentence. at is, the chosen translation is:

ê = argmax
e

Pr(e | f) (1)

One could model the posterior probability Pr(e | f) using a log-linear model. Such a model
associates a sentence pair (e, f) with a feature vector Φ(e, f) = {ϕ1(e, f), ..., ϕM(e, f)}, and
assigns a score

sΛ(e, f)
def
= Λ · Φ(e, f) =

M∑
m=1

λmϕm(e, f) (2)

for that sentence pair, where Λ = {λ1, ..., λM} is the weight vector for the M features. Now,
the posterior is defined as:

Pr(e | f)
def
=

exp(sΛ(e, f))∑
e ′ exp(sΛ(e ′, f))

(3)

and therefore, the MT system selects the translation:

ê = argmax
e

Pr(e | f) = argmax
e

exp(sΛ(e, f))∑
e ′ exp(sΛ(e ′, f))

= argmax
e

sΛ(e, f). (4)

2.1. Parameter Estimation Using Och’s Method

How should one set the weight vector Λ? Och (2003) argues it should be chosen so as to
maximize the system’s performance on some development dataset as measured by the evalu-
ation metric of interest. e error surface in this approach is not smooth, which means that

¹Elaborate, as in complicated, hard to navigate, and headache-inducing.

80

O. Zaidan Z-MERT (79–88)

gradient-based optimization techniques cannot be used. A grid search by repeated line opti-
mizations is not a good option either, since the function is quite expensive to evaluate at a given
point p ∈ ℜM, as this would require rescoring the candidate set² for each sentence to find the
1-best translations at p. Och suggests an alternative efficient approach for this optimization,
which we review here.

Assume we are performing a line optimization along the dth dimension. at is, we have
a weight vector Λ = {λ1, ..., λd, ..., λM}, and we would like to find a new weight vector for
which the dth dimension is optimal, keeping the other dimensions fixed.

Consider a foreign sentence f, and let the candidate set2 for f be {e1, ..., eK}. Recall from (4)
that the 1-best candidate at a given Λ is the one with maximum sΛ(ek, f), which (2) defines
as
∑M

m=1 λmϕm(ek, f). We can rewrite that sum as λdϕd(ek, f) +
∑

m̸=d λmϕm(ek, f).
e second term is constant with respect to λd, and so is ϕd(ek, f). If we rename those two
quantities offestΛ(ek) and slope(ek):

sΛ(ek, f) = slope(ek)λd + offsetΛ(ek). (5)

is is the equation for a line, and so when we vary λd, the score of a candidate varies
linearly. at is, if we plot the score for a candidate translation vs. λd, that candidate will be
represented by a line. If we plot the lines for all candidates (Figure 1), then the upper envelope
of these lines indicates the best candidate at any value for λd. is is basically a visualization
of the decision process of (4).

Observe now that the non-smoothness of the error function surface is not arbitrary, but is
in fact piece-wise linear along the λd dimension.³ e reason is that the error is calculated based
on the 1-best candidate translations, and a small change in λd usually does not change the top
candidate. ere is, however, a set of critical values along the λd dimension, corresponding
to the intersection points that form the abovementioned upper envelope. ese are the only
points at which the error changes (due to a change in the set of 1-best candidates).

If we can determine these intersection points for each sentence, and then merge them all
into one set of intersection points, we will then have an overall set of critical values along the
λd dimension, with each value corresponding to a 1-best change for a single foreign sentence.⁴

is means that if we have already calculated the error’s sufficient statistics for a λd value
just before some critical value, the sufficient statistics for a λd value just aer that critical value
can be calculated quite easily: simply adjust the original sufficient statistics as dictated by the
candidate change associated with that intersection point.

is way, there is no need to rescore the candidates, and we traverse the λd dimension by
considering only intersection points to find the optimum value. Finding those critical values
amounts to finding intersection points of the lines representing the candidates, which is an easy

²We have not yet indicated how this candidate set is obtained, but will do so shortly.
³Or, in fact, along any linear combination of the Mdimensions.
⁴In theory, a single critical value might correspond to a 1-best change for more than one foreign sentence. ough

infrequent, this does happen in practice and is accounted for in Z-MERT.

81

PBML 91 JANUARY 2009

e1

e2

1

2

e1

e2

1

4

e1

e2

2

4

e1

e2

3

1

e1
2

e2
1

e1
3

e1
1

e1
4

e2
2

e2
3

e2
4

1 : [6,10]

2 : [1,10]

3 : [3,10]

4 : [4,10]

e1

e1

e1

e1

1 : [3,15]

2 : [8,15]

3 : [9,15]

4 : [2,15]

e2

e2

e2

e2

e1

e2

3

3

sc
o

re
(e

,f
1
)

T
E

R
sc

o
re

(e
,f

2
)

0.48

[12,25]

0.24

[6,25]

0.56

[14,25]

0.32

[8,25]

0.12

[3,25]

λ
d

λ
d

λ
d

÷÷÷÷
+

TER suff. stats for

candidates. The SS

for mean 6 edits

are needed to match

a 10-word reference.

e1
1

Och’s method applied to a set of two

foreign sentences. Candidates correspond

to lines, and envelopes of top-most lines

correspond to argmax in Eq. 4. The set of

1-best candidates and the error metric

(TER) change only at four critical λ
d

values. Numbers (�) in square brackets

are the overall sufficient statistics (SS) for

TER, and are the sum of SS for individual

1-best candidates (�). This sum is only

done once to obtain [14,25], and then

simply adjusted appropriately to reflect

change(s) in 1-best candidates.

Figure 1. Och’s method applied to a set of two foreign sentences.

process.⁵
One final piece of the puzzle is needed. We have been assuming that we have access to the

set of candidate translations for each foreign sentence. How is this set actually obtained? One
could try to enumerate all the possible candidates to cover the entire search space, but that may
not be possible, and is likely quite costly anyway.

So we need an approximation to the candidate set. We could use the top, say, 300 candidates
according the initial weight vector, but this set is quite concentrated, and is therefore not a good
representative of the search space.⁶ Instead, we alternate between optimizing the weight vector
and producing the set of top candidates, each time merging the new candidate set with the
existing candidates. e process is repeated until convergence, indicated by the candidate set
not growing in size.

Och’smethod corresponds to line 17 inAlgorithm1, which is the pseudocode for Z-MERT’s
optimization process. Notice that Z-MERT repeatedly performs a line optimization (lines
14–27) along one of the M dimensions, greedily selecting the one that gives the most gain
(lines 16–23). Notice also that each iteration optimizes several random “initial” points (line 9)
in addition to the one surviving from the previous MERT iteration (line 8). is is used as an
alternative to true multiple restarts.

