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Abstra
tThis thesis explores the mutual relationship between linguisti
 theories, dataand appli
ations. We fo
us on one parti
ular theory, Fun
tional GenerativeDes
ription (FGD), one parti
ular type of linguisti
 data, namely valen
ydi
tionaries and one parti
ular appli
ation: ma
hine translation (MT) fromEnglish to Cze
h.First, we examine methods for automati
 extra
tion of verb valen
y di
-tionaries based on 
orpus data. We propose an automati
 metri
 for estimat-ing how mu
h lexi
ographers' labour was saved and evaluate various frameextra
tion te
hniques using this metri
.Se
ond, we design and implement an MT system with transfer at vari-ous layers of language des
ription, as de�ned in the framework of FGD. Weprimarily fo
us on the te
togrammati
al (deep synta
ti
) layer.Third, we leave the framework of FGD and experiment with a ratherdire
t, �phrase-based� MT system. Comparing various setups of the systemand spe
i�
ally treating target-side morphologi
al 
oheren
e, we are able tosigni�
antly improve MT quality and out-perform a 
ommer
ial MT systemwithin a pre-de�ned text domain.The 
on
luding 
hapter provides a broader perspe
tive on the utility oflexi
ons in various appli
ations, highlighting the su

essful features. Finally,we summarize the 
ontribution of the thesis.

7



8



Contents
1 Introdu
tion 131.1 Relation between Theory, Appli
ations and Data . . . . . . . 131.2 How Theory Should Help . . . . . . . . . . . . . . . . . . . . . 141.3 Stru
ture of the Thesis . . . . . . . . . . . . . . . . . . . . . . 142 Extra
ting Verb Valen
y Frames 172.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2 FGD and Valen
y Theory . . . . . . . . . . . . . . . . . . . . 172.2.1 Layers of Language Des
ription . . . . . . . . . . . . . 172.2.2 Basi
s of Valen
y Theory in FGD . . . . . . . . . . . . 192.2.3 Available Data . . . . . . . . . . . . . . . . . . . . . . 202.2.4 Stru
ture of VALLEX 1.0, 1.5 and PDT-VALLEX . . . 242.2.5 Frame Alternations and VALLEX 2.x . . . . . . . . . . 252.2.6 Motivation for Automated Lexi
al A
quisition . . . . . 262.3 Simpli�ed Formalization of VALLEX Frames . . . . . . . . . . 272.4 Types of Data Sour
es . . . . . . . . . . . . . . . . . . . . . . 292.5 Learning Task and Evaluation Metri
s . . . . . . . . . . . . . 302.5.1 Frame Edit Distan
e and Verb Entry Similarity . . . . 302.5.2 A
hievable Re
all without Frame De
omposition . . . . 322.6 Lexi
ographi
 Pro
ess . . . . . . . . . . . . . . . . . . . . . . 332.7 Dire
t Methods of Learning VALLEX Frames . . . . . . . . . 342.7.1 Word-Frame Disambiguation (WFD) . . . . . . . . . . 352.7.2 Deep Synta
ti
 Distan
e (DSD) . . . . . . . . . . . . . 362.7.3 Learning Frames by De
omposition (De
omp) . . . . . 372.7.4 Post-pro
essing of Suggested Framesets . . . . . . . . . 392.8 Empiri
al Evaluation of Dire
t Methods . . . . . . . . . . . . 402.9 PatternSear
h: Guessing Verb Semanti
 Class . . . . . . . . . 412.9.1 Verb Classes in VALLEX . . . . . . . . . . . . . . . . . 422.9.2 Verbs of Communi
ation . . . . . . . . . . . . . . . . . 432.9.3 Automati
 Identi�
ation of Verbs of Communi
ation . 432.9.4 Evaluation against VALLEX and FrameNet . . . . . . 442.9.5 Appli
ation to Frame Suggestion . . . . . . . . . . . . 469



10 CONTENTS2.10 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472.10.1 Related Resear
h . . . . . . . . . . . . . . . . . . . . . 472.10.2 La
k of Semanti
 Information . . . . . . . . . . . . . . 492.10.3 Deletability of Modi�ers . . . . . . . . . . . . . . . . . 492.10.4 Need to Fine-Tune Features and Training Data . . . . 492.10.5 La
k of Manual Intervention . . . . . . . . . . . . . . . 502.11 Con
lusion and Further Resear
h . . . . . . . . . . . . . . . . 503 Ma
hine Translation via Deep Syntax 533.1 The Challenge of Ma
hine Translation . . . . . . . . . . . . . 533.1.1 Approa
hes to Ma
hine Translation . . . . . . . . . . . 543.1.2 Advantages of Deep Synta
ti
 Transfer . . . . . . . . . 563.1.3 Motivation for English→Cze
h . . . . . . . . . . . . . . 573.1.4 Brief Summary of Cze
h-English Data and Tools . . . . 573.2 Syn
hronous Tree Substitution Grammar . . . . . . . . . . . . 593.3 STSG Formally . . . . . . . . . . . . . . . . . . . . . . . . . . 613.4 STSG in Ma
hine Translation . . . . . . . . . . . . . . . . . . 633.4.1 Log-linear Model . . . . . . . . . . . . . . . . . . . . . 643.4.2 De
oding Algorithms for STSG . . . . . . . . . . . . . 673.5 Heuristi
 Estimation of STSG Model Parameters . . . . . . . 703.6 Methods of Ba
k-o� . . . . . . . . . . . . . . . . . . . . . . . 713.6.1 Preserve All . . . . . . . . . . . . . . . . . . . . . . . . 723.6.2 Drop Frontiers . . . . . . . . . . . . . . . . . . . . . . 723.6.3 Translate Word by Word . . . . . . . . . . . . . . . . . 733.6.4 Keep Word Non-Translated . . . . . . . . . . . . . . . 743.6.5 Fa
tored Input Nodes . . . . . . . . . . . . . . . . . . . 743.6.6 Fa
tored Output Nodes . . . . . . . . . . . . . . . . . 753.7 Remarks on Implementation . . . . . . . . . . . . . . . . . . . 763.8 Evaluating MT Quality . . . . . . . . . . . . . . . . . . . . . . 773.9 Empiri
al Evaluation of STSG Translation . . . . . . . . . . . 773.9.1 Experimental Results . . . . . . . . . . . . . . . . . . . 783.10 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793.10.1 BLEU Favours n-gram LMs . . . . . . . . . . . . . . . 793.10.2 Cumulation of Errors . . . . . . . . . . . . . . . . . . . 803.10.3 Con�i
t of Stru
tures . . . . . . . . . . . . . . . . . . . 803.10.4 Combinatorial Explosion . . . . . . . . . . . . . . . . . 813.10.5 Senten
e Generation Tuned for Manual Trees . . . . . 813.10.6 Errors in Sour
e-Side Analysis . . . . . . . . . . . . . . 813.10.7 More Free Parameters . . . . . . . . . . . . . . . . . . 823.10.8 Related Resear
h . . . . . . . . . . . . . . . . . . . . . 823.11 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



CONTENTS 114 Improving Morphologi
al Coheren
e in Phrase-Based MT 854.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854.1.1 Motivation for Improving Morphology . . . . . . . . . 864.2 Overview of Fa
tored Phrase-Based MT . . . . . . . . . . . . 864.2.1 Phrase-Based SMT . . . . . . . . . . . . . . . . . . . . 864.2.2 Log-linear Model . . . . . . . . . . . . . . . . . . . . . 874.2.3 Phrase-Based Features . . . . . . . . . . . . . . . . . . 874.2.4 Fa
tored Phrase-Based SMT . . . . . . . . . . . . . . . 884.2.5 Language Models . . . . . . . . . . . . . . . . . . . . . 894.2.6 Beam-Sear
h . . . . . . . . . . . . . . . . . . . . . . . 894.3 Data Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904.4 S
enarios of Fa
tored Translation English→Cze
h . . . . . . . 904.4.1 Experimental Results: Improved over T . . . . . . . . . 924.5 Granularity of Cze
h Part-of-Spee
h Tags . . . . . . . . . . . . 924.5.1 Experimental Results: CNG03 Best . . . . . . . . . . . 934.6 More Out-of-Domain Data in T and T+C S
enarios . . . . . . 944.7 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 954.8 Untreated Morphologi
al Errors . . . . . . . . . . . . . . . . . 974.9 Related Resear
h . . . . . . . . . . . . . . . . . . . . . . . . . 994.10 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Con
luding Dis
ussion 1015.1 When Lexi
ons Proved to Be Useful . . . . . . . . . . . . . . . 1015.1.1 Lexi
on Improves Information Retrieval . . . . . . . . . 1025.1.2 Sub
ategorization Improves Parsing . . . . . . . . . . . 1025.1.3 Lexi
ons Employed in MT . . . . . . . . . . . . . . . . 1035.1.4 Lexi
ons Help Theories . . . . . . . . . . . . . . . . . . 1045.2 When Lexi
ons Were Not Needed . . . . . . . . . . . . . . . . 1045.2.1 PP Atta
hment without Lexi
ons . . . . . . . . . . . . 1045.2.2 MT without Lexi
ons . . . . . . . . . . . . . . . . . . . 1055.2.3 Question Answering without Deep Syntax . . . . . . . 1065.2.4 Summarization without Meaning and Grammati
alitywithout Valen
y Lexi
on . . . . . . . . . . . . . . . . . 1075.3 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085.4 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . 108Bibliography 111A Sample Translation Output 125A.1 In-Domain Evaluation . . . . . . . . . . . . . . . . . . . . . . 125A.2 Out-of-Domain Evaluation . . . . . . . . . . . . . . . . . . . . 129



12 CONTENTSList of Figures 134List of Tables 135



Chapter 1Introdu
tionComputational linguisti
s and natural language pro
essing (NLP) try to for-mally 
apture and model the 
omplexity of how people 
ommuni
ate using anatural language. The �eld has impli
ations in many aspe
ts of the so
iety:linguisti
 theories are used as a basis when pres
ribing what is an appropriateand 
orre
t usage of an expression, they predi
t how a message is per
eivedby a human re
ipient and justify whi
h information should be in
luded inlanguage textbooks, di
tionaries or lexi
ons. Appli
ations are built to speedup human pro
essing of text (su
h as �nding relevant do
uments, answeringquestions, translating from one language to another) or attempt to turn the
omputer into a real partner able to share knowledge and obey 
ommandsissued in a natural language.1.1 Relation between Theory, Appli
ations and DataBoth linguisti
 theories and NLP appli
ations rely heavily on language data,whi
h in
lude raw examples of language expressions (written senten
es inbooks, newspapers, senten
es uttered in a dialog, re
orded or broad
asted)as well as more or less formalized data about the language itself (su
h asstyle guides or di
tionaries). On the one hand, examples of language usage
an validate linguisti
 theories (by testing predi
tions on real data) and onthe other hand, linguisti
 theories provide a framework for 
reating derivedlanguage resour
es like the above mentioned lexi
ons and di
tionaries. Thus,the theory is tested indire
tly, by applying and using a derived resour
e in apra
ti
al task. NLP appli
ations are related to data even more tightly simplybe
ause the appli
ation has some input and output data. Moreover, manyNLP appli
ations need to 
onsult varying amounts of language data in orderto be able to a
hieve their goal.In this thesis, we study the mutual relationship between a linguisti
 the-ory, an NLP appli
ation and language data. We fo
us on one parti
ulartheory, the theory of Fun
tional Generative Des
ription (FGD), one parti
-ular type of derived language data, namely valen
y di
tionaries, and on one13



14parti
ular NLP appli
ation, namely ma
hine translation (MT). Wheneverpossible, we try to in
lude referen
es to relevant alternatives.1.2 How Theory Should HelpThe general belief is that having an established theory as a ba
kground of anNLP appli
ation should bring an advantage to the design of the appli
ation:the des
ription of the algorithm 
ould be shorter be
ause it builds on top ofnotions de�ned in the theory, de
isions that have to be made should be morelo
al and thus easier to meet and �nally, su
h an appli
ation should produ
eoutputs of a predi
table quality. In short, a good theory should 
onstrainthe internal stru
ture of appli
ations to their advantage.There is a similar relation between the theory and language data: a goodtheory des
ribes whi
h features of unpro
essed language data are signi�
antfor a parti
ular task. A theory provides a view on unpro
essed data. Givena task and following the theory, we 
an �
ompress� raw language data byignoring all but relevant features. Di
tionaries are an ex
ellent example ofsu
h 
ompression: instead of s
anning large texts and looking at many o
-
urren
es of a word to understand the meaning and 
orre
t ways of using itin 
ontext we just read a short (formal) des
ription.In an NLP appli
ation su
h as MT, there is always someone who has todo the di�
ult job. In the extreme 
ase, all the intelligen
e is 
ontainedin a �di
tionary�, i.e. the �di
tionary� provides the expe
ted output of theappli
ation for every possible input. More realisti
ally, we 
an expe
t toknow at least parts of the output from the top of our head but we have to
orre
tly glue them together to 
reate a 
omplete answer. The more or thebetter training data we have, the simpler the appli
ation 
an be.To sum up, a theory provides guidelines on how to build linguisti
 appli-
ations and how to look at language data. If all goes well, su
h a theoreti
alba
kground will simplify the design and fa
ilitate better performan
e at thesame time. We study the relationship between the theory and pra
ti
al ap-pli
ations throughout the thesis, the stru
ture of whi
h is outlined in thefollowing se
tion.1.3 Stru
ture of the ThesisThis thesis has two major parts: the �rst one is devoted to lexi
al a
quisition(Chapter 2) and the se
ond one to ma
hine translation (Chapters 3 and 4),linked as follows:



1.3. Stru
ture of the Thesis 15One of the key 
omponents in the theory of our 
hoi
e, FGD (brie�y intro-du
ed in Se
tion 2.2), is the valen
y theory whi
h predi
ts how an element ina grammati
ally well formed senten
e 
an or must be a

ompanied by otherelements. The predi
tion primarily depends on the sense of the governingword and it is best 
aptured in a lexi
on. The motivation to build su
hlexi
ons 
omes often from appli
ations: some appli
ations simply require alexi
on to e.g. produ
e an output text, while some only bene�t from themby improving a

ura
y or in
reasing 
overage. Finally, a synta
ti
 lexi
on isalways a valuable referen
e for human users of the language. However, thedevelopment of lexi
ons is 
ostly and therefore we fo
us on the question ofautomati
 suggestion of entries based on available textual data. In short,Chapter 2 explores the theory of FGD and the journey from raw languagedata in a text to a 
ompressed formalized representation in a lexi
on.In Chapter 3 we pi
k an NLP appli
ation, the task of ma
hine transla-tion (MT) in parti
ular, to study how the theory lends itself to pra
ti
alemployment. After a brief review of various approa
hes to MT, we follow upon FGD and des
ribe our system of syntax-based ma
hine translation. Thefull 
omplexity of the system is outlined, but the main fo
us is given only toour 
ontribution, synta
ti
 transfer. Nevertheless, we implement the wholepipeline of the MT system and we are able to evaluate MT quality using anestablished automati
 metri
.Chapter 4 is devoted to a 
ontrast experiment: we aim at English to Cze
hMT leaving the framework of FGD aside and using a rather dire
t method.We brie�y summarize the state-of-the-art approa
h, so-
alled phrase-basedstatisti
al ma
hine translation, in
luding an extension to fa
tored MT wherevarious linguisti
ally motivated aspe
ts 
an be expli
itly 
aptured. Thenwe demonstrate how to use fa
tors to improve morphologi
al 
oheren
e ofMT output and 
ompare the performan
e of the dire
t approa
h with thesyntax-based system from Chapter 3.We 
on
lude by Chapter 5, providing a broad survey of do
umented utilityof lexi
ons in NLP and summarizing our observations and 
ontributions ofthe thesis.
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Chapter 2Extra
ting Verb Valen
y Frames2.1 Introdu
tionVerb valen
y frames1 formally des
ribe the potential of a verb to 
ombinewith other elements in the senten
e.2When analyzing an input senten
e, the knowledge of the verb frame allowsresolving ambiguity at various levels. Consult e.g. Stra¬áková-Lopatkováand �abokrtský (2002) for simple examples or Hlavá£ková et al. (2006) for areport on a dramati
 redu
tion in parsing ambiguity.When generating text from some deep representation, the valen
y frameof the verb is used to 
hoose the appropriate morphemi
 form (e.g. thepreposition and 
ase) of a modi�er and thus to guarantee grammati
ality ofthe output. For some systems, the existen
e of a valen
y lexi
on is a stri
trequirement, e.g. RUSLAN (Haji£, 1987; Haji£ et al., 1987; Oliva, 1989);for some systems, the valen
y information is optionally used do re�ne theoutput, e.g. (Ptá£ek and �abokrtský, 2006).2.2 FGD and Valen
y TheoryThis se
tion introdu
es Fun
tional Generative Des
ription (FGD) and itsvalen
y theory, in
luding relevant available data.2.2.1 Layers of Language Des
riptionLet us brie�y summarize key 
omponents of FGD related to our task. How-ever, sin
e it is not the aim of the thesis to review FGD in detail, please1The term �valen
y frame� is de�ned and used in dependen
y analysis in the frameworkof FGD theory, see below. A related notion in phrase-stru
ture grammars is traditionally
alled �sub
ategorization frames�.2Valen
y frames 
an be assigned also to nouns, adje
tives and possibly other parts ofspee
h. We fo
us on verbs only. 17



18
onsult relevant books, reports or tutorials, e.g. PDT Guide3, Sgall et al.(1986), Haji£ et al. (2006) or Mikulová et al. (2006) to get a
quainted withthe theory and to �nd de�nitions of all notions not explained here.FGD as implemented in the Prague Dependen
y Treebank (Se
tion 2.2.3below) de�nes three layers of language representation 
alledmorphologi
al(or m-layer), analyti
al (a-layer, 
orresponds to surfa
e syntax) and te
-togrammati
al (t-layer, 
orresponds to deep syntax) to annotate an origi-nal text (the wordform, w-layer, where even typographi
al errors are storedverbatim, e.g. no spa
e between do and lesa), see Figure 2.1:

Figure 2.1: Layers of annotation of Cze
h as implemented in Prague Depen-den
y Treebank. (Pi
ture from the PDT Guide.)M-layer represents the senten
e as a sequen
e of word forms a

ompaniedby their lemmas (base forms) and morphologi
al tags that in
lude part-of-spee
h and many other relevant 
ategories su
h as 
ase, gender, number, ortense.3http://ufal.mff.
uni.
z/pdt2.0/do
/pdt-guide/en/html/



2.2. FGD and Valen
y Theory 19A-layer and t-layer use a rooted labelled dependen
y tree to en
ode therelations between elements of the senten
e. Edge labels, sometimes stored asan attribute of the dependent node, are 
alled afuns (e.g. Pred, Sb, Obj) atthe a-layer and fun
tors (e.g. PRED, ACT, PAT) at the t-layer and theyformally des
ribe the relation between the governing and dependent node.At the a-layer, nodes in the tree 
orrespond one to one to words in theinput senten
e.At the t-layer, words bearing meaning have a 
orresponding node whileall auxiliary words only 
ontribute to some attributes of relevant nodes. Onthe other hand, the t-layer in
ludes nodes for entities that were not expli
itlyexpressed in the senten
e but the language syntax and lexi
on indi
ate theirpresen
e in the des
ribed situation. This is one of several reasons that makethe t-layer language dependent and not an Interlingua.2.2.2 Basi
s of Valen
y Theory in FGDIn FGD, (verb) valen
y frames are de�ned at the t-layer only and de-s
ribe formal requirements on the immediate dependents of the verbal t-node (Panevová, 1980; Haji£ et al., 2006). Here is a brief summary of thekey de�nitions:Parti
ipants and free modi�ers.FGD de�nes the distin
tion between parti
ipants (a
tants, inner par-ti
ipants, arguments) and free modi�ers (adjun
ts) of a verb stri
tlyon the te
togrammati
al level (and not on the analyti
 level):
• A parti
ipant is 
hara
teristi
 of a verb whereas a free modi�er
an modify nearly any verb.
• A parti
ipant 
annot modify a verb twi
e within a senten
e whereasa free modi�er 
an be used repeatedly.The set of parti
ipants is �xed in FGD. The parti
ipants are: ACT(a
tor), PAT (patient), ADDR (addressee), ORIG (origin) and EFF(e�e
t).Moreover, FGD employs the prin
iple of shifting: if a verb has onlyone parti
ipant, it is labelled ACT regardless of its semanti
 type. Twoparti
ipants are always ACT and PAT. Starting from three parti
i-pants, the fun
tors are assigned with respe
t to the semanti
s of themodi�ers: ADDRACT PAT EFFORIG



20Obligatory and optional modi�ers.The distin
tion between obligatory and optional modi�ers is de�nedon the t-level only. To summarize the dialogue test by Panevová(1980), the modi�er is obligatory if its value must be known to thespeaker, although the speaker might de
ide not to express it expli
-itly on the surfa
e level. This test 
annot be performed by a ma
hineso we 
an only hope for enough indire
t eviden
e in the 
ontext orenough examples where none of the obligatory modi�
ations was omit-ted (�deleted� in some literature).Valen
y frame.A valen
y frame is the set of all parti
ipants and obligatory freemodi�ers of the verb, i.e. optional free modi�ers are not in
luded inthe frame. The lexi
on of valen
y frames is needed for all systems aim-ing at the t-layer annotation in order to re-
reate t-nodes for obligatorymodi�ers that were omitted (�deleted�) on the surfa
e.Valen
y frames, though 
onstru
ted by observing verb o

urren
es (anda bit of introspe
tion for the dialogue test), tend to 
orrespond to verb senses(Lopatková and Panevová, 2005)4. Performing a word-sense disambiguationtask for verbs thus equals to identi�
ation of the 
orre
t frame of the verbo

urren
e. In this sense, the lexi
al unit at the t-layer is not just the verb,but also the frame used in the parti
ular instan
e.2.2.3 Available DataThis se
tion brie�y reviews the properties of available data, i.e. relevant
orpora or di
tionaries that 
an be used for automati
 extra
tion of valen
yframes.Cze
h National Corpus (CNC)The Institute of Cze
h National Corpus (CNC5) provides a 
olle
tion of bal-an
ed and non-balan
ed 
orpora of Cze
h text. In our experiments we usedthe three versions as listed in Table 2.1.4In the 
ases where the valen
y frame is identi
al for two or more very distin
t verbsenses, separate frames are introdu
ed for ea
h of the senses, formally di�ering only in aremark or gloss. Future re�nements of the theory, e.g. 
apturing whi
h lexi
al 
lasses ofmodi�
ations are permitted in the slots, might later di�erentiate su
h entries.5http://u
nk.ff.
uni.
z/



2.2. FGD and Valen
y Theory 21Corpus name Size (no. words) Balan
edSYN2006PUB 300 mil. noSYN2005 100 mil. yesSYN2000 100 mil. noTable 2.1: Versions of Cze
h National Corpus.VALLEXVALLEX (�abokrtský, 2005) is a valen
y lexi
on of Cze
h verbs. VALLEXuses FGD as its theoreti
al ba
kground and is 
losely related to the PragueDependen
y Treebank (see PDT below). VALLEX is fully manually anno-tated based on 
orpus observations and other available Cze
h lexi
ons, whi
hposes inevitable limits on the growth rate. On the other hand, manual an-notation ensures attaining data of high quality.The �rst version of VALLEX 1.0 was publi
ly released in 2003 and 
on-tained over 1,400 verb entries6. The set of 
overed verbs was extended toabout 2,500 verb entries in VALLEX 1.5, an internal version released in 2005.For a remark on VALLEX 2.x see Se
tion 2.2.5 below.VALLEX 1.0O

. [%℄ Verb lemmas [%℄Covered 8.0M 53.7 1,064 3.6Not 
overed but frequent 4.1M 27.9 20 0.1Not 
overed, infrequent 2.7M 18.3 28,385 96.3Total 14.8M 100.0 29,469 100.0VALLEX 1.5O

. [%℄ Verb lemmas [%℄Covered 8.0M 65.6 1,802 6.1Not 
overed but frequent 3.5M 23.4 4 0.0Not 
overed, infrequent 1.6M 10.9 27,663 93.9Total 14.8M 100.0 29,469 100.0Table 2.2: Coverage of VALLEX 1.0 and 1.5 with respe
t to the Cze
h Na-tional Corpus, SYN2000.6The term verb entry refers to a VALLEX entry whi
h distinguishes homographs andre�exive variants of the verb. The term verb lemma refers to the in�nitive form of theverb, ex
luding the re�exive parti
le. See Se
tion 2.2.4 below.



22 VALLEX 1.5 
overs around 66% of verb o

urren
es; 23% of verb o

ur-ren
es belong to few frequent auxiliary verbs, esp. být, bývat (to be). (SeeTable 2.2.) The remaining 10% o

urren
es belong to verbs with low 
orpusfrequen
y. The distribution of verbs 
losely follows Zipf's law and there areabout 28k additional verbs needed just to 
over our parti
ular 
orpus. Anautomated method of lexi
al extra
tion would save a lot of labour.Sin
e the very beginning, VALLEX has been built with 
omputationalappli
ations in mind, mostly as a means of ambiguity solving at variouslevels (lemmatization, tagging, synta
ti
 analysis, sense disambiguation; see(Stra¬áková-Lopatková and �abokrtský, 2002) for examples). As a result,VALLEX is su�
iently formalized and the format is very well do
umented.VALLEX appli
ations so far, though very signi�
ant, are unfortunatelystill mostly a
ademi
:
• In an early stage of the development, VALLEX data was used as a basisfor PDT-VALLEX (see below).
• The data format and development te
hnology was reused in the devel-opment of VerbaLex (Hlavá£ková and Horák, 2006).
• Observations made by VALLEX developers led to re�nements in thevalen
y theory (Lopatková and Panevová, 2005).
• VALEVAL data (see below) are used to improve word-sense disam-biguation (WSD) methods for Cze
h verbs (Bojar et al., 2005; Seme
kýand Podveský, 2006).
• VALLEX was published as a printed lexi
on for linguists and Cze
hspeakers in general (Lopatková et al., 2008).
• VALLEX is used when 
hoosing some surfa
e forms in text generationsystem by Ptá£ek and �abokrtský (2006).VALEVALIn a lexi
al sampling task 
alled VALEVAL, the inter-annotator agreement ofannotating verb o

urren
es with VALLEX 1.0 frames was evaluated (Bojaret al., 2005). Despite the fa
t that VALLEX provides extensive informationon distribution 
ontexts (as emphasized by Véronis (2003)), only moderateagreement (in terms of the Cohen's κ statisti
 (Carletta, 1996)) was a
hieved.In general, the level 75% of pairwise agreement we a
hieved is no worse thanresults for other languages, but a better mat
h is 
ertainly desirable. VAL-EVAL experiment provided VALLEX developers with a valuable feedba
k



2.2. FGD and Valen
y Theory 23and a few dozen of serious mistakes were identi�ed in VALLEX entries. Ase
ond experiment would have to be 
arried out to 
on�rm an improvementin inter-annotator agreement.An independent a
hievement of VALEVAL are the manual annotationsthemselves. Cases where our annotators agreed or a �nal 
hoi
e was made ina post-pro
essing phase 
onstitute what we 
all �Golden VALEVAL� 
orpus.Golden VALEVAL 
ontains 108 verbs in 7804 senten
es (72±26 senten
es perverb), annotated with a single VALLEX frame that was used in the senten
e.
Prague Dependen
y Treebank (PDT) and PDT-VALLEXPrague Dependen
y Treebank (PDT, Haji£ et al. (2006)) is a 
orpus of Cze
htexts extensively manually annotated on the m-, a- and t-layers. Moreover,ea
h o

urren
e of a verb and some nouns and adje
tives are labelled with apointer to the valen
y frame used in that parti
ular senten
e.PDT-VALLEX (Haji£ et al., 2003) is a valen
y lexi
on of Cze
h verbs andsome nouns and adje
tives that a

ompanies the Prague Dependen
y Tree-bank (PDT). While based on the same theoreti
al ba
kground as VALLEX,PDT-VALLEX is tailored to the 
orpus. In other words, PDT-VALLEX
ontains only frames that were a
tually observed in senten
es in PDT.Similarly to VALLEX, PDT-VALLEX su�ers from the problem with toospe
i�
 frame entries. For instan
e, the verb zakotvovat (to an
hor), isequipped with two distin
t frames: ACT(1) PAT(4) DIR3(*) (to an
horsth to sth) and ACT(1) PAT(4) LOC(*) (to an
hor sth somewhere). Ea
ho

urren
e of zakotvovat is annotated with a single frame referen
e, even in
ases where there was no DIR3 and no LOC observed in the senten
e (e.g. t-
mpr9410-001-p4s2w11). The annotator's de
ision between these two framesis then based on his or her detailed understanding of the senten
e or simplyrandom, if no 
lear hints are provided in a wide 
ontext. Two annotators arelikely to disagree in the frame 
hosen, although they would agree on a lessdetailed frame.As Mikulová et al. (2006) mentions (Se
tion 5.2.3.1.1. of the Cze
h ver-sion or 6.2.3.1.1. of the English version), there are 
ases where the de
isionis well motivated and allows us to distinguish between 
on
rete, abstra
tor idiomati
 meaning of the verb. At the same time, it is mentioned thatthe annotation 
onsisten
e is quite low in this respe
t (not giving any morespe
i�
 estimations).



