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Abstract

This thesis explores the mutual relationship between linguistic theories, data
and applications. We focus on one particular theory, Functional Generative
Description (FGD), one particular type of linguistic data, namely valency
dictionaries and one particular application: machine translation (MT) from
English to Czech.

First, we examine methods for automatic extraction of verb valency dic-
tionaries based on corpus data. We propose an automatic metric for estimat-
ing how much lexicographers’ labour was saved and evaluate various frame
extraction techniques using this metric.

Second, we design and implement an MT system with transfer at vari-
ous layers of language description, as defined in the framework of FGD. We
primarily focus on the tectogrammatical (deep syntactic) layer.

Third, we leave the framework of FGD and experiment with a rather
direct, “phrase-based” MT system. Comparing various setups of the system
and specifically treating target-side morphological coherence, we are able to
significantly improve MT quality and out-perform a commercial MT system
within a pre-defined text domain.

The concluding chapter provides a broader perspective on the utility of
lexicons in various applications, highlighting the successful features. Finally,
we summarize the contribution of the thesis.
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Chapter 1

Introduction

Computational linguistics and natural language processing (NLP) try to for-
mally capture and model the complexity of how people communicate using a
natural language. The field has implications in many aspects of the society:
linguistic theories are used as a basis when prescribing what is an appropriate
and correct usage of an expression, they predict how a message is perceived
by a human recipient and justify which information should be included in
language textbooks, dictionaries or lexicons. Applications are built to speed
up human processing of text (such as finding relevant documents, answering
questions, translating from one language to another) or attempt to turn the
computer into a real partner able to share knowledge and obey commands
issued in a natural language.

1.1 Relation between Theory, Applications and Data

Both linguistic theories and NLP applications rely heavily on language data,
which include raw examples of language expressions (written sentences in
books, newspapers, sentences uttered in a dialog, recorded or broadcasted)
as well as more or less formalized data about the language itself (such as
style guides or dictionaries). On the one hand, examples of language usage
can validate linguistic theories (by testing predictions on real data) and on
the other hand, linguistic theories provide a framework for creating derived
language resources like the above mentioned lexicons and dictionaries. Thus,
the theory is tested indirectly, by applying and using a derived resource in a
practical task. NLP applications are related to data even more tightly simply
because the application has some input and output data. Moreover, many
NLP applications need to consult varying amounts of language data in order
to be able to achieve their goal.

In this thesis, we study the mutual relationship between a linguistic the-
ory, an NLP application and language data. We focus on one particular
theory, the theory of Functional Generative Description (FGD), one partic-
ular type of derived language data, namely valency dictionaries, and on one

13
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particular NLP application, namely machine translation (MT). Whenever
possible, we try to include references to relevant alternatives.

1.2 How Theory Should Help

The general belief is that having an established theory as a background of an
NLP application should bring an advantage to the design of the application:
the description of the algorithm could be shorter because it builds on top of
notions defined in the theory, decisions that have to be made should be more
local and thus easier to meet and finally, such an application should produce
outputs of a predictable quality. In short, a good theory should constrain
the internal structure of applications to their advantage.

There is a similar relation between the theory and language data: a good
theory describes which features of unprocessed language data are significant
for a particular task. A theory provides a view on unprocessed data. Given
a task and following the theory, we can “compress” raw language data by
ignoring all but relevant features. Dictionaries are an excellent example of
such compression: instead of scanning large texts and looking at many oc-
currences of a word to understand the meaning and correct ways of using it
in context we just read a short (formal) description.

In an NLP application such as MT, there is always someone who has to
do the difficult job. In the extreme case, all the intelligence is contained
in a “dictionary”, i.e. the “dictionary” provides the expected output of the
application for every possible input. More realistically, we can expect to
know at least parts of the output from the top of our head but we have to
correctly glue them together to create a complete answer. The more or the
better training data we have, the simpler the application can be.

To sum up, a theory provides guidelines on how to build linguistic appli-
cations and how to look at language data. If all goes well, such a theoretical
background will simplify the design and facilitate better performance at the
same time. We study the relationship between the theory and practical ap-
plications throughout the thesis, the structure of which is outlined in the
following section.

1.3 Structure of the Thesis

This thesis has two major parts: the first one is devoted to lexical acquisition
(Chapter 2) and the second one to machine translation (Chapters 3 and 4),
linked as follows:
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One of the key components in the theory of our choice, FGD (briefly intro-
duced in Section 2.2), is the valency theory which predicts how an element in
a grammatically well formed sentence can or must be accompanied by other
elements. The prediction primarily depends on the sense of the governing
word and it is best captured in a lexicon. The motivation to build such
lexicons comes often from applications: some applications simply require a
lexicon to e.g. produce an output text, while some only benefit from them
by improving accuracy or increasing coverage. Finally, a syntactic lexicon is
always a valuable reference for human users of the language. However, the
development of lexicons is costly and therefore we focus on the question of
automatic suggestion of entries based on available textual data. In short,
Chapter 2 explores the theory of FGD and the journey from raw language
data in a text to a compressed formalized representation in a lexicon.

In Chapter 3 we pick an NLP application, the task of machine transla-
tion (MT) in particular, to study how the theory lends itself to practical
employment. After a brief review of various approaches to MT, we follow up
on FGD and describe our system of syntax-based machine translation. The
full complexity of the system is outlined, but the main focus is given only to
our contribution, syntactic transfer. Nevertheless, we implement the whole
pipeline of the MT system and we are able to evaluate MT quality using an
established automatic metric.

Chapter 4 is devoted to a contrast experiment: we aim at English to Czech
MT leaving the framework of FGD aside and using a rather direct method.
We briefly summarize the state-of-the-art approach, so-called phrase-based
statistical machine translation, including an extension to factored MT where
various linguistically motivated aspects can be explicitly captured. Then
we demonstrate how to use factors to improve morphological coherence of
MT output and compare the performance of the direct approach with the
syntax-based system from Chapter 3.

We conclude by Chapter 5, providing a broad survey of documented utility
of lexicons in NLP and summarizing our observations and contributions of
the thesis.
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Chapter 2

Extracting Verb Valency Frames

2.1 Introduction

Verb valency frames' formally describe the potential of a verb to combine
with other elements in the sentence.?

When analyzing an input sentence, the knowledge of the verb frame allows
resolving ambiguity at various levels. Consult e.g. Strandkova-Lopatkova
and Zabokrtsky (2002) for simple examples or Hlavackova et al. (2006) for a
report on a dramatic reduction in parsing ambiguity.

When generating text from some deep representation, the valency frame
of the verb is used to choose the appropriate morphemic form (e.g. the
preposition and case) of a modifier and thus to guarantee grammaticality of
the output. For some systems, the existence of a valency lexicon is a strict
requirement, e.g. RUSLAN (Haji¢, 1987; Haji¢ et al., 1987; Oliva, 1989);
for some systems, the valency information is optionally used do refine the
output, e.g. (Ptacek and Zabokrtsky, 2006).

2.2 FGD and Valency Theory

This section introduces Functional Generative Description (FGD) and its
valency theory, including relevant available data.

2.2.1 Layers of Language Description

Let us briefly summarize key components of FGD related to our task. How-
ever, since it is not the aim of the thesis to review FGD in detail, please

!The term “valency frame” is defined and used in dependency analysis in the framework
of FGD theory, see below. A related notion in phrase-structure grammars is traditionally
called “subcategorization frames”.

2Valency frames can be assigned also to nouns, adjectives and possibly other parts of
speech. We focus on verbs only.

17
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consult relevant books, reports or tutorials, e.g. PDT Guide®, Sgall et al.
(1986), Haji¢ et al. (2006) or Mikulova et al. (2006) to get acquainted with
the theory and to find definitions of all notions not explained here.

FGD as implemented in the Prague Dependency Treebank (Section 2.2.3
below) defines three layers of language representation called morphological
(or m-layer), analytical (a-layer, corresponds to surface syntax) and tec-
togrammatical (t-layer, corresponds to deep syntax) to annotate an origi-
nal text (the wordform, w-layer, where even typographical errors are stored
verbatim, e.g. no space between do and lesa), see Figure 2.1:

@)
4] O jit
E i PRED
' T 1
Q K
= 2 r
= o /N e
. #PersPron ! I les
ACT /| | . DIR3
y N tf‘ i
O ‘§ § 3 .S‘t"“":“‘
AuxS P & &'y
/ /' 14 s“ (\““\
o} S ”OI o °
(_.G ’,/ //‘ frgd ;AuxK
© ¥ / ‘ y ﬁ
¢ ¢ | W i
By‘l q ‘ do \/ !
AuxV AuxV I AP Y@ I
! |
i i ! i lesa |
s
. \J \/ v Y v v
% 6} 6} © O o o
= Byl by Sel do lesa |
byt byt jit do, les |
E| vwveom A ARz N ;
! ! ! ‘
= T T ; T T
)
%‘ \} A\ \] v \/
= O O O @) @)
z Byl by Sel dolesa

Figure 2.1: Layers of annotation of Czech as implemented in Prague Depen-
dency Treebank. (Picture from the PDT Guide.)

M-layer represents the sentence as a sequence of word forms accompanied
by their lemmas (base forms) and morphological tags that include part-of-
speech and many other relevant categories such as case, gender, number, or
tense.

3http://ufal.mff.cuni.cz/pdt2.0/doc/pdt-guide/en/html/
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A-layer and t-layer use a rooted labelled dependency tree to encode the
relations between elements of the sentence. Edge labels, sometimes stored as
an attribute of the dependent node, are called afuns (e.g. Pred, Sb, Obj) at
the a-layer and functors (e.g. PRED, ACT, PAT) at the t-layer and they
formally describe the relation between the governing and dependent node.

At the a-layer, nodes in the tree correspond one to one to words in the
input sentence.

At the t-layer, words bearing meaning have a corresponding node while
all auxiliary words only contribute to some attributes of relevant nodes. On
the other hand, the t-layer includes nodes for entities that were not explicitly
expressed in the sentence but the language syntax and lexicon indicate their
presence in the described situation. This is one of several reasons that make
the t-layer language dependent and not an Interlingua.

2.2.2 Basics of Valency Theory in FGD

In FGD, (verb) valency frames are defined at the t-layer only and de-
scribe formal requirements on the immediate dependents of the verbal t-
node (Panevova, 1980; Haji¢ et al., 2006). Here is a brief summary of the
key definitions:

Participants and free modifiers.
FGD defines the distinction between participants (actants, inner par-
ticipants, arguments) and free modifiers (adjuncts) of a verb strictly
on the tectogrammatical level (and not on the analytic level):

e A participant is characteristic of a verb whereas a free modifier
can modify nearly any verb.

e A participant cannot modify a verb twice within a sentence whereas
a free modifier can be used repeatedly.

The set of participants is fixed in FGD. The participants are: ACT
(actor), PAT (patient), ADDR (addressee), ORIG (origin) and EFF
(effect).

Moreover, FGD employs the principle of shifting: if a verb has only
one participant, it is labelled ACT regardless of its semantic type. Two
participants are always ACT and PAT. Starting from three partici-
pants, the functors are assigned with respect to the semantics of the
modifiers:

ADDR
ACT PAT & EFF
ORIG
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Obligatory and optional modifiers.
The distinction between obligatory and optional modifiers is defined
on the t-level only. To summarize the dialogue test by Panevova
(1980), the modifier is obligatory if its value must be known to the
speaker, although the speaker might decide not to express it explic-
itly on the surface level. This test cannot be performed by a machine
so we can only hope for enough indirect evidence in the context or
enough examples where none of the obligatory modifications was omit-
ted (“deleted” in some literature).

Valency frame.
A valency frame is the set of all participants and obligatory free
modifiers of the verb, i.e. optional free modifiers are not included in
the frame. The lexicon of valency frames is needed for all systems aim-
ing at the t-layer annotation in order to re-create t-nodes for obligatory
modifiers that were omitted (“deleted”) on the surface.

Valency frames, though constructed by observing verb occurrences (and
a bit of introspection for the dialogue test), tend to correspond to verb senses
(Lopatkova and Panevova, 2005)*. Performing a word-sense disambiguation
task for verbs thus equals to identification of the correct frame of the verb
occurrence. In this sense, the lexical unit at the t-layer is not just the verb,
but also the frame used in the particular instance.

2.2.3 Awvailable Data

This section briefly reviews the properties of available data, i.e. relevant
corpora or dictionaries that can be used for automatic extraction of valency
frames.

Czech National Corpus (CNC)

The Institute of Czech National Corpus (CNC?) provides a collection of bal-
anced and non-balanced corpora of Czech text. In our experiments we used
the three versions as listed in Table 2.1.

“In the cases where the valency frame is identical for two or more very distinct verb
senses, separate frames are introduced for each of the senses, formally differing only in a
remark or gloss. Future refinements of the theory, e.g. capturing which lexical classes of
modifications are permitted in the slots, might later differentiate such entries.

Shttp://ucnk.ff.cuni.cz/
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Corpus name  Size (no. words) Balanced
SYN2006PUB 300 mil. no
SYN2005 100 mil. yes
SYN2000 100 mil. no

Table 2.1: Versions of Czech National Corpus.

VALLEX

21

VALLEX (Zabokrtsky, 2005) is a valency lexicon of Czech verbs. VALLEX
uses FGD as its theoretical background and is closely related to the Prague
Dependency Treebank (see PDT below). VALLEX is fully manually anno-
tated based on corpus observations and other available Czech lexicons, which
poses inevitable limits on the growth rate. On the other hand, manual an-
notation ensures attaining data of high quality.

The first version of VALLEX 1.0 was publicly released in 2003 and con-
tained over 1,400 verb entries®. The set of covered verbs was extended to
about 2,500 verb entries in VALLEX 1.5, an internal version released in 2005.
For a remark on VALLEX 2.x see Section 2.2.5 below.

VALLEX 1.0
Occ.  |%| Verb lemmas  [%]
Covered 8.0M 53.7 1.064 3.6
Not covered but frequent 4.1M  27.9 20 0.1
Not covered, infrequent 2.7TM 183 28,385  96.3
Total 14.8M 100.0 29,469 100.0
VALLEX 1.5
Occ. [%| Verb lemmas  [%]
Covered 8.0M 65.6 1,802 6.1
Not covered but frequent  3.5M  23.4 4 0.0
Not covered, infrequent 1.6M 10.9 27,663  93.9
Total 14.8M 100.0 29,469 100.0

Table 2.2: Coverage of VALLEX 1.0 and 1.5 with respect to the Czech Na-

tional Corpus, SYN2000.

6The term verb entry refers to a VALLEX entry which distinguishes homographs and
reflexive variants of the verb. The term verb lemma refers to the infinitive form of the
verb, excluding the reflexive particle. See Section 2.2.4 below.
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VALLEX 1.5 covers around 66% of verb occurrences; 23% of verb occur-
rences belong to few frequent auxiliary verbs, esp. byt, byvat (to be). (See
Table 2.2.) The remaining 10% occurrences belong to verbs with low corpus
frequency. The distribution of verbs closely follows Zipf’s law and there are
about 28k additional verbs needed just to cover our particular corpus. An
automated method of lexical extraction would save a lot of labour.

Since the very beginning, VALLEX has been built with computational
applications in mind, mostly as a means of ambiguity solving at various
levels (lemmatization, tagging, syntactic analysis, sense disambiguation; see
(Stranakova-Lopatkova and Zabokrtsky, 2002) for examples). As a result,
VALLEX is sufficiently formalized and the format is very well documented.

VALLEX applications so far, though very significant, are unfortunately
still mostly academic:

e In an early stage of the development, VALLEX data was used as a basis
for PDT-VALLEX (see below).

e The data format and development technology was reused in the devel-
opment of VerbaLex (Hlavackova and Horak, 2006).

e Observations made by VALLEX developers led to refinements in the
valency theory (Lopatkova and Panevova, 2005).

e VALEVAL data (see below) are used to improve word-sense disam-
biguation (WSD) methods for Czech verbs (Bojar et al., 2005; Semecky
and Podvesky, 2006).

e VALLEX was published as a printed lexicon for linguists and Czech
speakers in general (Lopatkova et al., 2008).

e VALLEX is used when choosing some surface forms in text generation
system by Ptac¢ek and Zabokrtsky (2006).

VALEVAL

In a lexical sampling task called VALEVAL, the inter-annotator agreement of
annotating verb occurrences with VALLEX 1.0 frames was evaluated (Bojar
et al., 2005). Despite the fact that VALLEX provides extensive information
on distribution contexts (as emphasized by Véronis (2003)), only moderate
agreement (in terms of the Cohen’s k statistic (Carletta, 1996)) was achieved.
In general, the level 75% of pairwise agreement we achieved is no worse than

results for other languages, but a better match is certainly desirable. VAL-
EVAL experiment provided VALLEX developers with a valuable feedback
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and a few dozen of serious mistakes were identified in VALLEX entries. A
second experiment would have to be carried out to confirm an improvement
in inter-annotator agreement.

An independent achievement of VALEVAL are the manual annotations
themselves. Cases where our annotators agreed or a final choice was made in
a post-processing phase constitute what we call “Golden VALEVAL” corpus.
Golden VALEVAL contains 108 verbs in 7804 sentences (72426 sentences per
verb), annotated with a single VALLEX frame that was used in the sentence.