⁵And it can be done efficiently: many of the lines need not be considered at all, such as the one for e1
4

in Figure 1.
⁶We are not referring to the small number of candidates here (which we already accept as a compromise to avoid

82

O. Zaidan Z-MERT (79–88)

Algorithm 1 Z-MERT: Optimization of weight vector Λ to minimize error, using for line op-
timization (line 17) the efficient method of Och (2003).
Input: Initial weight vector Λ0 = {Λ0[1], ..., Λ0[M]}; numInter, the number of initial points

per iteration; and N, the size of the candidate list generated each iteration.
Return: Final weight vector Λ∗ = {Λ∗[1], ..., Λ∗[M]}.
1. Initialize Λ← Λ0

2. Initialize currError← +∞
3. Intialize the cumulative candidate set for each sentence to the empty set.
4. loop
5. Using Λ, produce an N-best candidate list for each sentence, and merge it with the

cumulative candidate set for that sentence.
6. if no candidate set grew then Return Λ // MERT convergence; we are done.
7.
8. Initialize Λ1 ← Λ

9. for (j = 2 to numInter), initialize Λj ← random weight vector
10.
11. Initialize jbest ← 0

12. for (j = 1 to numInter) do
13. Initialize currErrorj ← error(Λj) based on cumulative candidate sets
14. repeat
15. Initialize mbest ← 0

16. for (m = 1 to M) do
17. Set (λ,err) = value returned by efficient investigation of the mth dimen-

sion and the error at that value (i.e. using Och’s method)
18. if (err < currErrorj) then
19. mbest ← m
20. λbest ← λ

21. currErrorj← err
22. end if
23. end for
24. if (mbest ̸= 0) then
25. Change Λj[mbest] to λbest
26. end if
27. until (mbest == 0)
28. if (currErrorj < currError) then
29. currError← currErrorj

30. jbest ← j

31. Λ← Λj

32. end if
33. end for
34. if (jbest == 0) then Return Λ // Could not improve any further; we are done.
35. end loop

83

PBML 91 JANUARY 2009

3. Z-MERT

Z-MERT is part of a larger effort at Johns Hopkins University to develop Joshua (Li and
Khudanpur, 2008) into an open source soware package that includes a hierarchical phrase-
based decoder (Chiang, 2007), as well as the components of a complete MT training pipeline.
Two principles established by the developers were flexibility and ease of use, and were observed
in the development of Z-MERT, Joshua’s MERT module. Z-MERT also functions indepen-
dently as a standalone application. at is, Z-MERT is also publicly available⁷ separately from
Joshua, which is still under development, since Z-MERT does not rely on any of Joshua’s other
components.

3.1. Existing MERT Implementations

At first, it seemed reasonable to use some existingMERT implementation as a starting point
for Joshua’s MERT module and adapt it as we see fit. (Aer all, there is no point in reinventing
the wheel.) However, we found that existing implementations were not suitable for our needs,
and did not meet our standards of flexibility and ease of use. We review here two such open
source MERT implementations.

e first MERT implementation we examined is by Ashish Venugopal⁸, which appears to
have been first used by Venugopal and Vogel (2005). One immediate drawback of this imple-
mentation is that it is written in MATLAB®, which, like other interpreted languages, is quite
slow.⁹ Furthermore, MATLAB® is a proprietary product ofeMathWorks, which limits use of
Venugopal’s implementation to those who have access to a licensed installation of MATLAB®.

Beyond that, the tool needs to be launched aer every decoding step to perform the MERT
optimization.¹⁰ e user could certainly opt out of monitoring the MERT process to manually
launch the decoder at the end of each MERT run (and vice versa) by writing a script capable
of monitoring the two processes and launching them at appropriate times. But writing such a
script seems like an unnecessary nuisance.

Z-MERT, on the other hand, is written in Java, making it orders of magnitude faster. is
also makes it usable by practically everybody, since Java compilers are freely available for all
common platforms, and users are likely to already have one installed and be familiar with it.
Z-MERT also requires no monitoring from the user – all the user needs to do is specify the
command that launches the decoder, and Z-MERT takes care of everything else.

enumerating all the candidates), but their limited distribution.
⁷Soware and documentation available at: http://www.cs.jhu.edu/∼ozaidan/zmert.html.
⁸Soware and documentation available at: http://www.cs.cmu.edu/∼ashishv/mer.html.
⁹It should be noted that the sufficient statistics for error are calculated outsideMATLAB®, since it is a “costly process

which is not well suited to MATLAB,” according to the documentation. is implies an external script in some other
language performs those calculations. It is not clear which language, since those scripts do not appear to be available
for download on the soware’s page.

¹⁰It essentially performs a single iteration of the outermost loop of Algorithm 1.

84

O. Zaidan Z-MERT (79–88)

Another implementation is the MERT module of Phramer¹¹, an open source MT system
written by Marian Olteanu as an alternative to Pharaoh (Koehn, Och, and Marcu, 2003). e
MERT module is written in Java, but a quick examination of the package’s source code reveals
that the mert folder contains a whopping 31 Java files! Granted, some of these are class defi-
nitions necessary for aspects like evaluation metrics, but the MERT “core” is still a large group
of 15–20 files. Compare this to Z-MERT, which consists of only 2 Java files, one of which is
a 20-line driver program. is makes compiling Z-MERT almost trivial and running it quite
easy.

e biggest drawback with Olteanu’s implementation, however, is that it is specifically
geared towards Phramer and Pharaoh. It is not immediately clear how one would adapt it
for use with other decoders.¹² Z-MERT, on the other hand, can be used immediately as a stan-
dalone application, without any modification to the code.

To summarize, Z-MERT is the first MERT implementation specifically meant for public
release and for easy use with any decoder. Besides some unique features (Subsection 3.2), there
are various advantages to using it: it is extremely easy to compile and run, it produces useful
verbose output, it has the ability to resume stopped runs, it is highly optimized (Section 4), and
its code is documented javadoc-style.

3.2. Z-MERT Usage and Features

Z-MERT is very easy to run. It expects a single parameter, a configuration file:
java ZMERT MERT_config.txt

e configuration file allows the user to specify any subset of MERT’s 20 or so parameters,
eight of which are shown in the sample file in Figure 2 (most parameters have default values
and need not be specified). is high degree of configurability is Z-MERT’s first feature. -cmd
specifies a one-line file that contains the command that Z-MERT should use to produce an
iteration’s N-best list (line 5 in Algorithm 1). It is assumed that this command makes use of a
decoder config file -dcfg, which Z-MERT updates just before producing the N-best list. Z-
MERT knows how to update the file because it is informed of the parameter names in the file
specified by -p.

e -decOut parameter indicates the file containing the newly created candidate trans-
lations. Z-MERT then proceeds by calculating the sufficient statistics for each candidate, as
calculated against the reference translations in the -r file. Notice that Z-MERT is agnostic
regarding the decoder, and treats it as a black box: Z-MERT prepares the configuration file,
starts the decoder, and expects an output file once the decoder is done. e output file, which
contains the candidate sentences and feature values, is expected to be in the familiar Moses-

¹¹Soware and FAQ for Phramer available at: http://www.utdallas.edu/∼mgo031000/phramer.
¹²We are assuming here that it is indeed possible to adapt Phramer’s MERT module to decoders other than Phramer

and Pharaoh. is appears to be the case according to Lane Schwartz, who used it to tune parameters for a third
decoder (personal communication). He mentions two Java classes that he needed to write to adapt Phramer’s MERT
module. We also imagine that, at a minimum, one would have to find and remove import and package statements
referring to the Phramer package.