24Other Related Resour
esThere are far too many related proje
ts of 
omputational lexi
ography. Toname a few, we a
knowledge:for Cze
h VerbaLex (Hlavá£ková and Horák, 2006), Cze
h Synta
ti
 Lex-i
on (Skoumalová, 2001) and their surfa
e-synta
ti
 prede
essor Brief(Pala and �eve£ek, 1997),for English FrameNet (Baker et al., 1998; Fillmore et al., 2001; Fillmore,2002), PropBank (Kingsbury et al., 2002), Lexi
al Con
eptual Stru
-ture (Ja
kendo�, 1990; Dorr and Mari, 1996), VerbNet (Kipper et al.,2000; Kipper-S
huler, 2005) and EngValLex (Cinková, 2006).A 
losely related resour
e is the lexi
al database WordNet (Fellbaum,1998) and its European (Vossen, 1998) and Cze
h (Pala and Smrº, 2004)versions.Please 
onsult e.g. �abokrtský et al. (2002) or Lopatková (2003) for areview of some of the proje
ts.2.2.4 Stru
ture of VALLEX 1.0, 1.5 and PDT-VALLEXAt the topmost level, VALLEX is a list of verb entries7, see Figure 2.2 for anexample of two of them. The verb is 
hara
terized by its headword lemma(in
luding a re�exive parti
le se or si, if appropriate) or several spelling vari-ants of the headword lemma equipped with verb aspe
t (perfe
tive, imperfe
-tive, biaspe
tual). Every verb entry in
ludes one or more valen
y framesof the verb roughly 
orresponding to its senses. Every valen
y frame 
on-sists of a set of valen
y slots 
hara
terizing 
omplementations of the verb.Ea
h slot des
ribes the type of the synta
ti
o-semanti
 relation between theverb and its 
omplementation (by means of a te
togrammati
al fun
tor,su
h as A
tor ACT , Patient PAT , Dire
tion DIR1; see FGD) as well as allallowed surfa
e realizations (morphemi
 forms) of the verb 
omplementa-tion (e.g. the required preposition and 
ase or the subordinating 
onjun
tionfor dependent 
lauses).8 The slot also indi
ates obligatoriness of the 
om-plementation. Ea
h frame is equipped with a short gloss and an example inorder to help human annotators to distinguish among the frames. Aspe
tual7Due to the la
k of spa
e we 
an only brie�y summarize the key terms. Please 
onsult�abokrtský and Lopatková (2004) for a detailed des
ription, examples and explanation ofall the terms not de�ned here.8In the 
ases where any morphemi
 form typi
al for a fun
tor 
an be used to realizethe slot, the set of morphemi
 forms is left empty.



2.2. FGD and Valen
y Theory 25odpovídat (imperfe
tive)1 odpovídat1 ∼ odv¥tit (answer; respond)
• frame: ACTobl

1 ADDRobl
3 PATopt

na+4,4 EFFobl
4,aby,ať,zda,že

MANNtyp

• example: odpovídal mu na jeho dotaz pravdu / ºe . . . (he responded to his questiontruthfully / that . . . )
• asp.
ounterpart: odpov¥d¥t1 pf.
• 
lass: 
ommuni
ation2 odpovídat2 ∼ reagovat (rea
t)
• frame: ACTobl

1 PATobl
na+4 MEANStyp

7

• example: pokoºka odpovídala na v£elí bodnutí zarudnutím (the skin rea
ted to a bee stingby turning red)
• asp.
ounterpart: odpov¥d¥t2 pf.3 odpovídat3 ∼ mít odpov¥dnost (be responsible)
• frame: ACTobl

1 ADDRobl
3 PATopt

za+4MEANStyp
7

• example: odpovídá za své d¥ti; odpovídá za ztrátu svým majetkem (she is responsible forher kids)4 odpovídat4 ∼ být ve shod¥ (mat
h)
• frame: ACTobl

1,žePATobl
3 REGtyp

7

• example: °e²ení odpovídá svými vlastnostmi poºadavk·m (the solution mat
hes the re-quirements)odpovídat se (imperfe
tive)1 odpovídat se1 ∼ být zodpov¥dný (be responsible)
• frame: ACTobl

1 ADDRobl
3 PATobl

z+2

• example: odpovídá se ze ztrát (he answers for the losses)Figure 2.2: Two VALLEX 1.0 entries for the verb lemma odpovídat (answer,mat
h).
ounterparts of the verb are not assigned to the verb entry as a whole butto the individual frames: a frame of a verb 
ontains a link to a frame of itsaspe
tual 
ounterpart, if appropriate.The operational 
riteria on when to 
reate a new frame entry of a verbare des
ribed in Lopatková and Panevová (2005). Roughly speaking, a frameentry 
orresponds to a �sense� of the verb based primarily on (deep) synta
ti
observations.We use the term verb lemma to denote the in�nitive of the verb, ex
lud-ing a possible re�exive parti
le and homograph distin
tion, e.g. odpovídat isthe verb lemma for the verbs odpovídat and odpovídat se. The verb lemma isdetermined by the morphologi
al analysis of a text.2.2.5 Frame Alternations and VALLEX 2.xIt should be noted that the slots and sets of allowed morphemi
 forms listedin VALLEX des
ribe only the �
anoni
al� realizations of the verb. Ea
h of the



26frames 
an undergo one of a small set of pre-de�ned frame alternations.For instan
e, if the frame 
ontains an ACT in nominative and a PAT ina

usative, we have to alter the frame for o

urren
es of the verb in passive�the PAT be
omes expressed by a nominative and the ACT by an instrumen-tal.Empiri
al data for Cze
h are available in PDT 2.0 where ea
h verb o

ur-ren
e is labelled with a frame identi�er from PDT-VALLEX. By 
omparingimmediate dependents of the verb in the tree with slots of the respe
tiveframe, we 
an see whi
h alternation (if any) was performed in the senten
e.VALLEX versions 2.0 (Lopatková et al., 2006a) and 2.5 (Lopatková etal., 2008) again extend the set of verbs and frames 
overed. Inspired bythe alternation model by Levin (1993), they adopt the idea of alternationsas a part of the 
ore design and signi�
antly 
hange the stru
ture of thelexi
on (Lopatková et al., 2006b). Until there are some 
orpus examplesannotated with VALLEX 2.x frames, we 
annot use this sour
e for mostmethods of frame extra
tion, leaving the additional problem of alternationlearning aside.2.2.6 Motivation for Automated Lexi
al A
quisitionAs mentioned in Se
tion 2.2.3, VALLEX 1.5 
overs about 66% of verb tokensbut only 6% of verb types in CNC. Due to the law of diminishing returns, itis less and less e
onomi
al to add entries for new verbs manually. Moreover,it is believed that less frequent verbs have a simpler stru
ture of frames. SeeStevenson (2003) who dis
usses the observation by Zipf (1945) and otherexperiments 
on�rming that the observation is not just an artifa
t of fewer
orpus instan
es available to lexi
ographers. In total, we 
ould hope that formost of the remaining verbs, frame information 
an be derived automati
allygiven enough 
orpus eviden
e (and the frames already de�ned for other verbs)and that a lot of lexi
ographi
 labour 
an be thus saved.From a di�erent perspe
tive, automati
ally �nding examples of VALLEXentries in a large 
orpus would allow to:
• add frequen
ies to VALLEX (to support statisti
ally-aware appli
ationsof the lexi
on),
• add sele
tional restri
tions (to support more semanti
ally-informed ap-pli
ations or to improve the sense-dis
riminating power of VALLEX ina way similar to VerbaLex),
• 
ross-
he
k of VALLEX entries (to test whether all 
orpus samples ofa verb identi�ed automati
ally to bear the same VALLEX frame are



2.3. Simpli�ed Formalization of VALLEX Frames 27indeed 
on�rmed to be instan
es of a single verb sense by a nativespeaker).2.3 Simpli�ed Formalization of VALLEX FramesSe
tion 2.2.4 introdu
ed the formal stru
ture of VALLEX and PDT-VALLEX.Both of the di
tionaries re�e
t the fa
t that at the t-layer, the t-lemma in-
ludes the re�exive parti
le whenever appropriate. On the other hand, mostof our learning methods, as des
ribed in Se
tion 2.7 below, do not expe
t tostart with a t-annotation at hand. Anywhere below the t-layer, it is not easyto identify the re�exivity of a verb for several reasons: (1) the re�exive par-ti
le does not need to appear next to the verb, (2) it is homomorphi
 withthe vo
alized version of a Cze
h preposition, and (3) it 
an represent thevalue of a regular frame slot (e.g. PAT or ADDR), indi
ate passivization aswell as purely synta
ti
ally 
omplement the verb lemma (re�exiva tantum).Although (1) and (2) 
an be re
ognized at a high pre
ision, (3) has probablynot been studied yet. Our preliminary experiments (Figure 2.3) indi
ate thatthe verb lemma plays a very signi�
ant role in identifying the re�exivity ofthe verb. If the verb lemma is not known, the de
ision pro
edure makes awrong guess in 9 to 16% of 
ases. Knowing the verb lemma helps to redu
ethe error by 5 to 10% absolute.For the purpose of our learning task, we simplify the stru
ture of VALLEXas follows.While VALLEX and PDT-VALLEX provide us with the mapping:



verb lemmaindex distinguishing homonymsre�exive parti
le 
 → framewe treat the valen
y lexi
on as the mapping:verb lemma →

(re�exive parti
leframe )Apart from index distinguishing homonyms, it is easy to 
onvert oneformat into the other one and vi
e versa.VALLEX and PDT-VALLEX also di�er in formal details of morphemi
forms. For instan
e, PDT-VALLEX uses a nested stru
ture to des
ribe re-quirements on the presen
e and attributes of a set of a-nodes (e.g. a prepo-sition and a noun that form a part of a phraseme) while a simple surfa
estring of words is used in VALLEX. Again, we simplify the format and treatall morphemi
 forms as atomi
 units.



28 Features Used Average Error [%℄Verb lemma, Re� seen 
lose 4.83 ± 0.89Verb lemma+tag, Re� seen 4.96 ± 0.86Verb lemma, Re� seen 5.38 ± 1.30Verb tag, Re� seen 
lose 9.69 ± 1.37Re� seen 
lose 9.71 ± 1.23Verb tag, Re� seen 16.06 ± 1.34Re� seen 16.08 ± 1.69
• Training data: 7000 o

urren
es of verbs in golden VALEVAL data.
• Learning goal: De
ide whether the VALLEX entry assigned to ea
h verb o

urren
ehas the re�exive parti
le se, si or is not re�exive at all.
• Pro
edure: De
ision trees (C4.5) using a subset of the following features:� Verb lemma � the lemma of the verb in question,� Verb tag � individual features for ea
h morphologi
al 
ategory of the verb o

ur-ren
e,� Re� seen � features des
ribing the presen
e and morphologi
al 
ase of the re�exiveparti
le se/si before or after the verb in question,� Re� seen 
lose � like �Re� seen� but only parti
les between the verb in questionand another verb in the senten
e are 
onsidered.
• Evaluation: Average error over 4- to 10-fold evaluation.Figure 2.3: Average error of identifying the type of re�exivity (non-re�exive/se/si) of a verb o

urren
e.To sum up, we de�ne frame F = (Refl, Slots) as a tuple where:
• Refl ∈ {void, se, si} is a ternary feature des
ribing the re�exivity of averb in the meaning of frame F .
• Slots : Functor 7→ (Oblig, ℘(MorphemicForms)) is a fun
tion assign-ing an obligatoriness �ag Oblig ∈ {obligatory, optional} and a set ofallowed MorphemicForms to any Functor ∈ {ACT , PAT, . . . } men-tioned by the frame.The fun
tion Slots is not total, an unde�ned mapping for a fun
torindi
ates there is no slot with su
h fun
tor in the frame. Note that thisformalization does not allow any frame to 
ontain several slots sharingthe same value of Functor.

MorphemicForms is a set of atomi
 values, ea
h des
ribing one ofall possible morphemi
 realizations of a modi�er. Unlike VALLEX,we never leave MorphemicForms empty. In the 
ases where all typ-i
al morphemi
 forms are appropriate, we expli
itly �ll the set withobserved verb modi�ers and their fun
tors in PDT 2.0.



2.4. Types of Data Sour
es 292.4 Types of Data Sour
esIn the following, we use this notation:
V = (V, F, L) denotes a valen
y lexi
on, where V is the set of verb lemmasof all verbs 
ontained in the lexi
on, F is the set of all frames de�nedin the lexi
on and L : V → P(F ) is the a
tual mapping providing ea
hof the verbs v ∈ V with a set of frames from F .In our experiments we 
an use VALLEX 1.0, VALEVAL or PDT-VALLEX as our V. The di�eren
e between VALLEX 1.0 and VALE-VAL is both in the set of verbs V 
overed and the set of known frames

F : VVALEVAL in
ludes only the frames that were a
tually observed ingolden VALEVAL annotation.For 
on
iseness, we use dot notation to a

ess individual 
omponentsof the stru
ture. For instan
e, we write VVALLEX 1.0.V to denote the setof verb lemmas 
ontained in VALLEX 1.0.
C = (S, W ) denotes a 
orpus of senten
es S = {si | si is a Cze
h senten
e}.Although the order of the senten
es in C is not important, we assumean arbitrary �xed order and use C.W to refer to the sequen
e of allrunning words in the 
orpus. C.Wi denotes the ith word in the 
orpus.We use a supers
ript on C to indi
ate the deepest layer (morphologi
al,

analyti
al or te
togrammati
al) of annotation available for senten
esin C. For instan
e, Ct refers to a 
orpus with all layers up to thete
togrammati
al analysis.For C≥m (i.e. a 
orpus with at least morphologi
al annotation) anda verb lemma v, we de�ne the fun
tion find(v, C≥m) to return all o
-
urren
es (indi
es to C.W ) of the verb with the verb lemma v. The
orpus manager Manatee (Ry
hlý and Smrº, 2004) is a very e�
ientimplementation of the fun
tion find(·, ·).In our experiments, we 
an use PDT 2.0, CNC or VALEVAL as our C,PDT 2.0 being the only 
orpus with manual annotation on all layers.
ĈV = (C, V, O, A) denotes a 
orpus C with all o

urren
es O ⊂ C.W ofverbs v ∈ V.V annotated with the frame used by the speaker in theparti
ular senten
e. The fun
tion A : O → V.F formally represents theannotation.VALEVAL and the 
ombination of PDT 2.0 with PDT-VALLEX aretwo examples of ĈV we have at hand.



302.5 Learning Task and Evaluation Metri
sOur learning task is to provide a test verb lemma vt with the set of all validframes Fvt
. For the purpose of evaluation of our learning methods, we always
hoose vt from a known di
tionary V. This allows us to 
ompare Fvt

to themanually assigned set of frames V.L(vt). We use the abbreviation �goldenframe set� (G) to refer to V.L(vt) and �hypothesized frame set� (H) to referto Fvt
.Given a test verb lemma vt, how should we evaluate the quality of ahypothesized frame set H given the golden frame set G?Methods of frame extra
tion are usually evaluated in terms of pre
ision(p) and re
all (r) of either frames as wholes or of individual frame elements(slots). See esp. Korhonen (2002) for a survey and 
omparison of severalapproa
hes using pre
ision and re
all.Note however that depending on the appli
ation, di�erent metri
s mayprovide di�erent predi
tions. As pointed out by Zhang et al. (2007), anHPSG parser bene�ts more from lexi
al a
quisition methods of a high re
all,not of a high F-s
ore (harmoni
 mean of pre
ision and re
all).For the ri
hly stru
tured VALLEX-like verb entries, pre
ision and re
allsu�er from some limitations:

• frame-based p and r are too rough and penalize the smallest mistakein frame with the same 
ost as omission of the whole frame,
• slot-based p and r are too �ne-grained and 
annot a

ount for the
omplexity of verb entry in terms of various 
ombinations of slots.To provide a simple means of 
omparison, we report on the frame-basedpre
ision and re
all: p(H, G) =

|H ∩ G|

|H|
(2.1)r(H, G) =

|H ∩ G|

|G|
(2.2)However, our main fo
us will lie in a novel metri
, frame edit distan
eand verb entry similarity as de�ned below.2.5.1 Frame Edit Distan
e and Verb Entry SimilarityIn Bene²ová and Bojar (2006), we de�ne the frame edit distan
e (FED) asthe minimum number of edit operations (insert, delete, repla
e) ne
essary to
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onvert a hypothesized frame into the 
orre
t frame. The metri
 des
ribed inthis se
tion is a re�ned version that better mat
hes our simpli�ed de�nitionof frames (see Se
tion 2.3).For the time being, we assign equal 
osts to all basi
 editing operations(�xing the re�exive parti
le of the frame or �xing obligatoriness �ag, addingto or removing allowed morphemi
 forms from a slot). However, the fun
torof a slot is 
onsidered as �xed. In order to 
hange the fun
tor, one pays fora 
omplete destru
tion of the wrong slot and a 
omplete 
onstru
tion of the
orre
t slot. We 
onsider 
harging more for slot destru
tion than for slot
onstru
tion in future versions of the metri
 be
ause we prefer methods thatundergenerate and produ
e safer frames to methods that suggest unjusti�edframes.In order to evaluate the mat
h between a whole golden frame set G as
ontained in the lexi
on and a frame set H hypothesized by an automati
frame-generation pro
edure, we need to extend FED to 
ompare whole setsof frames (i.e. verb entries in the lexi
on). We 
all this extension entrysimilarity (ES) and de�ne it as follows:
ES(H, G) = 1 − min FED(G,H)

FED(G,∅)+FED(H,∅)

G denotes the set golden verb entries of the verb lemma, H denotesthe hypothesized entries and ∅ stands for a blank verb entry (
ontaining noframes). min FED(G, H) is the minimum edit distan
e ne
essary to 
onvertthe frames in H into the frames in G, in
luding the possible generation ofmissing frames or destru
tion of super�uous frames.ES attempts to 
apture how mu
h of lexi
ographi
 labour has been savedthanks to the 
ontribution of the automati
 frame-generation pro
edure. Ifthe system did not suggest anything (H = ∅), the ES is 0%. If the systemsuggested exa
tly all the golden frames (H = G and thus FED(G, H) = 0),the ES a
hieves 100%. With this explanation in mind, we will use the termexpe
ted saving (ES) as a synonym to �entry similarity�.It is important to note that the suggested verb entry or frame 
an some-times 
ontain some additional information that should be in
luded in thegolden frameset, but it is not. We perform no spe
ial treatment for thissituation and regard the additional information as a mistake of the learningalgorithm, although it is in fa
t a mistake or omission of the authors of thelexi
on.99Thanks to the VALEVAL experiment (Bojar et al., 2005), we know that in a sampleof 100 verb lemmas of verbs, annotators observed about 57 missing frames, 6 inappro-priately joined or split frames and 12 super�uous frames. Similarly, errors were observedin VALLEX frame entries: in 16 
ases a fun
tor was 
hosen in
orre
tly or the slot wasmissing and in 12 
ases, the morphemi
 form was in
orre
t or missing.
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Size of set T of the training lemmasVALLEX: 1.0, fullVALLEX: 1.0, fun
oblVALLEX: 1.5, fullVALLEX: 1.5, fun
obl
• Input data: A valen
y lexi
on V, the set of verb lemmas V.V partitioned into atraining T and evaluation E sets, T ∩ E = ∅.
• Pro
edure:1. Colle
t all full frames of training lemmas T into a set K of known frames.2. For an unseen verb lemma l ∈ E with golden frames G, evaluate a
hievablere
all R as the ratio of known frames among golden frames: R = |G∩K|

|G| .Figure 2.4: Upper bound on full frame re
all, i.e. frames are not de
omposedinto slots.2.5.2 A
hievable Re
all without Frame De
ompositionLet us �rst brie�y examine the upper bound on re
all of a baseline algorithm.Given VALLEX frames for some known verb lemmas, the most simple ap-proa
h to learning entries for new verbs is to reuse known frames as wholes.Figure 2.4 summarizes the baseline algorithm and its upper bound on re-
all with respe
t to the number of training verb lemmas. As we see, if framesare treated as full frames (i.e. a set of fun
tors in
luding the obligatoriness�ag and the set of allowed morphemi
 forms), the theoreti
ally a
hievablere
all of any learning algorithm that uses known frames as wholes is about
92±3%. If only the fun
tors and the obligatoriness �ags (labelled �fun
obl�)are taken into a

ount when learning and proposing frames, 
urrent VALLEXsize proves to su�
e: the a
hievable re
all rea
hes 99 ± 1%. However as thelearning 
urve indi
ates, this had not been the 
ase until about 1 500 verblemmas were 
overed in VALLEX.It is worth mentioning that the number of frames 
overed in VALLEXis still growing, and that the growth is observed even in the least detailed



2.6. Lexi
ographi
 Pro
ess 33VALLEX version: 1.0 1.5Everything in
l. 
omments 3871 6506Fun
tors+Oblig+Forms 1142 1711Fun
tors+Oblig+Forms, ignoring order of Forms 1141 1705Fun
tors+Oblig+Forms, ignoring frames with a phraseme 1040 1472Fun
tors+Oblig 427 574Fun
tors 330 444Table 2.3: The number of unique frames de�ned in VALLEX 1.0 and 1.5depending on how detailed information is used to distinguish frames. Framesare 
olle
ted from all verb entries.de�nition of frames. Table 2.3 displays the number of frames (
olle
ted fromall verb entries) in VALLEX 1.0 and 1.5. If two frames are 
ounted asdi�erent whenever any attribute di�ers, VALLEX 1.0 
ontains about 3 900and VALLEX 1.5 about 6 500 frames. The other extreme is to 
onsiderframes as sets of fun
tors only, ignoring morphemi
 forms and obligatoriness.There are about 330 of these 
rude frames in VALLEX 1.0 and about 440in VALLEX 1.5. This indi
ates that the set of 
rude frames is by no means
omplete yet and that new frames should be expe
ted in more 
ontemporaryCze
h data.To sum up, methods that �reuse� known frames as wholes will fa
e asigni�
ant limit on a
hievable re
all unless they redu
e the notion of frameto the set of fun
tors.2.6 Lexi
ographi
 Pro
essThe aim of this 
hapter is to automate the 
reation of VALLEX entries, i.e.to model the work of a lexi
ographer.Atkins (1993), Calzolari et al. (2001) or Stevenson (2003) delimit twostages in the pro
ess of deriving lexi
al entries:Analysis: Colle
ting 
orpus eviden
e. The risk 
onne
ted with this taskis that if there is no underlying theory or no dire
t appli
ation targeted,important features might remain negle
ted. This 
an e�e
tively blo
ksome future appli
ations of the lexi
on.Synthesis: Creating the lexi
on entry. The most apparent di�
ulty isto make entries 
onsistent throughout the whole lexi
on. A 
entralquestion is what to in
lude in the lexi
on and what to ignore (whi
h



34 entries as well as whi
h details within the entries). Here, the onlyobje
tive 
riterion is usually the frequen
y, however for FGD, Panevová(1980) o�ers a valuable insight by introdu
ing the so-
alled �dialoguetest� to identify obligatory slots (whi
h should thus be in
luded in thedi
tionary).A similar delimitation of our task into the two subtasks 
an be drawn:
• word sense dis
rimination, i.e. providing verb o

urren
es with a senseor frame label,
• grouping verb o

urren
es with the same frame and 
onstru
ting theformal frame des
ription for the whole group.Following the delimitation, we now propose three dire
t methods (Se
-tion 2.7) and an indire
t one (Se
tion 2.9) for automati
 frame suggestion.2.7 Dire
t Methods of Learning VALLEX FramesOne 
ould think of many ways of how to automati
ally generate valen
yframes for new verbs. This se
tion is devoted to the des
ription and 
om-parison of three rather dire
t methods we developed. The methods are:WFD (Word-Frame Disambiguation), DSD (Deep Synta
ti
 Distan
e), andDe
omp (Learning frames by de
omposition). An additional method, Pat-ternSear
h (Sear
hing for patterns indi
ating a frame), is des
ribed in Se
-tion 2.9.One of the key aspe
t of ea
h learning method is whether it treats verbframes as opaque units and is thus limited by the upper bound des
ribed inSe
tion 2.5.2, or whether the method is in prin
iple 
apable of 
onstru
ting
ompletely new types of frames if the data seem to suggest it. The methodsWFD, DSD and PatternSear
h do not 
onsider internal stru
ture of verbframes at all. De
omp is in prin
iple able to 
onstru
t new types of frames.Using the notation as de�ned in Se
tion 2.4, we 
an formally des
ribe thetype of training data ne
essary to learn frames F for a given test verb lemma

vt :̂
CV and C′ where vt /∈ V.V and find(vt, C

′) 6= ∅.When we have a 
orpus annotated with frames ĈV (but no examplesfor the test verb vt) and a 
orpus C′ with no expli
it annotation ofverbal frames but with some examples of usage of vt, we 
an use themethods WFD, DSD and De
omp, as des
ribed below.



2.7. Dire
t Methods of Learning VALLEX Frames 35
V and C where vt /∈ V.V and find(vt, C) 6= ∅.When we have just a seed lexi
on V (not 
overing the verb vt) and a 
or-pus C 
ontaining some samples of vt usage, we 
an use PatternSear
h.2.7.1 Word-Frame Disambiguation (WFD)Seme
ký (2007) des
ribes a system for supervised word-frame disambiguation(WFD). For a training 
orpus annotated with verb frames ĈV and a givenverb lemma v (where find(v, C) 6= ∅), the system learns to predi
t the frame
f ∈ V.A(v) for a test senten
e st where no annotation is available. At theminimum, the 
orpus has to be analysed at the morphologi
al layer (Cm)but signi�
ant improvement is gained if analyti
al trees are available (Ca).The system 
onverts ea
h o

urren
e of the verb in the training 
orpus,
o ∈ find(v, C), into a ve
tor of features des
ribing morphologi
al and surfa
e-synta
ti
 properties of the verb and its neighbourhood. A similar ve
tor offeatures is extra
ted for the verb v from the test senten
e st. Comparing thetest ve
tor with the training ve
tors using one of several ma
hine-learningmethods (various ve
tor distan
e metri
s), the system suggests the mostlikely frame to the verb v o

urring in st. The system treats verb frames asopaque symbols with no internal stru
ture and a
hieves a

ura
y of nearly80%.We 
an reuse the idea to predi
t the set of frames F for a test verb vt.We �rst train a 
hosen 
lassi�er on training examples for all known verbsignoring their lemmas (i.e. pretending that all annotated verb o

urren
esin ĈV belong to the same verb, namely vt). Given a set of real examples of
vt, i.e. C′ annotated at the same layer as C, the 
lassi�er will suggest themost likely frame from all o

urren
es o ∈ find(vt, C

′). In our experiments,we used MaxEnt 
lassi�er by Zhang (2004) but any other 
lassi�er su
h asde
ision trees or support ve
tor ma
hines 
ould be used. A very promis-ing approa
h would be to use some of dis
riminative learning methods (e.g.averaged per
eptron, Collins and Roark (2004)) that learn to predi
t themost likely frame by 
ontrasting it to other 
andidates whereas traditionalmethods 
onsider ea
h 
andidate independently estimating its 
han
e to win.Simply 
olle
ting all frames suggested for various examples of the givenverb will give us an estimate whi
h frames should we assign to the verb.Formally:
Fvt

:= {f | ∃o ∈ find(vt, C
′) s.t. WFD system assigned f to o} (2.3)Summary of WFD:

• frames opaque
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• input: vt; output: Fvt

• required data:� ĈV where vt /∈ V.V , and� C′m or a where find(vt, C
′) 6= ∅2.7.2 Deep Synta
ti
 Distan
e (DSD)One of the drawba
ks of WSD des
ribed in the previous se
tion is the la
kof a dire
t link between the theory of valen
y and the model predi
ting oneof the frames for a given verb o

urren
e. In order to address this issue,we propose a novel metri
 
alled Deep Synta
ti
 Distan
e (DSD). DSD isdire
tly motivated by valen
y theory as expressed in guidelines for VALLEXauthors: for ea
h verb o

urren
e, the underlying deep synta
ti
 analysis ofthe senten
e is 
onsidered.Given two o

urren
es o1 and o2 of a verb (or two distin
t verbs) in a
orpus Ca annotated at the a-layer, DSD(o1, o2) estimates how di�
ult itis to believe that the underlying verb frame used in o1 is the same as theframe used in o2. DSD 
onsiders the surfa
e realization of ea
h analyti
aldependent sonj of oi and the likelihood p(F |sonj) of that parti
ular formto express a te
togrammati
al fun
tor F . The dependents of o1 and o2 arepaired assuming a 
ommon fun
tor F for both of them. DSD is the minimum
ost (highest likelihood) over all possible pairings π, optionally with a penaltyfor unpaired dependents in 
ase the verb o

uren
es have a di�erent numberof sons.

DSD(o1, o2) := min
p∈π(o1,o2)

∑

(son1,son2,F )∈p

1 − p(F |son1) · p(F |son2) (2.4)The appli
ation of DSD to our task (i.e. providing a test verb vt with ahypothesized frameset Fvt
) is in essen
e identi
al to the well-known nearestneighbours (NN) ma
hine-learning method: given a training 
orpus anno-tated with verb frames ĈaV and a sample unlabelled observation ot in asenten
e 
ontaining vt, we evaluate DSD(o, ot) for all labelled observations

o ∈ (ĈaV).O. The test observation ot is assigned the same frame as the win-ning o in the labelled data has. Similarly to the nearest neighbours method,various modi�
ations of the voting s
heme (e.g. k-NN or k-NN weighted bythe distan
e) might be 
onsidered.Given a 
orpus C
′ of example senten
es of vt, ea
h senten
e in C

′ will
ontribute with a single suggested frame fbest. We 
olle
t all suggested frames
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t Methods of Learning VALLEX Frames 37and return them as the hypothesized frameset Fvt
. Formally:

Fvt
=

{
fbest

∣∣∣∣ ∃ot ∈ find(vt, C
′) s.t. obest = argmin

o∈( dCaV).O DSD(o, ot)

fbest = (ĈaV).A(obest)

}(2.5)Another possible appli
ation of DSD is to help in 
onsisten
e 
he
king ofmanual annotation in a ĈaV. Given a verb v ∈ V.V and all its o

urren
es
O = find(v, C), we 
an evaluate DSD(o1, o2) for ea
h pair (o1, o2) ∈ O × O.All 
ases where DSD(o1, o2) is low but o1 and o2 have a di�erent frameassigned in the annotation (ĈaV).A as well as all 
ases with DSD(o1, o2)high but identi
al frames assigned, i.e. A(o1) = A(o2), should be manually
he
ked. Assuming DSD estimates are 
orre
t, the dis
repan
y between DSDand manual annotation 
an suggest an error in the annotation or at leastdemonstrate that the di�eren
es between frames f1 = A(o1) and f2 = A(o2)are maybe too subtle to be noti
ed based on purely synta
ti
 information inthe 
ontext of the verb.Summary of DSD:

• frames opaque
• input: vt; output: Fvt

• required data:� ĈaV where vt /∈ V.V , and� C′a where find(vt, C
′) 6= ∅2.7.3 Learning Frames by De
omposition (De
omp)Both WFD and DSD assumed frames are opaque units and relied on a simi-larity between verb o

urren
es. We now propose a method 
alled De
ompthat de
omposes frames into basi
 building blo
ks (�frame 
omponents�) andsuggests frames for unseen o

urren
es by 
ombining some of the frame 
om-ponents.Given a labelled training 
orpus ĈV and a test verb vt not present in

ĈV but present in a separate unlabelled 
orpus C′, we formulate the goalof providing vt with a set of frames Fvt
as a multi-
lass 
lassi�
ation taskusing a suitable set E of �frame 
omponents�, ea
h des
ribing a parti
ularaspe
t of the frame. For instan
e, the frame 
omponents �re�-is-se�, �ACT-obligatory�, �ACT-
an-be-nominative�, . . . 
ould be used to des
ribe theframe �se ACT.obl.nom . . . �.Two additional fun
tions are needed: decomp: V.F → P(E) to de
om-pose frame into atomi
 pie
es and recomb: P(E) → frame to re
ombine themagain.