Prague Dependency Treebank (PDT) and PDT-VALLEX

Prague Dependency Treebank (PDT, Haji¢ et al. (2006)) is a corpus of Czech
texts extensively manually annotated on the m-, a- and t-layers. Moreover,
each occurrence of a verb and some nouns and adjectives are labelled with a
pointer to the valency frame used in that particular sentence.

PDT-VALLEX (Haji¢ et al., 2003) is a valency lexicon of Czech verbs and
some nouns and adjectives that accompanies the Prague Dependency Tree-
bank (PDT). While based on the same theoretical background as VALLEX,
PDT-VALLEX is tailored to the corpus. In other words, PDT-VALLEX
contains only frames that were actually observed in sentences in PDT.

Similarly to VALLEX, PDT-VALLEX suffers from the problem with too
specific frame entries. For instance, the verb zakotvovat (to anchor), is
equipped with two distinct frames: ACT(1) PAT(4) DIR3(*) (to anchor
sth to sth) and ACT(1) PAT(4) LOC(*) (to anchor sth somewhere). Each
occurrence of zakotvovat is annotated with a single frame reference, even in
cases where there was no DIR3 and no LOC observed in the sentence (e.g. t-
cmpr9410-001-p4s2wll). The annotator’s decision between these two frames
is then based on his or her detailed understanding of the sentence or simply
random, if no clear hints are provided in a wide context. Two annotators are
likely to disagree in the frame chosen, although they would agree on a less
detailed frame.

As Mikulova et al. (2006) mentions (Section 5.2.3.1.1. of the Czech ver-
sion or 6.2.3.1.1. of the English version), there are cases where the decision
is well motivated and allows us to distinguish between concrete, abstract
or idiomatic meaning of the verb. At the same time, it is mentioned that
the annotation consistence is quite low in this respect (not giving any more
specific estimations).
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Other Related Resources

There are far too many related projects of computational lexicography. To
name a few, we acknowledge:

for Czech VerbaLex (Hlavackova and Horak, 2006), Czech Syntactic Lex-
icon (Skoumalovd, 2001) and their surface-syntactic predecessor Brief
(Pala and Sevecek, 1997),

for English FrameNet (Baker et al., 1998; Fillmore et al., 2001; Fillmore,
2002), PropBank (Kingsbury et al., 2002), Lexical Conceptual Struc-
ture (Jackendoff, 1990; Dorr and Mari, 1996), VerbNet (Kipper et al.,
2000; Kipper-Schuler, 2005) and EngValLex (Cinkova, 2006).

A closely related resource is the lexical database WordNet (Fellbaum,
1998) and its European (Vossen, 1998) and Czech (Pala and Smrz, 2004)
versions.

Please consult e.g. Zabokrtsky et al. (2002) or Lopatkova (2003) for a
review of some of the projects.

2.2.4 Structure of VALLEX 1.0, 1.5 and PDT-VALLEX

At the topmost level, VALLEX is a list of verb entries’, see Figure 2.2 for an
example of two of them. The verb is characterized by its headword lemma
(including a reflexive particle se or si, if appropriate) or several spelling vari-
ants of the headword lemma equipped with verb aspect (perfective, imperfec-
tive, biaspectual). Every verb entry includes one or more valency frames
of the verb roughly corresponding to its senses. Every valency frame con-
sists of a set of valency slots characterizing complementations of the verb.
Each slot describes the type of the syntactico-semantic relation between the
verb and its complementation (by means of a tectogrammatical functor,
such as Actor ACT, Patient PAT, Direction DIR1; see FGD) as well as all
allowed surface realizations (morphemic forms) of the verb complementa-
tion (e.g. the required preposition and case or the subordinating conjunction
for dependent clauses).® The slot also indicates obligatoriness of the com-
plementation. Each frame is equipped with a short gloss and an example in
order to help human annotators to distinguish among the frames. Aspectual

"Due to the lack of space we can only briefly summarize the key terms. Please consult
Zabokrtsky and Lopatkové (2004) for a detailed description, examples and explanation of
all the terms not defined here.

8In the cases where any morphemic form typical for a functor can be used to realize
the slot, the set of morphemic forms is left empty.
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odpovidat (imperfective)
odpovidat; ~ odvétit (answer; respond)

o frame: ACT$" ADDRSY PATff(’ltJFAL4 EFFbelby i 2da. e MANN®P
e example: odpovidal mu na jeho dotaz pravdu / Ze ... (he responded to his question

truthfully / that ... )

e asp.counterpart: odpovédét, pf.

e class: communication

odpovidats ~ reagovat (react)

o frame: ACT{" PATZ, , MEANSHP

e example: pokoZka odpovidala na véeli bodnuti zarudnutim (the skin reacted to a bee sting
by turning red)

e asp.counterpart: odpovédéts pf.

odpovidats ~ mit odpovédnost (be responsible)

o frame: ACT{ ADDRG'PAT?!, ,MEANS?

e example: odpovidd za své déti; odpovidd za ztrdtu svijm majetkem (she is responsible for
her kids)

odpovidaty ~ byt ve shodé (match)

e frame: ACT{Y PAT"REG”

e example: feseni odpovidd sviymi vlastnostmi poZadavkim (the solution matches the re-
quirements)

odpovidat se (imperfective)

odpovidat se; ~ byt zodpovédny (be responsible)

e frame: ACT{"ADDRG'PATSY,

e example: odpovidd se ze ztrdt (he answers for the losses)

Figure 2.2: Two VALLEX 1.0 entries for the verb lemma odpovidat (answer,
match).

counterparts of the verb are not assigned to the verb entry as a whole but
to the individual frames: a frame of a verb contains a link to a frame of its
aspectual counterpart, if appropriate.

The operational criteria on when to create a new frame entry of a verb
are described in Lopatkova and Panevova (2005). Roughly speaking, a frame
entry corresponds to a “sense” of the verb based primarily on (deep) syntactic
observations.

We use the term verb lemma to denote the infinitive of the verb, exclud-
ing a possible reflexive particle and homograph distinction, e.g. odpovidat is
the verb lemma for the verbs odpovidat and odpovidat se. The verb lemma is
determined by the morphological analysis of a text.

2.2.5 Frame Alternations and VALLEX 2.x

It should be noted that the slots and sets of allowed morphemic forms listed
in VALLEX describe only the “canonical” realizations of the verb. Each of the
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frames can undergo one of a small set of pre-defined frame alternations.

For instance, if the frame contains an ACT in nominative and a PAT in
accusative, we have to alter the frame for occurrences of the verb in passive—
the PAT becomes expressed by a nominative and the ACT by an instrumen-
tal.

Empirical data for Czech are available in PDT 2.0 where each verb occur-
rence is labelled with a frame identifier from PDT-VALLEX. By comparing
immediate dependents of the verb in the tree with slots of the respective
frame, we can see which alternation (if any) was performed in the sentence.

VALLEX versions 2.0 (Lopatkova et al., 2006a) and 2.5 (Lopatkova et
al., 2008) again extend the set of verbs and frames covered. Inspired by
the alternation model by Levin (1993), they adopt the idea of alternations
as a part of the core design and significantly change the structure of the
lexicon (Lopatkova et al., 2006b). Until there are some corpus examples
annotated with VALLEX 2.x frames, we cannot use this source for most
methods of frame extraction, leaving the additional problem of alternation
learning aside.

2.2.6 Motivation for Automated Lexical Acquisition

As mentioned in Section 2.2.3, VALLEX 1.5 covers about 66% of verb tokens
but only 6% of verb types in CNC. Due to the law of diminishing returns, it
is less and less economical to add entries for new verbs manually. Moreover,
it is believed that less frequent verbs have a simpler structure of frames. See
Stevenson (2003) who discusses the observation by Zipf (1945) and other
experiments confirming that the observation is not just an artifact of fewer
corpus instances available to lexicographers. In total, we could hope that for
most of the remaining verbs, frame information can be derived automatically
given enough corpus evidence (and the frames already defined for other verbs)
and that a lot of lexicographic labour can be thus saved.

From a different perspective, automatically finding examples of VALLEX
entries in a large corpus would allow to:

e add frequencies to VALLEX (to support statistically-aware applications
of the lexicon),

e add selectional restrictions (to support more semantically-informed ap-
plications or to improve the sense-discriminating power of VALLEX in
a way similar to VerbalLex),

e cross-check of VALLEX entries (to test whether all corpus samples of
a verb identified automatically to bear the same VALLEX frame are
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indeed confirmed to be instances of a single verb sense by a native
speaker).

2.3 Simplified Formalization of VALLEX Frames

Section 2.2.4 introduced the formal structure of VALLEX and PDT-VALLEX.
Both of the dictionaries reflect the fact that at the t-layer, the t-lemma in-
cludes the reflexive particle whenever appropriate. On the other hand, most
of our learning methods, as described in Section 2.7 below, do not expect to
start with a t-annotation at hand. Anywhere below the t-layer, it is not easy
to identify the reflexivity of a verb for several reasons: (1) the reflexive par-
ticle does not need to appear next to the verb, (2) it is homomorphic with
the vocalized version of a Czech preposition, and (3) it can represent the
value of a regular frame slot (e.g. PAT or ADDR), indicate passivization as
well as purely syntactically complement the verb lemma (reflexiva tantum).
Although (1) and (2) can be recognized at a high precision, (3) has probably
not been studied yet. Our preliminary experiments (Figure 2.3) indicate that
the verb lemma plays a very significant role in identifying the reflexivity of
the verb. If the verb lemma is not known, the decision procedure makes a
wrong guess in 9 to 16% of cases. Knowing the verb lemma helps to reduce
the error by 5 to 10% absolute.

For the purpose of our learning task, we simplify the structure of VALLEX
as follows.

While VALLEX and PDT-VALLEX provide us with the mapping:

verb lemma
index distinguishing homonyms | — frame
reflexive particle

we treat the valency lexicon as the mapping:

reflexive particle)

verb lemma —
frame

Apart from index distinguishing homonyms, it is easy to convert one
format into the other one and vice versa.

VALLEX and PDT-VALLEX also differ in formal details of morphemic
forms. For instance, PDT-VALLEX uses a nested structure to describe re-
quirements on the presence and attributes of a set of a-nodes (e.g. a prepo-
sition and a noun that form a part of a phraseme) while a simple surface
string of words is used in VALLEX. Again, we simplify the format and treat
all morphemic forms as atomic units.



28

Features Used Average Error [%)]
Verb lemma, Refl seen close 4.83 £ 0.89
Verb lemma+tag, Refl seen 4.96 + 0.86
Verb lemma, Refl seen 5.38 £ 1.30
Verb tag, Refl seen close 9.69 + 1.37
Refl seen close 9.71 £ 1.23
Verb tag, Refl seen 16.06 £ 1.34
Refl seen 16.08 £+ 1.69

e Training data: 7000 occurrences of verbs in golden VALEVAL data.
e Learning goal: Decide whether the VALLEX entry assigned to each verb occurrence

has the reflexive particle se, si or is not reflexive at all.

Procedure: Decision trees (C4.5) using a subset of the following features:

— Verb lemma — the lemma of the verb in question,

— Verb tag — individual features for each morphological category of the verb occur-
rence,

— Refl seen features describing the presence and morphological case of the reflexive
particle se/si before or after the verb in question,

— Refl seen close like “Refl seen” but only particles between the verb in question
and another verb in the sentence are considered.

Evaluation: Average error over 4- to 10-fold evaluation.

Figure 2.3: Average error of identifying the type of reflexivity (non-
reflexive/se/si) of a verb occurrence.

To sum up, we define frame F' = (Refl, Slots) as a tuple where:

e Refl € {void, se, si} is a ternary feature describing the reflexivity of a

verb in the meaning of frame F'.

Slots : Functor — (Oblig, p(MorphemicForms)) is a function assign-
ing an obligatoriness flag Oblig € {obligatory, optional} and a set of
allowed MorphemicForms to any Functor € {ACT, PAT, ...} men-
tioned by the frame.

The function Slots is not total, an undefined mapping for a functor
indicates there is no slot with such functor in the frame. Note that this
formalization does not allow any frame to contain several slots sharing
the same value of Functor.

MorphemicForms is a set of atomic values, each describing one of
all possible morphemic realizations of a modifier. Unlike VALLEX,
we never leave MorphemicForms empty. In the cases where all typ-
ical morphemic forms are appropriate, we explicitly fill the set with
observed verb modifiers and their functors in PDT 2.0.
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2.4 Types of Data Sources

In the following, we use this notation:

V = (V,F,L) denotes a valency lexicon, where V' is the set of verb lemmas
of all verbs contained in the lexicon, F' is the set of all frames defined
in the lexicon and L: V — P(F) is the actual mapping providing each
of the verbs v € V' with a set of frames from F.

In our experiments we can use VALLEX 1.0, VALEVAL or PDT-
VALLEX as our V. The difference between VALLEX 1.0 and VALE-
VAL is both in the set of verbs V covered and the set of known frames

F: Vyargvar, includes only the frames that were actually observed in
golden VALEVAL annotation.

For conciseness, we use dot notation to access individual components
of the structure. For instance, we write Vyarex 1.0.V to denote the set
of verb lemmas contained in VALLEX 1.0.

C = (S,W) denotes a corpus of sentences S = {s; | s; is a Czech sentence}.
Although the order of the sentences in C is not important, we assume
an arbitrary fixed order and use C.WW to refer to the sequence of all
running words in the corpus. C.W; denotes the i™" word in the corpus.

We use a superscript on C to indicate the deepest layer (morphological,
analytical or tectogrammatical) of annotation available for sentences
in C. For instance, C' refers to a corpus with all layers up to the
tectogrammatical analysis.

For C=™ (i.e. a corpus with at least morphological annotation) and
a verb lemma v, we define the function find(v, C=™) to return all oc-
currences (indices to C.W) of the verb with the verb lemma v. The
corpus manager Manatee (Rychly and Smrz, 2004) is a very efficient
implementation of the function find(,-).

In our experiments, we can use PDT 2.0, CNC or VALEVAL as our C,
PDT 2.0 being the only corpus with manual annotation on all layers.

CV = (C,V,0,A) denotes a corpus C with all occurrences O C C.W of
verbs v € V.V annotated with the frame used by the speaker in the
particular sentence. The function A: O — V.F formally represents the
annotation.

VALEVAL and the\combination of PDT 2.0 with PDT-VALLEX are
two examples of CV we have at hand.
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2.5 Learning Task and Evaluation Metrics

Our learning task is to provide a test verb lemma v; with the set of all valid
frames F,,. For the purpose of evaluation of our learning methods, we always
choose vy from a known dictionary V. This allows us to compare F,, to the
manually assigned set of frames V.L(v;). We use the abbreviation “golden
frame set” (G) to refer to V.L(v;) and “hypothesized frame set” (H) to refer
to F,.

Given a test verb lemma v;, how should we evaluate the quality of a
hypothesized frame set H given the golden frame set G?

Methods of frame extraction are usually evaluated in terms of precision
(p) and recall (R) of either frames as wholes or of individual frame elements
(slots). See esp. Korhonen (2002) for a survey and comparison of several
approaches using precision and recall.

Note however that depending on the application, different metrics may
provide different predictions. As pointed out by Zhang et al. (2007), an
HPSG parser benefits more from lexical acquisition methods of a high recall,
not of a high F-score (harmonic mean of precision and recall).

For the richly structured VALLEX-like verb entries, precision and recall
suffer from some limitations:

e frame-based P and R are too rough and penalize the smallest mistake
in frame with the same cost as omission of the whole frame,

e slot-based P and R are too fine-grained and cannot account for the
complexity of verb entry in terms of various combinations of slots.

To provide a simple means of comparison, we report on the frame-based
precision and recall:

_|HNG|

P(H,G) = T (2.1)
_|HNG|

R(H,G) = EaTeT (2.2)

However, our main focus will lie in a novel metric, frame edit distance
and verb entry similarity as defined below.
2.5.1 Frame Edit Distance and Verb Entry Similarity

In Benesové and Bojar (2006), we define the frame edit distance (FED) as
the minimum number of edit operations (insert, delete, replace) necessary to
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convert a hypothesized frame into the correct frame. The metric described in
this section is a refined version that better matches our simplified definition
of frames (see Section 2.3).

For the time being, we assign equal costs to all basic editing operations
(fixing the reflexive particle of the frame or fixing obligatoriness flag, adding
to or removing allowed morphemic forms from a slot). However, the functor
of a slot is considered as fixed. In order to change the functor, one pays for
a complete destruction of the wrong slot and a complete construction of the
correct slot. We consider charging more for slot destruction than for slot
construction in future versions of the metric because we prefer methods that
undergenerate and produce safer frames to methods that suggest unjustified
frames.

In order to evaluate the match between a whole golden frame set G as
contained in the lexicon and a frame set H hypothesized by an automatic
frame-generation procedure, we need to extend F'ED to compare whole sets
of frames (i.e. verb entries in the lexicon). We call this extension entry
similarity (ES) and define it as follows:

. min FED(G,H)
ESH,G) =1~ FED(G,0)+ FED(H,0)

G denotes the set golden verb entries of the verb lemma, H denotes
the hypothesized entries and () stands for a blank verb entry (containing no
frames). min FED(G, H) is the minimum edit distance necessary to convert
the frames in H into the frames in G, including the possible generation of
missing frames or destruction of superfluous frames.