85

PBML 91 JANUARY 2009

-cmd dec_cmd.txt # decoder command file
-dcfg dec_cfg.txt # decoder config file
-p params.txt # parameter file
-decOut nbest.out # decoder output file
-N 300 # size of N-best list
-r refs.txt # reference sentences
-ipi 20 # numInter (see Alg. 1)
-m BLEU # evaluation metric

params.txt:

MERT_config.txt:

lm ||| 1.0 Fix +0.5 +1.5
phrasemodel pt 0 ||| 0.5 Opt -1 +1
phrasemodel pt 1 ||| 0.5 Opt -1 +1
phrasemodel pt 2 ||| 0.5 Opt -1 +1
wordpenalty ||| -2.5 Opt -5 0

Initial Range for
value random values

Parameter name Optimizable?

Figure 2. Sample MERT configuration file and parameter file.

and Joshua-like format.
e -m parameter illustrates another feature of Z-MERT: it is completely modular when it

comes to the evaluation metric. Z-MERT can handle any evaluation metric, as long as its suffi-
cient statistics are decomposable. is includes the most popular automatic evaluation metrics
in the MT community, such as BLEU and TER . e public release already includes an imple-
mentation of BLEU (both IBM and NIST definitions), and implementing a new evaluation
metric is quite easy (see Section 5).

4. Experiments

In Figure 3, we report the runtime of a number of experiments to demonstrate Z-MERT’s
efficiency by optimizing parameters for the Joshua decoder.¹³ e MERT optimization was
performed on a 2.0 GHz inkPad laptop. e development dataset is the text data of MT06,
with 4 references per sentence. e evaluation metric being optimized is 4-BLEU (IBM defi-
nition). e le graph illustrates the effect of the development set size, for two different N-best
sizes. e right graph illustrates the effect of numInter of Algorithm 1, for two different set
sizes. e reported times are averaged over the first 4 iterations, and are for MERT only and
do not include decoding times.

0 10 20 30 40

size = 1000

size = 500

0

2

4

6

0 250 500 750 1000

N = 500

N = 300

A
v
e
.
It
e
ra
ti
o
n
 T
im
e
 (
m
in
.)

6

4

2

0

Development Set Size (sentences)

0 250 500 750 1000

Number of Intermediate Initial Points

0 10 20 30 40

Figure 3. Average iteration time for MERT under different settings.

¹³We use the same parameter file as in Figure 2, except all parameters are optimizable. e language model is a
5-gram LM trained on the English side of the Gigaword corpus (about 130M words). e translation model has about
7.8 million rules.

86

O. Zaidan Z-MERT (79–88)

5. Implementation Details

In addition to theMERTdriver and theMERTcore, Z-MERThas anabstractEvaluationMetric
class. For an evaluationmetric of interest, weneed a corresponding class thatextendsEvaluationMetric.
We need only two method definitions: one to calculate sufficient statistics for a candidate, and
one that calculates the error given sufficient statistics. Consider the following metric. A candi-
date is compared against the reference translations. If the first word in the candidate matches
the first in any reference, it gets +1, and similarly for the last word. So, a candidate translation
can have a score between 0 and 2. Define the error to be the ratio of the sum of those scores
divided by the maximum possible score. Here is the implementation:

public int[] suffStats(String cand_str, int i) {
// Calculate the sufficient statistics for cand_str, compared
// against the references for the ith source sentence.

int[] retA = new int[suffStatsCount]; // array of SS to be returned
int firstWordMatches = 0, lastWordMatches = 0;

for (int r = 0; r < refsPerSen; ++r) {
if (firstWord(cand_str).equals(firstWord(refSentences[i][r])))
firstWordMatches = 1;

if (lastWord(cand_str).equals(lastWord(refSentences[i][r])))
lastWordMatches = 1;

}

retA[0] = firstWordMatches + lastWordMatches;
retA[1] = 2;

return retA;
}
public double score(int[] stats) {
return stats[0]/(double)stats[1];

}

For clarity, we omit the trivial definitions for firstWord(.) and lastWord(.). Data
members such asrefSentences andrefsPerSen are already set by the parent classEvaluationMetric,
which also defines appropriate methods to sum the sufficient statistics. And so, the complexity
of the new code is a function of the complexity of themetric itself only; the user need not worry
about any kind of bookkeeping, etc.

87

PBML 91 JANUARY 2009

6. Conclusion and Acknowledgments

We presented Z-MERT, a flexible, fully configurable, easy to use, efficient MERT module
for tuning the parameters of MT systems. Z-MERT is agnostic when it comes to the partic-
ular system, the parameters optimized, and the evaluation metric. Compiling and running
Z-MERT is very easy, and no modification to the source code is needed. e user can eas-
ily perform MERT with a new evaluation metric by overriding only a small part of a generic
EvaluationMetric class.

e author would like to thank the members of the Joshua development team at JHU. is
research was supported in part by the Defense Advanced Research Projects Agency’s GALE
program under Contract No. HR0011-06-2-0001.

Bibliography

Chiang, David. 2007. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228.

Koehn, Philipp, HieuHoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation.
In Proceedings of ACL, Demo and Poster Sessions, pages 177–180.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Pro-
ceedings of HLT-NAACL, pages 127–133.

Li, Zhifei and Sanjeev Khudanpur. 2008. A scalable decoder for parsing-based machine translation with
equivalent language model state maintenance. In Proceedings of ACL, Second Workshop on Syntax
and Structure in Statistical Translation, pages 10–18.

Och, Franz Josef. 2003. Minimum error rate training in statistical machine translation. In Proceedings of
ACL, pages 160–167.

Och, Franz Josef and Hermann Ney. 2002. Discriminative training and maximum entropy models for
statistical machine translation. In Proceedings of ACL, pages 295–302.

Venugopal, Ashish and Stephan Vogel. 2005. Considerations in maximum mutual information and min-
imum classification error training for statistical machine translation. In Proceedings of the European
Association for Machine Translation (EAMT).

88

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009 89–98

Unsupervised Generation of Parallel Treebanks
through Sub-Tree Alignment

Ventsislav Zhechev

Abstract
e need for syntactically annotated data for use in natural language processing has increased dra-

matically in recent years. is is true especially for parallel treebanks, of which very few exist. e ones
that exist are mainly hand-craed and too small for reliable use in data-oriented applications. In this
paper we introduce an open-source system for fast and robust automatic generation of parallel tree-
banks. We expect the opening of the presented platform to the scientific community to help boost re-
search in the field of data-oriented machine translation and lead to advancements in other fields where
parallel treebanks can be employed.

1. Motivation

In recent years much effort has been made to make use of syntactic information in statis-
tical machine translation (MT) systems (Hearne and Way, 2006, Nesson et al., 2006, Lavie,
2008). is has led to increased interest in the development of parallel treebanks as the
source for such syntactic data. ey consist of a parallel corpus, both sides of which have
been parsed and aligned at the sub-tree level.

So far parallel treebanks have been created manually or semi-automatically. is has
proven to be a laborious and time-consuming task that is prone to errors and inconsistencies
(Samuelsson and Volk, 2007). Because of this, only a few parallel treebanks exist and none
are of sufficient size for productive use in any statistical MT application.