38Algorithm 1 Suggesting frames by de
omposition (De
omp).1. Prepare training data for the multi-
lass 
lassi�er:2. For ea
h o

urren
e o of ea
h training verb v in ĈV3. Extra
t �surfa
e features� from the neighbourhood of o, as in WSD.4. Constru
t �deep features� from the frame assigned to o:
decomp((ĈaV).A(o)).5. Enter the pair (surfa
e features,deep features) asa training instan
e to the 
lassi�er.6. Suggest frame F for an o

urren
e ot of a test verb vt:7. Use the multi-
lass 
lassi�er to predi
t the set of deep features

D ∈ P(E) for ot based on its observed surfa
e features.8. Assign the re
ombined frame to ot: F = recomb(D).The multi-
lass 
lassi�
ation is employed in the pro
ess as des
ribed inAlg. 1. In our parti
ular 
ase, we use independent binary 
lassi�ers instead ofa single multi-
lass 
lassi�er. For ea
h deep feature (i.e. frame 
omponent)independently, we train to predi
t �present� or �not-present� based on thefull observed 
ontext. It is up to the ma
hine learner to identify if any sur-fa
e features predi
t that parti
ular frame 
omponent more reliably. In ourexperiments, we used MaxEnt 
lassi�er by Zhang (2004) but any other 
las-si�er su
h as de
ision trees (Quinlan, 1986, 2002) or support ve
tor ma
hines(Cortes and Vapnik, 1995) 
ould be used.We 
annot assume that the learner would be able to suggest frame 
om-ponents of morphemi
 forms not realised in a parti
ular senten
e. Instead ofsimply 
olle
ting all suggested frames, we merge(·) them based on the �skele-ton� of obligatory slots. For instan
e, if the frame ACT.obl.nom PAT.obl.a

was proposed for one verb o

urren
e and ACT.obl PAT.obl.na+a

 for an-other one, we in
lude a single merged frame in the �nal suggested frame set:ACT.obl.nom PAT.obl.{a

,na+a

}.Formally:
Fvt

:= merge

({
f

∣∣∣∣
∃o ∈ find(vt, C

′)s.t. De
omp system assigned f to o

}) (2.6)Summary of De
omp:
• frames de
omposed and re
ombined
• input: vt; output: Fvt

• required data:� ĈV where vt /∈ V.V , and� C′m or a where find(vt, C
′) 6= ∅



2.7. Dire
t Methods of Learning VALLEX Frames 392.7.4 Post-pro
essing of Suggested FramesetsAs a 
onsequen
e of the de�nition, one of the key properties judged by ESis the number of frames suggested. For every missing or super�uous frame,ES 
harges a signi�
ant penalty based primarily on the number of slots ofall unmat
hed frames.Certainly, one 
ould try to automati
ally predi
t the number of framesneeded for ea
h verb on the basis of the frequen
y of the verb, some measureof diversity of synta
ti
 properties or the number of translation equivalentsin a translation di
tionary or a parallel 
orpus. (Frequen
y alone is a rea-sonable but not su�
ient predi
tor, there are frequent verbs with relativelyfew frames.)We leave this for further investigation and instead use two methods thatmodify a suggested frame set to mat
h the expe
ted number of frames forea
h verb, thus allowing the methods to peek at the test data partly:SIMPLE If the number of expe
ted frames is higher than the number of sug-gested frames, additional baseline frames (ACT.obl.nom PAT.obl.a

)are added to rea
h the expe
ted number of frames. If the number ofexpe
ted frames is lower than the number of suggested frames, onlythe frames with high support are added. (The de�nition of supportis straightforward: for WFD and DSD it is the number of verb o
-
urren
es that were assigned that parti
ular frame. For De
omp, thelatter 
ase never happens, as De
omp always suggests fewer framesthan expe
ted, see the dis
ussion below)CLUST If the number of expe
ted frames is higher than the number ofsuggested frames, we use the same approa
h as SIMPLE: add baselineframes up to the expe
ted frame 
ount. If the number of expe
tedframes is lower, we use automati
 
lustering and 
entroid sele
tion to
hoose a set of the expe
ted size 
ontaining the most representativeframes. The obje
ts that enter our 
lustering algorithm are framessuggested by individual verb o

urren
es. We 
ompute the frame editdistan
e (FED, Se
tion 2.5.1) between every pair of frame o

urren
esand use the 
lustering toolkit by Karypis (2003) to 
luster the o

ur-ren
es to the expe
ted number of frame groups. Groups are 
hosen tomaximize distan
es between the groups and minimize distan
es withinthe groups. For ea
h of the groups we then 
hoose a representative (a�
entroid�): the frame with the lowest distan
e to all other members inthe group.



40Method Options Fit Frame Count Avg ES Avg Pre
 Avg Re
WFD no 21.4±4.7 4.1±1.4 26.9±11.1DSD noPenalize no 25.6±3.1 20.5±14.0 3.8±2.8Baseline 1×ACT-PAT no 27.7±4.9 45.7±21.9 9.7±6.8DSD noPenalize, ReqObl no 33.9±5.6 1.5±3.1 3.4±6.9DSD Penalize no 38.5±8.5 6.0±5.2 13.7±11.0Baseline 2×ACT-PAT no 38.8±4.9 22.8±11.0 9.7±6.8De
omp no 43.0±1.5 4.2±2.1 4.3±2.0DSD Penalize, ReqObl no 43.1±8.1 7.9±6.5 14.2±11.3Baseline 3×ACT-PAT no 43.7±3.6 15.2±7.3 9.7±6.8Baseline avg×ACT-PAT no 45.3±4.6 5.9±2.7 9.7±6.8Baseline 4×ACT-PAT no 46.8±3.2 11.4±5.5 9.7±6.8DSD Penalize CLUST 61.7±6.9 10.1±6.8 10.1±6.8DSD Penalize, ReqObl CLUST 62.2±9.3 11.7±8.0 11.7±8.0De
omp SIMPLE/CLUST 64.5±3.6 4.5±2.0 4.5±2.0Baseline expe
ted×ACT-PAT SIMPLE 65.3±3.8 9.7±6.8 9.7±6.8WFD CLUST 66.0±3.1 13.4±8.6 13.4±8.6WFD SIMPLE 67.8±1.1 12.7±3.3 12.6±3.3Table 2.4: Evaluation of dire
t frame suggestion methods.2.8 Empiri
al Evaluation of Dire
t MethodsTable 2.4 summarizes the results of the various methods in terms of expe
tedsaving (ES), frame pre
ision (Pre
) and frame re
all (Re
), averaged overindividual verb lemmas. The ± bounds represent standard deviations basedon four iterations of a 10-fold evaluation.The methods were evaluated on VALEVAL verbs and framesets fromVALLEX 1.0. In every fold we pi
k one tenth of verb lemmas as the test verbs.The remaining 9/10s of verbs and their VALEVAL o

urren
es are availableto the methods for training. Every method has to produ
e a frameset forevery test verb based on unlabelled o

urren
es in the VALEVAL 
orpus.The 
olumn �Fit Frame Count� spe
i�es whether the method had a

essto the expe
ted (
orre
t) number of frames and how did it use it (SIMPLEor CLUST). Our �Baseline� method is to suggest a frame with two obligatoryslots: ACT.obl.nom PAT.obl.a

. The baseline method varies in the numberof times we repeat this frame in the suggested frameset, e.g. 2× indi
atesthat every verb re
eives the frame twi
e while avg× uses the training verbsto �nd out the average number of frames per verb.We observe that baseline methods generally perform better than ourframe-suggestion te
hniques both in 
ase when the methods do not a

essthe expe
ted number of frames as well as when they do. It is only WFD(CLUST and SIMPLE) that insigni�
antly outperforms the baseline.



2.9. PatternSear
h: Guessing Verb Semanti
 Class 41An inspe
tion of detailed logs revealed that the methods di�er in reasonsof failure. Both WFD and DSD tend to suggest too many di�erent frames(whi
h is 
on�rmed by a relatively higher re
all). The reason for this overgen-eration lies simply in abundan
e of training frames leading to a big variety inframes suggested. By �tting the output frame 
ount to the expe
ted numberof frames, we signi�
antly raise the ES. The very extreme improvement 
anbe seen for WFD, jumping from the worst rank (ES 21.4%) to the best one(ES 67.8%).For DSD, we evaluated two minor modi�
ations of the method. First, aswe see, penalizing super�uous slots helps to �nd more relevant training ob-servations (
ompare Penalize vs. noPenalize). Se
ond, we 
onsider only su
htraining observations where all obligatory slots are most likely realised on thesurfa
e (ReqObl). The set of training observations thus better represents thepossible frames and DSD gains a small improvement in ES. Alternatively,we 
ould group training verb o

urren
es by semanti
 
lass and use only arestri
ted set of most typi
al instan
e of a frame from ea
h group, partiallyapproa
hing the method des
ribed in Se
tion 2.9 below.De
omp on the other hand fails be
ause it produ
es too few (and tooshort) frames. Only very few frame 
omponents su
h as ACT.obl.nom orPAT.obl.a

 are proposed. For other frame 
omponents, the learners haveseen too many negative training examples (instan
es of other frames withoutthat parti
ular 
omponent) so they tend to undergenerate.In 
on
lusion, the key aspe
t of frame suggestion as evaluated by ES, is toguess 
orre
tly the number of frames. Beyond that, more 
ompli
ated meth-ods as De
omp or DSD do not bring any improvement. A more promisingapproa
h is to 
arefully �lter training examples and to add additional fea-tures to the relatively straightforward method of WFD. We further dis
ussthe problems of frame extra
tion methods in Se
tion 2.10 below.2.9 PatternSear
h: Guessing Verb Semanti
 ClassAs seen in Se
tion 2.8, dire
t methods of frame suggestion averaged over allverbs do not bring mu
h improvement over the baseline. In this se
tion, weta
kle frame suggestion indire
tly, via the semanti
 
lass of a verb (sense).In this preliminary experiment published in Bene²ová and Bojar (2006), wefo
us on one 
lass, namely the verbs of 
ommuni
ation (see Se
tion 2.9.2below).As noted by Véronis (2003), syntax provides extremely powerful tool forsense dis
rimination and likewise, verbs with a similar sense tend to havesimilar frames (Levin, 1993). With these observations in mind, we formulate



42the synta
ti
 pattern typi
al for verbs expressing 
ommuni
ation and sear
ha given 
orpus C for verbs appearing in the pattern (thus the name Pat-ternSear
h). If a substantial portion of the verb's o

urren
es mat
hes thepattern, we assume the verb belongs to the 
ommuni
ation 
lass. As su
h,the VALLEX entry of the verb should in
lude at least one frame 
onveyingthe 
ommuni
ation meaning.In the following we provide details on semanti
 verb 
lasses as availablein VALLEX (Se
tion 2.9.1) and verbs expressing 
ommuni
ation in parti
u-lar. In Se
tion 2.9.3, we evaluate automati
 identi�
ation of verbs belongingto this semanti
 
lass. Finally Se
tion 2.9.5 utilizes 
lass identi�
ation topres
ribe valen
y frames to unseen verbs.
2.9.1 Verb Classes in VALLEXVerb 
lasses were introdu
ed to VALLEX primarily to improve data 
onsis-ten
e be
ause observing whole groups of semanti
ally similar verbs togethersimpli�es data 
he
king.Classi�
ation of verbs into semanti
 
lasses is a topi
al issue in linguisti
resear
h (see e.g. Levin's verb 
lasses Levin (1993), PropBank Palmer et al.(2005) , LCS Ja
kendo� (1990); Dorr and Mari (1996), FrameNet Baker et al.(1998)). Verb 
lasses as de�ned in VALLEX 1.0 and 1.5, though in�uen
ed bythe various streams of resear
h, are built independently and using a 
ustom
lassi�
ation, mainly due to di�eren
es in the theoreti
al ba
kground andin the methods of des
ription. VALLEX 
lasses are built thoroughly in abottom-up approa
h: frame entries already listed in VALLEX are assignedto a 
ommon 
lass mostly on the basis of synta
ti
 
riteria: the number of
omplements (a
tants and free modi�
ations), their type (mainly obligatoryor optional), fun
tors and their morphemi
 realizations. It should be notedthat verb 
lasses and their des
riptions in VALLEX 1.5 are still tentativeand the 
lassi�
ation is not based on a de�ned ontology but it is to a 
ertainextent intuitive.VALLEX 1.5 de�nes about 20 verb 
lasses (
ommuni
ation, mental a
-tion, per
eption, psy
h verbs, ex
hange, 
hange, phase verbs, phase of a
tion,modal verbs, motion, transport, lo
ation, expansion, 
ombining, so
ial inter-a
tion, providing, appoint verb, 
onta
t, emission, extent) that 
ontain onaverage 6.1 distin
t frame types (disregarding morphemi
 realizations and
omplement types).



2.9. PatternSear
h: Guessing Verb Semanti
 Class 432.9.2 Verbs of Communi
ationThe 
ommuni
ation 
lass is spe
i�ed as the set of verbs that render thesituation when �a speaker 
onveys information to a re
ipient�. For the sakeof simpli
ity, we use the term verbs of 
ommuni
ation to refer to verbswith at least one sense (frame) belonging to the 
ommuni
ation 
lass.Besides the slots ACT for the �speaker� and ADDR for the �re
ipient�,verbs of 
ommuni
ation are 
hara
terized by the entity �information� thatis usually expressed as a dependent 
lause introdu
ed by a subordinating
onjun
tion or as a nominal stru
ture.There are some other 
lasses (mental a
tion, per
eption and psy
h verbs)that also in
lude the �information� element in the frame but they usuallydo not require any slot for a �re
ipient�. However, in a small number of
ases when the addressee whi
h represents the �re
ipient� does not appearexpli
itly in the valen
y frame of a verb of 
ommuni
ation (e.g. speak orde
lare), this distin
tive 
riterion fails.Verbs of 
ommuni
ation 
an be further divided into sub
lasses a

ord-ing to the semanti
 
hara
ter of �information� as follows: simple information(verbs of announ
ement: °í
i (say), informovat (inform), et
.), questions(interrogative verbs: ptát se (ask), et
.) and 
ommands, bans, warnings,permissions and suggestions (imperative verbs: poru£it (order), zakázat (pro-hibit), et
.). The dependent 
lause after verbs of announ
ement is primarilyintrodu
ed by the subordinating 
onjun
tion ºe (that), interrogative by zda(whether) or jestli (if) and imperative verbs by aby (in order to) or a´ (let).2.9.3 Automati
 Identi�
ation of Verbs of Communi
ationIn the present se
tion, we investigate how mu
h the information about thevalen
y frame 
ombined with the information about morphemi
 realizationsof valen
y 
omplements 
an 
ontribute to an automati
 re
ognition of verbsof 
ommuni
ation.The experiment is primarily based on the idea that verbs of 
ommuni
a-tion 
an be dete
ted by the presen
e of a dependent 
lause representing the�information� and an addressee representing the �re
ipient�.This idea 
an be formalized as a set of queries to sear
h the 
orpus foro

urren
es of verbs a

ompanied by: (1) a noun in one of the following
ases: genitive, dative and a

usative (to approximate the ADDR slot) and(2) a dependent 
lause introdu
ed by one of the set of 
hara
teristi
 subor-dinating 
onjun
tions (ºe, aby, a´, zda or jestli) (to approximate the slot of�information�).We disregard the freedom of Cze
h word order whi
h, roughly speak-



44ing, allows for any permutation of a verb and its 
omplements. In reality,the distribution of the various reorderings is again Zip�an with the mosttypi
al ordering (verb+N234+subord) being the most frequent. In a sense,we approximate the sum of o

urren
es in all possible reorderings with the�rst, maximal, element only. On the other hand we allow some interveningadjun
ts between the noun and the subordinating 
lause.We use the Manatee 
orpus manager (Ry
hlý and Smrº, 2004) to performthe sear
hes in Cze
h National Corpus.2.9.4 Evaluation against VALLEX and FrameNetWe sort all verbs by the des
ending number of o

urren
es of the testedpattern. This gives us a ranking of verbs a

ording to their �
ommuni
a-tive 
hara
ter�, typi
al verbs of 
ommuni
ation su
h as °í
i (say) appear ontop. Given a threshold10, one 
an estimate the 
lass identi�
ation qualityin terms of a 
onfusion matrix: verbs above the threshold that a
tually be-long to the 
lass of verbs of 
ommuni
ation (a

ording to a golden standard)
onstitute true positives (TP ), verbs below the threshold and not in the
ommuni
ation 
lass 
onstitute true negatives (TN), et
.A well-established te
hnique of the so-
alled ROC 
urves allows to 
om-pare the quality of rankings for all possible thresholds at on
e. We plot thetrue positive rate (TPR = TP/P where P is the total number of verbs of
ommuni
ation) against the true negative rate (TNR = TN/N , N standsfor the number of verbs with no sense of 
ommuni
ation) for all thresholds.We evaluate the quality of 
lass identi�
ation against golden standardsfrom two sour
es. First, we 
onsider all verbs with at least one frame inthe 
ommuni
ation 
lass from VALLEX 1.0 and 1.5 and se
ond, we use allpossible word-to-word translations of English verbs listed in FrameNet 1.211Communi
ation frame and all inherited and used frames (For an explanation,see Fillmore et al. (2001); Fillmore (2002); the English-to-Cze
h translationswere obtained automati
ally using available on-line di
tionaries). As theuniversum (i.e. P + N), we use all verbs de�ned in the respe
tive versionof VALLEX and all verbs de�ned in VALLEX 1.5 for the FrameNet-basedevaluation.Figure 2.5 displays the TPR/TNR 
urve for verbs suggested by the pat-tern V+N234+subord. The left 
hart 
ompares the performan
e againstvarious golden standards, the right 
hart gives a 
loser detail on the 
ontri-bution of di�erent subordinating 
onjun
tions.10See Kilgarri� (2005) for a justi�
ation of this simple thresholding te
hnique as opposedto more elaborated methods of statisti
al signi�
an
e testing.11http://framenet.i
si.berkeley.edu/
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Figure 2.5: Verbs of 
ommuni
ation as suggested by the patternV+N234+subord, evaluated against VALLEX and FrameNet (left) and eval-uated against VALLEX 1.0 for the three main 
ontributing subordinating
onjun
tions (aby, ºe, zda) independently (right).The 
loser the 
urve lies to the upper right 
orner, the better the perfor-man
e is 
ompared to the golden standard. With an appropriate threshold,about 40% to 50% of verbs of 
ommuni
ation are identi�ed 
orre
tly while20% of non-
ommuni
ation verbs are falsely marked, too. We get about thesame performan
e level for both VALLEX and FrameNet-based evaluation.This 
on�rms that our method is not too tightly tailored to the 
lassi�
ationintrodu
ed in VALLEX.The right 
hart in Figure 2.5 demonstrates that the 
ontribution of di�er-ent subordinating 
onjun
tions is highly varied. While aby and ºe 
ontributesigni�
antly to the required spe
i�
ation, the verbs suggested by the patternwith zda are just above the baseline. (The 
onjun
tions a´ and jestli had toofew o

urren
es in the pattern.)Weak Points of PatternsOn the one hand, our queries are not able to �nd all verbs of 
ommuni
ationfor the following reasons: (1)We sear
h only for 
ases where the �information�element is expressed as a subordinate 
lause. While nominal stru
tures 
anbe used here, too, allowing them in the queries would 
ause 
onfusion withverbs of ex
hange (e.g. give or take). (2) Verb o

urren
es with some of the
ore frame elements not expressed on the surfa
e are not identi�ed by thequeries.On the other hand, the fa
t that 
onjun
tions aby and ºe are homony-mous lowers the pre
ision of the queries and introdu
es false positives. We



46 Suggested frames ES [%℄Spe
i�
 frame for verbs of 
ommuni
ation, default for others 38.00 ± 0.19Baseline 1: ACT(1) 26.69 ± 0.14Baseline 2: ACT(1) PAT(4) 37.55 ± 0.18Baseline 3: ACT(1) PAT(4) ADDR(3,4) 35.70 ± 0.17Baseline 4: Two identi
al frames: ACT(1) PAT(4) 39.11 ± 0.12Table 2.5: Expe
ted saving when suggesting frame entries automati
ally.tried to eliminate some of in
orre
tly 
hosen verbs by a re�nement of thequeries. (For instan
e, we omitted 
ertain 
ombinations of demonstrativesplus 
onjun
tions: tak, aby (so that), tak, ºe (so that), et
.) A further prob-lem is 
aused by 
ases when the identi�ed dependent 
lause is not a memberof the valen
y frame of the given verb but depends on the pre
eding noun.PatternSear
h does not make use of the synta
ti
 analysis of the senten
eand thus 
annot reje
t su
h examples.2.9.5 Appli
ation to Frame SuggestionThe method of sear
hing 
orpus for typi
al patterns des
ribed in the previousse
tion 
an 
ontribute to frame extra
tion task in the following manner: forall verbs o

urring frequently enough in the typi
al pattern, we propose themost typi
al �
ommuni
ation frame� 
onsisting of ACT, ADDR and PAT(all obligatory). For ea
h verb independently, we assign only 
onjun
tionsdis
overed by the queries to the PAT. Every verb of 
ommuni
ation 
anhave some additional senses not noti
ed by our method but at least the
ommuni
ation frame should be suggested 
orre
tly.Table 2.5 displays the ES (expe
ted saving, Se
tion 2.5.1) as reported inBene²ová and Bojar (2006) of four various baselines and the result obtainedby our method. When we assume that every verb has a single entry and thisentry 
onsists of a single frame with the ACT slot only, ES estimates thatabout 27% of editing operations was saved. Suggesting an ACT and a PAThelps even better (Baseline 2, 38%), but suggesting a third obligatory slot foran addressee (realized either as a dative (3) or an a

usative (4)) is alreadyharmful, be
ause not all the verb entries require an ADDR.We 
an slightly improve over Baseline 2 if we �rst identify verbs of 
om-muni
ation automati
ally and assign ACT PAT ADDR with appropriate sub-ordinating 
onjun
tions to them, leaving other verbs with ACT PAT only.This 
on�rms our assumption that verbs of 
ommuni
ation have a typi
althree-slot frame and also that our method managed to identify some of theverbs 
orre
tly.



2.10. Dis
ussion 47Our ES s
ores are relatively low in general and Baseline 4 suggests areason for that: most verbs listed in VALLEX have several senses and thusseveral frames. In this experiment, we fo
us on the 
ommuni
ation frameonly, so it still remains quite expensive (in terms of ES) to add all otherframes. In Baseline 4, we suggest a single verb entry with two 
ore frames(ACT PAT) and this gives us a greater saving be
ause most verbs indeed askfor more frames.2.10 Dis
ussionAll our dire
t methods (WFD, DSD and De
omp) perform relatively poorly
ompared to the baselines. It is only the very spe
i�
 experiment with verbsof 
ommuni
ation (Se
tion 2.9) that provides somewhat promising results.Before suggesting general 
on
lusions, let us brie�y mention similar pro-je
ts. Of the many lexi
ographi
 enterprises we name just a few that 
loselyrelate to our observations.2.10.1 Related Resear
hRosen et al. (1992) des
ribe formal representation of valen
y frames for thema
hine translation system MATRACE (Haji£ et al., 1992) and design a pro-
edure to 
onvert sub
ategorization frames from Oxford Advan
ed Learners'Di
tionary (Hornby, 1974).Skoumalová (2001) implements rules to 
onvert surfa
e frames 
olle
tedfrom a 
ompilation of manual di
tionaries (BRIEF, (Pala and �eve£ek, 1997))to te
togrammati
al valen
y frames, in
luding expli
it en
oding of allowedpassivization alternations. The resulting lexi
on is utilized in a toy LFGgrammar.Bond and Fujita (2003) des
ribe a su

essful semi-automati
 method forextending a Japanese valen
y di
tionary by 
opying frames from translationequivalents: a verb not 
overed in the target valen
y di
tionary is trans-lated (using a simple translation di
tionary) to English and ba
k to arriveat a known verb. Frames of the known verb are 
opied to the newly addedverb, subje
t to various forms of manual �ltering. The experiment 
on-�rms that verb valen
y is strongly related to verb meaning (and exploitsthe fa
t that translation preserves meaning). A surprising observation isthat manual 
he
king whether the new frame belongs to a verb performedeither by untrained annotators validating 
orre
tness of a paraphrase or bytrained lexi
ographers validating the frame assignment as su
h is equallytime-
onsuming. In pra
ti
e, Bond and Fujita (2003) suggest to prefer thelexi
ographers be
ause the whole entry is 
he
ked and also be
ause untrained



48annotators often judge the grammati
ality of the paraphrase unreliably. Anautomati
 learner (C5.0, Quinlan (2002)) failed to improve over the base-line and Bond and Fujita (2003) thus mention that frame entry 
onstru
tioninevitably requires manual e�ort.Kipper-S
huler (2005) follows up on experiments by Kingsbury (2004) toautomati
ally 
luster verbs appearing in Penn Treebank for the purpose ofVerbNet extension. A manual evaluation of the 
lusters revealed that onlyabout 5% of verbs were assigned to a reasonably a

urate 
luster and 
ouldhave been added to the VerbNet. Reasons for the little pre
ision in
lude(1) highly skewed domain of the Penn Treebank (mostly �nan
ial texts), (2)la
k of synta
ti
 
ontext in the senten
es that would enable to disambiguatebetween verb usages and �nally (3) no semanti
 
lassi�
ation of verbs' argu-ments. Apart from the domain dependen
e, the same problems apply to ourautomati
 extra
tion of VALLEX frames. A more fruitful approa
h was toexploit 
lustering of verbs already present in WordNet from where 36�40%of suggested verbs 
ould have been used.Dorr and Jones (1996) su

essfully use WordNet and synta
ti
 des
rip-tions of verbs in LDOCE (Pro
ter, 1978) to semanti
ally 
lassify verbs not
overed in Levin's verb 
lasses (Levin, 1993): for ea
h new verb, synonymsare found in WordNet. All Levin 
lasses the synonyms belong to are 
on-sidered as 
andidate 
lasses, but only the single 
lass is 
hosen that bestmat
hes the synta
ti
 des
ription of the verb in LDOCE. The pro
edure 
analso hypothesize a new 
lass in 
ase none of the verb's synonyms is 
overedin Levin's 
lassi�
ation or the synta
ti
 des
riptions of the 
lass and the verbdi�er too mu
h. Manual evaluation on a small sample suggested 82% a

u-ra
y: the 
lass 
hosen was one of plausible 
lasses for the verb in 82% ofverbs. The synta
ti
 des
riptions from LDOCE serve as a �lter to restri
tthe set of 
lasses suggested by the synonyms. We believe that 
orpus evi-den
e 
ould be used as an alternative �ltering te
hnique if LDOCE synta
ti
des
ription were not available. The key 
omponent though remains WordNetas the sour
e of synonyms.S
hulte im Walde (2003) 
arries out extensive resear
h on automati
 
lus-tering of German verbs into semanti
 
lasses based on synta
ti
 
riteria andalso sele
tional restri
tions. After �ne-tuning the set of features she is ableto automati
ally derive semanti
 
lustering of verbs that ignores sense am-biguity of verbs (hard 
lustering method, ea
h verb is assumed to belongto one 
lass only). However, her 
lasses are des
ribed by a set of frames,so one 
ould use this method to assign sets of frames to verbs. The maindi�eren
e between her and our goal is thus the surfa
e vs. deep synta
ti
layer of representation.