ES attempts to capture how much of lexicographic labour has been saved
thanks to the contribution of the automatic frame-generation procedure. If
the system did not suggest anything (H = ()), the ES is 0%. If the system
suggested exactly all the golden frames (H = G and thus FED(G,H) = 0),
the ES achieves 100%. With this explanation in mind, we will use the term
expected saving (ES) as a synonym to “entry similarity”.

It is important to note that the suggested verb entry or frame can some-
times contain some additional information that should be included in the
golden frameset, but it is not. We perform no special treatment for this
situation and regard the additional information as a mistake of the learning
algorithm, although it is in fact a mistake or omission of the authors of the
lexicon.?

9Thanks to the VALEVAL experiment (Bojar et al., 2005), we know that in a sample
of 100 verb lemmas of verbs, annotators observed about 57 missing frames, 6 inappro-
priately joined or split frames and 12 superfluous frames. Similarly, errors were observed
in VALLEX frame entries: in 16 cases a functor was chosen incorrectly or the slot was
missing and in 12 cases, the morphemic form was incorrect or missing.
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100 T T T

VALLEX: 1.0, full

50 ./ VALLEX: 1.0, funcobl - - - - |
VALLEX: 1.5, full --------

| VAPLE)IC: 1.5|, funlcobl T

Theoretically achievable recall

40 '
0 200 400 600 800 100012001400160018002000

Size of set T of the training lemmas

e Input data: A valency lexicon V, the set of verb lemmas V.V partitioned into a
training T and evaluation F sets, T N E = ().
e Procedure:

1. Collect all full frames of training lemmas 7" into a set K of known frames.

2. For an unseen verb lemma [ € E with golden frames G, evaluate achievable

recall R as the ratio of known frames among golden frames: R = %

Figure 2.4: Upper bound on full frame recall, i.e. frames are not decomposed
into slots.

2.5.2 Achievable Recall without Frame Decomposition

Let us first briefly examine the upper bound on recall of a baseline algorithm.
Given VALLEX frames for some known verb lemmas, the most simple ap-
proach to learning entries for new verbs is to reuse known frames as wholes.

Figure 2.4 summarizes the baseline algorithm and its upper bound on re-
call with respect to the number of training verb lemmas. As we see, if frames
are treated as full frames (i.e. a set of functors including the obligatoriness
flag and the set of allowed morphemic forms), the theoretically achievable
recall of any learning algorithm that uses known frames as wholes is about
92+ 3%. If only the functors and the obligatoriness flags (labelled “funcobl”)
are taken into account when learning and proposing frames, current VALLEX
size proves to suffice: the achievable recall reaches 99 + 1%. However as the
learning curve indicates, this had not been the case until about 1500 verb
lemmas were covered in VALLEX.

It is worth mentioning that the number of frames covered in VALLEX
is still growing, and that the growth is observed even in the least detailed
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VALLEX version: 1.0 1.5
Everything incl. comments 3871 6506
Functors+Oblig+Forms 1142 1711
Functors+Oblig+Forms, ignoring order of Forms 1141 1705
Functors+Oblig+Forms, ignoring frames with a phraseme 1040 1472
Functors+Oblig 427 574
Functors 330 444

Table 2.3: The number of unique frames defined in VALLEX 1.0 and 1.5
depending on how detailed information is used to distinguish frames. Frames
are collected from all verb entries.

definition of frames. Table 2.3 displays the number of frames (collected from
all verb entries) in VALLEX 1.0 and 1.5. If two frames are counted as
different whenever any attribute differs, VALLEX 1.0 contains about 3900
and VALLEX 1.5 about 6500 frames. The other extreme is to consider
frames as sets of functors only, ignoring morphemic forms and obligatoriness.
There are about 330 of these crude frames in VALLEX 1.0 and about 440
in VALLEX 1.5. This indicates that the set of crude frames is by no means
complete yet and that new frames should be expected in more contemporary
Czech data.

To sum up, methods that “reuse” known frames as wholes will face a
significant limit on achievable recall unless they reduce the notion of frame
to the set of functors.

2.6 Lexicographic Process

The aim of this chapter is to automate the creation of VALLEX entries, i.e.
to model the work of a lexicographer.

Atkins (1993), Calzolari et al. (2001) or Stevenson (2003) delimit two
stages in the process of deriving lexical entries:

Analysis: Collecting corpus evidence. The risk connected with this task
is that if there is no underlying theory or no direct application targeted,
important features might remain neglected. This can effectively block
some future applications of the lexicon.

Synthesis: Creating the lexicon entry. The most apparent difficulty is
to make entries consistent throughout the whole lexicon. A central
question is what to include in the lexicon and what to ignore (which
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entries as well as which details within the entries). Here, the only
objective criterion is usually the frequency, however for FGD, Panevova
(1980) offers a valuable insight by introducing the so-called “dialogue
test” to identify obligatory slots (which should thus be included in the
dictionary).

A similar delimitation of our task into the two subtasks can be drawn:

e word sense discrimination, i.e. providing verb occurrences with a sense
or frame label,

e grouping verb occurrences with the same frame and constructing the
formal frame description for the whole group.

Following the delimitation, we now propose three direct methods (Sec-
tion 2.7) and an indirect one (Section 2.9) for automatic frame suggestion.

2.7 Direct Methods of Learning VALLEX Frames

One could think of many ways of how to automatically generate valency
frames for new verbs. This section is devoted to the description and com-
parison of three rather direct methods we developed. The methods are:
WFD (Word-Frame Disambiguation), DSD (Deep Syntactic Distance), and
Decomp (Learning frames by decomposition). An additional method, Pat-
ternSearch (Searching for patterns indicating a frame), is described in Sec-
tion 2.9.

One of the key aspect of each learning method is whether it treats verb
frames as opaque units and is thus limited by the upper bound described in
Section 2.5.2, or whether the method is in principle capable of constructing
completely new types of frames if the data seem to suggest it. The methods
WEFD, DSD and PatternSearch do not consider internal structure of verb
frames at all. Decomp is in principle able to construct new types of frames.

Using the notation as defined in Section 2.4, we can formally describe the
type of training data necessary to learn frames I for a given test verb lemma
Vg

CV and C' where v, ¢ V.V and find (v, C") # 0.

When we have a corpus annotated with frames Ccv (but no examples
for the test verb v;) and a corpus C’' with no explicit annotation of

verbal frames but with some examples of usage of v;, we can use the
methods WFD, DSD and Decomp, as described below.
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V and C where v; ¢ V.V and find (v, C) # 0.

When we have just a seed lexicon V (not covering the verb v;) and a cor-
pus C containing some samples of v, usage, we can use PatternSearch.

2.7.1 Word-Frame Disambiguation (WFD)

Semecky (2007) describes a system for supervised word-frame disambiguation
(WFD). For a training corpus annotated with verb frames CV and a given
verb lemma v (where find(v, C) # ), the system learns to predict the frame
f € V.A(v) for a test sentence s; where no annotation is available. At the
minimum, the corpus has to be analysed at the morphological layer (C™)
but significant improvement is gained if analytical trees are available (C?).
The system converts each occurrence of the verb in the training corpus,
o € find(v, C), into a vector of features describing morphological and surface-
syntactic properties of the verb and its neighbourhood. A similar vector of
features is extracted for the verb v from the test sentence s;. Comparing the
test vector with the training vectors using one of several machine-learning
methods (various vector distance metrics), the system suggests the most
likely frame to the verb v occurring in s;. The system treats verb frames as
opaque symbols with no internal structure and achieves accuracy of nearly
80%.

We can reuse the idea to predict the set of frames F' for a test verb v,.
We first train a chosen classifier on training examples for all known verbs
ignoring their lemmas (i.e. pretending that all annotated verb occurrences
in CV belong to the same verb, namely v;). Given a set of real examples of
vy, i.e. C' annotated at the same layer as C, the classifier will suggest the
most likely frame from all occurrences o € find(v;, C'). In our experiments,
we used MaxEnt classifier by Zhang (2004) but any other classifier such as
decision trees or support vector machines could be used. A very promis-
ing approach would be to use some of discriminative learning methods (e.g.
averaged perceptron, Collins and Roark (2004)) that learn to predict the
most likely frame by contrasting it to other candidates whereas traditional
methods consider each candidate independently estimating its chance to win.

Simply collecting all frames suggested for various examples of the given
verb will give us an estimate which frames should we assign to the verb.
Formally:

F,, :={f |30 € find(v;,C’") s.t. WFD system assigned f to o} (2.3)

Summary of WFD:
e frames opaque
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e input: vy output: Fj,
e required data:
— CV where v, ¢ V.V and
— C'™ora where find(v;, C') # 0

2.7.2 Deep Syntactic Distance (DSD)

One of the drawbacks of WSD described in the previous section is the lack
of a direct link between the theory of valency and the model predicting one
of the frames for a given verb occurrence. In order to address this issue,
we propose a novel metric called Deep Syntactic Distance (DSD). DSD is
directly motivated by valency theory as expressed in guidelines for VALLEX
authors: for each verb occurrence, the underlying deep syntactic analysis of
the sentence is considered.

Given two occurrences o; and oy of a verb (or two distinct verbs) in a
corpus C* annotated at the a-layer, DSD(o1,07) estimates how difficult it
is to believe that the underlying verb frame used in oy is the same as the
frame used in 0. DSD considers the surface realization of each analytical
dependent son; of o; and the likelihood p(F'|son;) of that particular form
to express a tectogrammatical functor F'. The dependents of 0, and oy are
paired assuming a common functor F' for both of them. DSD is the minimum
cost (highest likelihood) over all possible pairings 7, optionally with a penalty
for unpaired dependents in case the verb occurences have a different number
of sons.

DSD(o1,090) = pen(lin : g 1 — p(F|sony) - p(F|sony) (2.4)
(01,02
(son1,sonz,F)Ep

The application of DSD to our task (i.e. providing a test verb v; with a
hypothesized frameset F,) is in essence identical to the well-known nearest
neighbours (NN) machine-learning method: given a training corpus anno-
tated with verb frames CaV and a sample unlabelled observation o; in a
sentence containing v, we evaluate DSD(o,0;) for all labelled observations
o€ (@)O The test observation o, is assigned the same frame as the win-
ning o in the labelled data has. Similarly to the nearest neighbours method,
various modifications of the voting scheme (e.g. k-NN or k-NN weighted by
the distance) might be considered.

Given a corpus C' of example sentences of v;, each sentence in C' will
contribute with a single suggested frame fy.s;. We collect all suggested frames
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and return them as the hypothesized frameset F,,. Formally:

Opest = argmin__ .~ - DSD(o0,0
Jo; € find(v;, C') s.t. best gMmin c gavy.o (0,0¢) }

th = fes e
{ best .fbest = (CGV)'A(Obest)

(2.5)
Another possible application of DSD is to help in consistence checking of
manual annotation in a C*V. Given a verb v € V.V and all its occurrences
O = find(v, C), we can evaluate DSD(oy, 05) for each pair (01,02) € O x O.
All cases where DSD(01,0,) is low but o; and oy have a different frame
assigned in the annotation (@)A as well as all cases with DSD(oy, 07)
high but identical frames assigned, i.e. A(01) = A(03), should be manually
checked. Assuming DSD estimates are correct, the discrepancy between DSD
and manual annotation can suggest an error in the annotation or at least
demonstrate that the differences between frames f; = A(01) and fo = A(02)
are maybe too subtle to be noticed based on purely syntactic information in
the context of the verb.
Summary of DSD:
e frames opaque
e input: vy; output: £,
e required data:
— CoV where v, ¢ V.V, and
— C"™ where find(v;, C") # 0

2.7.3 Learning Frames by Decomposition (Decomp)

Both WFD and DSD assumed frames are opaque units and relied on a simi-
larity between verb occurrences. We now propose a method called Decomp
that decomposes frames into basic building blocks (“frame components”) and
suggests frames for unseen occurrences by combining some of the frame com-
ponents.
___Given a labelled training corpus CV and a test verb v; not present in
CV but present in a separate unlabelled corpus C’, we formulate the goal
of providing v; with a set of frames F,, as a multi-class classification task
using a suitable set E of “frame components”, each describing a particular
aspect of the frame. For instance, the frame components “refl-is-se”, “ACT-
obligatory”, “ACT-can-be-nominative”, ... could be used to describe the
frame “se ACT.obl.nom ...".

Two additional functions are needed: decomp: V.F' — P(FE) to decom-
pose frame into atomic pieces and recomb: P(E) — frame to recombine them
again.
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Algorithm 1 Suggesting frames by decomposition (Decomp).

1. Prepare training data for the multi-class classifier:

2. For each occurrence o of each training verb v in CV

3. Extract “surface features” from the neighbourhood of o, as in WSD.

4 Construct “deep features” from the frame assigned to o:
decomp((@).A(o)).

5. Enter the pair (surface features, deep features) as

a training instance to the classifier.
6. Suggest frame F' for an occurrence oy of a test verb vy:
7. Use the multi-class classifier to predict the set of deep features
D € P(E) for o; based on its observed surface features.
Assign the recombined frame to o;: F' = recomb(D).

®

The multi-class classification is employed in the process as described in
Alg. 1. In our particular case, we use independent binary classifiers instead of
a single multi-class classifier. For each deep feature (i.e. frame component)
independently, we train to predict “present” or “not-present” based on the
full observed context. It is up to the machine learner to identify if any sur-
face features predict that particular frame component more reliably. In our
experiments, we used MaxEnt classifier by Zhang (2004) but any other clas-
sifier such as decision trees (Quinlan, 1986, 2002) or support vector machines
(Cortes and Vapnik, 1995) could be used.

We cannot assume that the learner would be able to suggest frame com-
ponents of morphemic forms not realised in a particular sentence. Instead of
simply collecting all suggested frames, we merge(-) them based on the “skele-
ton” of obligatory slots. For instance, if the frame ACT.obl.nom PAT.obl.acc
was proposed for one verb occurrence and ACT.obl PAT.obl.na+acc for an-
other one, we include a single merged frame in the final suggested frame set:
ACT.obl.nom PAT.obl.{acc,na+acc}.

Formally:

F merge< { f' Jo € find(vy, ) }) 26

s.t. Decomp system assigned f to o

Summary of Decomp:
e frames decomposed and recombined
e input: vy; output: F,
e required data:
— CV where v, ¢ V.V, and
— C'™°r @ where find(v;, C') # 0
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2.7.4 Post-processing of Suggested Framesets

As a consequence of the definition, one of the key properties judged by ES
is the number of frames suggested. For every missing or superfluous frame,
ES charges a significant penalty based primarily on the number of slots of
all unmatched frames.

Certainly, one could try to automatically predict the number of frames
needed for each verb on the basis of the frequency of the verb, some measure
of diversity of syntactic properties or the number of translation equivalents
in a translation dictionary or a parallel corpus. (Frequency alone is a rea-
sonable but not sufficient predictor, there are frequent verbs with relatively
few frames.)

We leave this for further investigation and instead use two methods that
modify a suggested frame set to match the erpected number of frames for
each verb, thus allowing the methods to peek at the test data partly:

SIMPLE If the number of expected frames is higher than the number of sug-
gested frames, additional baseline frames (ACT.obl.nom PAT.obl.acc)
are added to reach the expected number of frames. If the number of
expected frames is lower than the number of suggested frames, only
the frames with high support are added. (The definition of support
is straightforward: for WFD and DSD it is the number of verb oc-
currences that were assigned that particular frame. For Decomp, the
latter case never happens, as Decomp always suggests fewer frames
than expected, see the discussion below)

CLUST If the number of expected frames is higher than the number of
suggested frames, we use the same approach as SIMPLE: add baseline
frames up to the expected frame count. If the number of expected
frames is lower, we use automatic clustering and centroid selection to
choose a set of the expected size containing the most representative
frames. The objects that enter our clustering algorithm are frames
suggested by individual verb occurrences. We compute the frame edit
distance (FED, Section 2.5.1) between every pair of frame occurrences
and use the clustering toolkit by Karypis (2003) to cluster the occur-
rences to the expected number of frame groups. Groups are chosen to
maximize distances between the groups and minimize distances within
the groups. For each of the groups we then choose a representative (a
“centroid”): the frame with the lowest distance to all other members in
the group.
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Method  Options Fit Frame Count Avg ES  Avg Prec Avg Rec
WEFD no 21.4+4.7 41414 26.9+11.1
DSD noPenalize no 25.6+3.1 20.5+14.0 3.842.8
Baseline 1xACT-PAT no 27.7+4.9 45.7+21.9 9.7+6.8
DSD noPenalize, ReqObl no 33.945.6 1.54+3.1 3.4+6.9
DSD Penalize no 38.5+8.5 6.0+5.2 13.7£11.0
Baseline 2xACT-PAT no 38.844.9 22.8411.0 9.74+6.8
Decomp no 43.0%+1.5 4.2+2.1 4.3+2.0
DSD Penalize, ReqObl no 43.1+8.1 7.9+6.5 14.2+11.3
Baseline 3xACT-PAT no 43.7+£3.6  15.247.3 9.7+6.8
Baseline avgxACT-PAT no 45.3+4.6 5.9+2.7 9.7£6.8
Baseline 4xACT-PAT no 46.8+3.2  11.44+5.5 9.7+6.8
DSD Penalize CLUST 61.7+£6.9 10.14+6.8 10.14+6.8
DSD Penalize, ReqObl CLUST 62.249.3  11.7£8.0  11.7+8.0
Decomp SIMPLE/CLUST 64.54+3.6 4.5+2.0 4.5+2.0
Baseline expectedx ACT-PAT  SIMPLE 65.3+3.8 9.74+6.8 9.7+6.8
WFD CLUST 66.0+3.1 13.44+8.6 13.44+8.6
WEFD SIMPLE 67.84+41.1  12.7£3.3  12.6+3.3

Table 2.4: Evaluation of direct frame suggestion methods.