In this paper we present an open-source platform for the automatic generation of parallel
treebanks from parallel corpora. We discuss algorithms both for cases in which monolingual
phrase-structure parsers exist for both languages and for cases in which such parsers are not
available. e parallel treebanks created with the methods described in this paper can be
used by different statistical MT applications and for translation studies.

We will first discuss the technologies and algorithms used in our system in section 2 and
then we will look at the practical details of how to compile and run the system in section 3.

© 2009 PBML. All rights reserved.
Please cite this article as: Ventsislav Zhechev, Unsupervised Generation of Parallel Treebanks

through Sub-Tree Alignment. The Prague Bulletin of Mathematical Linguistics No. 91, 2009, 89-98.

logo

PBML

2. Algorithms

In this section we introduce a method for the automatic generation of parallel treebanks
from parallel corpora. e only tool that is required besides the soware presented in this pa-
per is a word-alignment tool (eg. GIZA++ – Och and Ney, 2003). However, if parsers or at least
POS taggers exist for any of the languages in question, they can be used to pre-process the data.

In all cases, a word alignment tool is used to first obtain word-alignment probabilities for
the parallel corpus in question for both language directions. We will start with the descrip-
tion of the case in which parsers are available for both languages, as this is the core of the sys-
tem. ey are used to parse both sides of the parallel corpus. e resulting parsed data together
with the word-alignment probability tables are then used as the input to a sub-tree alignment
system that introduces links between nodes in corresponding trees according to their trans-
lational equivalence scores. e output of the sub-tree aligner is the desired parallel treebank.

If there is no parser available for one of the languages, the parallel corpus — together with
the word-alignment tables — is fed directly to a modified version of the sub-tree aligner that
can produce unambiguous parallel treebanks from plain data.

We will now look at the alignment algorithms in greater detail, starting with the tree-to-
tree alignment and then moving on to the string-to-string, string-to-tree and tree-to-string
cases. A thorough evaluation of the aligner is presented in (Zhechev and Way, 2008).

2.1. Tree-to-Tree Alignment

First, the tree-to-tree aligner has to follow certain principles to fit in the above framework:
• Independence with respect to language pair, constituent-labelling scheme and POS tag set.
• Preservation of the original tree structures.
• Dependence on a minimal number of external resources, so that the aligner can be used
even for languages with few available resources.
• e word-level alignments should be guided by links between higher constituents
in the trees

ese principles guarantee the usability of the algorithm for any language pair in many
different contexts. Additionally, there are a few well-formedness criteria that have to be fol-
lowed to enforce feasible alignments:

• A node in a tree may only be linked once.
• Descendants of a source linked node may only be linked to descendants of its target
linked counterpart.
• Ancestors of a source linked node may only be linked to ancestors of its target
linked counterpart.

Links produced according to these criteria encode enough information to allow the inference
of complex translational patterns from a parallel treebank, including some idiosyncratic transla-
tional divergences, as discussed in (Hearne et al., 2007). In what follows, a hypothesised align-
ment is regarded as incompatible with the existing alignments if it violates any of these criteria.

PBML 91 JANUARY 2009

90

e sub-tree aligner operates on a per sentence-pair basis in two stages. First, for each
possible hypothetical link between two nodes, a translational equivalence score is calculated.
Only the links with a nonzero score are stored for further processing. Unary productions
from the original trees, if available, are collapsed to single nodes, preserving all labels. us
the aligner will consider a single node — instead of several nodes — for the same lexical span.

During the second stage, the optimal combination of links is selected from among the
available nonzero links using either a greedy-search based, or a full-search based approach.

2.1.1. Translational Equivalence

Given a tree pair 〈S, T〉 and a hypothesis 〈s, t〉, we first compute the strings in (1), where
〈si…six〉 and 〈tj…tjy〉 denote the terminal sequences dominated by s and t respectively, and
〈S1…Sm〉 and 〈T1…Tn〉 denote the terminal sequences dominated by S and T. Here, inside are
the strings that represent the spans of the nodes being linked and outside are the strings that
lay outside the spans of those nodes.

(1)

PBML

logo

The Prague Bulletin of Mathematical Linguistics
NUMBER ??? JANUARY 2009 1–4

Unsupervised System for Parallel Treebank Generation

Ventsislav Zhechev

Abstract
Although the Prague Czech-English Dependency Treebank (PCEDT âĂȘ ÂřÄŇmejrek,

2004 #130%) can be used as a parallel treebank, it is not such per se. The authors do
not use phrase-structure trees. Instead, tectogrammatical dependency structures are used
ÂřHajiÄŊovÃą, 2000 #135%. They represent the deep syntactic structure of the sentences
using base forms of the words, rather than inflected forms. Either a word alignment tool like
GIZA++ or a probabilistic electronic dictionary (supplied with the treebank) can be used
to automatically align the dependency structures. The presented version contains over 21
thousand sentence pairs that can be aligned. Because of its nature this treebank can only be
used by MT systems that employ tectogrammatical dependency structures.

γ (〈s, t〉) = α (sl |tl) · α (tl |sl) · α
(
sl |tl

)
· α

(
tl |sl

)

inside outside
sl = 〈si . . . six〉 sl = 〈S1 . . . si−1six+1 . . . Sm〉
tl = 〈tj . . . tjy〉 tl = 〈T1 . . . tj−1tjy+1 . . . Tn〉

α (x|y) =

|y|∏

j

|x|∑

i

P (xi |yj)

α (x|y) =

|x|∏

i

|y|∑
j

P (xi |yj)

|y|

c© 2009 PBML. All rights reserved.
Please cite this article as: Ventsislav Zhechev, Unsupervised System for Parallel Treebank Generation: .
The Prague Bulletin of Mathematical Linguistics No. ???, 2009, 1–4.

(2)

PBML

logo

The Prague Bulletin of Mathematical Linguistics
NUMBER ??? JANUARY 2009 1–4

Unsupervised System for Parallel Treebank Generation

Ventsislav Zhechev

Abstract
Although the Prague Czech-English Dependency Treebank (PCEDT âĂȘ ÂřÄŇmejrek,

2004 #130%) can be used as a parallel treebank, it is not such per se. The authors do
not use phrase-structure trees. Instead, tectogrammatical dependency structures are used
ÂřHajiÄŊovÃą, 2000 #135%. They represent the deep syntactic structure of the sentences
using base forms of the words, rather than inflected forms. Either a word alignment tool like
GIZA++ or a probabilistic electronic dictionary (supplied with the treebank) can be used
to automatically align the dependency structures. The presented version contains over 21
thousand sentence pairs that can be aligned. Because of its nature this treebank can only be
used by MT systems that employ tectogrammatical dependency structures.