2.10. Dis
ussion 492.10.2 La
k of Semanti
 InformationThe failure of our dire
t methods suggests that purely surfa
e synta
ti
 ob-servations are not su�
ient to derive deep synta
ti
 (or semanti
) general-izations.Su

essful proje
ts mentioned above always in
lude some ready-made
omponent 
apable of semanti
 generalization employed either for the verbitself or for the modi�ers. For instan
e, synonyms of the verb from WordNetor synonyms derived via translation to another language are used as sour
everbs to 
opy the synta
ti
 information from.Though not 
learly 
on�rmed by S
hulte im Walde (2003), sele
tionalrestri
tions on verb modi�ers are a signi�
ant predi
tor of verb sense distin
-tions. We thus believe that both further re�nement of VALLEX verb 
lassesas well as the addition of sele
tional restri
tions 
ould improve the a

ura
yof our appli
ation.2.10.3 Deletability of Modi�ersOne of the main problems of our dire
t methods is that they do not ex-pli
itly handle �deleted� modi�ers, i.e. frame slots that are not realized onthe surfa
e. It is only the method PatternSear
h that inherently solves theproblem by ignoring all o

urren
es of the verb in question where some ofthe modi�ers required by the pattern are missing, though lowering the re
allof the method.An approa
h similar to Sarkar and Zeman (2000) where frame subsetsare 
onsidered or the hierar
hi
al browsing of verb o

urren
es suggested byBojar (2003) would have to be in
orporated into the methods.2.10.4 Need to Fine-Tune Features and Training DataThe features we use in our dire
t methods WFD and De
omp are ratherstraightforward observations from the 
lose (synta
ti
) neighbourhood of theverb. We also train our models on all available instan
es of all training verbs.Possibly, the noise in the training data 
ould be redu
ed to a great extentby 
arefully restri
ting the set of training verbs to a few representatives(e.g. one frame per semanti
 
lass or a limited number of 
entroids sele
tedautomati
ally from all known frames). We 
ould also use some sele
tion oftraining senten
es, su
h as the promising method of sele
ting synta
ti
allysimple senten
es as implemented in Bojar (2003) but aiming at senten
eswith most modi�ers realized on the surfa
e.Similarly, it is well known that feature sele
tion is vital for performan
e of
lassi�
ation methods. In out preliminary experiments with WFD features,



50every feature type 
ontributed to the performan
e and we 
ould not restri
tthe set of features in any way without a loss. This suggests that additionalfeatures (or feature 
ombinations) are still to be sought for.2.10.5 La
k of Manual InterventionOne of the reasons of the failure of our dire
t methods is undoubtedly thethe aim at an end-to-end automati
 approa
h.Our PatternSear
h experiment as well as related approa
hes in
lude amanual �ltering step of either the suggestions the system has made or thepatterns the system sear
hes for.We envisage a lexi
ographers' tool that automati
ally �summarizes� 
or-pus eviden
e to 
lusters based on e.g. DSD or the surfa
e-synta
ti
 featuresused in WFD. The lexi
ographer would then mark o

urren
es not �ttingwell to the suggested 
luster, thus 
reating some WFD-annotated trainingdata for the verb. In the next iteration, the system would try to followthe suggested 
lassi�
ation and summarize further 
orpus data, possibly em-ploying some semi-supervised 
lustering te
hniques (Basu, 2005). A similarapproa
h, though limited to independent pairs of verb and one of its modi-�ers and without the proposed annotation loop, is su

essfully employed inWord Sket
hes (Ry
hlý and Smrº, 2004).2.11 Con
lusion and Further Resear
hChapter 2 was devoted to methods of automati
 extra
tion of valen
y framesbased on 
orpus eviden
e. We motivated the 
reation of valen
y di
tionariesby expe
ted 
ontribution to various NLP appli
ations. Then we reviewedbasi
 formal aspe
ts of valen
y frames in FGD and simpli�ed the de�nitionfor our purpose.A novel metri
 (ES) was proposed to evaluate dire
tly how mu
h of alexi
ographer's work is saved using a method of automati
 suggestion ofverb frames. We proposed three rather dire
t methods of frame suggestion(WFD, DSD and De
omp) and one indire
t method that exploits semanti

lassi�
ation of the verbs (PatternSear
h, Se
tion 2.9).We have to 
on
lude that the task of automati
 
reation of lexi
on entriesis a very 
omplex pro
ess. None of our dire
t methods was able to signi�-
antly improve over the baseline. As 
on�rmed by related resear
h for otherlanguages, manual intervention in the pro
ess seems inevitable.More or less su

essful methods su
h as (Bond and Fujita, 2003) or ourPatternSear
h exploit the fa
t that verbs with a similar meaning have similarvalen
y frames. In general, an a

eptable performan
e of the methods of



2.11. Con
lusion and Further Resear
h 51extra
tion is a
hieved only in setups aimed at high pre
ision (and thus lowre
all) that heavily �lter available data but this may negatively a�e
t theutility of the lexi
ons in appli
ations (Zhang et al., 2007).Ideally, the lexi
ons we have just des
ribed would improve NLP appli-
ations, e.g. the quality of ma
hine translation (MT). To a
hieve this, themethods would have to be extended to a
quire bilingual valen
y di
tionaries.As other resear
h suggests (Ikehara et al., 1991; Boguslavsky et al., 2004;Fujita and Bond, 2004; Liu et al., 2005), su
h di
tionaries might indeed help,though we are not aware of any 
on
lusive improvement over the state-of-the-art translation quality, see Se
tion 5.1.3. For Cze
h-English pair, we 
arriedout some preliminary experiments with extra
ting parallel verb frames (Bojarand Haji£, 2005).In the following, we do not take any side steps and move towards the goalof ma
hine translation, des
ribing a syntax-based (Chapter 3) and a phrase-based (Chapter 4) MT system. Later, we will 
ome ba
k to a more generaldis
ussion on the utility of lexi
ons in NLP appli
ations in Chapter 5.
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Chapter 3Ma
hine Translation via Deep SyntaxIn the previous 
hapter we studied methods of automated lexi
al a
quisi-tion. Resulting synta
ti
 lexi
ons 
an serve as a resour
e for various NLPappli
ations. In order to better empiri
ally understand the appli
ability oflexi
ons, we now fo
us on a single pra
ti
al task, namely ma
hine translation(MT). After a brief review of approa
hes to MT (Se
tion 3.1), we des
ribe asyntax-based MT system. In theory, this is the approa
h where deep synta
-ti
 lexi
ons 
ould be later used.3.1 The Challenge of Ma
hine TranslationMa
hine translation (MT) is an intriguing task. Resear
hers have hoped inautomated text translation sin
e the era of John von Neumann and AlanTuring (see Hut
hins (2005) or the IBM press release in 19541), and the �eldhas seen both spe
ta
ular failures2 as well as surge of a
tivity and su

ess. Fora review in
luding a summary of issues that an MT system has to over
omesee e.g. Dorr et al. (1998).While fully automati
 high-quality MT is still far beyond our rea
h, re-stri
ted settings often allowed to 
reate highly su

essful appli
ations su
has 
omputer tools aiding human translation (e.g. translation memories, seeLagoudaki (2006)), 
losed-domain fully automati
 systems (Chevalier et al.,1978), or tentative ma
hine translation to enable at least a partial a

ess toinformation in a foreign text (e.g. web servi
es Babel�sh3 or Google Trans-lation4).1http://www-03.ibm.
om/ibm/history/exhibits/701/701_translator.html2Failure to meet expe
tations 
ausing a de
line in funding for a de
ade (ALPAC, 1966;Hut
hins, 2003) or failure to produ
e any working system in the EUROTRA proje
t (Oak-ley, 1995; Hut
hins, 1996). Note however, that there are quite 
on�i
ting obje
tives in MTresear
h and even a failing proje
t 
an bring a very signi�
ant progress in theoreti
al un-derstanding or language modelling, see Rosen (1996) for a dis
ussion.3http://babelfish.altavista.
om/4http://translate.google.
om/ 53



54 In essen
e, the task of MT is to e�
iently store and 
orre
tly reuse pie
esof texts previously translated by humans to translate senten
es never seen sofar.5 Some methods follow the line very tightly, not being able to produ
eany word or expression not seen in some training text, while some methods(most notably all rule-based or di
tionary-based ones) operate with a verydistilled representation of words and their translations. In the latter setup,training texts as well as a broad world knowledge were pro
essed by humanexperts, so there is no well de�ned set of training data and no dire
t linkbetween the data and the system. Further serious empiri
al questions ariseas we start to investigate what the best �pie
e� of a senten
e to reuse mightbe, as dis
ussed below.3.1.1 Approa
hes to Ma
hine TranslationOne of the key distin
tions between various MT systems is the level of lin-guisti
 analysis employed in the system, see the MT triangle by Vauquois(1975) in Figure 3.1. Roughly speaking, an MT system is �dire
t� or �shal-low� if it operates dire
tly with words in sour
e and target languages andit is �deep� if is uses some formal representation (partially) des
ribing themeaning of the senten
e. We examine both of the approa
hes further below.
deepdire
t transferMorphologi
al LayerSurfa
e Synta
ti
 LayerDeep Synta
ti
 LayerInterlingua

Figure 3.1: Vauquois' triangle of approa
hes to ma
hine translation.Another distin
tion is made between �rule-based� and �statisti
al� (or�sto
hasti
� or �data-driven�) systems. In rule-based systems, all the imple-mentation work is done by human experts, in statisti
al systems, humansdesign a probabilisti
 model des
ribing the pro
ess of translation and uselarge amounts of data to train the model.To an extent, we do not 
onsider the di�eren
e between �rule-based� and�statisti
al� approa
hes being too big. In both 
ases, there has to be someone5Human translators pro
eed well beyond this boundary, trying to understand the de-s
ribed situation based on other information sour
es and e.g. to enri
h the translationwith all explanation ne
essary for the reader.
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hine Translation 55who does some data abstra
tion at some point. In hand-
rafted rule-basedsystems, the abstra
tion happens as human translators learn the two lan-guages and formally des
ribe the rules of translation. In data-driven systems,the abstra
tion a

ording to the spe
i�
ation of the model happens either ata pre-pro
essing phase (
olle
ting statisti
s) or on the �y when sear
hing forsenten
es similar to the one that is to be translated (example-based meth-ods). Moreover, many rule-based systems rely on large linguisti
 resour
essu
h as translation di
tionaries anyway and in su
h 
ases, automated 
reationof su
h resour
es is highly desirable (see Chapter 2).Dire
t (Shallow) MTIntrodu
ed by King (1956) and applied by Brown et al. (1988), shallow MTsystems treat words in a input senten
e as more or less atomi
 units andattempt a dire
t 
onversion of the input sequen
e of atomi
 units into theoutput sequen
e of atomi
 units.For instan
e, the Cze
h senten
e Dobré ráno 
an be translated to EnglishGood morning using a simple word-to-word translation di
tionary. The lin-guisti
 inadequa
y of the dire
t approa
h be
omes apparent if we 
onsidera similar senten
e Dobrý ve£er (Good evening). A 
ompletely uninformedsystem wastefully needs two new entries to the di
tionary (Dobrý for Goodand ve£er for evening) be
ause it has no idea that both Dobré and Dobrýare just two morphologi
al variants of the same word. In order to reversethe translation dire
tion, some additional information has to be provided tomake the system 
orre
tly 
hoose between Dobrý and Dobré for Good.In short, dire
t approa
hes start with little or no linguisti
 theory and in-trodu
e further extensions to the pro
ess of translation only when ne
essary.As we will see in Chapter 4, su
h systems 
an still deliver surprisingly goodresults, and more so on
e some (limited) linguisti
 knowledge is implementedinto the design of the system.Deep Synta
ti
 MTFirst ma
hine translation systems as well as prevailing 
ommer
ial MT sys-tems to date (e.g. SYSTRAN) in
orporate prin
iples from various linguisti
theories from the very beginning.For an input senten
e represented as a string of words, some symboli
representation is 
onstru
ted, possibly in several steps. This symboli
 repre-sentation, with the ex
eption of a hypotheti
al Interlingua, remains languagedependent, so a transfer step is ne
essary to adapt the stru
ture to the targetlanguage. The translation is 
on
luded by generating target-language string



56of words from the 
orresponding symboli
 representation.In the following, we fo
us on one parti
ular instan
e of this symboli
 rep-resentation, namely the framework of FGD (see Se
tion 2.2). We experimentprimarily English-to-Cze
h translation via the t-layer (deep) and 
ompare itto transfer at the a-layer (surfa
e syntax). Previous resear
h within the sameframework but limited to rather surfa
e syntax in
ludes the system APA�(Kirs
hner and Rosen, 1989).Other examples of a deep synta
ti
 representation, in essen
e very sim-ilar to FGD, in
lude Mel'£uk (1988), Mi
rosoft logi
al form (Ri
hardson etal., 2001) or the ideas spread a
ross the proje
ts PropBank (Kingsbury andPalmer, 2002), NomBank (Meyers et al., 2004) and Penn Dis
ourse Tree-bank (Miltsakaki et al., 2004). MT systems are also being implemented inless dependen
y-oriented formalisms su
h as the DELPH-IN initiative (Bondet al., 2005) for HPSG (Pollard and Sag, 1994). See e.g. Oepen et al. (2007)and the 
ited papers for a re
ent overview of the LOGON proje
t that 
om-bines various formalisms of deep synta
ti
 representation.3.1.2 Advantages of Deep Synta
ti
 TransferThe rationale to introdu
e additional layers of formal language des
riptionsu
h as the te
togrammati
al (t-) layer in FGD is to bring the sour
e andtarget languages 
loser to ea
h other. If the layers are designed appropriately,the transfer step will be easier to implement be
ause (among others):
• t-stru
tures of various languages exhibit less divergen
es, fewer stru
-tural 
hanges will be needed in the transfer step.
• t-nodes 
orrespond to auto-semanti
 words only, all auxiliary words areidenti�ed in the sour
e language and generated in the target languageusing language-dependent grammati
al rules between t- and a- layers.
• t-nodes 
ontain word lemmas, the whole morphologi
al 
omplexity ofeither of the languages is handled between m- and a- layers.
• the t-layer abstra
ts away word-order issues. The order of nodes ina t-tree is meant to represent information stru
ture of the senten
e(topi
-fo
us arti
ulation). Language-spe
i�
 means of expressing thisinformation on the surfa
e are again handled between t- and a- layers.Overall, the design of the t-layer aims at redu
ing data sparseness so lessparallel training data should be su�
ient to a
hieve same 
overage.Moreover, the full de�nition of the t-layer in
ludes expli
it annotationof phenomena like 
o-referen
e to resolve di�
ult but inevitable issues of
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hine Translation 57e.g. pronoun gender sele
tion. As tools for automati
 te
togrammati
alannotation improve, �ne nuan
es 
ould be ta
kled.3.1.3 Motivation for English→Cze
hThis thesis fo
uses on translation from English to Cze
h. Apart from personalreasons, our 
hoi
e has two advantages: both languages are well studied andthere are available language data for both of the languages.Table 3.1 summarizes some of the well known properties of Cze
h lan-guage6. Cze
h is an in�e
tive language with ri
h morphology and relativelyfree word order. However, there are important word order phenomena re-stri
ting the freedom. One of the most prominent examples are 
liti
s, i.e.pronouns and parti
les that o

upy a very spe
i�
 position within the whole
lause. The position of 
liti
s is rather rigid and global within the sen-ten
e. Examples of lo
ally rigid stru
ture in
lude (non-re
ursive) preposi-tional phrases or 
oordination. Other elements, su
h as the predi
ate, sub-je
t, obje
ts or other modi�ers of the verb may be nearly arbitrarily per-muted. Su
h permutations 
orrespond to the topi
-fo
us arti
ulation of thesenten
e. Formally, the topi
-fo
us arti
ulation is expressed as the order ofnodes at the t-layer.Moreover, like other languages with relatively free word order, Cze
h al-lows non-proje
tive 
onstru
tions (
rossing dependen
ies). Only about 2%of edges in PDT are non-proje
tive, but this is enough to make nearly aquarter (23.3%) of all the senten
es non-proje
tive. While in theory there isno upper bound on the number of gaps (Holan et al., 2000; Kuhlmann andMöhl, 2007) in a Cze
h senten
e (see Figure 3.2), Debusmann and Kuhlmann(2007) observe that 99% of senten
es in PDT 
ontain no more than one gapand are well-nested, whi
h makes them parsable by Tree-Adjoining Gram-mars (TAG, Joshi et al. (1975), see also the review by Joshi et al. (1990)).Note that other types of texts may exhibit more 
omplex senten
e stru
ture.3.1.4 Brief Summary of Cze
h-English Data and ToolsTable 3.2 summarizes available Cze
h monolingual and Cze
h-English par-allel 
orpora, in
luding the available annotation. We use the tools listedin Table 3.3 to automati
ally add any further layers of annotation and togenerate plaintext from the deep representation.6Data by Nivre et al. (2007), Zeman (http://ufal.m�.
uni.
z/�zeman/projekty/neproj),Holan (2003), and Bojar (2003). Consult Kruij� (2003) for empiri
al measurements ofword order freeness.



58 Cze
h EnglishMorphology ri
h limited
≥ 4,000 tags 50 used

≥ 1,400 a
tually seenWord order free with rigid rigidglobal phenomenaKnown dependen
y parsing resultsLabelled edge a

ura
y 80.19% 89.61%Unlabelled edge a

ura
y 86.28% 90.63%Table 3.1: Properties of Cze
h 
ompared to English.

Proti odvoláníAgainst dismissal seaux-re� zítratomorrow PetrPeter v prá
iat work rozhodlde
ided protestovatto obje
tPeter de
ided to obje
t against the dismissal at work tomorrow.The 
onstru
tion, taken from Holan et al. (2000), is based on two verbs andintermixed modi�ers where the dependen
y relations are disambiguatedon the basis of synta
ti
 
riteria (e.g. obligatory re�exive parti
le se orsub
ategorization for a parti
ular preposition or 
ase) and semanti
 
riteria(e.g. verb in past tense 
annot a

ept time modi�er referring to future):The non-proje
tive dependen
ies are se and Peter depending on the mainverb de
ided but appearing within the span of dependents of to obje
t:against dismissal, tomorrow, at work. With the main verb itself, there are3 gaps within the yield of to obje
t.Figure 3.2: Number of gaps in a Cze
h senten
e is not bounded in theory.



3.2. Syn
hronous Tree Substitution Grammar 59Monolingual CorporaName and version Sents. TokensAnnotationCze
h National Corpus (e.g. SYN2000d) 6.8M 114Mautomati
 m-layer, (Ko
ek et al., 2000)PDT 2.0 50k/115k 0.8M/2.0Mmanual t-layer/manual m-layer, (Haji£, 2004a)Parallel Cze
h-English CorporaName and version Cze
h/EnglishAnnotation Sents. TokensPCEDT 1.0 (�mejrek et al., 2004) 22k/49k 0.5M/1.2MCze
h/English automati
 m-, a- and t-layerCzEng 0.7 (Bojar et al., 2008) 1.4M/1.4M 21M/23Mautomati
 senten
e alignment, tokenizedTable 3.2: Available Cze
h monolingual and Cze
h-English parallel 
orpora.A new version of Prague Cze
h-English Dependen
y Treebank (PCEDT2.0) is 
urrently under development. PCEDT 2.0 will not only be abouttwi
e the size of PCEDT 1.0, but more importantly the annotation at bothCze
h and English t-layers will be manual. This will allow to 
olle
t reliableestimates of stru
tural divergen
e at the t-layer and train deep-synta
ti
transfer models on highly a

urate data.3.2 Syn
hronous Tree Substitution GrammarSyn
hronous Tree Substitution Grammars (STSG) were introdu
ed by Haji£et al. (2002) and formalized by Eisner (2003) and �mejrek (2006). They
apture the basi
 assumption of syntax-based MT that a valid translation ofan input senten
e 
an be obtained by lo
al stru
tural 
hanges of the inputsynta
ti
 tree (and translation of node labels) while there exists a derivationpro
ess 
ommon to both of the languages. Some training senten
es mayviolate this assumption be
ause human translators do not always produ
eliteral translations but we are free to ignore su
h senten
es in the training.As illustrated in Figure 3.3, STSG des
ribe the tree transformation pro-
ess using the basi
 unit of a treelet pair and the basi
 operation of treesubstitution. Both sour
e and target trees are de
omposed into treeletsthat �t together. Ea
h treelet 
an be 
onsidered as representing the minimum



60Step Tool UsedEnglish morphologi
al analysis (text→m) Minnen et al. (2001)English tagging (text→m) Ratnaparkhi (1996) or Brants (2000)English 
onstituen
y parsing (m→phrase stru
ture) Collins (1996)English dependen
ies (phrase stru
ture→a) hand-written rulesEnglish te
togrammati
al parsing (a→t) rules similar to �mejrek et al. (2003)Cze
h morphologi
al analysis (text→m) Haji£ (2004b)Cze
h dependen
y parsing (m→a) M
Donald et al. (2005)Cze
h te
togrammati
al parsing (a→t) Klime² (2006) or �abokrtský (2008a)Cze
h te
togrammati
al generation (t→text) Ptá£ek and �abokrtský (2006)Table 3.3: Tools used for the preparation of training data and in the end-to-end evaluation.translation unit. A treelet pair su
h as depi
ted in Figure 3.4 represents thestru
tural and lexi
al 
hanges ne
essary to transfer lo
al 
ontext of a sour
etree into a target tree.Ea
h node in a treelet is either internal ( , 
onstitutes treelet internalstru
ture and 
arries a lexi
al item) or frontier ( , represents an open slotfor atta
hing another treelet). Frontier nodes are labelled with state labels(su
h as �_Sb� or �_NP�), as is the root of ea
h treelet. A treelet 
an beatta
hed at a frontier node only if its root state mat
hes the state of thefrontier.A treelet pair des
ribes also the mapping of the frontier nodes. A pairof treelets is always atta
hed syn
hronously at a pair of mat
hing frontiernodes.Depending on our needs, we 
an en
ode ordering of nodes as part of ea
htreelet. If only lo
al ordering is used (i.e. we re
ord the position of a parentnode among its sons), the output tree will be always proje
tive. If we re
ordglobal ordering of all nodes in a treelet, the �nal output tree may 
ontain non-proje
tivities introdu
ed by non-proje
tive treelets (the atta
hing operationitself is assumed to be proje
tive).STSG is generi
 enough to be employed at or a
ross various layers ofannotation (e.g. an English t-tree to a Cze
h t-tree or an English a-tree toa Cze
h a-tree). Our primary goal is to transfer at the te
togrammati
allayer. Other appli
ations of STSG in
lude e.g. text summarization (Cohnand Lapata, 2007).STSG 
an be also seen as a simpli�
ation of the (Syn
hronous) Tree-Adjoining Grammars (TAG, Joshi et al. (1975)). In addition to the tree-substitution operation, TAG allows to �adjoin� a tree at an internal node asillustrated in Figure 3.5.
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# Aso
ia
e uvedla , ºe domá
í poptávka v zá°í stoupla .# Sb Pred AuxXAuxC Atr Sb AuxP Adv Pred AuxK# asso
iation said , that domesti
 demand in September grew .

# The asso
iation said domesti
 demand grew in September .# DET NP VP ADJ NP VP PP NP .Figure 3.3: A sample pair of analyti
al trees syn
hronously de
omposed intotreelets. For explanation of the graphi
al symbols used see the text, linguisti
annotation is provided for illustration purposes only._Pred_Sb uvedla , ºe _Pred = _VP_NP said _VPFigure 3.4: A sample analyti
al treelet pair.3.3 STSG FormallyWe now formally des
ribe the 
ore elements in STSG as motivated above tomake the thesis self-
ontained and also be
ause we slightly di�er from thede�nition e.g. by �mejrek (2006), see below.Given a set of states Q and a set of word labels L, we de�ne:A treelet t is a tuple (V, V i, E, q, l, s) where:
• V is a set of nodes,
• V i ⊆ V is a nonempty set of internal nodes. The 
omplement V f =

V \ V i is 
alled the set of frontier nodes,
• E ⊆ V i×V is a set of dire
ted edges starting from internal nodes onlyand forming a dire
ted a
y
li
 graph,
• q ∈ Q is the root state,



62 F + F = F A + AA = AAFigure 3.5: Tree substitution at a frontier node F and tree adjun
tion at aninternal node A.
• l : V i → L is a fun
tion assigning labels to internal nodes,
• s : V f → Q is a fun
tion assigning states to frontier nodes.
• Optionally, some additional stru
ture 
an keep tra
k of lo
al or globalordering of nodes.For 
onvenien
e, we will use the shorthand t.q for the root state, t.s forthe frontier state fun
tion, and other short
uts for all other properties of tusing the same analogy.A treelet pair t1:2 is a tuple (t1, t2, m) where:
• t1 and t2 are treelets for sour
e and target languages (L1 and L2) andstates (Q1 and Q2),
• m is a 1-1 mapping between frontier nodes in t1 and in t2.Given a starting syn
hronous state Start1:2 ∈ Q1×Q2, a syn
hronousderivation δ = {t01:2, . . . , t

k
1:2} 
onstru
ts a pair of dependen
y trees (T1, T2)by:

• atta
hing treelet pairs t01:2, . . . , t
k
1:2 at 
orresponding frontier nodes, and

• ensuring that the root states t01:2.q, . . . , t
k
1:2.q of the atta
hed treeletspairs t01:2, . . . , t

k
1:2 mat
h the frontier states of the 
orresponding frontiernodes.Note that we di�er from �mejrek (2006) as we require (1) ea
h treeletto 
ontain at least one internal node and (2) all frontier nodes in a treeletpair to be mapped, i.e. the left and right treelets must 
ontain the samenumber of frontier nodes. These two additional requirements ensure thatthe translation pro
edure (1) will not loop (by generating output treeletswhile not 
onsuming anything from the input tree) and (2) will not skip anysubtree of the input tree.



3.4. STSG in Ma
hine Translation 63For the purpose of further explanation, we de�ne the sour
e-side pro-je
tion source(δ) and the target-side proje
tion target(δ) of a derivation
δ as the trees T1 and T2 
onstru
ted by δ, respe
tively. Given a sour
e tree
T1, we use ∆(T1) = {δ | source(δ) = T1} to denote the set of derivations δyielding T1 on the sour
e side.Note that given a tree T , not all subtrees t ⊆ T 
an be 
onsidered as a partof (one side of) a valid (syn
hronous) derivation be
ause STSG derivationshave no adjun
tion operation. We say that a subtree t of a tree T satis�es theSTSG property, if for every internal node n ∈ t all immediate dependentsof n in T are in
luded in t as well, either as internal or as frontier nodes. Inother words, we assume no tree adjun
tion operation was ne
essary to 
overany 
hildren of n in T .3.4 STSG in Ma
hine TranslationOur goal is to translate a sour
e sequen
e of words s1 into a target sequen
e ofwords ŝ2, where ŝ2 is the most likely translation out of all possible translations
s2:

ŝ2 = argmax
s2

p(s2 | s1) (3.1)We introdu
e the sour
e and target dependen
y trees T1 and T2 as hiddenvariables to the maximization, assuming no other dependen
ies ex
ept thosealong the pipeline indi
ated in Figure 3.1 (page 54):
ŝ2 = argmax

s2,T1,T2

p(T1 | s1) · p(T2 | T1) · p(s2 | T2) (3.2)Rather than sear
hing the joint spa
e, we break the sear
h into three in-dependent steps: parsing (3.3), tree transdu
tion (3.4) and generation (3.5):
T̂1 = argmax

T1

p(T1 | s1) (3.3)
T̂2 = argmax

T2

p(T2 | T̂1) (3.4)
ŝ2 = argmax

s2

p(s2 | T̂2) (3.5)We mention the tools used for parsing and generation in Table 3.3 onpage 60. STSG is used to �nd the most likely target tree T̂2 given T1. Ap-plying the Viterbi approximation we sear
h for the most likely derivation δ̂



64̂
T2 = argmax

T2

p(T2 | T1) marginalize over derivations δ

= argmax
T2

∑

δ

p(T2, δ | T1) apply 
hain rule
= argmax

T2

∑

δ

p(T2 | δ, T1)·p(δ | T1) p(T2 | δ, T1) = 1 be
ause T2 = target(δ)

= argmax
T2

∑

δ

p(δ | T1) apply Fundamental Law
= argmax

T2

∑

δ

p(δ, T1)

p(T1)
ignore p(T1), 
onstant in maximization

= argmax
T2

∑

δ

p(δ, T1) p(δ, T1) =
〈p(δ) if δ ∈ ∆(T1) be
ause T1 = source(δ)

0 otherwise
= argmax

T2

∑

δ∈∆(T1)

p(δ) approximate the sum by the largest element only
.
= argmax

T2

max
δ∈∆(T1)

p(δ) Viterbi approximation to sear
h for δ instead of T2

.
= target(argmax

δ∈∆(T1)

p(δ))Figure 3.6: Detailed explanation of why we are sear
hing for the most likelyderivation δ̂ instead of the most likely T̂2 given T1.instead and take its target-side proje
tion, see Figure 3.6 for a step-by-stepjusti�
ation.To sum up, the most likely target tree T̂2 given T1 is found by sear
hingfor the most likely syn
hronous derivation δ̂ that 
onstru
ts T1 and T̂2:
T̂2 = argmax

T2

p(T2 | T1)
.
= target(δ̂) = target

(
argmax
δ∈∆(T1)

p(δ)
) (3.6)As de�ned above, a derivation δ 
onsists of a sequen
e of treelet pairs.When sear
hing for δ̂, we thus 
onsider all de
ompositions of T1 into a set oftreelets t01, . . . , t

k
1, expand ea
h treelet ti1 into a treelet pair ti1:2 using a treeletpair di
tionary and evaluate the probability of the syn
hronous derivation

δ = {t01:2, . . . , t
k
1:2}. Having found the most likely δ̂, we return the right-hand-side tree T̂2 
onstru
ted by δ̂.3.4.1 Log-linear ModelFollowing O
h and Ney (2002) we further extend 3.6 into a general log-linearframework that allows us to in
lude various features or models:
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δ̂ = argmax

δ∈∆(T1)

exp
( M∑

m=1

λmhm(δ)
) (3.7)Ea
h of the M models hm(δ) provides a di�erent s
ore aimed at predi
tinghow good the derivation δ is. The weighting parameters λm, ∑M

1 λm = 1,indi
ate the relative importan
e of the various features and they are tunedon an independent dataset.To fa
ilitate e�
ient de
oding (see Se
tion 3.4.2 below), we require mostfeature fun
tions hm(δ) to de
ompose in lo
kstep with the derivation, i.e. totake the form:
hm(δ) =

k∑

i=0

hm(ti1:2) (3.8)STSG ModelOne of the most basi
 features is based on the STSG probability of thesyn
hronous derivation. STSG estimates the probability of the derivation δ asthe multipli
ation of probabilities of individual atta
hments. The probabilityof ea
h atta
hment i = 1 . . . k is de�ned as the 
onditional probability of atreelet pair ti1:2 given the syn
hronous state q of the two frontiers where ti1:2is atta
hed. The frontiers' state q has to mat
h the root state of the treeletpair ti1:2 so we 
an write the probability of the atta
hment as p(ti1:2 | ti1:2.q).Here is the STSG probability of a syn
hronous derivation:
p(δ) = p(t01:2 | Start1:2) ∗

k∏

i=1

p(ti1:2 | ti1:2.q) (3.9)To in
orporate this probability into the log-linear model, we take the logof it, de�ning the STSG model:
hSTSG(δ) = log(p(δ)) = log(p(t01:2 | Start1:2))+

k∑

i=1

log(p(ti1:2 | ti1:2.q)) (3.10)Note that if hSTSG(·) were the only feature used, the log-linear modelredu
es to the straightforward maximization of p(δ):
δ̂ = argmax

δ∈∆(T1)

exp
(
hSTSG(δ)

)
= argmax

δ∈∆(T1)

p(δ) (3.11)



66Reverse and Dire
t Treelet ModelsThe STSG model assumes that the 
hoi
e of a treelet pair t1:2 depends onlyon the syn
hronous state q of the two frontiers where t1:2 is atta
hed.Inspired by the 
ommon pra
ti
e of statisti
al ma
hine translation (O
h,2002), we in
lude the 
hannel model (�reverse�) and �dire
t� 
onditional prob-abilities:
hdirect(t

i
1:2) = log

(
p(ti2 | ti1)

) (3.12)
hreverse(t

i
1:2) = log

(
p(ti1 | ti2)

) (3.13)The reverse model is justi�ed by Bayes de
omposition of p(target|source)7while the dire
t model empiri
ally proves as a 
omparably valuable sour
e(see e.g. O
h (2002)).N-gram Language ModelsA probabilisti
 target-language model used to promote 
oherent hypothesesis a very important predi
tor of translation quality (see e.g. O
h (2002)).Pervasive n-gram language models estimate the probability of a senten
e
s as the multipli
ation of probabilities of all n-grams in the senten
e:

p(s) =

length(s)∏

i=1

p(wi|wi−1, . . . , wi−n+1) (3.14)where wi is ea
h word in the senten
e and wi−1, . . . , wi−n+1 are (n − 1) pre-
eding words.In the 
anoni
al mode, an STSG de
oder is expe
ted to produ
e an outputdependen
y tree and thus 
annot dire
tly employ n-gram language models.However, if no stru
ture is needed at the output (e.g. when translating toa-trees and dire
tly reading o� node labels), we 
an safely destroy all target-side tree stru
ture, representing T2 as a sequen
e of output words w1, . . . , wJ .Naturally, until the 
omplete target hypothesis is 
onstru
ted, we have tokeep tra
k of exa
t positions of yet-to-expand frontiers within the sequen
eof output words.In this spe
ial 
ase, the traditional sequen
e (language) model 
an beused, with a bit of 
areful delayed 
omputation around unexpanded frontiers:7
p(target|source) =

p(target)

p(source)
p(source|target)
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hLMn

(δ) = log

J∏

j=1

p(wj|wj−1 . . . wj−n+1) (3.15)We assume wj to be set to a spe
ial out-of-senten
e symbol for j < 1.Binode Tree Language ModelGiven an output dependen
y tree stru
ture, a more natural language modelestimates the probability of the senten
e based on edges in the tree. As do
u-mented e.g. by Charniak (2001), su
h models 
an improve parsing a

ura
y.We de�ne binode probability of the target tree T2 as the multipli
ation ofprobabilities of all the edges e ∈ T2. Given the governor g(e) and the 
hild
c(e) of e, we 
an de�ne three di�erent probabilities, �dire
t�, �reverse� and�joint�, leading to three separate models:

hbiLM
direct(δ) = log

∏

e∈T2

p(g(e) | c(e)) (3.16)
hbiLM

reverse(δ) = log
∏

e∈T2

p(c(e) | g(e)) (3.17)
hbiLM

joint (δ) = log
∏

e∈T2

p(c(e), g(e)) (3.18)Additional FeaturesFollowing the 
ommon pra
ti
e in phrase-based ma
hine translation (e.g.Koehn (2004a) or Zens et al. (2005)), we in
lude penalties to 
onsider thenumber of treelets and words used to 
onstru
t a derivation:
htreelet penalty(δ) = −|δ| (3.19)
hword penalty(δ) = −

k∑

i=0

|ti2| (3.20)where |ti2| denotes the number of internal nodes in target treelet ti2.3.4.2 De
oding Algorithms for STSGThe sear
h spa
e of all possible de
ompositions of input tree multiplied byall possible translations of sour
e treelets is too large to be explored in full,e�
ient approximation algorithms have to be designed.