2.8 Empirical Evaluation of Direct Methods

Table 2.4 summarizes the results of the various methods in terms of expected
saving (ES), frame precision (Prec) and frame recall (Rec), averaged over
individual verb lemmas. The 4+ bounds represent standard deviations based
on four iterations of a 10-fold evaluation.

The methods were evaluated on VALEVAL verbs and framesets from
VALLEX 1.0. In every fold we pick one tenth of verb lemmas as the test verbs.
The remaining 9/10s of verbs and their VALEVAL occurrences are available
to the methods for training. Every method has to produce a frameset for
every test verb based on unlabelled occurrences in the VALEVAL corpus.

The column “Fit Frame Count” specifies whether the method had access
to the expected (correct) number of frames and how did it use it (SIMPLE
or CLUST). Our “Baseline” method is to suggest a frame with two obligatory
slots: ACT.obl.nom PAT.obl.acc. The baseline method varies in the number
of times we repeat this frame in the suggested frameset, e.g. 2x indicates
that every verb receives the frame twice while avgx uses the training verbs
to find out the average number of frames per verb.

We observe that baseline methods generally perform better than our
frame-suggestion techniques both in case when the methods do not access
the expected number of frames as well as when they do. It is only WFD
(CLUST and SIMPLE) that insignificantly outperforms the baseline.
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An inspection of detailed logs revealed that the methods differ in reasons
of failure. Both WFD and DSD tend to suggest too many different frames
(which is confirmed by a relatively higher recall). The reason for this overgen-
eration lies simply in abundance of training frames leading to a big variety in
frames suggested. By fitting the output frame count to the expected number
of frames, we significantly raise the ES. The very extreme improvement can
be seen for WFD, jumping from the worst rank (ES 21.4%) to the best one
(ES 67.8%).

For DSD, we evaluated two minor modifications of the method. First, as
we see, penalizing superfluous slots helps to find more relevant training ob-
servations (compare Penalize vs. noPenalize). Second, we consider only such
training observations where all obligatory slots are most likely realised on the
surface (ReqObl). The set of training observations thus better represents the
possible frames and DSD gains a small improvement in ES. Alternatively,
we could group training verb occurrences by semantic class and use only a
restricted set of most typical instance of a frame from each group, partially
approaching the method described in Section 2.9 below.

Decomp on the other hand fails because it produces too few (and too
short) frames. Only very few frame components such as ACT.obl.nom or
PAT.obl.acc are proposed. For other frame components, the learners have
seen too many negative training examples (instances of other frames without
that particular component) so they tend to undergenerate.

In conclusion, the key aspect of frame suggestion as evaluated by ES, is to
guess correctly the number of frames. Beyond that, more complicated meth-
ods as Decomp or DSD do not bring any improvement. A more promising
approach is to carefully filter training examples and to add additional fea-
tures to the relatively straightforward method of WFD. We further discuss
the problems of frame extraction methods in Section 2.10 below.

2.9 PatternSearch: Guessing Verb Semantic Class

As seen in Section 2.8, direct methods of frame suggestion averaged over all
verbs do not bring much improvement over the baseline. In this section, we
tackle frame suggestion indirectly, via the semantic class of a verb (sense).
In this preliminary experiment published in Benesova and Bojar (2006), we
focus on one class, namely the verbs of communication (see Section 2.9.2
below).

As noted by Véronis (2003), syntax provides extremely powerful tool for
sense discrimination and likewise, verbs with a similar sense tend to have
similar frames (Levin, 1993). With these observations in mind, we formulate
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the syntactic pattern typical for verbs expressing communication and search
a given corpus C for verbs appearing in the pattern (thus the name Pat-
ternSearch). If a substantial portion of the verb’s occurrences matches the
pattern, we assume the verb belongs to the communication class. As such,
the VALLEX entry of the verb should include at least one frame conveying
the communication meaning.

In the following we provide details on semantic verb classes as available
in VALLEX (Section 2.9.1) and verbs expressing communication in particu-
lar. In Section 2.9.3, we evaluate automatic identification of verbs belonging
to this semantic class. Finally Section 2.9.5 utilizes class identification to
prescribe valency frames to unseen verbs.

2.9.1 Verb Classes in VALLEX

Verb classes were introduced to VALLEX primarily to improve data consis-
tence because observing whole groups of semantically similar verbs together
simplifies data checking.

Classification of verbs into semantic classes is a topical issue in linguistic
research (see e.g. Levin’s verb classes Levin (1993), PropBank Palmer et al.
(2005) , LCS Jackendoff (1990); Dorr and Mari (1996), FrameNet Baker et al.
(1998)). Verb classes as defined in VALLEX 1.0 and 1.5, though influenced by
the various streams of research, are built independently and using a custom
classification, mainly due to differences in the theoretical background and
in the methods of description. VALLEX classes are built thoroughly in a
bottom-up approach: frame entries already listed in VALLEX are assigned
to a common class mostly on the basis of syntactic criteria: the number of
complements (actants and free modifications), their type (mainly obligatory
or optional), functors and their morphemic realizations. It should be noted
that verb classes and their descriptions in VALLEX 1.5 are still tentative
and the classification is not based on a defined ontology but it is to a certain
extent intuitive.

VALLEX 1.5 defines about 20 verb classes (communication, mental ac-
tion, perception, psych verbs, exchange, change, phase verbs, phase of action,
modal verbs, motion, transport, location, expansion, combining, social inter-
action, providing, appoint verb, contact, emission, extent) that contain on
average 6.1 distinct frame types (disregarding morphemic realizations and
complement types).
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2.9.2 Verbs of Communication

The communication class is specified as the set of verbs that render the
situation when “a speaker conveys information to a recipient”. For the sake
of simplicity, we use the term verbs of communication to refer to verbs
with at least one sense (frame) belonging to the communication class.

Besides the slots ACT for the “speaker” and ADDR for the “recipient”,
verbs of communication are characterized by the entity “information” that
is usually expressed as a dependent clause introduced by a subordinating
conjunction or as a nominal structure.

There are some other classes (mental action, perception and psych verbs)
that also include the “information” element in the frame but they usually
do not require any slot for a “recipient”. However, in a small number of
cases when the addressee which represents the “recipient” does not appear
explicitly in the valency frame of a verb of communication (e.g. speak or
declare), this distinctive criterion fails.

Verbs of communication can be further divided into subclasses accord-
ing to the semantic character of “information” as follows: simple information
(verbs of announcement: fici (say), informovat (inform), etc.), questions
(interrogative verbs: ptdt se (ask), etc.) and commands, bans, warnings,
permissions and suggestions (imperative verbs: porucit (order), zakdzat (pro-
hibit), etc.). The dependent clause after verbs of announcement is primarily
introduced by the subordinating conjunction Ze (that), interrogative by zda
(whether) or jestli (if ) and imperative verbs by aby (in order to) or at (let).

2.9.3 Automatic Identification of Verbs of Communication

In the present section, we investigate how much the information about the
valency frame combined with the information about morphemic realizations
of valency complements can contribute to an automatic recognition of verbs
of communication.

The experiment is primarily based on the idea that verbs of communica-
tion can be detected by the presence of a dependent clause representing the
“information” and an addressee representing the “recipient”.

This idea can be formalized as a set of queries to search the corpus for
occurrences of verbs accompanied by: (1) a noun in one of the following
cases: genitive, dative and accusative (to approximate the ADDR slot) and
(2) a dependent clause introduced by one of the set of characteristic subor-
dinating conjunctions (Ze, aby, af, zda or jestli) (to approximate the slot of
“information”).

We disregard the freedom of Czech word order which, roughly speak-
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ing, allows for any permutation of a verb and its complements. In reality,
the distribution of the various reorderings is again Zipfian with the most
typical ordering (verb+N234+subord) being the most frequent. In a sense,
we approximate the sum of occurrences in all possible reorderings with the
first, maximal, element only. On the other hand we allow some intervening
adjuncts between the noun and the subordinating clause.

We use the Manatee corpus manager (Rychly and Smrz, 2004) to perform
the searches in Czech National Corpus.

2.9.4 Evaluation against VALLEX and FrameNet

We sort all verbs by the descending number of occurrences of the tested
pattern. This gives us a ranking of verbs according to their “communica-
tive character”, typical verbs of communication such as 7ici (say) appear on
top. Given a threshold!, one can estimate the class identification quality
in terms of a confusion matrix: verbs above the threshold that actually be-
long to the class of verbs of communication (according to a golden standard)
constitute true positives (T'P), verbs below the threshold and not in the
communication class constitute true negatives (T'N), etc.

A well-established technique of the so-called ROC curves allows to com-
pare the quality of rankings for all possible thresholds at once. We plot the
true positive rate (I'"PR = T P/P where P is the total number of verbs of
communication) against the true negative rate (I'NR = TN/N, N stands
for the number of verbs with no sense of communication) for all thresholds.

We evaluate the quality of class identification against golden standards
from two sources. First, we consider all verbs with at least one frame in
the communication class from VALLEX 1.0 and 1.5 and second, we use all
possible word-to-word translations of English verbs listed in FrameNet 1.2!!
Communication frame and all inherited and used frames (For an explanation,
see Fillmore et al. (2001); Fillmore (2002); the English-to-Czech translations
were obtained automatically using available on-line dictionaries). As the
universum (i.e. P + N), we use all verbs defined in the respective version
of VALLEX and all verbs defined in VALLEX 1.5 for the FrameNet-based
evaluation.

Figure 2.5 displays the TPR/T N R curve for verbs suggested by the pat-
tern V+N234+subord. The left chart compares the performance against
various golden standards, the right chart gives a closer detail on the contri-
bution of different subordinating conjunctions.

10Gee Kilgarriff (2005) for a justification of this simple thresholding technique as opposed
to more elaborated methods of statistical significance testing.
Unttp://framenet.icsi.berkeley.edu/
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Figure 2.5: Verbs of communication as suggested by the pattern
V-+N234+subord, evaluated against VALLEX and FrameNet (left) and eval-
uated against VALLEX 1.0 for the three main contributing subordinating
conjunctions (aby, Ze, zda) independently (right).

The closer the curve lies to the upper right corner, the better the perfor-
mance is compared to the golden standard. With an appropriate threshold,
about 40% to 50% of verbs of communication are identified correctly while
20% of non-communication verbs are falsely marked, too. We get about the
same performance level for both VALLEX and FrameNet-based evaluation.
This confirms that our method is not too tightly tailored to the classification
introduced in VALLEX.

The right chart in Figure 2.5 demonstrates that the contribution of differ-
ent subordinating conjunctions is highly varied. While aby and Ze contribute
significantly to the required specification, the verbs suggested by the pattern
with zda are just above the baseline. (The conjunctions af and jestli had too
few occurrences in the pattern.)

Weak Points of Patterns

On the one hand, our queries are not able to find all verbs of communication
for the following reasons: (1) We search only for cases where the “information”
element is expressed as a subordinate clause. While nominal structures can
be used here, too, allowing them in the queries would cause confusion with
verbs of exchange (e.g. give or take). (2) Verb occurrences with some of the
core frame elements not expressed on the surface are not identified by the
queries.

On the other hand, the fact that conjunctions aby and Ze are homony-
mous lowers the precision of the queries and introduces false positives. We
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Suggested frames ES %]

Specific frame for verbs of communication, default for others 38.00 4+ 0.19
Baseline 1: ACT(1) 26.69 +0.14
Baseline 2: ACT(1) PAT(4) 37.55+£0.18
Baseline 3: ACT(1) PAT(4) ADDR(3,4) 35.70 £0.17
Baseline 4: Two identical frames: ACT(1) PAT(4) 39.11 £0.12

Table 2.5: Expected saving when suggesting frame entries automatically.

tried to eliminate some of incorrectly chosen verbs by a refinement of the
queries. (For instance, we omitted certain combinations of demonstratives
plus conjunctions: tak, aby (so that), tak, Ze (so that), etc.) A further prob-
lem is caused by cases when the identified dependent clause is not a member
of the valency frame of the given verb but depends on the preceding noun.
PatternSearch does not make use of the syntactic analysis of the sentence
and thus cannot reject such examples.

2.9.5 Application to Frame Suggestion

The method of searching corpus for typical patterns described in the previous
section can contribute to frame extraction task in the following manner: for
all verbs occurring frequently enough in the typical pattern, we propose the
most typical “communication frame” consisting of ACT, ADDR and PAT
(all obligatory). For each verb independently, we assign only conjunctions
discovered by the queries to the PAT. Every verb of communication can
have some additional senses not noticed by our method but at least the
communication frame should be suggested correctly.

Table 2.5 displays the ES (expected saving, Section 2.5.1) as reported in
Benesova and Bojar (2006) of four various baselines and the result obtained
by our method. When we assume that every verb has a single entry and this
entry consists of a single frame with the ACT slot only, S estimates that
about 27% of editing operations was saved. Suggesting an ACT and a PAT
helps even better (Baseline 2, 38%), but suggesting a third obligatory slot for
an addressee (realized either as a dative (3) or an accusative (4)) is already
harmful, because not all the verb entries require an ADDR.

We can slightly improve over Baseline 2 if we first identify verbs of com-
munication automatically and assign ACT PAT ADDR with appropriate sub-
ordinating conjunctions to them, leaving other verbs with ACT PAT only.
This confirms our assumption that verbs of communication have a typical
three-slot frame and also that our method managed to identify some of the
verbs correctly.
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Our ES scores are relatively low in general and Baseline 4 suggests a
reason for that: most verbs listed in VALLEX have several senses and thus
several frames. In this experiment, we focus on the communication frame
only, so it still remains quite expensive (in terms of ES) to add all other
frames. In Baseline 4, we suggest a single verb entry with two core frames
(ACT PAT) and this gives us a greater saving because most verbs indeed ask
for more frames.

2.10 Discussion

All our direct methods (WFD, DSD and Decomp) perform relatively poorly
compared to the baselines. It is only the very specific experiment with verbs
of communication (Section 2.9) that provides somewhat promising results.

Before suggesting general conclusions, let us briefly mention similar pro-
jects. Of the many lexicographic enterprises we name just a few that closely
relate to our observations.

2.10.1 Related Research

Rosen et al. (1992) describe formal representation of valency frames for the
machine translation system MATRACE (Haji¢ et al., 1992) and design a pro-
cedure to convert subcategorization frames from Oxford Advanced Learners’
Dictionary (Hornby, 1974).

Skoumalova (2001) implements rules to convert surface frames collected
from a compilation of manual dictionaries (BRIEF, (Pala and Sevedek, 1997))
to tectogrammatical valency frames, including explicit encoding of allowed
passivization alternations. The resulting lexicon is utilized in a toy LFG
grammar.

Bond and Fujita (2003) describe a successful semi-automatic method for
extending a Japanese valency dictionary by copying frames from translation
equivalents: a verb not covered in the target valency dictionary is trans-
lated (using a simple translation dictionary) to English and back to arrive
at a known verb. Frames of the known verb are copied to the newly added
verb, subject to various forms of manual filtering. The experiment con-
firms that verb valency is strongly related to verb meaning (and exploits
the fact that translation preserves meaning). A surprising observation is
that manual checking whether the new frame belongs to a verb performed
either by untrained annotators validating correctness of a paraphrase or by
trained lexicographers validating the frame assignment as such is equally
time-consuming. In practice, Bond and Fujita (2003) suggest to prefer the
lexicographers because the whole entry is checked and also because untrained
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annotators often judge the grammaticality of the paraphrase unreliably. An
automatic learner (C5.0, Quinlan (2002)) failed to improve over the base-
line and Bond and Fujita (2003) thus mention that frame entry construction
inevitably requires manual effort.

Kipper-Schuler (2005) follows up on experiments by Kingsbury (2004) to
automatically cluster verbs appearing in Penn Treebank for the purpose of
VerbNet extension. A manual evaluation of the clusters revealed that only
about 5% of verbs were assigned to a reasonably accurate cluster and could
have been added to the VerbNet. Reasons for the little precision include
(1) highly skewed domain of the Penn Treebank (mostly financial texts), (2)
lack of syntactic context in the sentences that would enable to disambiguate
between verb usages and finally (3) no semantic classification of verbs’ argu-
ments. Apart from the domain dependence, the same problems apply to our
automatic extraction of VALLEX frames. A more fruitful approach was to
exploit clustering of verbs already present in WordNet from where 36-40%
of suggested verbs could have been used.

Dorr and Jones (1996) successfully use WordNet and syntactic descrip-
tions of verbs in LDOCE (Procter, 1978) to semantically classify verbs not
covered in Levin’s verb classes (Levin, 1993): for each new verb, synonyms
are found in WordNet. All Levin classes the synonyms belong to are con-
sidered as candidate classes, but only the single class is chosen that best
matches the syntactic description of the verb in LDOCE. The procedure can
also hypothesize a new class in case none of the verb’s synonyms is covered
in Levin’s classification or the syntactic descriptions of the class and the verb
differ too much. Manual evaluation on a small sample suggested 82% accu-
racy: the class chosen was one of plausible classes for the verb in 82% of
verbs. The syntactic descriptions from LDOCE serve as a filter to restrict
the set of classes suggested by the synonyms. We believe that corpus evi-
dence could be used as an alternative filtering technique if LDOCE syntactic
description were not available. The key component though remains WordNet
as the source of synonyms.