γ (〈s, t〉) = α (sl |tl) · α (tl |sl) · α
(
sl |tl

)
· α

(
tl |sl

)

1. Motivation

Although the Prague Czech-English Dependency Treebank (PCEDT âĂȘ ÂřÄŇme-
jrek, 2004 #130%) can be used as a parallel treebank, it is not such per se. The authors
do not use phrase-structure trees. Instead, tectogrammatical dependency structures
are used ÂřHajiÄŊovÃą, 2000 #135%. They represent the deep syntactic structure
of the sentences using base forms of the words, rather than inflected forms. Either
a word alignment tool like GIZA++ or a probabilistic electronic dictionary (supplied
with the treebank) can be used to automatically align the dependency structures.
The presented version contains over 21 thousand sentence pairs that can be aligned.
Because of its nature this treebank can only be used by MT systems that employ
tectogrammatical dependency structures.

c© 2009 PBML. All rights reserved.
Please cite this article as: Ventsislav Zhechev, Unsupervised System for Parallel Treebank Generation: .
The Prague Bulletin of Mathematical Linguistics No. ???, 2009, 1–4.

(3)

PBML

logo

The Prague Bulletin of Mathematical Linguistics
NUMBER ??? JANUARY 2009 1–4

Unsupervised System for Parallel Treebank Generation

Ventsislav Zhechev

Abstract
Although the Prague Czech-English Dependency Treebank (PCEDT âĂȘ ÂřÄŇmejrek,

2004 #130%) can be used as a parallel treebank, it is not such per se. The authors do
not use phrase-structure trees. Instead, tectogrammatical dependency structures are used
ÂřHajiÄŊovÃą, 2000 #135%. They represent the deep syntactic structure of the sentences
using base forms of the words, rather than inflected forms. Either a word alignment tool like
GIZA++ or a probabilistic electronic dictionary (supplied with the treebank) can be used
to automatically align the dependency structures. The presented version contains over 21
thousand sentence pairs that can be aligned. Because of its nature this treebank can only be
used by MT systems that employ tectogrammatical dependency structures.

γ (〈s, t〉) = α (sl |tl) · α (tl |sl) · α
(
sl |tl

)
· α

(
tl |sl

)

inside outside
sl = 〈si . . . six〉 sl = 〈S1 . . . si−1six+1 . . . Sm〉
tl = 〈tj . . . tjy〉 tl = 〈T1 . . . tj−1tjy+1 . . . Tn〉

score1 α (x|y) =

|y|∏

j

|x|∑

i

P (xi |yj)

score2 α (x|y) =

|x|∏

i

|y|∑
j

P (xi |yj)

|y|

c© 2009 PBML. All rights reserved.
Please cite this article as: Ventsislav Zhechev, Unsupervised System for Parallel Treebank Generation: .
The Prague Bulletin of Mathematical Linguistics No. ???, 2009, 1–4.

(4)

PBML

logo

The Prague Bulletin of Mathematical Linguistics
NUMBER ??? JANUARY 2009 1–4

Unsupervised System for Parallel Treebank Generation

Ventsislav Zhechev

Abstract
Although the Prague Czech-English Dependency Treebank (PCEDT âĂȘ ÂřÄŇmejrek,

2004 #130%) can be used as a parallel treebank, it is not such per se. The authors do
not use phrase-structure trees. Instead, tectogrammatical dependency structures are used
ÂřHajiÄŊovÃą, 2000 #135%. They represent the deep syntactic structure of the sentences
using base forms of the words, rather than inflected forms. Either a word alignment tool like
GIZA++ or a probabilistic electronic dictionary (supplied with the treebank) can be used
to automatically align the dependency structures. The presented version contains over 21
thousand sentence pairs that can be aligned. Because of its nature this treebank can only be
used by MT systems that employ tectogrammatical dependency structures.

γ (〈s, t〉) = α (sl |tl) · α (tl |sl) · α
(
sl |tl

)
· α

(
tl |sl

)

inside outside
sl = 〈si . . . six〉 sl = 〈S1 . . . si−1six+1 . . . Sm〉
tl = 〈tj . . . tjy〉 tl = 〈T1 . . . tj−1tjy+1 . . . Tn〉

score1 α (x|y) =

|y|∏

j

|x|∑

i

P (xi |yj)

score2 α (x|y) =

|x|∏

i

|y|∑
j

P (xi |yj)

|y|

c© 2009 PBML. All rights reserved.
Please cite this article as: Ventsislav Zhechev, Unsupervised System for Parallel Treebank Generation: .
The Prague Bulletin of Mathematical Linguistics No. ???, 2009, 1–4.

e score for the given hypothesis 〈s, t〉 is computed using (2) and (3) or (4). According
to (3), for each source token we first sum the word-alignment probabilities of the target to-
kens, given the source token. is gives us the probability masses of the target string corre-
sponding to each of the source tokens and multiplying these gives us the alignment probabil-
ity. In (4), the word-alignment probabilities are used to get an average vote by the source
tokens for each target token. en the product of the votes for the target words gives the
alignment probability for the two strings. e final translational equivalence score is the
product of the alignment probabilities for the inside and outside strings in both language
directions as in (2).

2.1.2. Greedy-Search Algorithm

e greedy-search algorithm is very simple. e set of nonzero-scoring links is processed
iteratively by linking the highest-scoring hypothesis at each iteration and discarding all hy-
potheses that are incompatible with it until the set is empty.

Problems arise when there happen to be several hypotheses that share the same highest
score. ere are two distinct cases that here: these top-scoring hypotheses may or may not
represent incompatible links. If all such hypotheses are compatible, they are all linked at the
same time; otherwise these hypotheses are skipped and processed at a later stage.

Ventsislav Zhechev Automatic Parallel Treebank Generation (89–98)

91

e sub-tree aligner can be built to use one of two possible skipping strategies, which we
will call skip1 and skip2. According to the skip1 strategy, hypotheses are simply skipped until
a score is reached, for which only one hypothesis exists. is hypothesis is then linked and
the selection algorithm continues as usual. e skip2 strategy is more complex, in that we
also keep track of which nodes take part in the skipped hypotheses. en, when a candidate
for linking is found, it is only linked if it does not include any of these nodes.

Regardless of whether skip1 or skip2 is used, sometimes a situation occurs in which the
only hypotheses remaining unprocessed are equally likely candidates for linking. In such
ambiguous cases our decision is not to link anything, rather than make wrong a decision.

During initial testing of the aligner we found that oen lexical links would get higher
scores than the non-lexical links,1 which sometimes resulted in poor lexical links blocking
bona fide non-lexical ones. To address this issue, an extension to the selection algorithm was
developed, which we call span1. When enabled, this extension results in the set of nonzero
hypotheses being split in two subsets: one containing all hypotheses for lexical links, and one
containing the hypotheses for non-lexical links. Links are then first selected from the second
subset, and only when it is exhausted does the selection continue with the lexical ones.

2.1.3. Full-Search Algorithm

is is a backtracking recursive algorithm that enumerates all possible combinations of
non-crossing links. All maximal combinations2 found during the search are stored for further
processing. Aer the search is complete, the probability mass of each maximal combination is
calculated by summing the translational equivalence scores for all the links in the it and the one
that has the highest probability mass is selected as the best alignment for the sentence pair.

Oen, there are several distinct maximal combinations that share the highest probability
mass. e disambiguation strategy that we currently employ is to take the largest common
subset of all maximal combinations.