68Top-Down Beam Sear
hThe 
urrent version of our de
oder implements a beam sear
h inspired bythe strategy of phrase-based de
oder Moses (Koehn et al., 2007). WhileMoses 
onstru
ts partial hypotheses in a left-to-right fashion (pi
king sour
ephrases in arbitrary order), our partial hypotheses are 
onstru
ted top-to-bottom along with the sour
e tree T1 being 
overed from top to bottom. Thealgorithm, in essen
e very similar to the one des
ribed re
ently by Huang etal. (2006) but dating ba
k to Aho and Johnson (1976), is outlined in Alg. 2.The main di�eren
e is that we ta
kle the exponential sear
h spa
e of treede
ompositions using a pre-pro
essing phase while Huang et al. (2006) usememoization.Algorithm 2 Top-down beam-sear
h STSG de
oding algorithm.1. For an input tree T1 of n nodes, prepare the translation options table:2. For ea
h sour
e node x ∈ T13. Constru
t all possible treelet pairs t1:2 where t1 is rooted at xand 
overs a subtree of T1.4. The subtree has to satisfy the STSG property:5. If y ∈ T1 is 
overed with an internal node of t1, all dependentsof y have to be 
overed by t1 as well.6. Re
ord only τ best possible treelet pairs rooted at x.7. Create sta
ks s0, . . . , sn to hold partial hypotheses, sta
k si for hypotheses
overing exa
tly i input nodes.8. Insert the initial hypothesis (a single frontier node) into s0.9. For i ∈ 0 . . . n − 110. For ea
h hypothesis h ∈ si11. Expand h by atta
hing one of possible translation options at a pair12. of pending frontiers, extending the set of 
overed words and13. adding output words.14. Insert the expanded h′ (j words 
overed) to sj.15. Prune sj if 
ontains more that σ hyps.16. Output the top-s
oring h∗ from sn.The �rst step is the 
onstru
tion of �translation options�. For ea
h inputnode x ∈ T1, all possible treelets rooted at x are examined and if a translationof a treelet is found, it is stored as one of the translation options for x.Figure 3.7 illustrates sample translation options for the auxiliary root (�#�),the main verb �said� and the full stop �.�. For 
on
iseness, the target treeletstru
ture is omitted in the pi
ture as if the target output tree was dire
tlylinearized.Figure 3.8 illustrates the se
ond and main step, i.e. the gradual expansion
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hine Translation 69
# The asso
iation said demand grew .Sample translation options at root: ⇒ Linearized target treelet:_# _VP _t ⇒ # _Pred _AuxK_# _VP ⇒ # _Pred .Sample translation options at 'said':_NP _VP _VP ⇒ _Sb uvedla , ºe _PredSample translation options at '.':

⇒ .Figure 3.7: Sample translation options for translating an English a-tree to aCze
h a-tree. The target stru
ture is immediately linearized.of a hypothesis using translation options 
onstru
ted in the �rst step. On
eall input nodes are 
overed (and thus no frontiers are left in the partialoutput), the output hypothesis is returned. In pra
ti
e, we beam-sear
h thespa
e of derivations, studying only σ best-s
oring partial hypotheses of thesame number of 
overed input nodes. Note that ea
h expansion is guaranteedto 
over at least one more input node, so the algorithm 
annot loop.Bottom-up Dynami
-Programming De
oding Algorithm�mejrek (2006) presents another possible method of sear
hing for the mostprobable translation T2 of a given input tree T1.The most probable derivation is 
omputed by a dynami
-programmingstyle Alg. 3. For ea
h node c1 ∈ T1 in bottom-up order and for ea
h syn-
hronous state q ∈ Q, we �nd and store the root treelet pair t1:2 of the mostprobable derivation δ̂c1 that 
overs the whole subtree of T1 rooted at c1 andhas q as the root syn
hronous state. The treelets are stored in arrays Ac1(q)and the 
orresponding probabilities of δ̂c1 are stored in βc1(q).The �nal derivation δ̂ 
overing whole T1 is 
onstru
ted by starting from
t01:2 = AT1.r(Start1:2) and re
ursively in
luding all treelet pairs ti1:2 = Af i

1

(qi)to 
over all frontiers f i
1 (respe
ting the syn
hronous states qi) of previouslyin
luded treelets t01:2, . . . , t

i−1
1:2 .
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# The asso
iation said demand grew .Sample Derivation: Linearized output:

h0 _# ⇒ _#After expanding at root:
h1 _# _VP ⇒ # _Pred .After expanding at _Pred:
h2

_# _NP _VP ⇒ # _Sb uvedla , ºe _Pred .After expanding at _Pred:
h3

_# _NP _NP ⇒ # _Sb uvedla , ºe _Sb stoupla .Figure 3.8: Top-down hypothesis expansion using translation optionsfrom Figure 3.7. Dashed 
ir
les indi
ate where treelet pairs are atta
hedat ea
h step.3.5 Heuristi
 Estimation of STSG Model ParametersGiven a senten
e-parallel treebank, we 
an use the expe
tation-maximizationalgorithm des
ribed by �mejrek (2006) to obtain treelet-to-treelet alignmentsand estimate STSG derivation probability as de�ned in Eq. 3.9. Our plan isto soon adopt this method, but for the time being we restri
t our trainingmethod to a heuristi
 based on GIZA++ (O
h and Ney, 2000) word align-ments. So instead of treelet-to-treelet alignments, we base our probabilityestimates on node-to-node alignments only.For ea
h tree pair in the training data, we �rst read o� the sequen
eof node labels and use GIZA++ tool to extra
t a possibly N-N node-to-node-alignment.8 In the next step, we extra
t all treelet pairs from ea
hnode-aligned tree pair su
h that all the following 
onditions are satis�ed:
• ea
h treelet may 
ontain at most 5 internal and at most 7 frontier nodes(the limits are fairly arbitrary),8GIZA++ produ
es asymmetri
 1-N alignments, we follow standard pra
ti
es to 
om-bine 1-N and N-1 alignments from two GIZA++ runs.



3.6. Methods of Ba
k-o� 71Algorithm 3 Bottom-up de
oding algorithm for STSG.1. for ea
h node c1 ∈ T1.V in bottom-up order2. for ea
h q ∈ Q let βc1(q) = −∞3. for ea
h treelet t1 that �ts c1 in a safe order4. while t1:2=proposeNewTreeletPair(t1)5. // we have to try all possible t2, q,m, s6. let prob = p(t1:2 | t1:2.q) ·
∏

(d1,d2)∈m βd1
(t1:2.s((d1, d2)))7. if βc1(q) < prob // found a higher s
oring derivation8. then let βc1(q) = prob and Ac1(q) = t1:2

• ea
h internal node of ea
h treelet, if aligned at all, must be aligned toa node in the other treelet,
• the mapping of frontier nodes has to be a subset of the node-alignment,
• ea
h treelet must satisfy STSG property.All extra
ted treelet pairs 
ontribute to our maximum likelihood proba-bility estimates. In general, given a left treelet t1, a right treelet t2 and theirrespe
tive root states q1 and q2, we estimate three separate models: �stsg�,�dire
t� and �reverse�:

hstsg(t1:2) = log
count(t1, q1, t2, q2)

count(q1, q2)
(3.21)

hdirect(t1:2) = log
count(t1, q1, t2, q2)

count(t1, q1, q2)
(3.22)

hreverse(t1:2) = log
count(t1, q1, t2, q2)

count(t2, q1, q2)
(3.23)3.6 Methods of Ba
k-o�As expe
ted, and also pointed out by �mejrek (2006), the additional stru
-tural information boosts data-sparseness problem. Many sour
e treelets inthe test 
orpus were never seen in our training data. To make things worse,our heuristi
 treelet extra
tion method 
onstrains the set of extra
tabletreelet pairs by three rigid stru
tures: sour
e tree, target tree and the wordalignment. A single error in the word alignment or parsing prevents ourmethod from learning a treelet pair. We thus have to fa
e not only natu-ral divergen
e of senten
e stru
tures but also divergen
e 
aused by randomerrors in any of the automati
ally obtained annotations.



72 To ta
kle the problem, our de
oder utilizes a sequen
e of ba
k-o� mod-els, i.e. a sequen
e of several methods of target treelet 
onstru
tion andprobability estimation. Ea
h subsequent model is based on less �ne-graineddes
ription of the input treelet and 
onstru
ts the target treelet on the �yfrom independent 
omponents.The order and level of detail of the ba
k-o� methods is �xed but easily
ustomizable in a 
on�guration �le.3.6.1 Preserve AllThe most straightforward method is to preserve all information in an ob-served treelet pair. This in
ludes:
• left and right treelet stru
ture, in
luding all frontiers and internals andpreserving the linear order of the nodes
• full labels of left and right internals
• state labels of left and right frontiersAn example of a 
omplete treelet pair is given in Figure 3.9._Pred_Sb uvedla , ºe _Preduvést , ºeverb pun
t 
onjpast subordfem = _VP_NP said _VPsayverbpastFigure 3.9: A treelet pair with all information preserved.3.6.2 Drop FrontiersOne of signi�
ant limitations of STSG is the la
k of adjun
tion operation. Inorder to handle input treelets with bran
hing that was not seen in the trainingdata, we 
olle
t treelet pairs while ignoring any frontiers. An example of su
htreelet pair is given in Figure 3.10.On
e the translation using this model is attempted, we remove all frontiersfrom the sour
e treelet, map the �skeleton� to the target treelet and atta
h



3.6. Methods of Ba
k-o� 73_Preduvedla , ºeuvést , ºeverb pun
t 
onjpast subordfem = _VPsaidsayverbpastFigure 3.10: A treelet pair with no frontiers.the required number of frontier nodes to the target tree. The position andstate label of the frontiers is 
hosen based on a separate probabilisti
 model.As a further re�nement, one might think of dropping only frontiers repre-senting adjun
ts but preserving frontiers for 
omplements. Either a valen
ylexi
on would supply the distin
tion between argument and adjun
ts, or we
ould use some heuristi
 su
h as suggested by Bojar (2004).In the 
urrent implementation, we employ this method of ba
k-o� only in
ases where the output is dire
tly linearized. Therefore, the governing nodefor a frontier has not to be determined when atta
hing the frontier and we 
anuse a simple model to �zip� the sequen
e of target internals and the sequen
eof target frontiers (we do not allow any reordering of the frontiers). Thetarget label of a frontier is 
hosen based on the label of the sour
e frontier.3.6.3 Translate Word by WordThe te
hnique of dropping frontiers 
annot be used when produ
ing outputtrees, unless we design a frontier re-atta
hment model for output treelets.However, we still need to over
ome the no-adjun
tion limitation of STSG inthis setting. A simple solution is possible, if we restri
t treelet size to oneinternal only.If the sour
e treelet 
ontains exa
tly one internal node, the stru
ture ofthe treelet is known: the internal node is the root of the treelet and itsimmediate dependents are all frontiers of the treelet, see e.g. Figure 3.11.We 
an easily de
ompose su
h treelets and translate independently: 1.the label of the internal node, 2. ea
h of the frontier labels. Again, we 
ould
onsider reordering of the nodes but until a satisfa
tory reordering model isdesigned, we keep the order inta
t.A 
lear disadvantage of this ba
k-o� method is that the number of nodes
annot 
hange in the pro
ess of translation. This poses a signi�
ant problem



74 _Pred_Sb uvedla _Conjuvéstverbpastfem = _VP_NP said _VPsayverbpastFigure 3.11: A treelet pair with one internal node in ea
h treelet.for transfer at the a-layer, but for transfer at the t-layer, preserving treestru
ture is a viable approximation (�mejrek et al., 2003).3.6.4 Keep Word Non-TranslatedIn the 
ases where a word was never seen in the training data, the methodsdes
ribed so far would not provide any translation for the word, so the trans-lation of the whole senten
e would fail produ
ing no output. As a ba
k-o�,one 
an either try to look up the word in a translation di
tionary (possiblyfa
ing the issue of a di�erent morphologi
al form) or, as an ultimate res
ue,keep the unknown word not translated and try to translate the rest of thesenten
e.Te
hni
ally, we a
hieve this by adding a spe
ial rule that preserves thetreelet stru
ture, 
opies internal labels and independently translates ea
hof frontier labels. In pra
ti
e, we prefer to restri
t this method to treelets
ontaining one internal only.3.6.5 Fa
tored Input NodesAs des
ribed e.g. in Mikulová et al. (2006), and also indi
ated in Figure 3.9,internal node labels are usually not atomi
 values. For example, an a-nodeusually bears the value of word form, lemma, morphologi
al tag (all inheritedfrom the m-layer) and analyti
al fun
tion (afun) label. For t-nodes, the setof attributes is signi�
antly larger, as attributes expli
itly en
ode linguisti
features su
h as verbal tense, modality, iterativeness, person, nominal gender,negation and many others.Treating node labels as atomi
 and thus relying on all attributes to exa
tlymat
h the input leads to severe sparse data problem. We allow to spe
ifyonly a subset of input attributes (�fa
tors�) to be taken into a

ount whilesear
hing for a treelet translation. In pra
ti
e, we usually use a sequen
e ofmodels, ea
h depending on fewer and fewer input fa
tors. For example, a
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k-o� 75ba
k-o� model for �preserve all� as illustrated in Figure 3.9 
ould be basedon sour
e lemmas only. See Figure 3.12 for a hypotheti
al rule for Cze
h-to-English transfer. _Pred_Sb uvést , ºe _Pred = _VP_NP said _VPsayverbpastFigure 3.12: A treelet pair with sour
e lemmas only.3.6.6 Fa
tored Output NodesIgnoring some attributes of input nodes is not su�
ient as a ba
k-o� methodalone. For output fa
tors, we have no option and eventually ea
h node hasto be provided with all relevant attributes. We use the idea of �mapping�and �generation� steps from fa
tored phrase-based translation (Koehn andHoang, 2007), details of whi
h are summarized in Se
tion 4.2.4 below.Currently, our implementation of fa
tored models is limited to treelets
ontaining exa
tly one internal. We will soon extend this to treelets of anysize. However, the size and shape of the treelet (
hosen a

ording to a subsetof input fa
tors) will remain �xed until all additional output fa
tors are
onstru
ted.Figure 3.13 illustrates a sequen
e of �ve de
oding steps: three map-ping steps that 
onvert sour
e fa
tors to target fa
tors and two generationsteps that ensure 
oheren
e of output fa
tors. For instan
e, the Cze
h wordform is translated to an English form in the �rst step. An independent se
-ond step translates the lemma. The third step takes all sour
e morphologi
alattributes and translates them to target morphologi
al attributes. The 
oher-en
e of the 
hoi
es is ensured in steps 4 and 5 that bind together the outputform with the lemma (4) and the form with the morphologi
al attributes (5).It should be noted that many other 
on�gurations are possible.In setups with multiple output fa
tors, we apply also the language mod-els des
ribed in Se
tion 3.4.1 and Se
tion 3.4.1 several times using varioussubsets of output fa
tors to provide a ba
k-o� for probability estimation.For instan
e, even if a node pair was never seen in the exa
t 
on�guration
onstru
ted in a sequen
e of de
oding steps, the pair of node lemmas maybe quite 
ommon so we wish to s
ore it with a non-zero probability.



76 uvedla saiduvést sayverb verbpast pastfem
123 4 5

Figure 3.13: Sample de
oding steps in word-for-word fa
tored translation.3.7 Remarks on ImplementationThe STSG de
oder 
alled treede
ode is being implemented in Mer
ury (So-mogyi et al., 1995)9 and 
urrently 
onsists of about 17,000 lines of 
ode.Supported features, apart from methods des
ribed in previous se
tions,in
lude:
• parallel exe
ution (both training and translation phases) on Sun GridEngine10,
• e�
ient storage of translation tables using tiny
db11,
• binding to IrstLM (Federi
o and Cettolo, 2007) for n-gram languagemodelling,
• disk 
a
hing of various steps of 
omputation to speed up 
onse
utivestartups and reuse partial results upon failure (similar e�e
ts 
an bea
hieved using the te
hnique of �
he
kpointing�),
• basi
 debugging output in S
alable Ve
tor Graphi
s (SVG),
• preliminary support for minimum error-rate training using two ap-proa
hes, (O
h, 2003) and (Smith and Eisner, 2006a).The sour
e 
ode is 
urrently available upon request, future versions willbe freely a

essible on a website, released as one of the deliverables of theEuroMatrix proje
t.9http://www.
s.mu.oz.au/resear
h/mer
ury/10http://gridengine.sunsour
e.net/11http://www.
orpit.ru/mjt/tiny
db.html



3.8. Evaluating MT Quality 773.8 Evaluating MT QualityEstimating quality of ma
hine translation is di�
ult be
ause of many relevant
riteria (e.g. output �uen
y or faithfulness of translation, see e.g. Dorret al. (1998)) and also be
ause many variations 
an be equally a

eptable.Moreover, human evaluation is subje
tive and thus di�
ult to repli
ate forsimilarly performing systems unless a very large 
olle
tion of judgements is
reated, not to mention the 
ost of su
h an evaluation.For the daily routine of MT systems development, many automati
 met-ri
s have been proposed. Here we use one of the most 
ommon metri
s,BLEU (Papineni et al., 2002). Although there are metri
s that a
hieve bet-ter 
orrelation with humans (Callison-Bur
h et al., 2007), su
h metri
s aretarget-language dependent and have not been adapted for Cze
h yet.Please note that neither absolute BLEU s
ores nor relative improvementsare 
omparable unless evaluated on the very same set of sour
e senten
esand referen
e translations. The results reported here for English-to-Cze
hare thus by no means 
omparable to e.g. Cze
h-to-English MT by Bojaret al. (2006) or �mejrek et al. (2003) evaluated on a di�erent test set andagainst 4 referen
e translations instead of just one used here. See Bojar etal. (2006) for a fair 
omparison of those two experiments that also highlightsthe in�uen
e of rather subtle manipulations with the referen
e translationsor simple rules �xing tokenization issues to signi�
antly raise BLEU s
ores.We estimate empiri
al 
on�den
e bounds using the bootstrapping methoddes
ribed by Koehn (2004b): Given a test set of senten
es, we perform 1,000random sele
tions with repetitions to estimate 1,000 BLEU s
ores on testsets of the same size. The empiri
al 90%-
on�den
e upper and lower boundsare obtained after removing top and bottom 5% of s
ores. For 
on
iseness,we report the average of the distan
e between the standard BLEU value andthe empiri
al upper and lower bound after the �±� symbol.3.9 Empiri
al Evaluation of STSG TranslationIn an end-to-end evaluation, we try to 
over a wide range of experimentalsettings when translating from English to Cze
h, as illustrated in Figure 3.14,whi
h is a re�nement of Figure 3.1.Our main fo
us is the translation from the English t-layer to the Cze
ht-Layer (et
t). The general appli
ability of STSG to any dependen
y treesallows us to test the same model also for analyti
al translation (ea
a) ora
ross the layers (et
a and ea
t). To a 
ertain extent, our tree-based de
oder
an simulate a dire
t approa
h to MT (phrase-based de
oding, as will be
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ea
aea
t et
aet
tep
p generatelinearizeMorphologi
al (m-) LayerAnalyti
al (a-) LayerTe
togrammati
al (t-) LayerInterlingua

English Cze
hFigure 3.14: Experimental settings of synta
ti
 MT.dis
ussed in Chapter 4) if we repla
e the dependen
y stru
ture of an a-treewith a simple left-to-right 
hain of words (�linear tree�). The results obtainedusing this approa
h are labelled �ep
p�. Our phrase-based approximationep
p is bound to work worse than other phrase-based systems be
ause westri
tly follow the left-to-right order prohibiting any phrase reordering.For ea
h 
on�guration, we extra
t treelet pairs using the heuristi
s de-s
ribed in Se
tion 3.5, possibly employing some of the ba
k-o� te
hniquesfrom Se
tion 3.6. The EM training pro
edure as des
ribed by �mejrek(2006), was not yet in
orporated into our training pro
ess.3.9.1 Experimental ResultsApart from our STSG de
oder, we use several additional tools along the train-ing and translation pipeline, as summarized in Se
tion 3.1.4. We train oursystem on the Proje
t Syndi
ate se
tion of CzEng 0.5 (Bojar and �abokrt-ský, 2006) (also 
alled News Commentary 
orpus) and test it using thestandard sets available for the ACL 2007 workshop on ma
hine translation(WMT0712).Table 3.4 reports the BLEU (Se
tion 3.8) s
ores of several 
on�gurationsof our system, higher s
ores suggest better MT quality. We report single-referen
e lower
ased BLEU.13The values in the 
olumn �LM Used� indi
ate the type of language modelused in the experiment. An n-gram model 
an be applied to the outputsequen
e of words. For setups where the �nal sequen
e of words is 
onstru
tedusing the generation 
omponent by Ptá£ek and �abokrtský (2006) with no12http://www.statmt.org/wmt07/13For methods using the t→text generation system by Ptá£ek and �abokrtský (2006),we tokenize the hypothesis and the referen
e using the rules from the o�
ial NISTmteval-v11b.pl s
ript. For methods that dire
tly produ
e sequen
e of output tokens,we sti
k to the original tokenization.



3.10. Dis
ussion 79Method of Transfer LM Used BLEUep
p n-gram 10.9±0.6ea
a n-gram 8.8±0.6ep
p none 8.7±0.6ea
a none 6.6±0.5et
a n-gram 6.3±0.6et
t fa
tored, preserving stru
ture binode 5.6±0.5et
t fa
tored, preserving stru
ture none 5.3±0.5ea
t, no output fa
tors binode 3.0±0.3et
t, vanilla STSG (no fa
tors), all node attributes binode 2.6±0.3et
t, vanilla STSG (no fa
tors), all node attributes none 1.6±0.3et
t, vanilla STSG (no fa
tors), just t-lemmas none 0.7±0.2Table 3.4: English-to-Cze
h BLEU s
ores for syntax-based MT evaluated onDevTest dataset of ACL 2007 WMT shared task.a

ess to a language model, we use at least a binode LM to improve outputtree 
oheren
e.Appendix A provides examples of MT output from our �et
t� method aswell as from phrase-based systems des
ribed in Chapter 4.3.10 Dis
ussionAt the �rst sight, our preliminary results support 
ommon worries that witha more 
omplex system it is in
reasingly di�
ult to obtain good results.However, we are well aware of many limitations of our 
urrent experimentsas dis
ussed below.Within the s
ope of our main fo
us, the te
togrammati
al transfer (�et
t�),we see a dramati
 improvement from BLEU 1.6 to BLEU 5.6. The s
ore 1.6is a
hieved using the very baseline of STSG translation: nodes in
luding allattributes are treated as atomi
 units, only the maximum likelihood estimateof STSG probability (Se
tion 3.4.1) is used and no language model is applied.Our best �et
t� result s
oring 5.6 uses a 
ombination of ba
k-o� methods, in-
luding fa
tored input and output nodes and two binode models (one less�ne-grained, again as a means of ba
k-o�).3.10.1 BLEU Favours n-gram LMsBLEU is known to favour methods employing n-gram based language models.Empiri
al eviden
e supporting the 
laim 
an be observed in Table 3.4: an
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n-gram LM gained 2 BLEU points for both �ea
a� and �ep
p�.In future experiments we plan to attempt two ways to ta
kle the problem:employing some LM-based res
oring even after the generation 
omponent(Ptá£ek and �abokrtský, 2006), as well as using other automati
 metri
s ofMT quality instead of BLEU to avoid the bias.3.10.2 Cumulation of ErrorsAll 
omponents in our setup deliver only the single best 
andidate. Any errorswill therefore a

umulate over the whole pipeline. This primarily hurts the�et
t� s
enario where all our tools are employed.In future, we would like to pass and a

ept several 
andidates, allowingea
h step in the 
al
ulation to do any ne
essary res
oring.3.10.3 Con�i
t of Stru
turesOur 
urrent heuristi
 method of treelet extra
tion (Se
tion 3.5) 
ru
iallydepends on the quality of both English and Cze
h trees as well as the nodealignment between them. A single error in any of the rigid sour
es mayprevent the extra
tion of a treelet pair, not to mention natural divergen
ebetween the senten
e and its translation. Pre
isely this reason explains theloss of performan
e of �ea
a� 
ompared to �ep
p�.We hope that using the EM pro
edure (�mejrek, 2006) will gain somere
all. The 
urrent heuristi
 method 
an be also modi�ed to a

ept a 
ertainlevel of stru
ture divergen
e, su
h as a 
ertain portion of node-alignmentsleading out of the treelet pair. Alternatively, one 
ould obtain not just thesingle best sour
e and target tree, but a set of 
andidates14 and 
hoose su
ha pair of trees that mat
hes best with the node alignments.Ultimately, the solution lies in designing additional ba
k-o� te
hniquesthat 
an a

ommodate natural divergen
e appearing in Cze
h and Englishtraining senten
es and still exploit most of the data.Smith and Eisner (2006b) attempt to loosen the rigidity of STSG stru
-tures by de�ning quasi-syn
hronous (monolingual) grammar for target lan-guage that prefers to analyse or generate target-side senten
e in alignmentwith the sour
e-side tree but is not restri
ted to do so.Su

essful syntax-based approa
hes to MT, e.g. Quirk et al. (2005) orHuang et al. (2006), bene�t from the fa
t that the synta
ti
 stru
ture 
omesonly from one language and is only proje
ted to the other language a

ording14For dependen
y parsing, an e�
ient k-best parser was re
ently implemented by Hall(2007).



3.10. Dis
ussion 81to word alignments. Although linguisti
 adequa
y of the proje
ted tree mightsu�er, mu
h fewer stru
tural 
on�i
ts are observed.3.10.4 Combinatorial ExplosionIn the 
urrent implementation, target-side treelets are fully built during thepreparatory phase of translation option generation. Un
ertainty in the manyt-node attributes leads to too many treelets with insigni�
ant variations whilee.g. di�erent lexi
al 
hoi
es are pushed o� the sta
k. While vital for �nalsenten
e generation (see Table 3.4), �ne-grained t-node attributes should beprodu
ed only on
e all key stru
tural, lexi
al and form de
isions have beenmade.3.10.5 Senten
e Generation Tuned for Manual TreesThe rule-based generation system (Ptá£ek and �abokrtský, 2006) was de-signed to generate Cze
h senten
es from full-featured manual Cze
h te
-togrammati
al trees from the (monolingual) PDT.Our target-side training trees are the result of an automati
 analyti
aland te
togrammati
al parsing pro
edure as implemented by M
Donald et al.(2005) and Klime² (2006); �abokrtský (2008a), resp. Further noise is addedduring the tree transfer, so our �nal input to the generation 
omponent
ontains random errors in tree stru
ture as well as missing or bad attributevalues.As the manual annotation of PCEDT 2.0 pro
eeds, we may be able totrain the transfer system on manual Cze
h trees. Simultaneously, the gen-eration 
omponent will be improved to be more robust towards malformedinput.3.10.6 Errors in Sour
e-Side AnalysisFor the purpose of sour
e-side English analysis, we still rely on very simplerules similar to those used by �mejrek et al. (2003) to 
onvert Collins (1996)parse trees to analyti
al and te
togrammati
al dependen
y trees.We hope the English-side pipeline 
an be improved using re
ent taggersand parsers. Furthermore, the te
togrammati
al analysis of English willbe re�ned as manual English t-trees be
ome available during PCEDT 2.0annotation, in progress.Alternatively, we might in
lude some attributes based dire
tly on a-treesin the sour
e t-trees. This would serve as a ba
k-o� in 
ase the a→t rulesfail to provide all ne
essary information.