Schulte im Walde (2003) carries out extensive research on automatic clus-
tering of German verbs into semantic classes based on syntactic criteria and
also selectional restrictions. After fine-tuning the set of features she is able
to automatically derive semantic clustering of verbs that ignores sense am-
biguity of verbs (hard clustering method, each verb is assumed to belong
to one class only). However, her classes are described by a set of frames,
so one could use this method to assign sets of frames to verbs. The main
difference between her and our goal is thus the surface vs. deep syntactic
layer of representation.
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2.10.2 Lack of Semantic Information

The failure of our direct methods suggests that purely surface syntactic ob-
servations are not sufficient to derive deep syntactic (or semantic) general-
izations.

Successful projects mentioned above always include some ready-made
component capable of semantic generalization employed either for the verb
itself or for the modifiers. For instance, synonyms of the verb from WordNet
or synonyms derived via translation to another language are used as source
verbs to copy the syntactic information from.

Though not clearly confirmed by Schulte im Walde (2003), selectional
restrictions on verb modifiers are a significant predictor of verb sense distinc-
tions. We thus believe that both further refinement of VALLEX verb classes
as well as the addition of selectional restrictions could improve the accuracy
of our application.

2.10.3 Deletability of Modifiers

One of the main problems of our direct methods is that they do not ex-
plicitly handle “deleted” modifiers, i.e. frame slots that are not realized on
the surface. It is only the method PatternSearch that inherently solves the
problem by ignoring all occurrences of the verb in question where some of
the modifiers required by the pattern are missing, though lowering the recall
of the method.

An approach similar to Sarkar and Zeman (2000) where frame subsets
are considered or the hierarchical browsing of verb occurrences suggested by
Bojar (2003) would have to be incorporated into the methods.

2.10.4 Need to Fine-Tune Features and Training Data

The features we use in our direct methods WFD and Decomp are rather
straightforward observations from the close (syntactic) neighbourhood of the
verb. We also train our models on all available instances of all training verbs.

Possibly, the noise in the training data could be reduced to a great extent
by carefully restricting the set of training verbs to a few representatives
(e.g. one frame per semantic class or a limited number of centroids selected
automatically from all known frames). We could also use some selection of
training sentences, such as the promising method of selecting syntactically
simple sentences as implemented in Bojar (2003) but aiming at sentences
with most modifiers realized on the surface.

Similarly, it is well known that feature selection is vital for performance of
classification methods. In out preliminary experiments with WFD features,
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every feature type contributed to the performance and we could not restrict
the set of features in any way without a loss. This suggests that additional
features (or feature combinations) are still to be sought for.

2.10.5 Lack of Manual Intervention

One of the reasons of the failure of our direct methods is undoubtedly the
the aim at an end-to-end automatic approach.

Our PatternSearch experiment as well as related approaches include a
manual filtering step of either the suggestions the system has made or the
patterns the system searches for.

We envisage a lexicographers’ tool that automatically “summarizes” cor-
pus evidence to clusters based on e.g. DSD or the surface-syntactic features
used in WFD. The lexicographer would then mark occurrences not fitting
well to the suggested cluster, thus creating some WFD-annotated training
data for the verb. In the next iteration, the system would try to follow
the suggested classification and summarize further corpus data, possibly em-
ploying some semi-supervised clustering techniques (Basu, 2005). A similar
approach, though limited to independent pairs of verb and one of its modi-

fiers and without the proposed annotation loop, is successfully employed in
Word Sketches (Rychly and Smrz, 2004).

2.11 Conclusion and Further Research

Chapter 2 was devoted to methods of automatic extraction of valency frames
based on corpus evidence. We motivated the creation of valency dictionaries
by expected contribution to various NLP applications. Then we reviewed
basic formal aspects of valency frames in FGD and simplified the definition
for our purpose.

A novel metric (ES) was proposed to evaluate directly how much of a
lexicographer’s work is saved using a method of automatic suggestion of
verb frames. We proposed three rather direct methods of frame suggestion
(WFD, DSD and Decomp) and one indirect method that exploits semantic
classification of the verbs (PatternSearch, Section 2.9).

We have to conclude that the task of automatic creation of lexicon entries
is a very complex process. None of our direct methods was able to signifi-
cantly improve over the baseline. As confirmed by related research for other
languages, manual intervention in the process seems inevitable.

More or less successful methods such as (Bond and Fujita, 2003) or our
PatternSearch exploit the fact that verbs with a similar meaning have similar
valency frames. In general, an acceptable performance of the methods of
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extraction is achieved only in setups aimed at high precision (and thus low
recall) that heavily filter available data but this may negatively affect the
utility of the lexicons in applications (Zhang et al., 2007).

Ideally, the lexicons we have just described would improve NLP appli-
cations, e.g. the quality of machine translation (MT). To achieve this, the
methods would have to be extended to acquire bilingual valency dictionaries.
As other research suggests (Ikehara et al., 1991; Boguslavsky et al., 2004;
Fujita and Bond, 2004; Liu et al., 2005), such dictionaries might indeed help,
though we are not aware of any conclusive improvement over the state-of-the-
art translation quality, see Section 5.1.3. For Czech-English pair, we carried
out some preliminary experiments with extracting parallel verb frames (Bojar
and Haji¢, 2005).

In the following, we do not take any side steps and move towards the goal
of machine translation, describing a syntax-based (Chapter 3) and a phrase-
based (Chapter 4) MT system. Later, we will come back to a more general
discussion on the utility of lexicons in NLP applications in Chapter 5.
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Chapter 3

Machine Translation via Deep Syntax

In the previous chapter we studied methods of automated lexical acquisi-
tion. Resulting syntactic lexicons can serve as a resource for various NLP
applications. In order to better empirically understand the applicability of
lexicons, we now focus on a single practical task, namely machine translation
(MT). After a brief review of approaches to MT (Section 3.1), we describe a
syntax-based MT system. In theory, this is the approach where deep syntac-
tic lexicons could be later used.

3.1 The Challenge of Machine Translation

Machine translation (MT) is an intriguing task. Researchers have hoped in
automated text translation since the era of John von Neumann and Alan
Turing (see Hutchins (2005) or the IBM press release in 1954"), and the field
has seen both spectacular failures? as well as surge of activity and success. For
a review including a summary of issues that an MT system has to overcome
see e.g. Dorr et al. (1998).

While fully automatic high-quality MT is still far beyond our reach, re-
stricted settings often allowed to create highly successful applications such
as computer tools aiding human translation (e.g. translation memories, see
Lagoudaki (2006)), closed-domain fully automatic systems (Chevalier et al.,
1978), or tentative machine translation to enable at least a partial access to
information in a foreign text (e.g. web services Babelfish® or Google Trans-
lation?).

1http://vmw—OS .ibm.com/ibm/history/exhibits/701/701_translator.html

2Failure to meet expectations causing a decline in funding for a decade (ALPAC, 1966;
Hutchins, 2003) or failure to produce any working system in the EUROTRA project (Oak-
ley, 1995; Hutchins, 1996). Note however, that there are quite conflicting objectives in MT
research and even a failing project can bring a very significant progress in theoretical un-
derstanding or language modelling, see Rosen (1996) for a discussion.

*http://babelfish.altavista.com/

‘http://translate.google.com/
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In essence, the task of MT is to efficiently store and correctly reuse pieces
of texts previously translated by humans to translate sentences never seen so
far.®> Some methods follow the line very tightly, not being able to produce
any word or expression not seen in some training text, while some methods
(most notably all rule-based or dictionary-based ones) operate with a very
distilled representation of words and their translations. In the latter setup,
training texts as well as a broad world knowledge were processed by human
experts, so there is no well defined set of training data and no direct link
between the data and the system. Further serious empirical questions arise
as we start to investigate what the best “piece” of a sentence to reuse might
be, as discussed below.

3.1.1 Approaches to Machine Translation

One of the key distinctions between various MT systems is the level of lin-
guistic analysis employed in the system, see the MT triangle by Vauquois
(1975) in Figure 3.1. Roughly speaking, an MT system is “direct” or “shal-
low” if it operates directly with words in source and target languages and
it is “deep” if is uses some formal representation (partially) describing the
meaning of the sentence. We examine both of the approaches further below.

Interlingua .o

Deep Syntactic Layer S deep >

Surface Syntactic Layer

Morphological Layer «--—--—-—-- direct transfer

Figure 3.1: Vauquois’ triangle of approaches to machine translation.

Another distinction is made between “rule-based” and “statistical” (or
“stochastic” or “data-driven”) systems. In rule-based systems, all the imple-
mentation work is done by human experts, in statistical systems, humans
design a probabilistic model describing the process of translation and use
large amounts of data to train the model.

To an extent, we do not consider the difference between “rule-based” and
“statistical” approaches being too big. In both cases, there has to be someone

SHuman translators proceed well beyond this boundary, trying to understand the de-
scribed situation based on other information sources and e.g. to enrich the translation
with all explanation necessary for the reader.
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who does some data abstraction at some point. In hand-crafted rule-based
systems, the abstraction happens as human translators learn the two lan-
guages and formally describe the rules of translation. In data-driven systems,
the abstraction according to the specification of the model happens either at
a pre-processing phase (collecting statistics) or on the fly when searching for
sentences similar to the one that is to be translated (example-based meth-
ods). Moreover, many rule-based systems rely on large linguistic resources
such as translation dictionaries anyway and in such cases, automated creation
of such resources is highly desirable (see Chapter 2).

Direct (Shallow) MT

Introduced by King (1956) and applied by Brown et al. (1988), shallow MT
systems treat words in a input sentence as more or less atomic units and
attempt a direct conversion of the input sequence of atomic units into the
output sequence of atomic units.

For instance, the Czech sentence Dobré rdno can be translated to English
Good morning using a simple word-to-word translation dictionary. The lin-
guistic inadequacy of the direct approach becomes apparent if we consider
a similar sentence Dobry vecer (Good evening). A completely uninformed
system wastefully needs two new entries to the dictionary (Dobry for Good
and wvecer for evening) because it has no idea that both Dobré and Dobry
are just two morphological variants of the same word. In order to reverse
the translation direction, some additional information has to be provided to
make the system correctly choose between Dobry and Dobré for Good.

In short, direct approaches start with little or no linguistic theory and in-
troduce further extensions to the process of translation only when necessary.
As we will see in Chapter 4, such systems can still deliver surprisingly good
results, and more so once some (limited) linguistic knowledge is implemented
into the design of the system.

Deep Syntactic MT

First machine translation systems as well as prevailing commercial MT sys-
tems to date (e.g. SYSTRAN) incorporate principles from various linguistic
theories from the very beginning.

For an input sentence represented as a string of words, some symbolic
representation is constructed, possibly in several steps. This symbolic repre-
sentation, with the exception of a hypothetical Interlingua, remains language
dependent, so a transfer step is necessary to adapt the structure to the target
language. The translation is concluded by generating target-language string
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of words from the corresponding symbolic representation.

In the following, we focus on one particular instance of this symbolic rep-
resentation, namely the framework of FGD (see Section 2.2). We experiment
primarily English-to-Czech translation via the t-layer (deep) and compare it
to transfer at the a-layer (surface syntax). Previous research within the same
framework but limited to rather surface syntax includes the system APAC
(Kirschner and Rosen, 1989).

Other examples of a deep syntactic representation, in essence very sim-
ilar to FGD, include Mel’¢uk (1988), Microsoft logical form (Richardson et
al., 2001) or the ideas spread across the projects PropBank (Kingsbury and
Palmer, 2002), NomBank (Meyers et al., 2004) and Penn Discourse Tree-
bank (Miltsakaki et al., 2004). MT systems are also being implemented in
less dependency-oriented formalisms such as the DELPH-IN initiative (Bond
et al., 2005) for HPSG (Pollard and Sag, 1994). See e.g. Oepen et al. (2007)
and the cited papers for a recent overview of the LOGON project that com-
bines various formalisms of deep syntactic representation.

3.1.2 Advantages of Deep Syntactic Transfer

The rationale to introduce additional layers of formal language description
such as the tectogrammatical (t-) layer in FGD is to bring the source and
target languages closer to each other. If the layers are designed appropriately,
the transfer step will be easier to implement because (among others):

e t-structures of various languages exhibit less divergences, fewer struc-
tural changes will be needed in the transfer step.

e t-nodes correspond to auto-semantic words only, all auxiliary words are
identified in the source language and generated in the target language
using language-dependent grammatical rules between t- and a- layers.

e t-nodes contain word lemmas, the whole morphological complexity of
either of the languages is handled between m- and a- layers.

e the t-layer abstracts away word-order issues. The order of nodes in
a t-tree is meant to represent information structure of the sentence
(topic-focus articulation). Language-specific means of expressing this
information on the surface are again handled between t- and a- layers.

Overall, the design of the t-layer aims at reducing data sparseness so less
parallel training data should be sufficient to achieve same coverage.

Moreover, the full definition of the t-layer includes explicit annotation
of phenomena like co-reference to resolve difficult but inevitable issues of
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e.g. pronoun gender selection. As tools for automatic tectogrammatical
annotation improve, fine nuances could be tackled.

3.1.3 Motivation for English—Czech

This thesis focuses on translation from English to Czech. Apart from personal
reasons, our choice has two advantages: both languages are well studied and
there are available language data for both of the languages.

Table 3.1 summarizes some of the well known properties of Czech lan-
guage®. Czech is an inflective language with rich morphology and relatively
free word order. However, there are important word order phenomena re-
stricting the freedom. One of the most prominent examples are clitics, i.e.
pronouns and particles that occupy a very specific position within the whole
clause. The position of clitics is rather rigid and global within the sen-
tence. Examples of locally rigid structure include (non-recursive) preposi-
tional phrases or coordination. Other elements, such as the predicate, sub-
ject, objects or other modifiers of the verb may be nearly arbitrarily per-
muted. Such permutations correspond to the topic-focus articulation of the
sentence. Formally, the topic-focus articulation is expressed as the order of
nodes at the t-layer.

Moreover, like other languages with relatively free word order, Czech al-
lows non-projective constructions (crossing dependencies). Only about 2%
of edges in PDT are non-projective, but this is enough to make nearly a
quarter (23.3%) of all the sentences non-projective. While in theory there is
no upper bound on the number of gaps (Holan et al., 2000; Kuhlmann and
Ma&hl, 2007) in a Czech sentence (see Figure 3.2), Debusmann and Kuhlmann
(2007) observe that 99% of sentences in PDT contain no more than one gap
and are well-nested, which makes them parsable by Tree-Adjoining Gram-
mars (TAG, Joshi et al. (1975), see also the review by Joshi et al. (1990)).
Note that other types of texts may exhibit more complex sentence structure.

3.1.4 Brief Summary of Czech-English Data and Tools

Table 3.2 summarizes available Czech monolingual and Czech-English par-
allel corpora, including the available annotation. We use the tools listed
in Table 3.3 to automatically add any further layers of annotation and to
generate plaintext from the deep representation.

fData by Nivre et al. (2007), Zeman (http:;//ufal.mff.cuni.cz/~zeman /projekty /neproj),
Holan (2003), and Bojar (2003). Consult Kruijff (2003) for empirical measurements of

word order freeness.
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Czech English
Morphology rich limited
> 4,000 tags 50 used
> 1,400 actually seen
Word order free with rigid rigid

global phenomena

Known dependency parsing results
Labelled edge accuracy 80.19% 89.61%
Unlabelled edge accuracy 86.28% 90.63%

Table 3.1: Properties of Czech compared to English.

Proti odvolani se zitta  Petr v praci rozhodl protestovat
Against dismissal aux-refl tomorrow Peter at work decided to object

Peter decided to object against the dismissal at work tomorrow.

The construction, taken from Holan et al. (2000), is based on two verbs and
intermixed modifiers where the dependency relations are disambiguated
on the basis of syntactic criteria (e.g. obligatory reflexive particle se or
subcategorization for a particular preposition or case) and semantic criteria
(e.g. verb in past tense cannot accept time modifier referring to future):
The non-projective dependencies are se and Peter depending on the main
verb decided but appearing within the span of dependents of to object:
against dismissal, tomorrow, at work. With the main verb itself, there are

3 gaps within the yield of to object.

Figure 3.2: Number of gaps in a Czech sentence is not bounded in theory.
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Monolingual Corpora

Name and version Sents. Tokens
Annotation

Czech National Corpus (e.g. SYN2000d) 6.8M 114M
automatic m-layer, (Kocek et al., 2000)

PDT 2.0 50k/115k  0.8M/2.0M

manual t-layer/manual m-layer, (Haji¢, 2004a)

Parallel Czech-English Corpora

Name and version Czech /English
Annotation Sents. Tokens

PCEDT 1.0 (Cmejrek et al., 2004) 22k/49k  0.5M/1.2M
Czech/English automatic m-, a- and t-layer

CzEng 0.7 (Bojar et al., 2008) 1.4M/1.4M  21M/23M

automatic sentence alignment, tokenized

Table 3.2: Available Czech monolingual and Czech-English parallel corpora.