2.2. Other Alignment Modules

In this section we look at the string-to-string, tree-to-string and string-to-tree modules
that are used when a parser is not available for one or both of the languages being aligned.

e string-to-string aligner can accept as its input plain or POS-tagged data. For a pair of
sentences, all possible binary trees are first constructed for each sentence. All nodes in these
trees have the same label (X) and are used as available link targets. In the case of POS-tagged
data, the pre-terminal nodes receive the POS tags as labels.

Aer all link-hypothesis scores have been calculated, the string-to-string aligner continues
with the selection of links in the same manner as the sub-tree aligner, with one extension; aer
a link has been selected — besides all incompatible links — all binary trees that do not include

PBML 91 JANUARY 2009

92

1 lexical are such links, for which at least one of the linked nodes spans over only one word.
2 A maximal combination of non-crossing links is a combination of links for which any newly added

link would be incompatible with at least one of the links already in the combination.

the linked nodes are discarded with any nonzero hypotheses attached to them. In this way, only
those binary trees that are compatible with the selected links remain aer the linking process.

In an additional step for the string-to-string aligner, all non-linked nodes (except for the
root nodes) are discarded, thus allowing for the construction of unambiguous n-ary trees for
the source and target sentences. If necessary, non-linked nodes are le intact to provide sup-
porting structure in the trees. It is also possible to output a parse forest of all binary trees that
are compatible with the alignments.

In its operation, the string-to-string aligner is very similar to ITG (Wu, 2000), however its
goal is the generation of a parallel treebank, rather than the induction of a bilingual grammar.

e tree-to-string and string-to-tree modules differ from the string-to-string module in
that a parser is available for one of the languages being aligned. In this case, the available
parses are used, where available, rather than generate hypothetical binary trees. Also, at the
output stage, the existing parses are preserved, except for any unary productions that are
being collapsed as in the tree-to-tree alignment module. e non-parsed side may be POS-
tagged, if a POS tagger is available.

2.3. Re-scoring

It can be argued that each newly induced link in a sentence pair should affect the decisions
regarding which links to select further in the alignment process for this sentence pair. This can
be simulated to a certain extent using the simple re-scoring module discussed in this section.

e operation of this module relies on the fact that aer a link has been introduced for a
pair of trees, some of the word alignments available in the word-alignment tables for the tree
pair will be incompatible with this link. Namely, these are alignments between words within
the span of the source node being linked and words without the span of the target node; as
well as alignments between words without the source node and words within the target node.

us, each time a new link has been selected, the incompatible word alignments are re-
moved from the list of available word alignments for the tree pair and the scores of the re-
maining link hypotheses are recalculated. e linking process then continues as usual.

3. Usage

e distribution package of the aligner consists of a single bzip2 compressed tarball. e
system is implemented using standard C++ and can be compiled using GCC version 4.0 and
higher. e source code is distributed with a configure script, which handles the configura-
tion options. Aer the distribution package is unpacked, this script can be found in the
build sub-folder. Run ./build/configure --help for a full list of compilation options. A
README file is included with the distribution, which includes an up-to-date version of the in-
formation presented in this paper.

I suggest configuration and compilation in the build folder. Configuration and compila-
tion in other folders has not been tested and is discouraged. To speed up reconfiguration, I
suggest passing the argument -C to the configure script, which will turn on caching.

Ventsislav Zhechev Automatic Parallel Treebank Generation (89–98)

93

Run ./configure [options] to configure the tools you want to compile. ere is an
option for the configure script that controls which tools are to be compiled and installed:
--enable-tools="<list of tools>" By default, only the tree-to-tree aligner is compiled
and installed. To install all available tools, use --enable-tools=all. If you want to specify
precisely which tools are to be built and installed, use align for the standard tree-to-tree
aligner; lattice for a full-search based tree-to-tree aligner (experimental); str2str for a
string-to-string, tree-to-string and string-to-tree 3-in-1 alignment module.

Run make && make install to compile and install the soware. e default installation
destination is /usr/local, but it can be changed using configure options.

Also, if you have GCC 4.2 or later, you can compile the aligner for parallel execution. To
configure the soware for parallel execution, supply the --enable-parallel option to con-
figure. When compiled for parallel execution, the OMP_DYNAMIC environment variable con-
trols the behaviour of the soware. If you set this variable to FALSE, the soware will use all
available CPUs on your system, regardless of whether there are other processes running or
not. If you are running other resource intensive tasks on your system you may want to set
OMP_DYNAMIC to TRUE. In this case, the soware will decide dynamically what amount of re-
sources to use without interfering with other running processes.

3.1. Tree-to-Tree Aligner

e options controlling the functionality of the aligner have defaults that can be changed by
passing options to the configure script. Here is a list of the different options and their function:

--enable-data-set=<data_set_name> is option should be set to a string, describing
the data set it will operate on. By default this option is set to "unknown".

--disable-span1 If you supply this option to the configure script, the aligner will be
compiled without the span1 feature. By default, this feature is turned on.

--enable-score={1, 2} You can choose the scoring mechanism that is to be used by the
aligner by using this option. By default, the aligner will use score2.

--enable-skip={1, 2} You can choose the selection algorithm that is to be used by the
aligner by using this option. By default, the aligner will use skip2.

--enable-rescoring is option turns on the re-scoring module. It is off by default.
--enable-lowercasing is option should be defined, if you are using lowercased word-

alignment data. It is disabled by default.
--enable-log-based-probabilities If you turn on this option, the link hypothesis

scores will be stored as logarithms. e option is on by default.
You would normally run the aligner in one of the following two ways:
align <source_to_target_lex_probs> <target_to_source_lex_probs> [<source_to_tar-

get_phrase_probs>] <input_corpus>
align <config_file>

You should always supply the proper command line arguments, as they are not checked
for correctness. Here is a description:

<source_to_target_lex_probs> e path to the file which holds the source-to-target
word alignment probabilities. e format is <target> <source> <probability>\n

PBML 91 JANUARY 2009

94

<target_to_source_lex_probs> e path to the file which holds the target-to-source
word alignment probabilities. e format is <source> <target> <probability>\n

<source_to_target_phrase_probs> e path to the file which holds the source-to-target
phrase alignment probabilities. is file is currently used only to calculate some statistics and
you can safely omit it, as its use slows down the system and increases the memory footprint.

<input_corpus> e path to the file containing the aligned parsed sentences or –. Sup-
plying – for this parameter will direct the aligner to read data from the standard input, rather
than from a file. e format is <source>\n<target>\n\n\n. e parsed sentences should be
in bracketed format, using (and) as delimiters. White-space (except new lines) is irrelevant
and any character is allowed in both terminal and non-terminal nodes (except spaces; spaces
are not allowed in non-terminal nodes and signify multiword units in terminal nodes).

<config_file> e path to a file containing run-time options, one option per line. is
file has the format <option_name> <option_value>\n. Any line starting with a # character
will be ignored. You can specify the following options in the file that correspond to com-
mand line options: input — corresponds to <input_corpus>; source_alignments — <sour-
ce_to_target_lex_probs>; target_alignments — <target_to_source_lex_probs>;
phrase_alignments — <source_to_target_phrase_probs>. Additionally, the input option
may be omitted in which case the aligner will read data from the standard input. ere are
some additional options that may be specified in the configuration file, but are not required.
output is used to specify the path to a file in which the output of the aligner is to be written.
Information about the output format is given later in this section. log is used to specify the
path to a file in which run-time information and statistics are to be written. expensive_sta-
tistics can be set to all, none, POS or search and controls whether certain memory-
expensive statistics should be calculated. When not specified, this option defaults to all. e
statistics in question concern the distribution of POS tags and POS tag-pairs and keeping
track of the search-space reductions during alignment.