823.10.7 More Free ParametersLast but not least, the more 
omplex the setup is (�et
t� being our most
ompli
ated design), the more free parameters there are in the system to
on�gure. We have already mentioned many ways of repla
ing individual
omponents, e.g. the parser applied or the method of treelet di
tionaryextra
tion. Moreover, ea
h of the 
omponents in the pipeline has manyoptions to tune its behaviour.Despite not re�e
ted in the error-bar �gures in Table 3.4, whi
h des
ribethe varian
e due to randomness in input data, we suggest that the varian
eor rather room for improvement due to sub-
omponent sele
tion and 
on�g-uration is mu
h greater for more 
omplex s
enarios.It is an open software engineering and management question whi
h of thefree parameters or whi
h of the methods should be further studied.Another drawba
k of the 
omplex model is the abundan
e of modelparameters (λm in the log-linear model, Se
tion 3.4.1). The optimizationmethod 
ommonly used to set the parameters, so 
alled minimum-error ratetraining (O
h, 2003), does not 
onverge in our setup so we sti
k to a default:all models equally important.3.10.8 Related Resear
hMore or less dire
t 
omparison 
an be made with the system Te
toMT devel-oped by �abokrtský (2008b). Te
toMT also uses t-layer for the transfer butinstead of a generi
 formal model, a sequen
e of many heuristi
 steps is used.Some of the heuristi
s rely on probabilisti
 data su
h as a bilingual di
tionaryextra
ted automati
ally from CzEng 0.7, but most are rather straightforwarddeterministi
 pro
edures. This approa
h allows Te
toMT to fully exploit thesimilarity of English and Cze
h t-layers and avoid the 
ombinatorial explo-sion our system fa
es. See Table 4.5 on page 97 for human evaluation s
oresof Te
toMT 
ompared to phrase-based systems and Appendix A for examplesand BLEU s
ores of �et
t�, Te
toMT and other systems.A method 
losely related to our STSG is reported by Riezler and JohnT. Maxwell (2006) who extra
t parallel snippets of LFG analyses. Their sys-tem outperforms phrased-based translation (as rated by two human judges)in a very restri
ted setting: the test set 
ontains only senten
es of 5 to 15words. 44% of su
h senten
es fall within the 
overage of the 
ore LFG gram-mar and human judges evaluated (a sample of) these 44% senten
es. Whenevaluated with NIST (Doddington, 2002), an automati
 n-gram-based met-ri
 similar to BLEU, phrase-based translation appears insigni�
antly betteron the 44% in-
overage senten
es and signi�
antly better on the full test set



3.11. Con
lusion 83where a ba
k-o� LFG grammar had to be used. We 
an draw the following
on
lusion: if a senten
e 
an be parsed by the 
ore LFG grammar, it willbe probably better translated by the grammar-based system. This fortunateand determinable o

asion happens on average in 44% of senten
es of 5 to 15words; for other senten
es, a phrase-based system should be used. Anotherpossible interpretation of the experiment is that while the 
ore of their LFGgrammar allowed to a
hieve better translation quality, the ba
k-o� grammarwas not observed to generalize better than a phrase-based system (Chapter 4)does.3.11 Con
lusionThe previous Chapter 2 was devoted to automati
 a
quisition of synta
ti
lexi
ons, whi
h 
an serve as an valuable resour
e for many NLP appli
ations.Interested in appli
ability of the lexi
ons in pra
ti
e, we 
hose one parti
ulartask in this 
hapter: English-to-Cze
h ma
hine translation.We brie�y reviewed approa
hes to MT and summarized a mathemati
almodel of tree transformations (STSG) that �ts ni
ely in the framework ofFGD. The model is applied to 
onvert the dependen
y analysis of a sour
esenten
e into the dependen
y analysis of the senten
e in a target language.We designed a de
oding algorithm to sear
h for the most probable transla-tion of an input tree and implemented a �rst version of the de
oder. Severalmethods of ba
k-o� have been proposed and in
luded in the implementa-tion. Finally, the whole pipeline of the translation pro
ess has been set upand allows for an end-to-end evaluation.We did not get to the point where we 
ould dire
tly in
orporate a valen
ylexi
on into the transfer step, apart from the t-to-surfa
e generation system(Ptá£ek and �abokrtský, 2006) that uses VALLEX to 
hoose an appropriatemorphologi
al realization of verb modi�ers. However, the treelet pairs de-s
ribed in Se
tion 3.2 
an be seen as a form of bilingual valen
y frames andit would be quite straightforward to design a valen
y language model simi-lar to the binode model (Se
tion 3.4.1) promoting translations where outputvalen
ies are 
on�rmed by the lexi
on.The empiri
al evaluation (Se
tion 3.9) reveals more important problemsthan the la
k of a valen
y lexi
on in the transfer: the more 
omplex setupis used, the worse results are obtained. We dis
ussed the problems, knownlimitations and many open questions in Se
tion 3.10. We also pointed outthat a more 
omplex system has more free parameters to tune and thusa greater potential for an improvement. We have to leave this for futureresear
h.



84 As our empiri
al results indi
ate, the 
urrent best s
ores were obtainedusing a simple phrase-based approa
h. That is why we explore this dire
tmethod of MT in the following 
hapter.



Chapter 4Improving Morphologi
al Coheren
e inPhrase-Based MTThe previous 
hapter was devoted to a study of a deep-synta
ti
 MT systemand one of its 
omponents, tree-to-tree transfer, in parti
ular. Completelyreversing our resear
h priorities, we now ta
kle the task of MT in a verydire
t end-to-end fashion, employing very little of linguisti
 analysis.4.1 Introdu
tionBest empiri
al results in MT are 
urrently a
hieved by phrase-based systemsfor many language pairs.1 Known limitations of phrase-based MT in
ludeworse quality when translating to morphologi
ally ri
h languages as opposedto translating from them (Koehn, 2005) and worse grammati
al 
oheren
e oflonger senten
es.We parti
ipated in the 2006 summer engineering workshop at Johns Hop-kins University2 that attempted to ta
kle these problems by introdu
ing sep-arate fa
tors in MT input and/or output to allow expli
it modelling of theunderlying language stru
ture. The support for fa
tored translation modelswas in
orporated into the Moses open-sour
e MT system3. Our 
ontribu-tion to the workshop was the design of fa
tors improving English-to-Cze
htranslation.In this 
hapter, we dis
uss the experiments, fo
using on one parti
ular as-pe
t, namely the morphologi
al 
oheren
e of phrase-based MT output. Aftera brief overview of fa
tored phrase-based MT (Se
tion 4.2), we summarizesome possible translation s
enarios in Se
tion 4.4. Se
tion 4.5 studies thelevel of detail useful for morphologi
al representation and Se
tion 4.6 
om-pares the results to a setting with more data available, albeit out of domain.1http://www.nist.gov/spee
h/tests/mt/2http://www.
lsp.jhu.edu/ws2006/3http://www.statmt.org/moses/ 85



86Se
tion 4.7 provides human evaluation of our systems and Se
tion 4.8 isdevoted to a brief analysis of MT output errors.4.1.1 Motivation for Improving MorphologyAs do
umented in Table 3.1 on page 58, Cze
h has very ri
h morphology.The Cze
h morphologi
al system (Haji£, 2004b) de�nes 4,000 tags in theoryand 2,000 were a
tually seen in a big tagged 
orpus. (For 
omparison, theEnglish Penn Treebank tagset 
ontains just about 50 tags.) In our parallel
orpus (see Se
tion 3.1.4), the English vo
abulary size is 35k distin
t tokentypes but more than twi
e as big in Cze
h, 83k distin
t token types.As we will see in the following overview of fa
tored phrase-based MT,the model is designed to dire
tly handle any information that 
orresponds1-1 to input or output words. For morphologi
al information, this is indeedthe 
ase (every input word form 
an have a lemma and a morphologi
al tagatta
hed), so we 
an hope the model will make best use of this information.To further emphasize the importan
e of morphology in MT to Cze
h, we
an 
ompare the standard BLEU (Se
tion 3.8) of a baseline phrase-basedtranslation with BLEU whi
h disregards word forms (a lemmatized MT out-put is 
ompared to the lemmatized referen
e translation). The lemmatizedBLEU represents MT quality if morphologi
al errors are not penalized at all.The 
omparison gives us the theoreti
al margin for improving MT quality by
hoosing more appropriate word forms (but leaving word order and lexi
alsele
tion inta
t). The margin amounts to about 9 BLEU points: the sameMT output s
ores 12 points in standard BLEU and 21 points in lemmatizedBLEU.4.2 Overview of Fa
tored Phrase-Based MT4.2.1 Phrase-Based SMTIn statisti
al MT (SMT), the goal is to translate a sour
e (foreign) lan-guage senten
e fJ
1 = f1 . . . fj . . . fJ into a target language (Cze
h) senten
e

cI
1 = c1 . . . cj . . . cI . In phrase-based SMT (e.g. Koehn (2004a), Zens et al.(2005)), the assumption is made that the target senten
e 
an be 
onstru
tedby segmenting sour
e senten
e into K phrases4, translating ea
h phrase and�nally 
omposing the target senten
e from phrase translations. See Figure 4.1for an example of phrases automati
ally extra
ted from a word-aligned sen-ten
e pair. We denote the segmentation of the input senten
e into K phrases4Is should be noted that the term �phrases� refers merely to a sequen
e of words andis not related to linguisti
ally grounded phrases from e.g. Chomskian grammars.



4.2. Overview of Fa
tored Phrase-Based MT 87
NyníThistimearound,they'removingevenfaster.

zareagovalydokon
eje²t¥ry
hleji .
faster = ry
hleji. = .This time around = Nyníthey 're moving = zareagovalyeven = dokon
e je²t¥faster . = ry
hleji .This time around, they 're moving = Nyní zareagovalyeven faster = dokon
e je²t¥ ry
hleji. . . . . . . . .Figure 4.1: Sample word alignment and sample phrases 
onsistent with it(not all 
onsistent phrases have been marked).as sK

1 . Among all possible target language senten
es, we 
hoose the senten
ewith the highest probability:
ĉÎ
1 = argmax

I,cI

1
,K,sK

1

{Pr(cI
1|f

J
1 , sK

1 )} (4.1)4.2.2 Log-linear ModelIn a log-linear model (O
h and Ney, 2002), the 
onditional probability of cI
1being the translation of fJ

1 under the segmentation sK
1 is modelled as a 
om-bination of independent feature fun
tions h1(·, ·, ·), . . . , hM(·, ·, ·) des
ribingthe relation of the sour
e and target senten
es:

Pr(cI
1|f

J
1 , sK

1 ) =
exp(

∑M

m=1 λmhm(cI
1, f

J
1 , sK

1 ))∑
c′I

′

1

exp(
∑M

m=1 λmhm(c′I
′

1 , fJ
1 , sK

1 ))
(4.2)The denominator in 4.2 is used as a normalization fa
tor that dependson the sour
e senten
e fJ

1 and the segmentation sK
1 only and is omittedduring maximization. The model s
aling fa
tors λM

1 are trained either to themaximum entropy prin
iple or optimized with respe
t to the �nal translationquality measure.In our experiments, we use the minimum-error rate training (MERT,(O
h, 2003)) tuned to highest BLEU s
ores using a separate heldout set ofdata.4.2.3 Phrase-Based FeaturesMost of our features are phrase-based and we require all su
h features to oper-ate syn
hronously on the segmentation sK
1 and independently of neighbouring



88segments. In other words, we restri
t the form of phrase-based features to:
hm(cI

1, f
J
1 , sK

1 ) =

K∑

k=1

h̃m(c̃k, f̃k) (4.3)where f̃k represents the sour
e phrase and c̃ represents the target phrase kgiven the segmentation sK
1 .4.2.4 Fa
tored Phrase-Based SMTIn fa
tored SMT, sour
e and target words f and c are represented as tuplesof F and C fa
tors, resp., ea
h des
ribing a di�erent aspe
t of the word,e.g. its word form, lemma, morphologi
al tag, role in a verbal frame. Thepro
ess of translation 
onsists of de
oding steps of two types: mappingsteps and generation steps. If more steps 
ontribute to the same outputfa
tor, they have to agree on the out
ome, i.e. partial hypotheses where twode
oding steps produ
e 
on�i
ting values in an output fa
tor are dis
arded.A translation s
enario is a �xed 
on�guration des
ribing whi
h de
od-ing steps to use in whi
h order. Figure 3.13 on page 76 illustrates one possibletranslation s
enario, we examine several options in Se
tion 4.4 below.Mapping StepsA mapping step from a subset of sour
e fa
tors S ⊆ {1 . . . F} to a subsetof target fa
tors T ⊆ {1 . . . C} is the standard phrase-based model (see e.g.(Koehn, 2004a)) and introdu
es a feature in the following form:

h̃map:S→T
m (c̃k, f̃k) = log p(f̃S

k |c̃
T
k ) (4.4)The 
onditional probability of f̃S

k , i.e. the phrase f̃k restri
ted to fa
tors
S, given c̃T

k , i.e. the phrase c̃k restri
ted to fa
tors T is estimated fromrelative frequen
ies: p(f̃S
k |c̃

T
k ) = N(f̃S, c̃T )/N(c̃T ) where N(f̃S, c̃T ) denotesthe number of 
o-o

urren
es of a phrase pair (f̃S, c̃T ) that are 
onsistent withthe word alignment. The marginal 
ount N(c̃T ) is the number of o

urren
esof the target phrase c̃T in the training 
orpus.For ea
h mapping step, the model is in
luded in the log-linear 
ombinationin sour
e-to-target and target-to-sour
e dire
tions: p(f̃T |c̃S) and p(c̃S|f̃T ). Inaddition, statisti
al single word based lexi
ons are used in both dire
tions.They are in
luded to smooth the relative frequen
ies used as estimates of thephrase probabilities.



4.2. Overview of Fa
tored Phrase-Based MT 89Generation StepsA generation step maps a subset of target fa
tors T1 to a disjoint subset oftarget fa
tors T2, T1,2 ⊂ {1 . . . C}. In the 
urrent implementation of Moses,generation steps are restri
ted to word-to-word 
orresponden
es:
h̃gen:T1→T2

m (c̃k, f̃k) = log

length(c̃k)∏

i=1

p(c̃T1

k,i|c̃
T2

k,i) (4.5)where c̃T
k,i is the i-th words in the k-th target phrase restri
ted to fa
tors T .We estimate the 
onditional probability p(c̃T2

k,i|c̃
T1

k,i) by 
ounting over words inthe target-side 
orpus. Again, the 
onditional probability is in
luded in thelog-linear 
ombination in both dire
tions.4.2.5 Language ModelsIn addition to features for de
oding steps, we in
lude arbitrary number oflanguage models5 over subsets of target fa
tors, T ⊆ {1 . . . C}. We 
urrentlyuse standard n-gram language model:
hT

LMn
(fJ

1 , cI
1) = log

I∏

i=1

p(cT
i |c

T
i−1 . . . cT

i−n+1) (4.6)While generation steps are used to enfor
e �verti
al� 
oheren
e between�hidden properties� of output words, language models are used to enfor
esequential 
oheren
e of the output.4.2.6 Beam-Sear
hOperationally, Moses performs a sta
k-based beam sear
h very similar toPharaoh (Koehn, 2004a). Thanks to the syn
hronous-phrases assumption,all the de
oding steps 
an be performed during a preparatory phase. For ea
hspan in the input senten
e, all possible translation options are 
onstru
tedusing the mapping and generation steps in a user-spe
i�ed order. Low-s
oringoptions are pruned already during this phase. On
e all translation options are
onstru
ted, Moses pi
ks sour
e phrases (all output fa
tors already �lled in)in arbitrary order, subje
t to a reordering limit and a probabilisti
 reordering
ost, produ
ing the output in left-to-right fashion and s
oring it using thespe
i�ed language models exa
tly as Pharaoh does.5This might be per
eived as a non-standard use of the term, be
ause the models may
ontain more than just word forms. More generally, these models represent a spe
i�
 
aseof a probabilisti
 sequen
e model.



904.3 Data UsedThe experiments reported in this 
hapter were 
arried out with the NewsCommentary (NC) 
orpus as made available for the SMT workshop6 of theACL 2007 
onferen
e.7The Cze
h part of the 
orpus was tagged and lemmatized using the toolby Haji£ and Hladká (1998), the English part was tagged using MXPOST(Ratnaparkhi, 1996) and lemmatized using the Morpha tool (Minnen et al.,2001). After some �nal 
leanup, the 
orpus 
onsists of 55,676 pairs of sen-ten
es (1.1M Cze
h tokens and 1.2M English tokens). We use the designatedadditional tuning and evaluation se
tions 
onsisting of 1023, resp. 964 sen-ten
es.In all experiments, word alignment was obtained using the grow-diag-�nal heuristi
 for symmetrizing GIZA++ (O
h and Ney, 2003) alignments.To redu
e data sparseness, the English text was lower
ased and Cze
h waslemmatized for alignment estimation, a setup 
on�rmed as very useful in ourprevious Cze
h-to-English MT experiments (Bojar et al., 2006).Language models are based on the target side of the parallel 
orpus only,unless stated otherwise.We report BLEU (Se
tion 3.8) s
ores for systems trained and tested in
ase-insensitive fashion (all data are 
onverted to lower
ase, in
luding thereferen
e translations), unless stated otherwise.4.4 S
enarios of Fa
tored Translation English→Cze
hWe experimented with the following fa
tored translation s
enarios.The baseline s
enario (labelled T for translation) is single-fa
tored: input(English) lower
ase word forms are dire
tly translated to target (Cze
h) low-er
ase forms. A 3-gram language model (or more models based on various
orpora) 
he
ks the stream of output word forms. The baseline s
enario thus
orresponds to a plain phrase-based SMT system:English Cze
hlower
ase lower
ase +LMlemma lemmamorphology morphology6http://www.statmt.org/wmt07/7Our preliminary experiments with the Prague Cze
h-English Dependen
y Treebank,PCEDT v.1.0 (�mejrek et al., 2004), 20k senten
es, gave similar results, although with alower level of signi�
an
e due to a smaller evaluation set.



4.4. S
enarios of Fa
tored Translation English→Cze
h 91In order to 
he
k the output not only for word-level 
oheren
e but alsofor morphologi
al 
oheren
e, we add a single generation step: input wordforms are �rst translated to output word forms and ea
h output word formthen generates its morphologi
al tag.Two types of language models 
an be used simultaneously: a (3-gram)LM over word forms and a (7-gram) LM over morphologi
al tags.We used tags with various levels of detail, see Se
tion 4.5. We 
all thisthe �T+C� (translate and 
he
k) s
enario:English Cze
hlower
ase lower
ase +LMlemma lemmamorphology morphology +LMAs a re�nement of T+C, we also used T+T+C s
enario, where the mor-phologi
al output stream is 
onstru
ted based on both output word formsand input morphology. This setting should reinfor
e 
orre
t translation ofmorphologi
al features su
h as number of sour
e noun phrases. To redu
ethe risk of early pruning, the generation step operationally pre
edes the mor-phology mapping step. Again, two types of language models 
an be used inthis �T+T+C� s
enario:English Cze
hlower
ase lower
ase +LMlemma lemmamorphology morphology +LMThe most 
omplex s
enario we used is linguisti
ally appealing: outputlemmas (base forms) and morphologi
al tags are generated from input intwo independent translation steps and 
ombined in a single generation stepto produ
e output word forms.The �T+T+G� setting allows us to use three types of language models.Trigram models are used for word forms and lemmas and 7-gram languagemodels are used over tags:English Cze
hlower
ase lower
ase +LMlemma lemma +LMmorphology morphology +LM



92 BLEUT+T+G 13.9±0.7T+T+C 13.9±0.6T+C 13.6±0.6Baseline: T 12.9±0.6Table 4.1: BLEU s
ores of various translation s
enarios.4.4.1 Experimental Results: Improved over TTable 4.1 summarizes estimated translation quality of the various s
enarios.In all 
ases, a 3-gram LM is used for word forms or lemmas and a 7-gramLM for morphologi
al tags.The good news is that multi-fa
tored models always outperform the base-line T.Unfortunately, the more 
omplex multi-fa
tored s
enarios do not bringany signi�
ant improvement over T+C. Our belief is that this e�e
t is 
ausedby sear
h errors: with multi-fa
tored models, more hypotheses get similars
ores and future 
osts of partial hypotheses might be estimated less reliably.With a limited sta
k size (not more than 200 hypotheses of the same num-ber of 
overed input words), the de
oder may more often �nd sub-optimalsolutions. Moreover, the more steps are used, the more model weights haveto be tuned in the minimum error rate training. Considerably more tuningdata might be ne
essary to tune the weights reliably.4.5 Granularity of Cze
h Part-of-Spee
h TagsAs stated above, the Cze
h morphologi
al tag system is very 
omplex: intheory up to 4,000 di�erent tags are possible. In our T+T+C s
enario, weexperiment with various simpli�
ations of the system to �nd the best balan
ebetween ri
hness and robustness of the statisti
s available in our 
orpus. (Themore information is retained in the tags, the more severe data sparseness is.)Full tags (1200 unique seen in the 56k 
orpus): Full Cze
h positionaltags are used. A tag 
onsists of 15 positions, ea
h holding the value ofa morphologi
al property (e.g. number, 
ase or gender).88In prin
iple, ea
h of the 15 positions 
ould be used as a separate fa
tor. The setof ne
essary generation steps to en
ode relevant dependen
ies would have to be 
arefullydetermined.
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h Part-of-Spee
h Tags 93POS+
ase (184 unique seen): We simplify the tag to in
lude only partand subpart of spee
h (also distinguishes partially e.g. verb tenses). Fornouns, pronouns, adje
tives and prepositions9, also the 
ase is in
luded.CNG01 (621 unique seen): CNG01 re�nes POS. For nouns, pronounsand adje
tives we in
lude not only the 
ase but also number and gender.CNG02 (791 unique seen): Tag for pun
tuation is re�ned: the lemmaof the pun
tuation symbol is taken into a

ount; previous models dis-regarded e.g. the distributional di�eren
es between a 
omma and aquestion mark. Case, number and gender added to nouns, pronouns,adje
tives, prepositions, but also to verbs and numerals (where appli-
able).CNG03 (1017 unique seen): Optimized tagset:
• Tags for nouns, adje
tives, pronouns and numerals des
ribe the
ase, number and gender; the Cze
h re�exive pronoun se or si ishighlighted by a spe
ial �ag.
• Tag for verbs des
ribes subpart of spee
h, number, gender, tenseand aspe
t; the tag in
ludes a spe
ial �ag if the verb was theauxiliary verb být (to be) in any of its forms.
• Tag for prepositions in
ludes the 
ase and also the lemma of thepreposition.
• Lemma in
luded for pun
tuation, parti
les and interje
tions.
• Tag for numbers des
ribes the �shape� of the number (all digits arerepla
ed by the digit 5 but number-internal pun
tuation is keptinta
t). The tag thus distinguishes between 4- or 5-digit numbersand it indi
ates the pre
ision of �oating point numbers.
• Part of spee
h and subpart of spee
h for all other words.4.5.1 Experimental Results: CNG03 BestTable 4.2 summarizes the results of T+T+C s
enario with varying detail inmorphologi
al tag.Our results 
on�rm improvement over the single-fa
tored baseline. De-tailed knowledge of the morphologi
al system also proves its utility: by 
hoos-ing the most relevant features of tags and lemmas but avoiding sparseness,9Some Cze
h prepositions sele
t for a parti
ular 
ase, some are ambiguous. Althoughthe 
ase is never shown in the surfa
e form of the preposition, the tagset in
ludes thisinformation and Cze
h taggers are able to infer the 
ase.



94 BLEUBaseline: T (single-fa
tor) 12.9±0.6T+T+C, POS+
ase 13.2±0.6T+T+C, CNG01 13.4±0.6T+T+C, CNG02 13.5±0.7T+T+C, full tags 13.9±0.6T+T+C, CNG03 14.2±0.7Table 4.2: BLEU s
ores of various granularities of morphologi
al tags inT+T+C s
enario.we 
an improve on BLEU s
ore by about 0.3 absolute over T+T+C with fulltags.4.6 More Out-of-Domain Data in T and T+CS
enariosIn order to 
he
k if the method s
ales up with more parallel data available,we extend our training data using the CzEng parallel 
orpus (Bojar and�abokrtský, 2006). CzEng 
ontains senten
e-aligned texts from the Euro-pean Parliament (about 75%), e-books and stories (15%) and open sour
edo
umentation. By �NC� 
orpus we denote the in-domain News Commen-tary 
orpus only, by �mix� we denote the 
ombination of training senten
esfrom NC and CzEng (1070k senten
es, 13.9M Cze
h and 15.5 English to-kens) where in-domain NC data amounts only to 5.2% senten
es. The thirdoption, �weighted�, is a 
ombination of NC and mix with a s
aling fa
tor αoptimized in MERT (i.e. NC is in
luded twi
e).Table 4.3 gives full details on our experiments with the additional data.We varied the s
enario (T or T+C), the level of detail in the T+C s
enario(full tags vs. CNG03) and the size of the training 
orpus. We extra
t phrasesfrom either the in-domain 
orpus only (NC) or the mixed 
orpus (mix). Weuse either one LM per output fa
tor, varying the 
orpus size (NC or mix),or two LMs per output fa
tors with weights trained independently in theMERT pro
edure (weighted). Independent weights allow us to take domaindi�eren
e into a

ount, but we exploit this in the target LM only, not thephrases.The only signi�
ant di�eren
e is 
aused by the s
enario: T+C outper-forms the baseline T, regardless of 
orpus size. Other results (insigni�
antly)indi
ate the following observations:



4.7. Human Evaluation 95NC NC CzEngmix
weighted = αNC + (1 − α)mixS
enario Phrases from LMs BLEUT NC NC 12.9±0.6T mix mix 11.8±0.6T mix weighted 11.8±0.6T+C CNG03 NC NC 13.7±0.7T+C CNG03 mix mix 13.1±0.7T+C CNG03 mix weighted 13.7±0.7T+C full tags NC NC 13.6±0.6T+C full tags mix mix 13.1±0.7T+C full tags mix weighted 13.8±0.7Table 4.3: The e�e
t of additional data in T and T+C s
enarios.

• Ignoring the domain di�eren
e and using only the mixed domain LM ingeneral performs worse than allowing MERT to optimize LM weightsfor in-domain and generi
 data separately.10
• CNG03 outperforms full tags only in small data setting, with large data(treating the domain di�eren
e properly), full tags perform better.4.7 Human EvaluationThe best system des
ribed in this 
hapter (T+C full tags with additionalCzEng data) took part in an open MT evaluation 
ampaign 
arried outduring ACL 2007 Se
ond Workshop on Statisti
al Ma
hine Translation11.Table 4.4 reprodu
es the results from Callison-Bur
h et al. (2007) for Englishto Cze
h MT quality. The adequa
y s
ale des
ribes how well the translation
onveys the original meaning, the �uen
y re�e
ts how grammati
ally 
orre
tthe MT output is and rank shows how often would human judges prefer toget output from that parti
ular system 
ompared to other systems. The
onstituent rank is a new s
ale introdu
ed by Callison-Bur
h et al. (2007)10In our previous experiments with PCEDT as the domain-spe
i�
 data, the di�eren
ewas more apparent be
ause the 
orpus domains were more distant. In the T s
enarioreported here, the weighted LMs did not bring any improvement over �mix� and evenperformed worse than the baseline NC. We attribute this e�e
t to some randomness inthe MERT pro
edure.11http://www.statmt.org/wmt07/



96System Adequa
y Fluen
y Rank ConstituentOur T+C (
u) 0.523 0.510 0.405 0.440PC Translator (p
t) 0.542 0.541 0.499 0.381Single-Fa
tored Moses (uedin) 0.449 0.433 0.249 0.258Table 4.4: Human judgements of English→Cze
h MT quality at ACL WMT2007.that tries to simplify the task of ranking hypotheses by asking the judges torank only randomly sele
ted se
tions of senten
es.Our system improved over the phrase-based baseline (provided by Uni-versity of Edinburgh, uedin) and got very 
lose to a major English-Cze
h
ommer
ial MT system PC Translator12 by LangSoft (a rule-based systemwith a long history of development). Despite the 
omparison not being 
om-pletely fair (PC Translator is a generi
 MT system while our system wastrained and evaluated in the known domain of news 
ommentaries), we 
on-sider the result very promising.We parti
ipated with a very similar setup also in ACL 2008 WMT sharedtask13 (Bojar and Haji£, 2008). The only di�eren
es were that (1) we trainedour system on the re
ent release of CzEng 0.7 (Bojar et al., 2008) whi
his slightly bigger, (2) we used �true-
ased� data (preserve 
apitalization ofnames but drop 
apitalization of senten
e beginnings), and most importantly(3) we in
luded the Cze
h National Corpus SYN2006 (365M tokens) in a4-gram language model over word forms and 7-gram language model overmorphologi
al tags. As do
umented in Table 4.5 (results from Callison-Bur
het al. (2008)), the additional data allowed us to improve over PC Translatorfor in-domain setting (Commentary). In the generi
 domain of News, PCTranslator performs better.A somewhat surprising result of WMT08 evaluation of English-to-Cze
htranslation is that while the systems fall into two rather distin
t groups ofperforman
e, it is always a statisti
al and a rule-based system that form agroup (our T+C and PC-Translator vs. Te
toMT (�abokrtský, 2008b) andsingle-fa
tored Moses). We see that even very 
omplementary strategies 
anlead to 
omparable MT quality, whi
h suggest that the potential gain fromsystems 
ombination may be quite high.Examples of output of various MT systems in
luding the re
ently laun
hedGoogle Translate are available in Appendix A. Apart from indi
ating theoverall state-of-the-art quality of MT, the examples also illustrate how di�-
ult it is to 
ompare MT systems, both manually or automati
ally.12http://www.translator.
z/13http://www.statmt.org/wmt08/