A new version of Prague Czech-English Dependency Treebank (PCEDT
2.0) is currently under development. PCEDT 2.0 will not only be about
twice the size of PCEDT 1.0, but more importantly the annotation at both
Czech and English t-layers will be manual. This will allow to collect reliable
estimates of structural divergence at the t-layer and train deep-syntactic
transfer models on highly accurate data.

3.2 Synchronous Tree Substitution Grammar

Synchronous Tree Substitution Grammars (STSG) were introduced by Haji¢
et al. (2002) and formalized by Eisner (2003) and Cmejrek (2006). They
capture the basic assumption of syntax-based MT that a valid translation of
an input sentence can be obtained by local structural changes of the input
syntactic tree (and translation of node labels) while there exists a derivation
process common to both of the languages. Some training sentences may
violate this assumption because human translators do not always produce
literal translations but we are free to ignore such sentences in the training.
As illustrated in Figure 3.3, STSG describe the tree transformation pro-
cess using the basic unit of a treelet pair and the basic operation of tree
substitution. Both source and target trees are decomposed into treelets
that fit together. Each treelet can be considered as representing the minimum
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Step Tool Used

English morphological analysis (text—m) Minnen et al. (2001)

English tagging (text—m) Ratnaparkhi (1996) or Brants (2000)
English constituency parsing (m—phrase structure) Collins (1996)

English dependencies (phrase structure—a) hand-written rules

English tectogrammatical parsing (a—t) rules similar to Cmejrek et al. (2003)
Czech morphological analysis (text—m) Haji¢ (2004b)

Czech dependency parsing (m—a) McDonald et al. (2005)

Czech tectogrammatical parsing (a—t) Klimes (2006) or Zabokrtsky (2008a)
Czech tectogrammatical generation (t—text) Ptacek and Zabokrtsky (2006)

Table 3.3: Tools used for the preparation of training data and in the end-to-
end evaluation.

translation unit. A treelet pair such as depicted in Figure 3.4 represents the
structural and lexical changes necessary to transfer local context of a source
tree into a target tree.

Each node in a treelet is either internal ( e, constitutes treelet internal
structure and carries a lexical item) or frontier ( 7, represents an open slot
for attaching another treelet). Frontier nodes are labelled with state labels
(such as “ Sb” or © NP”), as is the root of each treelet. A treelet can be
attached at a frontier node only if its root state matches the state of the
frontier.

A treelet pair describes also the mapping of the frontier nodes. A pair
of treelets is always attached synchronously at a pair of matching frontier
nodes.

Depending on our needs, we can encode ordering of nodes as part of each
treelet. If only local ordering is used (i.e. we record the position of a parent
node among its sons), the output tree will be always projective. If we record
global ordering of all nodes in a treelet, the final output tree may contain non-
projectivities introduced by non-projective treelets (the attaching operation
itself is assumed to be projective).

STSG is generic enough to be employed at or across various layers of
annotation (e.g. an English t-tree to a Crzech t-tree or an English a-tree to
a Czech a-tree). Our primary goal is to transfer at the tectogrammatical
layer. Other applications of STSG include e.g. text summarization (Cohn
and Lapata, 2007).

STSG can be also seen as a simplification of the (Synchronous) Tree-
Adjoining Grammars (TAG, Joshi et al. (1975)). In addition to the tree-
substitution operation, TAG allows to “adjoin” a tree at an internal node as
illustrated in Figure 3.5.
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# Asociace  uvedla ze doméaci  poptavka v ZAKd stoupla
# Sb Pred AuxXAuxC Atr Sb AuxP Adv Pred AuxK
# association  said , that domestic ~demand in September  grew

# The association said domestic demand grew in September
# DET NP VP ADJ NP VP PP NP

Figure 3.3: A sample pair of analytical trees synchronously decomposed into
treelets. For explanation of the graphical symbols used see the text, linguistic
annotation is provided for illustration purposes only.

NP said VP

Figure 3.4: A sample analytical treelet pair.

3.3 STSG Formally

We now formally describe the core elements in STSG as motivated above to
make the thesis self-contained and also because we slightly differ from the
definition e.g. by Cmejrek (2006), see below.

Given a set of states () and a set of word labels L, we define:

A treelet t is a tuple (V, V' E, q,1,s) where:

e V/ is a set of nodes,

Vi C V is a nonempty set of internal nodes. The complement V/ =
V '\ V" is called the set of frontier nodes,

E CV'xV isaset of directed edges starting from internal nodes only
and forming a directed acyclic graph,

q € @ is the root state,
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S/

A
-m

Figure 3.5: Tree substitution at a frontier node F and tree adjunction at an
internal node A.

e [: V' — L is a function assigning labels to internal nodes,
e s:V/ — (@ is a function assigning states to frontier nodes.

e Optionally, some additional structure can keep track of local or global
ordering of nodes.

For convenience, we will use the shorthand t.q for the root state, t.s for
the frontier state function, and other shortcuts for all other properties of ¢
using the same analogy.

A treelet pair t¢;.5 is a tuple (t1,%2, m) where:

e {1 and ty are treelets for source and target languages (L; and Ls) and

states (@1 and @Q)9),

e m is a 1-1 mapping between frontier nodes in ¢; and in .

Given a starting synchronous state Start;.s € ()1 X ()2, a synchronous
derivation 0 = {t9,,...,t%,} constructs a pair of dependency trees (17, T)
by:

e attaching treelet pairs t\.,, ..., V., at corresponding frontier nodes, and

e ensuring that the root states t9.,.q, ..., t},.q of the attached treelets
pairs 0, ..., %, match the frontier states of the corresponding frontier
nodes.

Note that we differ from Cmejrek (2006) as we require (1) each treelet
to contain at least one internal node and (2) all frontier nodes in a treelet
pair to be mapped, i.e. the left and right treelets must contain the same
number of frontier nodes. These two additional requirements ensure that
the translation procedure (1) will not loop (by generating output treelets
while not consuming anything from the input tree) and (2) will not skip any
subtree of the input tree.
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For the purpose of further explanation, we define the source-side pro-
jection source(d) and the target-side projection target(d) of a derivation
0 as the trees T} and T3 constructed by 9, respectively. Given a source tree
Ty, we use A(T}) = {d | source(d) = T1} to denote the set of derivations &
yielding 77 on the source side.

Note that given a tree T', not all subtrees ¢t C T can be considered as a part
of (one side of) a valid (synchronous) derivation because STSG derivations
have no adjunction operation. We say that a subtree t of a tree T satisfies the
STSG property, if for every internal node n € t all immediate dependents
of n in T are included in ¢ as well, either as internal or as frontier nodes. In
other words, we assume no tree adjunction operation was necessary to cover
any children of n in T'.

3.4 STSG in Machine Translation

Our goal is to translate a source sequence of words s; into a target sequence of
words Sy, where s5 is the most likely translation out of all possible translations
So.

So = argmax p(ss | s1) (3.1)
52
We introduce the source and target dependency trees 77 and 75 as hidden
variables to the maximization, assuming no other dependencies except those
along the pipeline indicated in Figure 3.1 (page 54):

So = argmax p(Ty | 1) - p(Ta | T1) - p(s2 | Ts) (3.2)
52,11, 1%

Rather than searching the joint space, we break the search into three in-
dependent steps: parsing (3.3), tree transduction (3.4) and generation (3.5):

Ty = argmax p(T} | s1) (3.3)
T

Ty = argmax p(T5 | T1) (3.4)
T

$, = argmax p(s, | Tb) (3.5)

52

We mention the tools used for parsing and generation in Table 3.3 on
page 60. STSG is used to find the most likely target tree Ty given T7. Ap-
plying the Viterbi approximation we search for the most likely derivation o
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Ty = argmax p(Ts | Ty) marginalize over derivations §
Ts
= argmapr(Tg, 5Ty apply chain rule
1> 5
= argmapr(Tg | 6, T1)-p(0 | Th) p(Te | 6,T1) = 1 because To = target(d)
Ts
= argmapr(d | T1) apply Fundamental Law
T> 5
= argmax ignore p(77), constant in maximization
max) ) )
_ () if § € A(Ty) because Ty = source(d)
o arg:glax;p(é, ) p(6,T1) = < 0 otherwise
= argmax Z p(9) approximate the sum by the largest element only
o sea(m)
= argmax max p(d) Viterbi approximation to search for ¢ instead of T5
Ty SEA(Th)
= target(argmax p(0))
SEA(T1)

Figure 3.6: Detailed explanation of why we are searching for the most likely
derivation 4 instead of the most likely Ty given T].

instead and take its target-side projection, see Figure 3.6 for a step-by-step
justification.

To sum up, the most likely target tree Ty given T} is found by searching
for the most likely synchronous derivation 5 that constructs T and Th:

Ty = argmax p(Ty | T)) = target(d) = target <argmaxp(5)> (3.6)
T SEA(T))

As defined above, a derivation 0 consists of a sequence of treelet pairs.
When searching for &, we thus consider all decompositions of T} into a set of
treelets t9, ..., t¥ expand each treelet ¢! into a treelet pair ¢i., using a treelet
pair dictionary and evaluate the probability of the synchronous derivation

= {t%,,...,t",}. Having found the most likely 0, we return the right-
hand side tree Ty constructed by 5.

3.4.1 Log-linear Model

Following Och and Ney (2002) we further extend 3.6 into a general log-linear
framework that allows us to include various features or models:




3.4. STSG in Machine Translation 65

6 = argmax exp< i Amhm(5)> (3.7)

SEA(Ty) el

Each of the M models h,,(d) provides a different score aimed at predicting
how good the derivation § is. The weighting parameters \,,, Ziw Am = 1,
indicate the relative importance of the various features and they are tuned
on an independent dataset.

To facilitate efficient decoding (see Section 3.4.2 below), we require most
feature functions h,,(d) to decompose in lockstep with the derivation, i.e. to
take the form:

hn(8) = >~ hn(t1) £

STSG Model

One of the most basic features is based on the STSG probability of the
synchronous derivation. STSG estimates the probability of the derivation J as
the multiplication of probabilities of individual attachments. The probability
of each attachment ¢ = 1...k is defined as the conditional probability of a
treelet pair %, given the synchronous state q of the two frontiers where ¢!,
is attached. The frontiers’ state ¢ has to match the root state of the treelet
pair t¢, so we can write the probability of the attachment as p(ti., | t¢.,.q).
Here is the STSG probability of a synchronous derivation:

k
p(8) = p(t3, | Startio) [ [ p(tiz | t1.0:0) (3.9)

i=1
To incorporate this probability into the log-linear model, we take the log
of it, defining the STSG model:

hsrsa(6) = log(p(6)) = log(p(tf, | Startis))+ > log(p(tis | th-q)) (3.10)

i=1

Note that if hgrsg(-) were the only feature used, the log-linear model
reduces to the straightforward maximization of p(9):

6 = argmax exp (hsrsc(0)) = argmax p(d) (3.11)
SeA(T) deA(T1)
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Reverse and Direct Treelet Models

The STSG model assumes that the choice of a treelet pair t1.5 depends only
on the synchronous state ¢ of the two frontiers where ¢1.5 is attached.

Inspired by the common practice of statistical machine translation (Och,
2002), we include the channel model (“reverse”) and “direct” conditional prob-
abilities:

hdirect(tilﬁ) = log(p(té | tzl)) (3-12)
Rpeverse(t19) = log (p(t] | 13)) (3.13)

The reverse model is justified by Bayes decomposition of p(target|source)’
while the direct model empirically proves as a comparably valuable source
(see e.g. Och (2002)).

N-gram Language Models

A probabilistic target-language model used to promote coherent hypotheses
is a very important predictor of translation quality (see e.g. Och (2002)).

Pervasive n-gram language models estimate the probability of a sentence
s as the multiplication of probabilities of all n-grams in the sentence:

length(s)
p(s) = H pwilwi—1, ..., Wi—pi1) (3.14)
i=1
where w; is each word in the sentence and w;_1,...,w;_,41 are (n — 1) pre-

ceding words.

In the canonical mode, an STSG decoder is expected to produce an output
dependency tree and thus cannot directly employ n-gram language models.
However, if no structure is needed at the output (e.g. when translating to
a-trees and directly reading off node labels), we can safely destroy all target-
side tree structure, representing 75 as a sequence of output words wq, ..., w;.
Naturally, until the complete target hypothesis is constructed, we have to
keep track of exact positions of yet-to-expand frontiers within the sequence
of output words.

In this special case, the traditional sequence (language) model can be
used, with a bit of careful delayed computation around unexpanded frontiers:

7

t t
p(target|source) = ptarge )p(source|target)

p(source)
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J
hia, (8) = log [ [ p(w;lwj—1 .. wj—ns1) (3.15)

j=1

We assume w; to be set to a special out-of-sentence symbol for j < 1.

Binode Tree Language Model

Given an output dependency tree structure, a more natural language model
estimates the probability of the sentence based on edges in the tree. As docu-
mented e.g. by Charniak (2001), such models can improve parsing accuracy.

We define binode probability of the target tree T5 as the multiplication of
probabilities of all the edges e € T;. Given the governor g(e) and the child
c(e) of e, we can define three different probabilities, “direct”; “reverse” and
“joint”, leading to three separate models:

hiri(8) = log [ ] pla(e) | e(e)) (3.16)
hyeette.(8) = log [ | ple(e) | g(e)) (3.17)
Wit (6) = log [ [ p(e(e), g(e)) (3.18)

Additional Features

Following the common practice in phrase-based machine translation (e.g.
Koehn (2004a) or Zens et al. (2005)), we include penalties to consider the
number of treelets and words used to construct a derivation:

htreelet penalty((s) = _|5| (319)

k
h’word penalty((s) = - Z|t22| (320)
i=0
where |t}| denotes the number of internal nodes in target treelet t5.

3.4.2 Decoding Algorithms for STSG

The search space of all possible decompositions of input tree multiplied by
all possible translations of source treelets is too large to be explored in full,
efficient approximation algorithms have to be designed.
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Top-Down Beam Search

The current version of our decoder implements a beam search inspired by
the strategy of phrase-based decoder Moses (Koehn et al., 2007). While
Moses constructs partial hypotheses in a left-to-right fashion (picking source
phrases in arbitrary order), our partial hypotheses are constructed top-to-
bottom along with the source tree T} being covered from top to bottom. The
algorithm, in essence very similar to the one described recently by Huang et
al. (2006) but dating back to Aho and Johnson (1976), is outlined in Alg. 2.
The main difference is that we tackle the exponential search space of tree
decompositions using a pre-processing phase while Huang et al. (2006) use
memoization.

Algorithm 2 Top-down beam-search STSG decoding algorithm.

1. For an input tree T of n nodes, prepare the translation options table:
2. For each source node x € T}

3. Construct all possible treelet pairs ¢1.5 where t; is rooted at =
and covers a subtree of T7.
4 The subtree has to satisfy the STSG property:
5. If y € T is covered with an internal node of ¢, all dependents
of y have to be covered by t; as well.
6 Record only 7 best possible treelet pairs rooted at x.

7. Create stacks sq, ..., s, to hold partial hypotheses, stack s; for hypotheses
covering exactly ¢ input nodes.

s.  Insert the initial hypothesis (a single frontier node) into so.

9. Forie0...n—-1

10. For each hypothesis h € s;

1. Expand h by attaching one of possible translation options at a pair
12 of pending frontiers, extending the set of covered words and

13. adding output words.

14, Insert the expanded A’ (j words covered) to s;.

15. Prune s; if contains more that o hyps.

16.  Output the top-scoring h* from s,.

The first step is the construction of “translation options”. For each input
node x € T1, all possible treelets rooted at x are examined and if a translation
of a treelet is found, it is stored as one of the translation options for x.
Figure 3.7 illustrates sample translation options for the auxiliary root (“#”),
the main verb “said” and the full stop “.”. For conciseness, the target treelet
structure is omitted in the picture as if the target output tree was directly
linearized.

Figure 3.8 illustrates the second and main step, i.e. the gradual expansion
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#  The association said demand grew

Sample translation options at root: = Linearized target treelet:

W—“ = # Pred AuxK
W‘ = # Pred .

Sample translation options at 'said’:

m = Sbuvedla , ze Pred
NP VP \Y

Sample translation options at .’ -

Figure 3.7: Sample translation options for translating an English a-tree to a
Czech a-tree. The target structure is immediately linearized.

of a hypothesis using translation options constructed in the first step. Once
all input nodes are covered (and thus no frontiers are left in the partial
output), the output hypothesis is returned. In practice, we beam-search the
space of derivations, studying only o best-scoring partial hypotheses of the
same number of covered input nodes. Note that each expansion is guaranteed
to cover at least one more input node, so the algorithm cannot loop.

Bottom-up Dynamic-Programming Decoding Algorithm

Cmejrek (2006) presents another possible method of searching for the most
probable translation 75 of a given input tree 7}.

The most probable derivation is computed by a dynamic-programming
style Alg. 3. For each node ¢; € T} in bottom-up order and for each syn-
chronous state ¢ € (), we find and store the root treelet pair t;., of the most
probable derivation 5;1 that covers the whole subtree of T} rooted at ¢; and
has ¢ as the root synchronous state. The treelets are stored in arrays A, (q)
and the corresponding probabilities of 5;1 are stored in 3., (q).