If you use command line options when running the aligner, or use a configuration file but
do not specify the output and log options, all output is sent to the standard output. If you
specify only the output option in the configuration file, the output of the aligner will be writ-
ten to the file specified, while the performance statistics will be written to the standard out-
put. If you, on the other hand, specify only the log option, the statistics will be written to the
specified file and the output will go to standard output. In case you specify both options,
both the output and the statistics will be written to the corresponding files. e format of the
output for the parallel treebank is <source>\n<target>\n<source_node_id> <tar-
get_node_id> … \n\n. e non-terminal nodes in the parsed trees all have IDs attached with
a – character. ese IDs are used to represent the links between the nodes of the trees. An
alignment example is shown in Figure 1 together with the proper input and output.

If you compile the lattice tool, it will use the exact same options as the tree-to-tree aligner
and will produce output in the same format. e most significant difference is that it will use
the full-search algorithm for the induction of the sub-tree alignments, rather than the greedy-
search based algorithm. is tool is still experimental, though, and due to the combinatorial
nature of the full-search algorithm may not find a solution for all sentence pairs within an ac-

Ventsislav Zhechev Automatic Parallel Treebank Generation (89–98)

95

ceptable timeframe. Because of this the use of this tool is strongly discouraged. e lattice
tool does not support the span1 extension yet and the skip* modules are irrelevant to it.

Figure 1: An aligned tree pair with the corresponding system input and output

3.2. String-to-String Aligner

Here only the differences between the string-to-string aligner and the tree-to-tree aligner will
be listed. Anything not mentioned works exactly as described for the tree-to-tree aligner, i.e. the
compilation and configuration options available for the tree-to-tree aligner are also available here.

e aligner should be run with command line arguments. You would normally run it in
one of the following two ways:

align_str2str <operation_mode> <input_type> <output_type> <source_to_target_lex_probs>
<target_to_source_lex_probs> [<source_to_target_phrase_probs>] <input_corpus>

align_str2str <config_file>

Here is the description of the options:
<operation_mode> is argument specifies the mode of operation of the aligner and

cannot be omitted. str2str will evoke standard string-to-string alignment. In case a parser is
available for one of the languages being aligned, the aligner can be set to run in string-to-tree
or tree-to-string mode. e parameters for these modes are str2tree and tree2str respec-
tively. In these cases you have to make sure that the correct side of the corpus contains brack-
eted representations of parsed sentences. e format of the other side of the corpus is con-
trolled by the <input_type> argument.

<input_type> If you supply POS-tagged sentences, this argument should be tagged and
for plain sentences this should be plain. is argument cannot be omitted.

<output_type> is argument is used to select the type of output of the aligner and can-
not be omitted. ere are three possible options: standard, parse and XML. e standard
output has the format presented in Figure 2 for each sentence pair. If the mother_node_ID of
a node is 0, then this node has no ancestors (it is a root node). ere may be more than one

(S (PRN He)(VP (V sees)(PRN her)))
(S (PRN Er)(VP (V sieht)(PRN sie)))

S−5

PRN−1
He

VP−4

V−2
sees

PRN−3
her

S−5

PRN−1
Er

VP−4

V−2
sieht

PRN−3
sie

(S-5 (PRN-1 He)(VP-4 (V-2 sees)(PRN-3 her)))
(S-5 (PRN-1 Er)(VP-4 (V-2 sieht)(PRN-3 sie)))
1 1 2 2 3 3 4 4 5 5

PBML 91 JANUARY 2009

96

such node for each sentence. is format preserves enough nodes to represent all possible
binary trees for the sentences in the pair that are consistent with the induced links. e parse
and XML output formats present minimal trees, consisting only of the pre-terminal nodes and
the linked nodes for the sentences in each pair. In case there is more than one root node for a
particular tree, an extra node with label X and ID 100000 is inserted as the mother of all root
nodes. Both formats give a standard bracketed representation of unambiguous parse trees.

Figure 2: Standard output format of the string-to-string aligner

<input_corpus> ere are two possible formats for the sentences, while the overall file
format remains as for the tree-to-tree aligner. e first format is simply <word1> <word2> …
<wordn>. e second format is ((<word1>)) ((<word2>)) … ((<wordn>)) and can be used to
specify the boundaries of multiword units. is second format can also be used for supplying
POS tags for the words of the sentences. In that case the format is ((<word1> <POS1>))
((<word2> <POS2>)) … ((<wordn> <POSn>)). A specific requirement for the use of the string-
to-string aligner is the existence of one of two open source modules on your system: If you
are using the first input format, you need the Boost Tokenizer library; If you are using the
second input format, you need the Boost Regex library.

<config_file> e path to a file containing run-time options, one option per line. e
same rules apply as for the config file for the tree-to-tree aligner. ere are three additional
options, however: operation_mode, input_type and output_type. ey correspond directly
to their command-line counterparts.

4. Conclusion

We have presented a novel platform for the fast and robust automatic generation of paral-
lel treebanks. e algorithms described are completely language pair-independent and re-
quire a minimal number of resources; besides a parallel corpus, a word alignment tool is the
only extra soware required. If available, POS taggers or monolingual phrase-structure pars-
ers can be used to pre-process the data.

#BOP
#BOS
<word1>\t<mother_node_ID>
<word2>\t<mother_node_ID>
…
#<node_ID> <node_label>\t<mother1_node_ID> <mother2_node_ID> …
…
#EOS
#BOS
…
#EOS
#LINKS <source1_node_ID> <target1_node_ID> …
#EOP

#BOP
…
#EOP

Ventsislav Zhechev Automatic Parallel Treebank Generation (89–98)

97

e soware is distributed as C++ source code together with a script for configuring the
compilation process and extensive documentation. e latest version can be downloaded
from http://ventsislavzhechev.eu/Home/Soware/Soware.html.

Acknowledgments

We would like to thank Mary Hearne, John Tinsley, Andy Way and Khalil Sima'an for
their participation in the development of the algorithms. e current work is part of the AT-
TEMPT project at NCLT, DCU, Ireland and is generously supported by Science Foundation
Ireland (grant number 05/RF/CMS064).

Bibliography

Hearne, Mary and Andy Way. 2006. Disambiguation Strategies for Data-Oriented Translation. In
Proceedings of the 11th Conference of the European Association for Machine Translation (EAMT ’06),
pp. 59–68. Oslo, Norway.

Hearne, Mary, John Tinsley, Ventsislav Zhechev and Andy Way. 2007. Capturing Translational
Divergences with a Statistical Tree-to-Tree Aligner. In Proceedings of the 11th International
Conference on eoretical and Methodological Issues in Machine Translation (TMI ’07), eds. Andy
Way and Barbara Gawronska, pp. 85–94. Skövde, Sweden: Skövde University Studies in Informatics.