4.8. Untreated Morphologi
al Errors 97Commentary NewsSystem (in-domain) (out-of-domain)Our T+C (
u-bojar) 71.4% 63.4%PC Translator 66.3% 71.5%Te
toMT (
u-te
tomt) 48.8% 49.4%Single-Fa
tored Moses (uedin) 48.6% 50.2%Table 4.5: Per
entage of senten
es where the system was ranked better thanor equal to any other system (human judgements, ACL WMT08).Translation of Verb Modi�er. . . preserves meaning 56% 79%. . . is disrupted 14% 12%. . . is missing 27% 1%. . . is unknown (not translated) 0% 5%Table 4.6: Analysis of 77 verb-modi�er pairs in 15 sample senten
es.4.8 Untreated Morphologi
al ErrorsThe previous se
tions des
ribed improvements gained on small data sets when
he
king morphologi
al agreement using T+T+C s
enario (BLEU raisedfrom 12.9% to 13.9% or up to 14.2% with manually tuned tagset, CNG03).However, the best result a
hieved is still far below the margin of lemmatizedBLEU (21%), as mentioned in Se
tion 4.1.1.When we sear
hed for the unexploited morphologi
al errors, visual in-spe
tion of MT output suggested that lo
al agreement (within 3-word span)is relatively 
orre
t but verb-modi�er relations are often malformed 
ausinge.g. a bad 
ase for the modi�er. To quantify this observation we performeda mi
ro-study of our best MT output using an intuitive metri
. We 
he
kedwhether verb-modi�er relations are properly preserved during the translationof 15 sample senten
es.The sour
e text of the sample senten
es 
ontained 77 verb-modi�er pairs.Table 4.6 lists our observations on the two members in ea
h verb-modi�erpair. We see that only 56% of verbs are translated 
orre
tly and 79% ofnouns are translated 
orre
tly. The system tends to skip verbs quite often(27% of 
ases).More importantly, our analysis has shown that even in the 
ases whereboth the verb and the modi�er are lexi
ally 
orre
t, the relation betweenthem in Cze
h is either non-grammati
al or meaning-disrupted in 56% of



98Input: Keep on investing.MT output: Pokra£ovalo investování. (grammar 
orre
t here!)Gloss: Continued investing. (Meaning: The investing 
ontinued.)Corre
t: Pokra£ujte v investování.Input: brokerage �rms rushed out ads . . .MT Output: brokerské �rmy vyb¥hl reklamyGloss: brokerage �rmspl.fem ransg.masc adspl.voc,sg.gen
pl.nom,pl.accCorre
t: brokerské �rmy vy
hrlily reklamypl.accComprehensible: brokerské �rmy vyb¥hly s reklamamipl.instrFigure 4.2: Two sample errors in translating verb-modi�er relations fromEnglish to Cze
h.these 
ases. Commented samples of su
h errors are given in Figure 4.2 be-low. The �rst sample shows that a strong language model 
an lead to the
hoi
e of a grammati
al relation that nevertheless does not 
onvey the orig-inal meaning. The se
ond sample illustrates a situation where the systemfailed to 
hoose an a

eptable form for the relation between rush out and adsmost probably be
ause it ba
ked o� to a generi
 pattern verb-nounaccusative.This pattern is quite 
ommon for expressing the obje
t role of many verbs(su
h as vy
hrlit, see the Corre
t option in Figure 4.2), but does not �t wellwith the verb vyb¥hnout. If the di
tionary for
ed the system to use vyb¥hnout,a di�erent preposition and 
ase should have been 
hosen to render the outputat least 
omprehensible (the lexi
al 
hoi
e is still problemati
, the best equiv-alent would probably be vyrazily s reklamami). While the target-side datamay be ri
h enough to learn the generalization vyb¥hnout�s�instr, no su
hgeneralization is possible with language models over word forms or morpho-logi
al tags only. The target side data will be hardly ever ri
h enough to learnthis parti
ular stru
ture in all 
orre
t morphologi
al and lexi
al variants:vyb¥hl�s�reklamou, vyb¥hla�s�reklamami, vyb¥hl�s�prohlá²ením, vyb¥hli�s�oznámením, . . . . We would need a mixed model that 
ombines verb lemmas,prepositions and 
ase information to properly 
apture the relations.Unfortunately, our preliminary experiments that made use of automati
Cze
h analyti
al trees to 
onstru
t a fa
tor expli
itly highlighting the verb(lexi
alized) its modi�ers (
ase and the lemma of the preposition, if present)and boundary symbols su
h as pun
tuation or 
onjun
tions and using adummy token for all other words did not bring any improvement over thebaseline. A possible reason is that we employed only a standard 7-gram lan-guage model to this fa
tor. A more appropriate treatment is to disregard



4.9. Related Resear
h 99the dummy tokens in the language model at all and use a �skipping� n-gramlanguage model that looks at last n − 1 non-dummy items.4.9 Related Resear
hClass-based LMs (Brown et al., 1992) or fa
tored LMs (Bilmes and Kir
hho�,2003) are very similar to our T+C s
enario. Given the small di�eren
esin all T+. . . s
enarios' performan
e, 
lass-based LM might bring equivalentimprovement. Yang and Kir
hho� (2006) have re
ently do
umented minorBLEU improvement using fa
tored LMs in single-fa
tored SMT to English.The multi-fa
tored approa
h to SMT of Moses is however more general.Many resear
hers have tried to employ morphology in improving wordalignment te
hniques (e.g. (Popovi¢ and Ney, 2004)) or ma
hine transla-tion quality (Nieÿen and Ney (2001), Koehn and Knight (2003), Zollmannet al. (2006), among others, for various languages; Goldwater and M
Closky(2005), Bojar et al. (2006) and Talbot and Osborne (2006) for Cze
h), how-ever, they fo
us on translating from the highly in�e
tional language.Durgar El-Kahlout and O�azer (2006) report preliminary experimentsin English to Turkish single-fa
tored phrase-based translation, gaining sig-ni�
ant improvements by splitting root words and their morphemes into asequen
e of tokens. It might be interesting to explore multi-fa
tored s
enariosfor di�erent Turkish morphology representation suggested in the paper.De Gispert et al. (2005) generalize over verb forms and generate phrasetranslations even for unseen target verb forms. The T+T+G s
enario al-lows a similar extension if the des
ribed generation step is repla
ed by a(probabilisti
) morphologi
al generator.Nguyen and Shimazu (2006) translate from English to Vietnamese butthe morphologi
al ri
hness of Vietnamese is 
omparable to English. In fa
tthe Vietnamese vo
abulary size is even smaller than English vo
abulary sizein one of their 
orpora. The observed improvement due to expli
it modellingof morphology might not s
ale up beyond small-data setting.As an alternative option to our verb-modi�er experiments, stru
turedlanguage models (Chelba and Jelinek, 1998) might be 
onsidered to improve
lause 
oheren
e. Bir
h et al. (2007) reports improvements in senten
e 
o-heren
e using fa
tored translation with CCG supertags. For languages withsigni�
ant but predi
table synta
ti
 divergen
e su
h as German-to-Englishtranslation, automati
 prepro
essing of the word order signi�
antly in
reasesMT quality (Collins et al., 2005). Cu°ín (2006) reports improvement forCze
h-to-English translation using a similar prepro
essing te
hnique fo
usedon introdu
ing required English auxiliary words. And surely, another op-



100tion to improve output grammati
ality is to employ full-featured syntax-based MT models (Wu and Wong (1998), Yamada and Knight (2002), Eisner(2003), Chiang (2005), Quirk and Menezes (2006) and our own experimentsin Chapter 3 among many others).4.10 Con
lusionMoving away from basi
 resear
h of lexi
al a
quisition (Chapter 2) and alinguisti
ally justi�ed but 
omplex system of syntax-based ma
hine transla-tion (Chapter 3) to a goal-oriented dire
t method, this 
hapter introdu
edso-
alled phrase-based translation, 
urrently best performing MT te
hniquefor many language pairs.We summarized the extension of phrase-based systems to multi-fa
toredMT and experimented with various setups of additional fa
tors (translations
enarios), the level of detail in morphologi
al tags and additional trainingdata.Our results on English-to-Cze
h translation demonstrate signi�
ant im-provement in BLEU s
ores by expli
it modelling of morphology and usinga separate morphologi
al language model to ensure the 
oheren
e. To ourknowledge, the original experiments as des
ribed in (Bojar, 2007) were amongthe �rst to show the advantages of using multiple fa
tors in MT. With someadditional data, we were able to improve over a 
ommer
ial MT system in aknown domain in 2008.Errors in expressing verb-modi�er relations have been studied and a fa
tor
apturing these dependen
ies has been proposed. Unfortunately, this fa
torhas yet to bring any improvement.



Chapter 5Con
luding Dis
ussionThe underlying topi
 of the thesis is the relation between linguisti
 dataand appli
ations. We fo
used on 
reating a deep synta
ti
 lexi
on and ontwo methods of ma
hine translation: a deep syntax-based MT and a shallowphrase-based MT.To provide a larger pi
ture, we survey available literature with a simplequestion in mind: Do lexi
ons bring an improvement to NLP appli
ations?Not surprisingly, there is not a simple and 
on
lusive answer to this ques-tion. Hopefully, we managed to keep a balan
ed view and to mediate someinteresting lessons to learn from the past proje
ts.5.1 When Lexi
ons Proved to Be UsefulLitkowski (2005) gives a good overview of the 
urrent state in 
omputationallexi
ography in
luding illustrations of NLP tasks and explanations of howlexi
ons 
an be employed in them. Litkowski's main belief in lexi
on utility
omes from the �semanti
 imperative�: �In 
onsidering the NLP appli
ationsof word-sense disambiguation, information extra
tion, question answering,and summarization, there is a 
lear need for in
reasing amounts of semanti
information. The main problem fa
ing these appli
ations is a need to identifyparaphrases, that is, identifying whether a 
omplex string of words 
arriesmore or less the same meaning as another string.� Later, he notes: �As yet,the symboli
 
ontent of traditional di
tionaries has not been merged withthe statisti
al properties of word usage revealed by 
orpus-based methods.�Of the many di
tionary-like resour
es available, there seems to be only onethat has been applied to a wide range of appli
ations more or less su

essfully:WordNet (Fellbaum, 1998).In some situations, lexi
ons are used to improve 
overage (re
all). Forinstan
e, WordNet 
an be used as a ba
k-o� to repla
e words not known tothe system with a suitable synonym or hyperonym. In some situations, lexi-
ons might improve the pre
ision, su
h as a morphologi
al lexi
on in spee
h101



102re
ognition (morphologi
al lexi
on is generally more a

urate than rules de-s
ribing valid word forms). A lexi
on 
an be also used as an authoritativesour
e of terms, expressions of 
onstru
tions (e.g. EuroVo
1). The system
an then guarantee a 
ertain level of output quality.5.1.1 Lexi
on Improves Information RetrievalIn an information retrieval system des
ribed by Woods et al. (1999), the addi-tion of a morphologi
al di
tionary, taxonomi
 information between 
on
epts(WordNet-like) and rules des
ribing general entailment between words and
on
epts improved signi�
antly the performan
e. An additional improve-ment was a
hieved by employing a morphologi
al guesser to analyse wordsnot listed in the lexi
on. As a matter of fa
t, both the taxonomi
 (semanti
)and the morphologi
al guesser were used in an over-generation fashion: theinput query was relaxed using the lexi
ons. All the do
uments that mat
hthe relaxed queries are then sorted so that do
uments with a 
loser mat
h(less relaxation) appear on top. The lexi
al information is thus used to im-prove re
all only, while the su�
ient pre
ision is ensured at no additional
ost by input data.Similar te
hniques are used for morphologi
ally ri
h languages in sear
hengines. An old example for Cze
h dates ba
k to the ASIMUT system(Králíková and Panevová, 1990).5.1.2 Sub
ategorization Improves ParsingSub
ategorization information 
an serve as an example where the lexi
onimproves the pre
ision of the system. A parse (i.e. a synta
ti
 analysis ofa senten
e) is suppressed, if the pattern of a word's modi�
ations is notapproved by a sub
ategorization lexi
on.As do
umented in (Carroll et al., 1998) and 
ited papers, in
luding statis-ti
s on the 
o-o

urren
e of lexi
al heads of phrases and the 
on�gurationsof members in the phrase (i.e. 
omplements and adjun
ts) brings substan-tial improvements in parsing a

ura
y. Zeman (2002) also reports a sig-ni�
ant improvement in parsing a

ura
y of his dependen
y-based statisti
alparser when sub
ategorization information was added. However, the absolutelevel of his parser's a

ura
y remains below modern versions of phrase-basedparsers that in
lude head-lexi
alized statisti
s su
h as Collins et al. (1999).More importantly, we are not aware of any published result demonstratingthat sub
ategorization lexi
ons (built manually or automati
ally) would be1http://europa.eu/eurovo
/



5.1. When Lexi
ons Proved to Be Useful 103used in top-performing parsers.2The 
laim we want to make is that while sub
ategorization information isimportant and it indeed helps parsing, it 
an be extra
ted automati
ally andmost probably in a simple form tailored for the task and thus more suitablethan lexi
ons prepared independently. In some settings though, the lexi
onsmight provide a bigger 
overage than what 
an be observed in the trainingdata.5.1.3 Lexi
ons Employed in MTLiu et al. (2005) des
ribe a log-linear model for word alignment where a bilin-gual lexi
on 
an be added as a feature. A hand-made lexi
on of word-to-wordtranslation equivalents 
ontributed slightly to the overall good performan
eof the system. The stru
ture of the lexi
on is very simple and also the evalu-ation is measured in terms of alignment error rate (AER) against alignmentsannotated by humans. It is not 
lear, if we would observe an improvement inan end-to-end evaluation of an MT system. (AER is known not to dire
tly
orrelate with MT quality measures (Lopez and Resnik, 2006))Fujita and Bond (2002) des
ribe a method of augmenting a translationdi
tionary with sub
ategorization information available for similar words(other possible translation equivalents) already listed in the di
tionary. Theutility was evaluated on the ALT-J/E rule-based MT system (Ikehara et al.,1991): based on a human judgement by a single native speaker, the transla-tion quality of only about 100 evaluation senten
es improved in 31% of 
asesand degraded in 8% of 
ases. Fujita and Bond (2004) report a similar exper-iment where available verb alternation data was used to add the missing halfof the translation lexi
on entry of an alternating verb. The method requiresa list of verbs parti
ipating in a spe
i�
 alternation, the des
ription of thealternation in terms of valen
y slot 
hanges, in
luding 
hanges in synta
ti
stru
ture and sele
tional restri
tions, and a seed bilingual translation di
tio-nary. No 
ompletely new verbs are added to the di
tionary, but the existingentries are augmented with the missing halves of the alternation. Evaluatedby two native speakers on 124 test senten
es, the augmented lexi
on leads toa better translation in about 46% of senten
es and to a worse translation inabout 15% of 
ases. However, the ALT-J/E system has probably never beenevaluated on a standard test set so it is di�
ult to assess its real usability.Boguslavsky et al. (2004) des
ribe a range of di
tionaries used in ETAP-332An ex
eption is the employment of VerbaLex lexi
on in a Cze
h parser. Hlavá£kováet al. (2006) demonstrate a dramati
 redu
tion in parse ambiguity thanks to VerbaLexentries. However, they do not evaluate the a
tual parsing a

ura
y.3http://
l.iitp.ru/



104(Apresjan et al., 2003). Unfortunately, the MT system has probably neitherbeen evaluated on a standard test set nor has taken part in an evaluation
ompetition, but the authors 
laim and the web demo suggests that the
overage of the system is su�
iently large. Based on the Meaning-Text-Theory (Mel'£uk, 1988) and implemented as hand written rules, the systemheavily depends on the quality of en
oded lexi
ons. The appli
ability ofETAP-3 therefore 
on�rms the utility of its lexi
ons.5.1.4 Lexi
ons Help TheoriesA lexi
on is also an indispensable tool in re�ning linguisti
 theories. Asexplained above, a lexi
on serves as a mapping between units on (typi
ally)two levels of language des
ription. Given a multi-layer linguisti
 theory thatformally de�nes units at the various levels, a lexi
on 
an prove or disprove theappropriateness of the theory. If the lexi
ographi
 work pro
eeds smoothlyand large data is 
overed with lexi
al entries, then the theory was all right.If problems are noti
ed, the theory 
an be adjusted a

ordingly as e.g. inLopatková and Panevová (2005).5.2 When Lexi
ons Were Not NeededThis se
tion surveys some pra
ti
al NLP tasks that are often used to motivatethe 
reation of lexi
ons. As we will see, depending on the spe
i�
s of the taskand method 
hosen, surprisingly good results 
an be often a
hieved withoutany su
h lexi
on.5.2.1 PP Atta
hment without Lexi
onsCalvo et al. (2005) 
ondu
ts, to the best of our knowledge, the only exper-iment dire
tly evaluating the utility of a hand-written lexi
on (WordNet inparti
ular) against a lexi
on derived automati
ally from 
orpus data to solvea 
ommon task: atta
hment of prepositional phrases (PP).The authors des
ribe a method of automati
ally building a thesaurus andusing the thesaurus as a ba
k-o� for the PP atta
hment problem. A 
ompar-ison with a similar method based on manual (WordNet) data indi
ates thatthe results based on a manual and automati
 resour
es are nearly identi
al.Higher pre
ision s
ores of PP atta
hment are a
hieved without any ba
k-o�,but the 
overage is very poor.However, the task of PP atta
hment is notoriously hard and given therelatively low performan
e of both the di
tionary-based and the automati
method, we 
annot 
on�dently 
laim superiority of any of the methods.



5.2. When Lexi
ons Were Not Needed 1055.2.2 MT without Lexi
onsFor the time being, top performing MT systems in
lude statisti
al phrase-based methods (Callison-Bur
h et al., 2007) and in some evaluations thephrase-based systems win by a large margin.4 These systems do not relyon any translation di
tionaries but rather build them automati
ally, given a
olle
tion of word-aligned parallel texts. The �stru
ture� of su
h lexi
ons istypi
ally very simple, they 
ontain just pairs of (sequen
es of) word formsin the sour
e and target languages with no additional linguisti
 information,ex
ept for a 
o-o

urren
e 
ount/probability.Stevenson (2003) reviews the hopes of word-sense disambiguation (WSD)usefulness in various NLP tasks in
luding MT. It seems that only very re-
ent experiments follow Stevenson's wish: �the only way in whi
h it 
an bea

urately determined whether these systems [e.g. MT℄ will bene�t from theinformation produ
ed by some [WSD℄ 
omponent is to integrate it as partof the �nal system and re
ord the 
hange in performan
e.� Experiments todate provide mixed results: Carpuat and Wu (2005) des
ribe several te
h-niques of a loose 
ombination of a WSD and an MT system that fail to bringany signi�
ant improvement. While this parti
ular experiment has some pe-
uliarities5, the same doubt on WSD utility 
ame up in Senseval-3 paneldis
ussions6 in 2004. It is also worth mentioning that already Senseval-2in
luded �system evaluation� as one of its subgoals7 but it does not seemthat mu
h su

ess with WSD appli
ation has been reported in subsequentSenseval 
ompetitions.Only re
ently Carpuat and Wu (2007) a
hieved 
onsistent improvementsby 
oupling the MT system with a WSD method rather tightly. One of theinteresting di�eren
es between the failing and the su

eeding experimentsis that the latter do not rely on human-
onstru
ted lexi
ons of senses butrather use phrase tables extra
ted automati
ally from a parallel 
orpus. We
an thus say that while WSD te
hniques 
an bring an improvement in MTquality, this was not yet demonstrated using human-annotated lexi
al data.One of the motivations for building valen
y lexi
ons and one of the main4NIST 2005 o�
ial evaluation, http://www.nist.gov/spee
h/tests/.5The WSD task is used for 20 words only with 2 to 8 senses per word and there is only 37o

urren
es of the words in the training data. Also, the WSD module is not used a featurein the SMT system, but rather employed in two hard ways: either in post-pro
essing byrepla
ing the output word with the translation equivalent suggested by WSD (this 
anbreak the 
ohesion of the senten
e), or to prune all paths in the latti
e that do not 
ontainthe target word. A �ner 
ombination of WSD and SMT would allow to tune a weightassigned to the WSD module.6http://www.senseval.org/senseval3/panels7http://www.itri.brighton.a
.uk/events/senseval/SENSEVAL2/task-design.ps



106reasons for introdu
ing syntax-based models to MT is the aim to produ
e
orre
t valen
y stru
tures of verbs and other elements in the senten
e. If aword is not a

ompanied by all grammati
ally required modi�ers or if thereare unexpe
ted additional modi�ers, the senten
e feels dis�uent. Dependen
ygrammars equipped with a valen
y di
tionary su
h as we have seen in Chap-ter 2 should be able to identify the problem and prefer a di�erent translation.STSG models valen
y expli
itly, treelet pairs 
an be seen as bilingual valen
yframes.In real world senten
es though, dependen
y edges are relatively short(Holan, 2003) and thus 
an be approximated reasonably well by plain adja-
en
y of senten
e elements (words). The phrase-based approa
h des
ribed inChapter 4 
an thus in many 
ases 
apture and translate valen
y frames 
or-re
tly, provided the phrase-length limit is large enough. The only real advan-tage of syntax-based methods is a better ability to generalize, e.g. abstra
taway all adje
tives intervening between a verb and its obje
t. It would beinteresting to evaluate how often does su
h a generalization 
apa
ity promiseto bring an improvement in a real MT task with �xed training and test data.Finally, O
h (2005) demonstrates that (a

ording to 
urrent evaluationmetri
s) the key features of MT systems that lead to su

ess are: (1) sim-pli
ity, su
h as a 
ombination of independent features, relatively simple fromthe linguisti
 point of view, (2) minimality of design and representation, su
has stemming of words, or only a few bits to represent probabilities, and (3)vast amounts of textual data. These features are somewhat 
ontradi
tory towhat we obtain from elaborated lexi
ons.5.2.3 Question Answering without Deep SyntaxMooney (2000) des
ribes a system CHILL that 
onverts questions in a nat-ural language into Prolog queries. The answers are obtained by evaluatingthe query on a database. The system performs very well on restri
ted do-mains (geographi
al knowledge about the U.S., a thousand of restaurants innorthern California or job opportunities). In the system, the deep synta
ti
level is simply skipped. To start working on a new domain, only a set of (afew hundreds of) sample questions and expe
ted Prolog queries are neededas the training data. CHILL learns a shift-redu
e parser for input senten
esto produ
es dire
tly the Prolog query. In Wong and Mooney (2007), thedire
t translation from plain text senten
e to the Prolog query is 
asted assyn
hronous 
ontext-free grammar derivation, skipping any synta
ti
 layeragain.As Litkowski (2005) summarizes: �From the beginning, resear
hers viewedthis NLP task [Question Answering℄ as one that would involve semanti
 pro-
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essing and provide a vehi
le for deeper study of meaning and its represen-tation. This has not generally proved to be the 
ase, but many nuan
es haveemerged in handling di�erent types of questions.�5.2.4 Summarization without Meaning and Grammati
alitywithout Valen
y Lexi
onBarzilay and M
Keown (2005) des
ribe a senten
e fusion te
hnique employedin summarization of multiple sour
e do
uments, the Newsblaster8 (M
Keownet al., 2002). Only shallow synta
ti
 analysis of the input text (dependen
yparsing) and generi
 knowledge 
olle
ted from a larger text 
orpus are needed.Output senten
es are generated by reusing and altering phrases from severalsour
e senten
es. More spe
i�
ally, a 
entroid senten
e (an input senten
emost similar to other input senten
es) is sele
ted and its dependen
y tree isgradually altered by adding information present only in (a majority of) othersenten
es and by removing information not supported by a reasonable shareof other senten
es. Grammati
ality is ensured by keeping all modi�
ationsvery 
onservative: information is added, only if the root node of the addedsubtree 
an be aligned to a node already present in the 
entroid senten
e, andnodes are deleted only in a small pre-de�ned set of 
ases (su
h as removing
omponents from 
onjun
tions or removing adverbs). The la
k of an expli
itvalen
y lexi
on is thus 
ompensated by making use of �valen
y exhibited� ininput senten
es.Barzilay and M
Keown (2005) also mention problems with the lineariza-tion of the output dependen
y stru
ture using a large-s
ale uni�
ation-basedtext generation system FUF/SURGE. FUF/SURGE requires edges in theinput dependen
y trees to be labelled with synta
ti
o-semanti
 roles su
h as�manner� or �lo
ation�. If the roles are added automati
ally (and there is noother option for ma
hine-generated input trees), errors lead to 
ompletelys
rambled output, wrong prepositions et
. Barzilay and M
Keown (2005)a
hieve better results with a statisti
al linearization 
omponent, whi
h is notonly more robust to errors but also more e�
ient, be
ause it 
an make use ofphrases readily available in the data. The FUF/SURGE generation systemprodu
es every phrase from s
rat
h. Due to limitations inherent to 
ur-rent n-gram based language modelling te
hniques, suboptimal linearizationsare sometimes 
hosen. On
e language modelling te
hniques are improvedwith respe
t to synta
ti
 properties of the language, more grammati
al out-put will be produ
ed. (As always, language-spe
i�
 issues have to be takeninto a

ount when drawing 
on
lusions from other observations. If the tar-8http://www.
s.
olumbia.edu/nlp/newsblaster/



108get language were a morphologi
ally ri
h language su
h as Cze
h, the lan-guage model employed in the statisti
al linearizer would perform signi�
antlyworse.)5.3 Dis
ussionIs there a 
ommon property of the above mentioned appli
ations that weresu

essful without performing too deep analysis or needing advan
ed lexi-
ons? In our opinion, the most important 
ommon feature of the methods isthat the intelligen
e is left to the human.
• Grammati
ality is ensured by reusing a text produ
ed by humans (sen-ten
e fusion).
• Sele
tion of the translation equivalent is based on the 
hoi
e of a humanin a similar 
ontext (MT).
• Overgeneration never hurts, if the output of the system is interse
tedwith some man-made data (information extra
tion).Why are independently designed (manual or automati
) lexi
ons rela-tively rarely used in appli
ations? Our guess is the di�
ulty of adaptingthe formats and more importantly the di�eren
e in types of de
isions anappli
ation has to make and hints a lexi
on 
an o�er.On the other hand, we have mentioned several appli
ations that buildtheir own lexi
ons (or probabilisti
 tables), the features of whi
h are verymu
h in�uen
ed by linguisti
 insights in
orporated in human lexi
ons.Our belief is that linguisti
 theories provide an indispensable sour
e ofinspiration that is being slowly re�e
ted in the design of appli
ations. Anydata produ
ed by 
omputational linguists remain di�
ult to reuse in pra
-ti
al NLP systems be
ause they provide answers for questions the system isnowhere near to ask.5.4 Contribution of the ThesisThe �rst part of the thesis (Chapter 2) examined automati
 ways of 
on-stru
ting a valen
y di
tionary, an important resour
e for various appli
ationsin
luding rule-based or syntax-based MT. Several methods of frame extra
-tion were designed and evaluated using a novel metri
 that gives a partial
redit even for not quite 
omplete frames by estimating the savings in alexi
ographer's work.



5.4. Contribution of the Thesis 109The se
ond part (Chapters 3 and 4) fo
used dire
tly on linguisti
 datawithin the task of MT. First, we designed, implemented and evaluated a full-�edged syntax-based MT system. The generi
 engine was applied in varioussettings ranging from transfer at a deep synta
ti
 layer to an approximationof an uninformed phrase-based translation. The results indi
ate that the besttranslation quality is still a
hieved by the most simple methods; the mainreasons for this being the 
umulation of errors, the loss in training data dueto both natural and random synta
ti
 divergen
e between Cze
h and Englishand �nally a 
ombinatorial explosion in the 
omplex sear
h spa
e.In Chapter 4 we moved to a relatively simple model of phrase-based MTand we improved its a

ura
y by adding a limited amount of linguisti
 in-formation. While word lemmas and morphologi
al tags 
an be su

essfullyexploited by the phrase-based model thanks to their dire
t 
orresponden
eto the sequen
e of words a
hieving a better morphologi
al 
oheren
e of MToutput, the appli
ability of synta
ti
 information remains an open resear
hquestion.The thesis 
ontributes to the art of natural language pro
essing and ma-
hine translation in parti
ular by designing and evaluating:
• an automati
 metri
 estimating the savings in a lexi
ographer's work;
• experiments with various methods for automati
 deep valen
y framea
quisition based on 
orpus observations;
• a ma
hine translation system with a deep synta
ti
 transfer, in
ludingthe evaluation of an end-to-end pipeline; the system 
an be applied alsoat a surfa
e-synta
ti
 layer;
• improved word-alignment te
hniques by prepro
essing parallel texts,utilized in experiments reported here and fully des
ribed in Bojar etal. (2006);
• various 
on�gurations of fa
tored phrase-based models for English-to-Cze
h translation improving target-side morphologi
al 
oheren
e.Moreover, we prepared and made the following data available for theresear
h 
ommunity:
• a Cze
h-English parallel 
orpus CzEng, two publi
 releases (Bojar and�abokrtský, 2006; Bojar et al., 2008),
• manual Cze
h-English word-alignment data (Bojar and Prokopová,2006), in
luding an evaluation of inter-annotator agreement,
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• Golden VALEVAL, word-sense disambiguation data from the VALE-VAL experiment (Bojar et al., 2005),
• a mildly 
leaned-up 
olle
tion of Cze
h-English translation di
tionaries(Bojar and Prokopová, 2007).As it tends to happen, a thesis sometimes opens more questions thanit a
tually solves. Many suggestions on how to further improve or extendour methods were mentioned throughout the thesis. We plan to 
ontinueour resear
h by further attempts to 
ombine su

essful simple models withlinguisti
ally-informed methods.
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Appendix ASample Translation OutputA.1 In-Domain EvaluationThis se
tion illustrates the performa
e of various MT systems on arti
lesfrom Proje
t Syndi
ate.1 We 
an talk about �in-domain� evaluation for oursystems (et
t and two 
on�gurations of Moses), be
ause other texts from thesame sour
e are part of our training data.Be
ause both the original and the referen
e translations are publi
ly avail-able on Proje
t Syndi
ate website, we 
an spe
ulate whether e.g. GoogleTranslate had an opportunity to train on parts of this parti
ular test set.Sour
e text, WMT 08 Commentary TestBerlus
oni at Bay. . . Fifteen years later, Signor Berlusoni understood that the Italian state's mono-poly of television would not survive and jump-started what be
ame Italy's mainprivately owned media group. But you don't win in TV and the real estate businesswithout the right politi
al 
onne
tions. On both o

asions, Berlus
oni outwittedhis 
ompetitors by siding with the So
ialists, at the time the rising stars of Ital-ian politi
al life. His long asso
iation with Bettino Craxi, Milan's most in�uentialpoliti
ian in the 1970's and Italy's prime minister through mu
h of the 1980's,started early. On the other hand, politi
al 
onne
tions do not make a politi
ian.A Field Guide to Israeli HawksPrime Minister Ariel Sharon's announ
ement that he plans to dismantle Jewishsettlements in the Gaza Strip, as well as some settlements in the West Bank, hassho
ked and 
aught people o� guard both in Israel and around the world. Manydenoun
ed Sharon's plan as a tri
k. But that surprise was wrong-headed fromthe start. Despite the way it often looks to outsiders, debates in Israel about thefuture of the o

upied territories have never been 
on�ned to hawks and doves.Like everything in Israel, the pro
ess is more 
ompli
ated, espe
ially where thehawks are 
on
erned. Basi
ally, there are two spe
ies of Israeli hawks: 
all onekind ideologi
al and the other strategi
.1http://www.proje
t-syndi
ate.org/125



126et
t, fa
tored output nodes, preserve stru
ture BLEU 4.98%Berlus
oni v zálivu.. . . Fifteen let uº signoru berlusonus 
hápal, ºe italský stát je monopol televize,nakone
, neºije a, nastartuje za£ne, 
o se stalo, itálie je hlavní soukromá vlastnímediální skupina. V²ak vám je, zvít¥zí v televizi a skute£ného nemovitosti ob
hodusprávný
h politi
ký
h vztah·. Oba p°íleºitostí berlus
oni outwit její konkuren
estran¥ní so
ialisté v dob¥ rostou
í
h hv¥zd italského politi
kého ºivota. Její dlouho-dobá vazba bettino 
raxus milán je nejvlivn¥j²í politik 70 je a itálie je ministerskávláda velké 80 je za£ne brzy. Na druhé stran¥ politi
ké konexe jsou politik.Oblasti vede izraelský
h jest°áb·.Premiér ministr ariel ²aron je oznámení, ºe je hodlá odstranit ºidovský
h osad gazastrip jak, tak, n¥která urovnání na západním b°ehu, je, ²okoval a 
hytili lidé gardyjak v izrael a po sv¥t¥. Mnohém odsoudil, ²aron je, plán trik. A to p°ekvapeníbylo správné , vede od za£átku. Way, její £asto vypadá 
izin
·, se debaty izraelo budou
nosti okupovaný
h území nikdy týkaly jest°áb· a holubi£ky. V²e
hnav izrael pro
es je sloºit¥j²í, p°edev²ím kde se jest°ábi týkají. Vlastní jsou twodruhové izraelský
h jest°áb· : výzvou jistou takovou ideologi
ké a dal²í strategi
ké.Te
toMT BLEU 9.28%Berlus
oni na zálivu.. . . O patná
t rok· pozd¥ji pán Berlusoni rozum¥l, ºe by se italský státní monopoltelevize nep°eºil a jump-started, 
o se stalo hlavní soukrom¥ vlastní sd¥lova
ískupinou Itálie. Ale nevyhrajete se v TV a ve skute£ném realitním ob
hodubez pravý
h politi
ký
h spojení. Na obou p°íleºitoste
h Berlus
oni p°elstil svojekonkurenty obklad se so
ialisty na £asu rostou
í hv¥zdném italského politi
kéhoºivota. A jeho dlouhého sdruºení s nulou politikem v ro
e 1970 Craxiho Milánnejvlivn¥j²í ministerský ministerský Itálie velké 80. let vý
hozí
h rané. Na jinéru
e politi
ká spojení neu£iní politika.Polní vodítko k Izrael
·m jest°áb·m.Ministerské ministerské Ariel oznámení Sharonu, ºe plánuje demontáº ºidovský
hurovnání v Gaze Gazy i jako n¥která urovnání ve West ban
e ²okovalo a 
hytilo lididozor
e obojím v Izraeli a po sv¥t¥. Mnoha vypov¥d¥l plán Sharonu jako trik. Aletoto p°ekvapení bylo wrong-headed ze za£átku. Navzdory zp·sobu, to £asto vy-padá k 
izin
·m, debaty v Izraeli o budou
nosti okupovaný
h území nikdy nebylyomezeny k jest°áb·m a k holub·m. Jako v²e v Izraeli pro
es je sloºit¥j²í, ºe se zej-ména kde jest°ábi jsou týkáni. Vlastn¥ jsou dva druhy izraelský
h jest°áb·: hovorjeden v¥
ný ideologi
ký a jiné strategi
ký.