The final derivation & covering whole 7T} is constructed by starting from
t12 = A (Starty) and recursively including all treelet pairs ], = Ayi(q')
to cover all frontiers fi (respecting the synchronous states ¢°) of previously

i—1

included treelets 9., ... 5"
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#  The association said demand grew

Sample Derivation: Linearized output:

7 N s N
M
ho l\\/;# :}\t?%/\
After expanding at root:

hy 4 — = # Pred .

After expanding at _Pred:

ha = # _Sbuvedla , ze :%rea :v

_NP
After expanding at _ Pred: -~

hs ’—W‘ = # Sbuvedla, 7ze Sb stoupla .
NP NP

Figure 3.8: Top-down hypothesis expansion using translation options
from Figure 3.7. Dashed circles indicate where treelet pairs are attached
at each step.

3.5 Heuristic Estimation of STSG Model Parameters

Given a sentence-parallel treebank, we can use the expectation-maximization
algorithm described by Cmejrek (2006) to obtain treelet-to-treelet alignments
and estimate STSG derivation probability as defined in Eq. 3.9. Our plan is
to soon adopt this method, but for the time being we restrict our training
method to a heuristic based on GIZA++ (Och and Ney, 2000) word align-
ments. So instead of treelet-to-treelet alignments, we base our probability
estimates on node-to-node alignments only.

For each tree pair in the training data, we first read off the sequence
of node labels and use GIZA++ tool to extract a possibly N-N node-to-
node-alignment.® In the next step, we extract all treelet pairs from each
node-aligned tree pair such that all the following conditions are satisfied:

e cach treelet may contain at most 5 internal and at most 7 frontier nodes
(the limits are fairly arbitrary),

8GIZA-++ produces asymmetric 1-N alignments, we follow standard practices to com-
bine 1-N and N-1 alignments from two GIZA++ runs.
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Algorithm 3 Bottom-up decoding algorithm for ST'SG.
1. for each node ¢; € T1.V in bottom-up order

2. for each g € Q let (., (q) = —©

3. for each treelet t1 that fits ¢q in a safe order

a. while t1.0=proposeNew Treelet Pair(ty)

5. // we have to try all possible t9, q,m, s

6. let prob = p(t1:2 | t1:2.9) * [ (4, ap)em Bar (tr:2-5((d1, d2)))
7. if 3., (q) < prob // found a higher scoring derivation

8. then let 5., (q¢) = prob and A, (q) = t1:2

e cach internal node of each treelet, if aligned at all, must be aligned to
a node in the other treelet,

e the mapping of frontier nodes has to be a subset of the node-alignment,

e cach treelet must satisfy STSG property.

All extracted treelet pairs contribute to our maximum likelihood proba-
bility estimates. In general, given a left treelet ¢;, a right treelet ¢, and their
respective root states ¢; and ¢, we estimate three separate models: “stsg”,
“direct” and “reverse”:

count (t1, g1, 2, q2)

hs s t12) =1 3.21
wolfrz) = log count(qi, g2) (3.21)
t(t t
hdirect(t1:2) - 108; coutt ( L 01, 02, q2) (322)
count(ty, qi1, q2)

t(t t
hreverse(tlz2) = 108; coun ( L, 72, q2) (323)

count(ts, g1, ¢2)

3.6 Methods of Back-off

As expected, and also pointed out by Cmejrek (2006), the additional struc-
tural information boosts data-sparseness problem. Many source treelets in
the test corpus were never seen in our training data. To make things worse,
our heuristic treelet extraction method constrains the set of extractable
treelet pairs by three rigid structures: source tree, target tree and the word
alignment. A single error in the word alignment or parsing prevents our
method from learning a treelet pair. We thus have to face not only natu-
ral divergence of sentence structures but also divergence caused by random
errors in any of the automatically obtained annotations.
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To tackle the problem, our decoder utilizes a sequence of back-off mod-
els, i.e. a sequence of several methods of target treelet construction and
probability estimation. Each subsequent model is based on less fine-grained
description of the input treelet and constructs the target treelet on the fly

from independent components.
The order and level of detail of the back-off methods is fixed but easily
customizable in a configuration file.

3.6.1 Preserve All

The most straightforward method is to preserve all information in an ob-
served treelet pair. This includes:

e left and right treelet structure, including all frontiers and internals and
preserving the linear order of the nodes

e full labels of left and right internals
e state labels of left and right frontiers
An example of a complete treelet pair is given in Figure 3.9.

ed

e\

_Sb uvedla ze _P'redi _NP sa:id VP

: uveést , 7e L ! say |
: verb punct conj : | verb :
[ past subord [ : past :
| fem R e

Figure 3.9: A treelet pair with all information preserved.

3.6.2 Drop Frontiers

One of significant limitations of STSG is the lack of adjunction operation. In
order to handle input treelets with branching that was not seen in the training
data, we collect treelet pairs while ignoring any frontiers. An example of such
treelet pair is given in Figure 3.10.

Once the translation using this model is attempted, we remove all frontiers
from the source treelet, map the “skeleton” to the target treelet and attach
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e VP
: : : said
uvedla , 7e S

uvést , 7e oY

. verb

verb  punct  conj ast
past subord P

fem

Figure 3.10: A treelet pair with no frontiers.

the required number of frontier nodes to the target tree. The position and
state label of the frontiers is chosen based on a separate probabilistic model.

As a further refinement, one might think of dropping only frontiers repre-
senting adjuncts but preserving frontiers for complements. Either a valency
lexicon would supply the distinction between argument and adjuncts, or we
could use some heuristic such as suggested by Bojar (2004).

In the current implementation, we employ this method of back-off only in
cases where the output is directly linearized. Therefore, the governing node
for a frontier has not to be determined when attaching the frontier and we can
use a simple model to “zip” the sequence of target internals and the sequence
of target frontiers (we do not allow any reordering of the frontiers). The
target label of a frontier is chosen based on the label of the source frontier.

3.6.3 Translate Word by Word

The technique of dropping frontiers cannot be used when producing output
trees, unless we design a frontier re-attachment model for output treelets.
However, we still need to overcome the no-adjunction limitation of STSG in
this setting. A simple solution is possible, if we restrict treelet size to one
internal only.

If the source treelet contains exactly one internal node, the structure of
the treelet is known: the internal node is the root of the treelet and its
immediate dependents are all frontiers of the treelet, see e.g. Figure 3.11.

We can easily decompose such treelets and translate independently: 1.
the label of the internal node, 2. each of the frontier labels. Again, we could
consider reordering of the nodes but until a satisfactory reordering model is
designed, we keep the order intact.

A clear disadvantage of this back-off method is that the number of nodes
cannot change in the process of translation. This poses a significant problem
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~Sbuvedla  Conj

: uvést : = - | <o |
' verb | | Y |
| ast : | verb |
[ p | |
: fem L __g__past

Figure 3.11: A treelet pair with one internal node in each treelet.

for transfer at the a-layer, but for transfer at the t-layer, preserving tree
structure is a viable approximation (Cmejrek et al., 2003).

3.6.4 Keep Word Non-Translated

In the cases where a word was never seen in the training data, the methods
described so far would not provide any translation for the word, so the trans-
lation of the whole sentence would fail producing no output. As a back-off,
one can either try to look up the word in a translation dictionary (possibly
facing the issue of a different morphological form) or, as an ultimate rescue,
keep the unknown word not translated and try to translate the rest of the
sentence.

Technically, we achieve this by adding a special rule that preserves the
treelet structure, copies internal labels and independently translates each
of frontier labels. In practice, we prefer to restrict this method to treelets
containing one internal only.

3.6.5 Factored Input Nodes

As described e.g. in Mikulova et al. (2006), and also indicated in Figure 3.9,
internal node labels are usually not atomic values. For example, an a-node
usually bears the value of word form, lemma, morphological tag (all inherited
from the m-layer) and analytical function (afun) label. For t-nodes, the set
of attributes is significantly larger, as attributes explicitly encode linguistic
features such as verbal tense, modality, iterativeness, person, nominal gender,
negation and many others.

Treating node labels as atomic and thus relying on all attributes to exactly
match the input leads to severe sparse data problem. We allow to specify
only a subset of input attributes (“factors”) to be taken into account while
searching for a treelet translation. In practice, we usually use a sequence of
models, each depending on fewer and fewer input factors. For example, a
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back-off model for “preserve all” as illustrated in Figure 3.9 could be based
on source lemmas only. See Figure 3.12 for a hypothetical rule for Czech-to-
English transfer.

Figure 3.12: A treelet pair with source lemmas only.

3.6.6 Factored Output Nodes

Ignoring some attributes of input nodes is not sufficient as a back-off method
alone. For output factors, we have no option and eventually each node has
to be provided with all relevant attributes. We use the idea of “mapping”
and “generation” steps from factored phrase-based translation (Koehn and
Hoang, 2007), details of which are summarized in Section 4.2.4 below.

Currently, our implementation of factored models is limited to treelets
containing exactly one internal. We will soon extend this to treelets of any
size. However, the size and shape of the treelet (chosen according to a subset
of input factors) will remain fixed until all additional output factors are
constructed.

Figure 3.13 illustrates a sequence of five decoding steps: three map-
ping steps that convert source factors to target factors and two generation
steps that ensure coherence of output factors. For instance, the Czech word
form is translated to an English form in the first step. An independent sec-
ond step translates the lemma. The third step takes all source morphological
attributes and translates them to target morphological attributes. The coher-
ence of the choices is ensured in steps 4 and 5 that bind together the output
form with the lemma (4) and the form with the morphological attributes (5).
It should be noted that many other configurations are possible.

In setups with multiple output factors, we apply also the language mod-
els described in Section 3.4.1 and Section 3.4.1 several times using various
subsets of output factors to provide a back-off for probability estimation.
For instance, even if a node pair was never seen in the exact configuration
constructed in a sequence of decoding steps, the pair of node lemmas may
be quite common so we wish to score it with a non-zero probability.
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1
uvedla said ]—
uveést 2 say 4
verb verb
past j 3 past :I—
fem

Figure 3.13: Sample decoding steps in word-for-word factored translation.

3.7 Remarks on Implementation

The STSG decoder called treedecode is being implemented in Mercury (So-
mogyi et al., 1995)? and currently consists of about 17,000 lines of code.

Supported features, apart from methods described in previous sections,

include:

parallel execution (both training and translation phases) on Sun Grid
Engine'?,

efficient storage of translation tables using tinycdb!!,

binding to IrstLM (Federico and Cettolo, 2007) for n-gram language
modelling,

disk caching of various steps of computation to speed up consecutive
startups and reuse partial results upon failure (similar effects can be
achieved using the technique of “checkpointing”),

basic debugging output in Scalable Vector Graphics (SVG),

preliminary support for minimum error-rate training using two ap-
proaches, (Och, 2003) and (Smith and Eisner, 2006a).

The source code is currently available upon request, future versions will

be freely accessible on a website, released as one of the deliverables of the
FEuroMatrix project.

9http://www .cs.mu.oz.au/research/mercury/
Onttp://gridengine. sunsource.net/
Uhttp://www.corpit.ru/mjt/tinycdb.html
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3.8 Evaluating MT Quality

Estimating quality of machine translation is difficult because of many relevant
criteria (e.g. output fluency or faithfulness of translation, see e.g. Dorr
et al. (1998)) and also because many variations can be equally acceptable.
Moreover, human evaluation is subjective and thus difficult to replicate for
similarly performing systems unless a very large collection of judgements is
created, not to mention the cost of such an evaluation.

For the daily routine of MT systems development, many automatic met-
rics have been proposed. Here we use one of the most common metrics,
BLEU (Papineni et al., 2002). Although there are metrics that achieve bet-
ter correlation with humans (Callison-Burch et al., 2007), such metrics are
target-language dependent and have not been adapted for Czech yet.

Please note that neither absolute BLEU scores nor relative improvements
are comparable unless evaluated on the very same set of source sentences
and reference translations. The results reported here for English-to-Czech
are thus by no means comparable to e.g. Czech-to-English M'T by Bojar
et al. (2006) or Cmejrek et al. (2003) evaluated on a different test set and
against 4 reference translations instead of just one used here. See Bojar et
al. (2006) for a fair comparison of those two experiments that also highlights
the influence of rather subtle manipulations with the reference translations
or simple rules fixing tokenization issues to significantly raise BLEU scores.

We estimate empirical confidence bounds using the bootstrapping method
described by Koehn (2004b): Given a test set of sentences, we perform 1,000
random selections with repetitions to estimate 1,000 BLEU scores on test
sets of the same size. The empirical 90%-confidence upper and lower bounds
are obtained after removing top and bottom 5% of scores. For conciseness,
we report the average of the distance between the standard BLEU value and
the empirical upper and lower bound after the “£” symbol.

3.9 Empirical Evaluation of STSG Translation

In an end-to-end evaluation, we try to cover a wide range of experimental
settings when translating from English to Czech, as illustrated in Figure 3.14,
which is a refinement of Figure 3.1.

Our main focus is the translation from the English t-layer to the Czech
t-Layer (etct). The general applicability of STSG to any dependency trees
allows us to test the same model also for analytical translation (eaca) or
across the layers (etca and eact). To a certain extent, our tree-based decoder
can simulate a direct approach to MT (phrase-based decoding, as will be
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Interlingua .

Tectogrammatical (t-) Layer

Analytical (a-) Layer »====-- eaca

Morphological (m-) Layer «—=--—-—-————-
— English — — Czech —

Figure 3.14: Experimental settings of syntactic M'T.

discussed in Chapter 4) if we replace the dependency structure of an a-tree
with a simple left-to-right chain of words (“linear tree”). The results obtained
using this approach are labelled “epcp”. Our phrase-based approximation
epcp is bound to work worse than other phrase-based systems because we
strictly follow the left-to-right order prohibiting any phrase reordering.

For each configuration, we extract treelet pairs using the heuristics de-
scribed in Section 3.5, possibly employing some of the back-off techniques
from Section 3.6. The EM training procedure as described by émejrek
(2006), was not yet incorporated into our training process.

3.9.1 Experimental Results

Apart from our STSG decoder, we use several additional tools along the train-
ing and translation pipeline, as summarized in Section 3.1.4. We train our
system on the Project Syndicate section of CzEng 0.5 (Bojar and Zabokrt-
sky, 2006) (also called News Commentary corpus) and test it using the
standard sets available for the ACL 2007 workshop on machine translation
(WMTO0T7'2).

Table 3.4 reports the BLEU (Section 3.8) scores of several configurations
of our system, higher scores suggest better MT quality. We report single-
reference lowercased BLEU.'3

The values in the column “LLM Used” indicate the type of language model
used in the experiment. An m-gram model can be applied to the output
sequence of words. For setups where the final sequence of words is constructed
using the generation component by Ptacek and Zabokrtsk)’f (2006) with no

12http://www.statmt.org/wmt07/

BFor methods using the t—text generation system by Ptacek and Zabokrtsk}'f (2006),
we tokenize the hypothesis and the reference using the rules from the official NIST
mteval-v11b.pl script. For methods that directly produce sequence of output tokens,
we stick to the original tokenization.
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Method of Transfer LM Used BLEU

epcp n-gram  10.9£0.6
eaca n-gram  8.8%+0.6
epcp none 8.7£0.6
eaca none 6.6+0.5
etca n-gram 6.31+0.6
etct factored, preserving structure binode 5.6+0.5
etct factored, preserving structure none 5.3+0.5
eact, no output factors binode 3.0+0.3

etct, vanilla STSG (no factors), all node attributes  binode  2.6+0.3
etct, vanilla STSG (no factors), all node attributes none 1.6+0.3
etct, vanilla STSG (no factors), just t-lemmas none 0.7£0.2

Table 3.4: English-to-Czech BLEU scores for syntax-based M'T evaluated on
DevTest dataset of ACL 2007 WMT shared task.

access to a language model, we use at least a binode LM to improve output
tree coherence.

Appendix A provides examples of MT output from our “etct” method as
well as from phrase-based systems described in Chapter 4.

3.10 Discussion

At the first sight, our preliminary results support common worries that with
a more complex system it is increasingly difficult to obtain good results.
However, we are well aware of many limitations of our current experiments
as discussed below.

Within the scope of our main focus, the tectogrammatical transfer (“etct”),
we see a dramatic improvement from BLEU 1.6 to BLEU 5.6. The score 1.6
is achieved using the very baseline of STSG translation: nodes including all
attributes are treated as atomic units, only the maximum likelihood estimate
of STSG probability (Section 3.4.1) is used and no language model is applied.
Our best “etct” result scoring 5.6 uses a combination of back-off methods, in-
cluding factored input and output nodes and two binode models (one less
fine-grained, again as a means of back-off).

3.10.1 BLEU Favours n-gram LMs

BLEU is known to favour methods employing n-gram based language models.
Empirical evidence supporting the claim can be observed in Table 3.4: an
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n-gram LM gained 2 BLEU points for both “eaca” and “epcp”.

In future experiments we plan to attempt two ways to tackle the problem:
employing some LLM-based rescoring even after the generation component
(Ptacek and Zabokrtsky, 2006), as well as using other automatic metrics of
MT quality instead of BLEU to avoid the bias.

3.10.2 Cumulation of Errors

All components in our setup deliver only the single best candidate. Any errors
will therefore accumulate over the whole pipeline. This primarily hurts the
“etct” scenario where all our tools are employed.

In future, we would like to pass and accept several candidates, allowing
each step in the calculation to do any necessary rescoring.