Lavie, Alon. 2008. Stat-XFER: A General Search-based Syntax-driven Framework for Machine
Translation. In Proceedings of the 9th International Conference on Intelligent Text Processing and
Computational Linguistics (CICLing ’08), ed. Alexander F. Gelbukh, pp. 362–375. Vol. 4919/2008 of
Lecture Notes in Computer Science. Haifa, Israel: Springer.

Nesson, Rebecca, Stuart M. Shieber and Alexander Rush. 2006. Induction of Probabilistic Synchronous
Tree-Insertion Grammars for Machine Translation. In Proceedings of the 7th Conference of the
Association for Machine Translation in the Americas (AMTA ’06), pp. 128–137. Boston, MA.

Och, Franz Josef and Hermann Ney. 2003. A Systematic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29 (1): 19–51.

Samuelsson, Yvonne and Martin Volk. 2007. Alignment Tools for Parallel Treebanks. In Data Structures
for Linguistic Resources and Applications: Proceedings of the Biennial GLDV Conference 2007,
eds. Georg Rehm, Andreas Witt and Lothar Lemnitzer. Tübingen, Germany: Gunter Narr.

Wu, Dekai. 2000. Bracketing and aligning words and constituents in parallel text using Stochastic
Inversion Transduction Grammars. In Parallel Text Processing: Alignment and Use of Translation
Corpora, ed. Jean Veronis, chap. 7. Dordrecht: Kluwer.

Zhechev, Ventsislav and Andy Way. 2008. Automatic Generation of Parallel Treebanks. In Proceedings of the
22nd International Conference on Computational Linguistics (CoLing ’08), pp. 1105–1112. Manchester, UK.

PBML 91 JANUARY 2009

98

http://ventsislavzhechev.eu/Home/Software/Software.html
http://ventsislavzhechev.eu/Home/Software/Software.html

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009

INSTRUCTIONS FOR AUTHORS

Manuscripts arewelcome provided that they have not yet been published elsewhere and that
they bring some interesting and new insights contributing to the broad field of computational
linguistics in any of its aspects, or of linguistic theory. e submitted articles may be:

• long articles with completed, wide-impact research results both theoretical and practical,
and/or new formalisms for linguistic analysis and their implementation and application
on linguistic data sets, or

• short or long articles that are abstracts or extracts of Master’s and PhD thesis, with the
most intersting and/or promising results described. Also

• short or long articles looking forward that base their views on proper and deep analysis
of the current situation in various subjects within the field are invited, as well as

• short articles about current advanced research of both theoretical and applied nature,
with very specific (and perhaps narrow, but well-defined) target goal in all areas of lan-
guage and speech processing, to give the opportunity to junior researchers to publish as
soon as possible;

• short articles that contain contraversing, polemic or otherwise unusual views, supported
but some experimental evidence but not necessarily evaluated in the usual sense are also
welcome.

e recommended length of long article is 12–30 pages and of short paper is 6-15 pages.
e copyright of papers accepted for publication remains with the author. e editors re-

serve the right to make editorial revisions but these revisions and changes have to be approved
by the author(s). Book reviews and short book notices are also appreciated.

e manuscripts are reviewed by 2 independent reviewers, at least one of them being a
member of the international Editorial Board.

Authors receive two copies of the relevant issue of the PBML together with 10 offprints of
their article.

eguidelines for the technical shape of the contributions are foundon theweb sitehttp://
ufal.mff.cuni.cz/pbml.html. If there are any technical problems, please contact the ed-
itorial staff at pbml@ufal.mff.cuni.cz.

© 2009 PBML. All rights reserved.

PBML 91 JANUARY 2009

100

The Prague Bulletin of Mathematical Linguistics
NUMBER 91 JANUARY 2009

LIST OF AUTHORS

Peter Berck
Tilburg centre for Creative Computing
University of Tilburg
P. O. Box 90153
5000 LE Tilburg, e Netherlands
p.j.berck@uvt.nl

Nicola Bertoldi
FBK - Fondazione Bruno Kessler
via Sommarive 18
38100 Povo, Trento, Italy
bertoldi@fbk.eu

Antal van den Bosch
Tilburg centre for Creative Computing
University of Tilburg
P. O. Box 90153
5000 LE Tilburg, e Netherlands
antal.vdnbosch@uvt.nl

Chris Callison-Burch
e Center for Language
and Speech Processing
Computational Science
and Engineering Building
3400 North Charles Street
Baltimore, MD 21218, USA
ccb@cs.jhu.edu

Kevin Donnelly
Llanfairpwll
Ynys Môn. LL61 6UX
Wales
kevin@dotmon.com

Jean-Baptiste Fouet
Systran SA
La Grande Arche 1
Parvis de la Défense
92044 Paris, La Défense cedex
France
fouet@systran.fr

Kuzman Ganchev
Computer & Information Science
University of Pennsylvania
3330 Walnut Street
Philadelphia, PA 19104-6389, USA
kuzman@cis.upenn.edu

Josef van Genabith
Center for Next Generation Localisation
Dublin City University
Dublin 9, Ireland
josef@computing.dcu.ie

© 2009 PBML. All rights reserved.

PBML 91 JANUARY 2009

João Graça
L2F - Inesc-ID Lisboa
Av. Rovisco Pais 1049-001
Lisboa, Portugal
joao.graca@l2f.inesc-id.pt

Yvette Graham
National Centre for Language Technology
Dublin City University
Dublin 9, Ireland
ygraham@computing.dcu.ie

Barry Haddow
School of Informatics
University of Edinburgh
Informatics Forum
10 Crichton Street
Edinburgh, EH8 9AB, Scotland
bhaddow@inf.ed.ac.uk

Sanjeev Khudanpur
e Center for Language
and Speech Processing
Computational Science
and Engineering Building
3400 North Charles Street
Baltimore, MD 21218, USA
khudanpur@jhu.edu

Zhifei Li
e Center for Language
and Speech Processing
Computational Science
and Engineering Building
3400 North Charles Street
Baltimore, MD 21218, USA
zhifei.work@gmail.com

Ben Taskar
Computer & Information Science
University of Pennsylvania
3330 Walnut Street
Philadelphia, PA 19104-6389, USA
taskar@cis.upenn.edu

Wrenornton
e Center for Language
and Speech Processing
Computational Science
and Engineering Building
3400 North Charles Street
Baltimore, MD 21218, USA
wren@freegeek.org

Francis M. Tyers
Grup Transducens
Departament de Llenguatges
i Sistemes Informàtics
Universitat d’Alacant
E-03080 Alacant, Spain
ftyers@prompsit.com

Ashish Venugopal
Google Inc.
ashishv@cs.cmu.edu

Omar F. Zaidan
Johns Hopkins University
3400 N. Charles Street
Computer Science Department - 224 NEB
Baltimore, MD 21218, USA
ozaidan@cs.jhu.edu

Ventsislav Zhechev
NCLT, School of Computing
Dublin City University
Glasnevin
Dublin 9, Ireland
contact@ventsislavzhechev.eu

Andreas Zollmann
Carnegie Mellon University
407 South Craig Street
Pittsburgh, PA 15213, USA
zollmann@cs.cmu.edu