A.1. In-Domain Evaluation 127PC Translator 2007 BLEU 8.48%Berlus
oni v úzký
h. . . Patná
t let pozd¥ji, pán Berlusoni rozum¥l , ºe italský státní monopol na tele-vizi by ne by nep°eºila a strmý start 
o stal se Itálií- ovo hlavní v soukromémvlastni
tví mediální skupina. Ale vy nevyhrajete v TV a ob
hodu nemovitostí bezpravý
h politi
ký
h spojení. Na obou p°íleºitoste
h, Berlus
oni p°e
hytra£ený jehokonkurenti výhybkou se So
ialists, v dob¥ rostou
í hv¥zdy italského politi
kého ºi-vota. Jeho dlouhé spojení s Bettino Craxi, Milan- ovo nejvlivn¥j²í politik v 1970-ovo a Itálie- ovo ministerský p°edseda skrz velkou £ást 1980- ovo, za£ít brzo. Nadruhé stran¥, politi
ké spojení neud¥lají politika.A polní pr·vod
e po izraelský
h jest°ábe
hMinisterský p°edseda Ariel Sharon- ovo oznámení ºe on plánuje rozebrat ºidovskáosídlení v Pásmu Ghazy, stejn¥ jako n¥jaká osídlení na západním b°ehu, ²okovalia 
hy
ené lidi mimo stráº v Izraeli a kolem sv¥ta. Mnoho odsuzovaného Sharon-ovo plánu jak trik. Ale to p°ekvapení bylo zarputilé od za£átku. Navzdory 
est¥ to£asto vzhlíºí k outsider, diskuse v Izraeli o budou
nosti obsazený
h oblastí nikdynebyly uv¥zn¥né v jest°ábe
h a skoká
h. Jako v²e
hno v Izraeli, pro
es je ví
 komp-likovaný, zvlá²t¥ kde jest°ábové se týkají. Základním zp·sobem, tam jsou dva druziizraelský
h jest°áb·: volat jednoho druha ideologi
kého a dal²í strategi
kého.Moses T+C, CzEng 0.7 data only BLEU 14.64%Berlus
oni v kout¥. . . Patná
t let nato, p°i£emº Berlusoni signor italského státního monopolu tele-vize, a to by nebylo p°eºít a impulsem za£alo to, 
o se stalo v Itálii v hlavnímsoukromém vlastni
tví mediální skupiny. Ale 
oºpak zvít¥zit v televizi a nemovi-tosti podnikatelské bez pat°i£né politi
ké konexe. V obou p°ípade
h Berlus
onioutwitted soupe°·m tím, ºe stran¥ní so
ialist·, v dob¥ rostou
í hv¥zdy italskéhopoliti
kého ºivota. Jeho dlouhá spojitost se Bettino Craxi, Milan 's nejvlivn¥j²ípoliti£kou v sedmdesátý
h a italského premiéra po v¥t²inu osmdesátý
h let, za£alabrzy. Na druhé stran¥ v²ak politi
ké konexe nejsou vytvo°it politik.Sm¥°ování k izraelským jest°áb·m oblasti,Ministerského p°edsedy Ariela �arona "je oznámení, ºe plány na odstran¥ní ºidov-ský
h osad v pásmu Gazy, stejn¥ jako n¥které osady na západním b°ehu, má za-sko£en a 
hy
en lidí mimo gardy, a to jak v Izraeli a po 
elém sv¥t¥. Mnozíodsoudili �aron·v plán jako trik. Ale to, ºe p°ekvapení se mýlí hlavou od za£átku.Navzdory tomu, aby byla £asto vypadá pro nezasv¥
ené debaty v Izraeli o budou
-nosti na okupovaný
h území
h nebyly nikdy neomezují na jest°ábi a holubi. Jakov²e v Izraeli, pro
es je mnohem sloºit¥j²í, zvlá²t¥ pokud jest°ábi jsou znepokojeni.V zásad¥ existují dva druhy izraelský
h jest°áb·: volání jednoho druhu ideologi
kéa ostatní strategi
ké.



128Moses T+C, LM from SYN2006 BLEU 15.91%Berlus
oni v zálivu. . . O patná
t let pozd¥ji, signor Berlusoni po
hopili, ºe italský státní monopoltelevize by to nep°eºije a skok - za£alo to hlavní, 
o se stalo v Itálii v soukromémvlastni
tví mediální skupiny. Ale vy zvít¥zit v televizi a realitní £innost bez pat°i£népoliti
ké konexe. V obou p°ípade
h Berlus
oni outwitted soupe°·m tím, ºe stran¥níso
ialist·, v dob¥ stoupají
í hv¥zdy italského politi
kého ºivota. S Bettino Craxijeho dlouhé sdruºení, Milan 's nejvlivn¥j²ím politikem v sedmdesátý
h a italskýpremiér po v¥t²inu z osmdesátý
h let, za£al brzy. Na druhé stran¥ v²ak politi
kékonexe nejsou vytvo°it politikem.Vodítko pro oblasti izraelský
h jest°áb·Premiéra Ariela �arona "je oznámení, ºe plány na odstran¥ní ºidovský
h osadv pásmu Gazy, stejn¥ jako n¥které osady na západním b°ehu, byl ²okován a 
hytilod lidí, kte°í st°eºí jak v Izraeli a na 
elém sv¥t¥. Mnozí odsoudil �aronovu plánujako trik. Ale to p°ekvapení bylo ²patné - stojí od samého za£átku. Navzdory tak,jak to £asto vypadá pro 
izin
e v Izraeli, debaty o budou
nosti na okupovaný
húzemí
h nikdy nebyly omezeny na jest°ábi a holubi. Jako v²e v Izraeli, pro
es jemnohem sloºit¥j²í, a to zejména v p°ípad¥, ºe jest°ábi jsou znepokojení. V zásad¥existují dva druhy izraelský
h jest°áb·: volání jednoho druhu ideologi
ké a dal²ístrategi
ké.Google Translate, as of May 15, 2008 BLEU 21.14%Berlus
oni v úzký
h. . . Patná
t let poté, Signor Berlusoni po
hopil, ºe italský státní monopol na tele-vizní by nep°eºili a jump-za£alo to, 
o se stala Itálie v soukromém vlastni
tví,hlavní mediální skupiny. Ale nemusíte vyhrát v TV a realitní £innost bez právopoliti
ké spojení. V obou p°ípade
h Berlus
oni outwitted jeho konkurenti o vle£kas so
ialist·, v dob¥ stoupají
í hv¥zdy na italského politi
kého ºivota. Jeho dlouhéspoluprá
i s Bettino Craxi, Milan nejvlivn¥j²ím politikem v 1970 a Itálie premiérprost°edni
tvím mnohem z roku 1980 se za£al brzy. Na druhou stranu, politi
képropojení nenu´te politikem.Pole Pr·vod
e izraelské HawksMinisterský p°edseda Ariel Sharon je oznámení, ºe plány likvida
e ºidovský
h osadv pásmu Gazy, stejn¥ jako n¥který
h osad na západním b°ehu Jordánu, byl ²okována ulovené lidí z stráºe, jak v Izraeli a po 
elém sv¥t¥. Mnoho vypov¥zena �aron·vplán jako trik. Ale to p°ekvapení bylo ²patné-£ele od za£átku. Navzdory tomu, ºezp·sob, jak to £asto vypadá na outsidery, diskuze v Izraeli o budou
nosti okupo-vaný
h území, nebyla nikdy omezena na jest°ábi a holubi
e. Stejn¥ jako v²e
hnov Izraeli, ºe 
elý pro
es je mnohem sloºit¥j²í, zejména pokud se jedná o jest°ábi.V zásad¥ existují dva druhy izraelský
h jest°áb·: Výzva jednoho druhu ideologi
k-ý
h a jiný
h strategi
ký
h.



A.2. Out-of-Domain Evaluation 129Referen
e translationBerlus
oni v úzký
h. . . O patná
t let pozd¥ji signor Berlus
oni po
hopil, ºe se italský státní televiznímonopol neudrºí, a 
hopil se p°íleºitosti, která dala vzniknout nejv¥t²í italskémediální skupin¥ v soukromý
h rukou. V televizním a realitním byznysu ov²emnem·ºete vít¥zit bez správný
h politi
ký
h styk·. V obou p°ípade
h Berlus
onivyzrál nad svými konkurenty tím, ºe stranil so
ialist·m, tehdej²í stoupají
í hv¥zd¥italského politi
kého ºivota. Velmi brzy za£alo jeho dlouholeté p°átelství s Bet-tinem Craxim, nejvlivn¥j²ím milánským politikem 70. let a italským ministerskýmp°edsedou po v¥t²inu 80. let. Na druhé stran¥ platí, ºe politi
ké konexe nevytvo°ípolitika.Klí£ k ur£ování izraelský
h jest°áb·Prohlá²ení ministerského p°edsedy Ariela �arona, ºe hodlá odstranit ºidovské osadyz pásma Gazy a n¥které osady ze Západního b°ehu Jordánu, ²okovalo a zasko£ilolidi jak v Izraeli, tak po 
elém sv¥t¥. Mnozí �aron·v plán odsoudili jako úskok.Ona p°ekvapenost ale byla od po£átku pomýlená. Navzdory tomu, jak se v¥
£asto jeví 
izin
·m, vnitroizraelské debaty o budou
nosti okupovaný
h území senikdy neomezovaly na jest°áby a holubi
e. Tento pro
es, jako v²e
hno v Izraeli,je sloºit¥j²í, obzvlá²t¥ 
o se jest°áb· tý£e. V zásad¥ existují dva druhy izraelský
hjest°áb·: jednomu °íkejme ideologi
ký a druhému strategi
ký.A.2 Out-of-Domain EvaluationThis se
tions illustrates the performan
e of various MT systems on newstext. For our 
ontributions (et
t and two setups of Moses), we 
an talkabout evaluation out of the original domain, be
ause no texts from a similarsour
e or of a similar type are available in our training data.As this parti
ular test set was translated on demand for the purposes ofWMT 08, we 
an be nearly sure that none of the third-party systems hada

ess to the referen
e translations.Sour
e text, WMT 08 News TestFood: Where European in�ation slipped upThe skyward zoom in food pri
es is the dominant for
e behind the speed up ineurozone in�ation. November pri
e hikes were higher than expe
ted in the 13eurozone 
ountries, with O
tober's 2.6 per
ent yr/yr in�ation rate followed by3.1 per
ent in November, the EU's Luxembourg-based statisti
al o�
e reported.O�
ial fore
asts predi
ted just 3 per
ent, Bloomberg said. As opposed to the US,UK, and Canadian 
entral banks, the European Central Bank (ECB) did not 
utinterest rates, arguing that a rate drop 
ombined with rising raw material pri
es



130and de
lining unemployment would trigger an in�ationary spiral. The ECB wantsto hold in�ation to under two per
ent, or somewhere in that vi
inity.New Russia-Ukraine gas row fearsA fresh gas pri
e dispute is brewing between Ukraine and Russia, raising the riskthat Russian exports of the fuel to western Europe may be a�e
ted. Most ofRussia's gas exports to the European Union (EU) are piped through Ukraine andany row between the two nations is keenly wat
hed. Kiev has warned that ifMos
ow raises the pri
e it has to pay for the gas it will 
harge Russia highertransit fees. A previous dispute between the two last year redu
ed supplies to EUstates.et
t, fa
tored output nodes, preserve stru
ture BLEU 3.36%Food :, kdyº kde evropská in�a
e zakopla.Skyward zoom potravin 
en je dominantní síla ry
hlosti vysoké eurozone in�a
e.Listopadu 
enové zvý²ení bylo vy²²í, neº o£ekával ve 13 eurozone zemí
h, °íjen 2.6pro
enta yr / yr in�a
e míra ²el 3.1 pro
enta v listopadu, unie je lu
emburskoaº, zaloºený statisti
ký ú°ad report. P°edstavitel odhady p°edpovídal pouhé 3pro
enta, bloomberg °ekl. Odmítal usa, británie a kanadský
h 
entrální
h bankevropská 
entrální banka e
b omezí úrokové sazby, tvrdil, ºe míry pokles, spojujerostly hrubé materiálu 
eny a klesala zam¥stnanosti by vyvolá in�a£ní spirálu. E
b
h
e, má in�a
i two pro
enta a ona v tomto okolí.Nová rusko ukrajiny plynu °ada se obává.Nového plynu 
eny sporu, je, brewing mezi ukrajinou a mezi rusko zvý²il riziko, ºeruské vývozy paliva západní evropa mohly ovliv¬ovat. Nejv¥t²í rusko je plynu ex-porty evropské unie eu vzdu²né ukrajiny a jakákoli °ada mezi two zem¥mi naléhav¥sleduje. Kyjev varoval, ºe, moskva zvý²í 
enu, je má, platí plynu, její zaplatí ruskovy²²í dopravy poplatky. Poslední spor mezi two posledním rokem sníºil zdroje eustát·.Te
toMT BLEU 6.94%Potravina: kde evropská in�a
e klopýtla.Skyward, ºe se zv¥t²í, v 
ená
h potraviny je dominantní platnost za ry
hlostí na-horu v eurozón¥ in�a
i. �e zvý²ení listopadu 
eny byla vy²²í, neº se o£ekával ve 13eurozóná
h zemí
h s °íjnem 2,6 desetipro
entní yr/yr in�a£ní sazbou následují
í 3,1pro
entem v listopadu, Luxembourg-based statisti
ký ú°ad EU uvedl. �e ú°edníkp°edpov¥di p°edpov¥d¥l práv¥ 3 pro
enta, Bloomberg °ekl. �e se stav¥l proti USAproti UK a proti kanadským 
entrálním bankám, Evropan 
entrální banka (ECB)nesníºila úrokové sazby £lov¥k, ºe by pau²ální kapka kombinovaná r·st surový
h
en materiálu a poklesem nezam¥stnanosti vyvolala in�a£ní spirály. ECB 
h
edrºet in�a
i k pod dv¥ma pro
entu nebo n¥kde v této blízkosti.
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hy.�erstvé plynové 
enové sporné, ºe je pivo mezi Ukrajinou a mezi Ruskem zvý²ení,riziko ºe ruské vývozy paliva do západní Evropy mohou být ovlivn¥ny. Nejv¥t²ívývoz· Ruska plynu do Evropana svazu (EU) je pí
hnut Ukrajinou a jakýkoli °ádekmezi dv¥ma národy pronikav¥ je sledován. Kyjev varoval, ºe, pokud Moskva zvý²í
enu, ºe to má zaplatit za plyn, to bude ú£tovat Rusko vy²²í tranzitní poplatky.P°ed
hozí spor mezi dv¥ posledním rokem sníºil dodávky na EU státy.PC Translator 2007 BLEU 8.41%Jídlo: Kde evropská in�a
e klopýtlaK nebi najet transfokátorem potravinové 
eny je dominantní síla za ry
hlostí na-horu v eurozone in�a
i. Listopad zvý²ení 
en byla vy²²í neº o£ekávaný v 13 euro-zone zemí
h, s °íjnovým 2.6 pro
ent yr/yr míry in�a
e následované 3.1 pro
entv listopadu, EU- ovo Luxembourg - based statisti
ký ú°ad ohlásil. O�
iální p°ed-pov¥di p°edpovídaly jen 3 pro
ent, Bloomberg °ekl. Jak proti
h·dný k US, UK, akanadské úst°ední banky, Evropská 
entrální banka (ECB) ne °eºe úrokové sazby,argumentování ten p°epo£íta
í pokles v kombina
i se stoupáním surovina 
eny asestupná nezam¥stnanost spou²´ in�a£ní spirála. ECB Ch
i drºet in�a
i pod dvapro
ent, nebo kdesi v tom sousedství.Nová Russia - Ukraine plynová °ada bojí seA £erstvý plynový 
enový spor va°í mezi Ukrajinou a Ruskem, p¥stování riziko tyruské exporty paliva západní Evropa m·ºe být ovlivn¥ný. V¥t²iny ruský
h plyno-vý
h export· k Evropské unii (EU) jsou vedení potrubím skrz Ukrajinu a n¥jaký/kaºdý /ºádný °ada mezi dv¥ma národy je nad²en¥ sledovaný. Kyjev varoval ºejestli Moskva zvedne 
enu, kterou to musí platit za plyn, který to bude ú£tovatRusku vy²²í poplatky tranzitu. A p°ed
hozí spor mezi dv¥ma minulým rokemsníºené dodávky EU stojí.Moses T+C, CzEng 0.7 data only BLEU 9.75%Jídlo: kam evropská in�a
e sklouzla nahoru,K tomu, ºe vzlétl je²t¥ vý²e p°iblíºit 
eny potravin je dominantní silou v pozadíury
hlí v eurozón¥ in�a
e. Listopadové 
enové zvý²ení bylo vy²²í, neº se o£ekávalo,ºe v °íjnu 13 zem¥ eurozóny, s tím, ºe 2, 6 pro
enta Yr / Yr míru in�a
e následovaná3, 1 pro
enta v listopadu, EU a Lu
embursko - zaloºený statisti
ký ú°ad ohlásil.O�
iální p°edpov¥di p°edpov¥d¥ly práv¥, 3 pro
ent, Bloomberg °ekl. Na rozdílod USA, Británii a kanadskou 
entrální banky, evropská 
entrální banka (ECB),nikoliv sníºit úrokové sazby, a tvrdí, ºe sazby klesnou spojovány s rostou
ími 
enamisurovin a klesají
í nezam¥stnanosti vyvolává in�a£ní spirále. ECB si 
h
e udrºetin�a
i, aby se podle dvou pro
ent, nebo n¥kde v t¥
hto míste
h.Nové Rusko - Ukrajina plynu obává po°adí.



132A £erstvé 
eny plynu bublají spor mezi Ukrajinou a Ruskem, zvý²í riziko, ºe ruskýexport paliva pro západní Evropu, m·ºe být ovlivn¥n. V¥t²ina ruský
h vývoz·plynu do evropské unie (EU) je zaveden prost°edni
tvím Ukrajiny a kaºdá °adamezi ob¥ma zem¥mi je naléhav¥ sledoval. Kyjev upozornila, ºe pokud Moskva zvý²í
ena, která má platit za plyn bude ú£tovat Rusko vy²²í
h tranzitní
h poplatk·. Ap°ed
hozí spor mezi t¥mito dv¥ma loni sníºí dodávky do £lenský
h stát· EU.Moses T+C, LM from SYN2006 BLEU 11.93%V p°ípad¥ potravin sklouzla do evropské in�a
e:Vzhledem k tomu, ºe vzlétl je²t¥ vý²e p°iblíºit 
eny potravin je dominantní silouza ury
hlení v eurozón¥ in�a
e. V listopadu byly vy²²í neº o£ekávané zvý²ení 
enyv oblasti zem¥ eurozóny, 13. °íjna 's 2, 6 pro
enta s Yr / Yr míru in�a
e 3, 1 pro-
enta, následované v listopadu, EU v Lu
emburku statisti
ký ú°ad hlásí zaloºený.Jen 3 pro
enta o�
iální p°edpov¥di p°edpov¥d¥l, Bloomberg °ekl. Na rozdíl odameri
ký
h, britský
h a kanadský
h 
entrální
h bank, evropská 
entrální banka(ECB), nikoliv sníºit úrokové sazby, a tvrdí, ºe sazby klesnou spolu s rostou
ími
enami surovin a klesají
í nezam¥stnanosti vyvolalo in�a£ní spirále. ECB 
h
eudrºet in�a
i do dvou pro
ent, nebo n¥kde v t¥
hto míste
h.Nové Rusko - Ukrajina plynu obává °ádek.A £erstvé 
eny plynu bublají spor mezi Ukrajinou a Ruskem, zvý²í riziko, ºe ruskývývoz paliva do západní Evropy, m·ºe být ovlivn¥n. V¥t²ina ruský
h vývoz· plynudo evropské unie (EU) jsou pí²´ala p°es Ukrajinu a kaºdý °ádek mezi ob¥ma národyje naléhav¥ st°eºen. Kyjev jiº varoval, ºe pokud Moskva zvy²uje 
enu, která se máplatit za plyn bude ú£tovat vy²²í tranzitní poplatky v Rusku. A p°ed
hozí spormezi dv¥ma v lo¬ském ro
e sníºené dodávky pro státy EU.Google Translate, as of May 15, 2008 BLEU 12.82%Strava: Tam, kde se evropské in�a
e str£ila doNa obloze zoom 
en potravin, je dominantní silou ury
hlení in�a
e v eurozón¥.Listopad r·st 
en byl vy²²í neº se o£ekává v 13 zemí
h eurozóny, v °íjnu na 2,6pro
enta r / r míra in�a
e následoval o 3,1 pro
enta v listopadu, EU, Lu
embursko-zaloºené statisti
kého ú°adu hlá²ena. Ú°ední prognózy p°edpov¥d¥t jen 3 pro
enta,Bloomberg °ekl. Na rozdíl od USA, Velké Británii, a kanadské 
entrální banky,Evropská 
entrální banka (ECB) nebyla sníºení úrokový
h sazeb a tvrdil, ºe mírapoklesu v kombina
i s rostou
í 
eny surovin a klesají
í nezam¥stnanosti by podnítitin�a£ní spirály. ECB 
h
e drºet in�a
i pod dv¥ pro
enta, nebo n¥kde v blízkosti.Nové Rusko-Ukrajina plynový °ádku obavyA fresh 
en zemního plynu je pivovarské spor mezi Ukrajinou a Ruskem, a tímzvý²it riziko, ºe ruský vývoz paliva do západní Evropy m·ºe být ovlivn¥na. V¥t²inaz ruského vývozu zemního plynu do Evropské unie (EU) je propojen p°es Ukrajinu



A.2. Out-of-Domain Evaluation 133a jakékoli °ádku mezi ob¥ma národy je horliv¥ sledoval. Kyjev má varoval, ºepokud Moskva se zvy²uje 
ena, kterou musí zaplatit za benzín, ºe Rusko budeú£tovat vy²²í poplatky za tranzit. P°ed
hozí spor mezi dv¥ma posledním ro
esníºena dodávky do stát· EU.Referen
e translationIn�a
e v Evrop¥ posko£ila kv·li potravinámZry
hlují
í se in�a
e nam¥°ená v eurozón¥ je zp·sobena p°edev²ím neustálýmr·stem 
en potravin. Listopadový r·st 
en ve 13 zemí
h eurozóny byl nad o£ekávánívy²²í, po 2,6 pro
enta v °íjnu byla zaregistrována ro£ní in�a
e 3,1 pro
enta, oznámillu
emburský statisti
ký ú°ad Unie. O�
iální p°edpov¥¤ p°edpokládala pouze 3pro
enta, sd¥lila agentura Bloomberg. Na rozdíl od ameri
ké, britské a kanadskéemisní banky Evropská 
entrální banka (ECB) nesníºila základní úrokovou sazbus tím, ºe sníºení by spolu se zvy²ují
ími se 
enami surovin a klesají
í nezam¥stna-ností vedlo ke vzniku in�a£ní spirály. ECB by ráda udrºela míru in�a
e pod dv¥mapro
enty, ov²em v jeji
h blízkosti.Obavy z nové hádky o plyn mezi Ruskem a UkrajinouMezi Ruskem a Ukrajinou práv¥ probíhá spor o 
eny zemního plynu, a tak sezvy²uje riziko toho, ºe mohou být ovlivn¥ny ruské dodávky tohoto paliva do zá-padní Evropy. V¥t²ina ruského paliva vyváºeného do Evropské unie (EU) je vedenapotrubím p°es Ukrajinu a jakýkoliv spor mezi t¥mito dv¥ma zem¥mi je ost°e sle-dován. Kyjev varoval, ºe pokud Moskva zvedne Ukrajin¥ 
eny plynu, bude Ruskuú£tovat vy²²í tranzitní poplatky. P°ed
hozí spor mezi t¥mito dv¥ma minulý roksníºil dodávky do stát· EU.



List of Figures
2.1 Layers of annotation as implemented in PDT. . . . . . . . . . 182.2 VALLEX frames for odpovídat (answer, mat
h). . . . . . . . . 252.3 Identifying re�exivity of a verb o

urren
e. . . . . . . . . . . . 282.4 Upper bound on full frame re
all. . . . . . . . . . . . . . . . . 322.5 ROC 
urves for identifying verbs of 
ommuni
ation. . . . . . . 453.1 Vauquois' triangle of approa
hes to ma
hine translation. . . . 543.2 Number of gaps in a Cze
h senten
e is not bounded in theory. 583.3 Syn
hronous de
omposition of analyti
al trees. . . . . . . . . . 613.4 Sample analyti
al treelet pair. . . . . . . . . . . . . . . . . . . 613.5 Tree substitution and tree adjun
tion. . . . . . . . . . . . . . . 623.6 Sear
hing for δ̂ instead of T̂2 given T1. . . . . . . . . . . . . . . 643.7 Sample translation options. . . . . . . . . . . . . . . . . . . . 693.8 Top-down hypothesis expansion. . . . . . . . . . . . . . . . . . 703.9 A treelet pair with all information preserved. . . . . . . . . . . 723.10 A treelet pair with no frontiers. . . . . . . . . . . . . . . . . . 733.11 A treelet pair with one internal node in ea
h treelet. . . . . . . 743.12 A treelet pair with sour
e lemmas only. . . . . . . . . . . . . . 753.13 Sample de
oding steps in word-for-word fa
tored translation. . 763.14 Experimental settings of synta
ti
 MT. . . . . . . . . . . . . . 784.1 Sample word alignment and extra
ted phrases. . . . . . . . . . 874.2 Sample MT errors in verb-modi�er relations. . . . . . . . . . . 98

134



List of Tables
2.1 Versions of Cze
h National Corpus. . . . . . . . . . . . . . . . 212.2 VALLEX 
overage of Cze
h National Corpus. . . . . . . . . . 212.3 The number of unique frames de�ned in VALLEX. . . . . . . 332.4 Evaluation of dire
t frame suggestion methods. . . . . . . . . . 402.5 ES s
ore for PatternSear
h. . . . . . . . . . . . . . . . . . . . 463.1 Properties of Cze
h 
ompared to English. . . . . . . . . . . . . 583.2 Available Cze
h and Cze
h-English 
orpora. . . . . . . . . . . 593.3 Cze
h and English pro
essing tools. . . . . . . . . . . . . . . . 603.4 BLEU s
ores of syntax-based MT. . . . . . . . . . . . . . . . . 794.1 BLEU s
ores of various translation s
enarios. . . . . . . . . . . 924.2 BLEU s
ores of various granularities of morphologi
al tags. . . 944.3 BLEU s
ores with additional data in T and T+C s
enarios. . 954.4 Human judgements of MT quality (ACL WMT07). . . . . . . 964.5 Human judgements of MT quality (ACL WMT08). . . . . . . 974.6 Manual analysis of verb-modi�er relations in MT output. . . . 97

135