3.10.3 Conflict of Structures

Our current heuristic method of treelet extraction (Section 3.5) crucially
depends on the quality of both English and Czech trees as well as the node
alignment between them. A single error in any of the rigid sources may
prevent the extraction of a treelet pair, not to mention natural divergence
between the sentence and its translation. Precisely this reason explains the
loss of performance of “eaca” compared to “epcp”.

We hope that using the EM procedure (émejrek, 2006) will gain some
recall. The current heuristic method can be also modified to accept a certain
level of structure divergence, such as a certain portion of node-alignments
leading out of the treelet pair. Alternatively, one could obtain not just the
single best source and target tree, but a set of candidates'* and choose such
a pair of trees that matches best with the node alignments.

Ultimately, the solution lies in designing additional back-off techniques
that can accommodate natural divergence appearing in Czech and English
training sentences and still exploit most of the data.

Smith and Eisner (2006b) attempt to loosen the rigidity of STSG struc-
tures by defining quasi-synchronous (monolingual) grammar for target lan-
guage that prefers to analyse or generate target-side sentence in alignment
with the source-side tree but is not restricted to do so.

Successful syntax-based approaches to MT, e.g. Quirk et al. (2005) or
Huang et al. (2006), benefit from the fact that the syntactic structure comes
only from one language and is only projected to the other language according

4For dependency parsing, an efficient k-best parser was recently implemented by Hall
(2007).
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to word alignments. Although linguistic adequacy of the projected tree might
suffer, much fewer structural conflicts are observed.

3.10.4 Combinatorial Explosion

In the current implementation, target-side treelets are fully built during the
preparatory phase of translation option generation. Uncertainty in the many
t-node attributes leads to too many treelets with insignificant variations while
e.g. different lexical choices are pushed off the stack. While vital for final
sentence generation (see Table 3.4), fine-grained t-node attributes should be
produced only once all key structural, lexical and form decisions have been
made.

3.10.5 Sentence Generation Tuned for Manual Trees

The rule-based generation system (Ptacek and Zabokrtsky, 2006) was de-
signed to generate Czech sentences from full-featured manual Czech tec-
togrammatical trees from the (monolingual) PDT.

Our target-side training trees are the result of an automatic analytical
and tectogrammatical parsing procedure as implemented by McDonald et al.
(2005) and Klimes (2006); Zabokrtsky (2008a), resp. Further noise is added
during the tree transfer, so our final input to the generation component
contains random errors in tree structure as well as missing or bad attribute
values.

As the manual annotation of PCEDT 2.0 proceeds, we may be able to
train the transfer system on manual Czech trees. Simultaneously, the gen-
eration component will be improved to be more robust towards malformed
input.

3.10.6 Errors in Source-Side Analysis

For the purpose of source-side English analysis, we still rely on very simple
rules similar to those used by Cmejrek et al. (2003) to convert Collins (1996)
parse trees to analytical and tectogrammatical dependency trees.

We hope the English-side pipeline can be improved using recent taggers
and parsers. Furthermore, the tectogrammatical analysis of English will
be refined as manual English t-trees become available during PCEDT 2.0
annotation, in progress.

Alternatively, we might include some attributes based directly on a-trees
in the source t-trees. This would serve as a back-off in case the a—t rules
fail to provide all necessary information.
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3.10.7 More Free Parameters

Last but not least, the more complex the setup is (“etct” being our most
complicated design), the more free parameters there are in the system to
configure. We have already mentioned many ways of replacing individual
components, e.g. the parser applied or the method of treelet dictionary
extraction. Moreover, each of the components in the pipeline has many
options to tune its behaviour.

Despite not reflected in the error-bar figures in Table 3.4, which describe
the variance due to randomness in input data, we suggest that the variance
or rather room for improvement due to sub-component selection and config-
uration is much greater for more complex scenarios.

It is an open software engineering and management question which of the
free parameters or which of the methods should be further studied.

Another drawback of the complex model is the abundance of model
parameters ()\,, in the log-linear model, Section 3.4.1). The optimization
method commonly used to set the parameters, so called minimum-error rate
training (Och, 2003), does not converge in our setup so we stick to a default:
all models equally important.

3.10.8 Related Research

More or less direct comparison can be made with the system TectoMT devel-
oped by Zabokrtsky (2008b). TectoMT also uses t-layer for the transfer but
instead of a generic formal model, a sequence of many heuristic steps is used.
Some of the heuristics rely on probabilistic data such as a bilingual dictionary
extracted automatically from CzEng 0.7, but most are rather straightforward
deterministic procedures. This approach allows TectoMT to fully exploit the
similarity of English and Czech t-layers and avoid the combinatorial explo-
sion our system faces. See Table 4.5 on page 97 for human evaluation scores
of TectoMT compared to phrase-based systems and Appendix A for examples
and BLEU scores of “etct”, TectoMT and other systems.

A method closely related to our STSG is reported by Riezler and John
T. Maxwell (2006) who extract parallel snippets of LFG analyses. Their sys-
tem outperforms phrased-based translation (as rated by two human judges)
in a very restricted setting: the test set contains only sentences of 5 to 15
words. 44% of such sentences fall within the coverage of the core LFG gram-
mar and human judges evaluated (a sample of) these 44% sentences. When
evaluated with NIST (Doddington, 2002), an automatic n-gram-based met-
ric similar to BLEU, phrase-based translation appears insignificantly better
on the 44% in-coverage sentences and significantly better on the full test set
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where a back-off LFG grammar had to be used. We can draw the following
conclusion: if a sentence can be parsed by the core LFG grammar, it will
be probably better translated by the grammar-based system. This fortunate
and determinable occasion happens on average in 44% of sentences of 5 to 15
words; for other sentences, a phrase-based system should be used. Another
possible interpretation of the experiment is that while the core of their LFG
grammar allowed to achieve better translation quality, the back-off grammar
was not observed to generalize better than a phrase-based system (Chapter 4)
does.

3.11 Conclusion

The previous Chapter 2 was devoted to automatic acquisition of syntactic
lexicons, which can serve as an valuable resource for many NLP applications.
Interested in applicability of the lexicons in practice, we chose one particular
task in this chapter: English-to-Czech machine translation.

We briefly reviewed approaches to MT and summarized a mathematical
model of tree transformations (STSG) that fits nicely in the framework of
FGD. The model is applied to convert the dependency analysis of a source
sentence into the dependency analysis of the sentence in a target language.

We designed a decoding algorithm to search for the most probable transla-
tion of an input tree and implemented a first version of the decoder. Several
methods of back-off have been proposed and included in the implementa-
tion. Finally, the whole pipeline of the translation process has been set up
and allows for an end-to-end evaluation.

We did not get to the point where we could directly incorporate a valency
lexicon into the transfer step, apart from the t-to-surface generation system
(Ptacek and Zabokrtsky, 2006) that uses VALLEX to choose an appropriate
morphological realization of verb modifiers. However, the treelet pairs de-
scribed in Section 3.2 can be seen as a form of bilingual valency frames and
it would be quite straightforward to design a valency language model simi-
lar to the binode model (Section 3.4.1) promoting translations where output
valencies are confirmed by the lexicon.

The empirical evaluation (Section 3.9) reveals more important problems
than the lack of a valency lexicon in the transfer: the more complex setup
is used, the worse results are obtained. We discussed the problems, known
limitations and many open questions in Section 3.10. We also pointed out
that a more complex system has more free parameters to tune and thus
a greater potential for an improvement. We have to leave this for future
research.
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As our empirical results indicate, the current best scores were obtained
using a simple phrase-based approach. That is why we explore this direct
method of MT in the following chapter.



Chapter 4

Improving Morphological Coherence in
Phrase-Based MT

The previous chapter was devoted to a study of a deep-syntactic M'T system
and one of its components, tree-to-tree transfer, in particular. Completely
reversing our research priorities, we now tackle the task of MT in a very
direct end-to-end fashion, employing very little of linguistic analysis.

4.1 Introduction

Best empirical results in M'T are currently achieved by phrase-based systems
for many language pairs.!" Known limitations of phrase-based MT include
worse quality when translating to morphologically rich languages as opposed
to translating from them (Koehn, 2005) and worse grammatical coherence of
longer sentences.

We participated in the 2006 summer engineering workshop at Johns Hop-
kins University? that attempted to tackle these problems by introducing sep-
arate factors in MT input and/or output to allow explicit modelling of the
underlying language structure. The support for factored translation models
was incorporated into the Moses open-source MT system?. Our contribu-
tion to the workshop was the design of factors improving English-to-Czech
translation.

In this chapter, we discuss the experiments, focusing on one particular as-
pect, namely the morphological coherence of phrase-based MT output. After
a brief overview of factored phrase-based MT (Section 4.2), we summarize
some possible translation scenarios in Section 4.4. Section 4.5 studies the
level of detail useful for morphological representation and Section 4.6 com-
pares the results to a setting with more data available, albeit out of domain.

1http://www .nist.gov/speech/tests/mt/
Zhttp://www.clsp. jhu.edu/ws2006/
*http://wuw.statmt.org/moses/
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Section 4.7 provides human evaluation of our systems and Section 4.8 is
devoted to a brief analysis of M'T output errors.

4.1.1 Motivation for Improving Morphology

As documented in Table 3.1 on page 58, Czech has very rich morphology.
The Czech morphological system (Haji¢, 2004b) defines 4,000 tags in theory
and 2,000 were actually seen in a big tagged corpus. (For comparison, the
English Penn Treebank tagset contains just about 50 tags.) In our parallel
corpus (see Section 3.1.4), the English vocabulary size is 35k distinct token
types but more than twice as big in Czech, 83k distinct token types.

As we will see in the following overview of factored phrase-based MT,
the model is designed to directly handle any information that corresponds
1-1 to input or output words. For morphological information, this is indeed
the case (every input word form can have a lemma and a morphological tag
attached), so we can hope the model will make best use of this information.

To further emphasize the importance of morphology in MT to Czech, we
can compare the standard BLEU (Section 3.8) of a baseline phrase-based
translation with BLEU which disregards word forms (a lemmatized MT out-
put is compared to the lemmatized reference translation). The lemmatized
BLEU represents M'T quality if morphological errors are not penalized at all.
The comparison gives us the theoretical margin for improving MT quality by
choosing more appropriate word forms (but leaving word order and lexical
selection intact). The margin amounts to about 9 BLEU points: the same
MT output scores 12 points in standard BLEU and 21 points in lemmatized
BLEU.

4.2 Overview of Factored Phrase-Based MT

4.2.1 Phrase-Based SMT

In statistical MT (SMT), the goal is to translate a source (foreign) lan-
guage sentence fi = fi...f;...f; into a target language (Czech) sentence
cl =ci...¢;...c;. In phrase-based SMT (e.g. Koehn (2004a), Zens et al.
(2005)), the assumption is made that the target sentence can be constructed
by segmenting source sentence into K phrases®, translating each phrase and
finally composing the target sentence from phrase translations. See Figure 4.1
for an example of phrases automatically extracted from a word-aligned sen-
tence pair. We denote the segmentation of the input sentence into K phrases

4Is should be noted that the term “phrases” refers merely to a sequence of words and
is not related to linguistically grounded phrases from e.g. Chomskian grammars.
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faster = rychleji
even B
mov1)1;§ This time around = Nyni
the}i they 're moving — zareagovaly
around even = dokonce jesté
time faster . = rychleji .
This This time around, they 're moving = Nyni zareagovaly
even faster — dokonce jesté rychleji
<SS
rg_?
;

Figure 4.1: Sample word alignment and sample phrases consistent with it
(not all consistent phrases have been marked).

as si. Among all possible target language sentences, we choose the sentence
with the highest probability:

¢ = argmax{Pr(ci|f{, s1')} (4.1)

7 K
I,ci,K,sq

4.2.2 Log-linear Model

In a log-linear model (Och and Ney, 2002), the conditional probability of ¢!
being the translation of f{ under the segmentation s& is modelled as a com-
bination of independent feature functions hq(-,-,-),..., hp (-, -, ) describing

the relation of the source and target sentences:

eXP(ZnN{ﬂ Amhm(c{v 1Jv 5{<>>
% g o (h A 750

The denominator in 4.2 is used as a normalization factor that depends
on the source sentence f/ and the segmentation s& only and is omitted
during maximization. The model scaling factors A} are trained either to the
maximum entropy principle or optimized with respect to the final translation
quality measure.

In our experiments, we use the minimum-error rate training (MERT,
(Och, 2003)) tuned to highest BLEU scores using a separate heldout set of
data.

Pr(clf{,s1') =

(4.2)

4.2.3 Phrase-Based Features

Most, of our features are phrase-based and we require all such features to oper-
ate synchronously on the segmentation s and independently of neighbouring
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segments. In other words, we restrict the form of phrase-based features to:

K
h’ (Cla 1751 Z mckafk (43)

k=1

where fk represents the source phrase and ¢ represents the target phrase £

given the segmentation sf.

4.2.4 Factored Phrase-Based SMT

In factored SMT, source and target words f and c are represented as tuples
of F' and C factors, resp., each describing a different aspect of the word,
e.g. its word form, lemma, morphological tag, role in a verbal frame. The
process of translation consists of decoding steps of two types: mapping
steps and generation steps. If more steps contribute to the same output
factor, they have to agree on the outcome, i.e. partial hypotheses where two
decoding steps produce conflicting values in an output factor are discarded.
A translation scenario is a fixed configuration describing which decod-
ing steps to use in which order. Figure 3.13 on page 76 illustrates one possible
translation scenario, we examine several options in Section 4.4 below.

Mapping Steps

A mapping step from a subset of source factors S C {1...F} to a subset
of target factors 7" C {1...C'} is the standard phrase-based model (see e.g.
(Koehn, 2004a)) and introduces a feature in the following form:

hevsS=T (& fr) = log p(fi|et) (4.4)

The conditional probability of fks, i.e. the phrase fk restricted to factors
S, given ¢, i.e. the phrase ¢ restricted to factors T is estimated from
relative frequencies: p(f|él) = N(f5,&7)/N(E") where N(f°,¢T) denotes
the number of co-occurrences of a phrase pair (fS, ¢’') that are consistent with
the word alignment. The marginal count N(¢T) is the number of occurrences
of the target phrase ¢! in the training corpus.

For each mapping step, the model is included in the log-linear combination
in source-to-target and target-to-source directions: p(f7]é) and p(é5|f7). In
addition, statistical single word based lexicons are used in both directions.
They are included to smooth the relative frequencies used as estimates of the
phrase probabilities.
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Generation Steps

A generation step maps a subset of target factors 7T} to a disjoint subset of
target factors Ty, Ty o C {1...C}. In the current implementation of Moses,
generation steps are restricted to word-to-word correspondences:

length ()

thnT1—>T2(Ck’fk log H c,“ Z (4.5)

where & ; is the i-th words in the k-th target phrase restricted to factors 7.
We estimate the conditional probability p(cgi égll) by counting over words in
the target-side corpus. Again, the conditional probability is included in the

log-linear combination in both directions.

4.2.5 Language Models

In addition to features for decoding steps, we include arbitrary number of
language models® over subsets of target factors, T'C {1...C}. We currently
use standard n-gram language model:

LMn(fl ,¢1) long eyl n+1) (4.6)

While generation steps are used to enforce “vertical” coherence between
“hidden properties” of output words, language models are used to enforce
sequential coherence of the output.

4.2.6 Beam-Search

Operationally, Moses performs a stack-based beam search very similar to
Pharaoh (Koehn, 2004a). Thanks to the synchronous-phrases assumption,
all the decoding steps can be performed during a preparatory phase. For each
span in the input sentence, all possible translation options are constructed
using the mapping and generation steps in a user-specified order. Low-scoring
options are pruned already during this phase. Once all translation options are
constructed, Moses picks source phrases (all output factors already filled in)
in arbitrary order, subject to a reordering limit and a probabilistic reordering
cost, producing the output in left-to-right fashion and scoring it using the
specified language models exactly as Pharaoh does.

5This might be perceived as a non-standard use of the term, because the models may
contain more than just word forms. More generally, these models represent a specific case
of a probabilistic sequence model.
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4.3 Data Used

The experiments reported in this chapter were carried out with the News
Commentary (NC) corpus as made available for the SMT workshop® of the
ACL 2007 conference.”

The Czech part of the corpus was tagged and lemmatized using the tool
by Haji¢ and Hladka (1998), the English part was tagged using MXPOST
(Ratnaparkhi, 1996) and lemmatized using the Morpha tool (Minnen et al.,
2001). After some final cleanup, the corpus consists of 55,676 pairs of sen-
tences (1.1M Crzech tokens and 1.2M English tokens). We use the designated
additional tuning and evaluation sections consisting of 1023, resp. 964 sen-
tences.

In all experiments, word alignment was obtained using the grow-diag-
final heuristic for symmetrizing GIZA++ (Och and Ney, 2003) alignments.
To reduce data sparseness, the English text was lowercased and Czech was
lemmatized for alignment estimation, a setup confirmed as very useful in our
previous Czech-to-English MT experiments (Bojar et al., 2006).

Language models are based on the target side of the parallel corpus only,
unless stated otherwise.

We report BLEU (Section 3.8) scores for systems trained and tested in
case-insensitive fashion (all data are converted to lowercase, including the
reference translations), unless stated otherwise.

4.4 Scenarios of Factored Translation English—Czech

We experimented with the following factored translation scenarios.

The baseline scenario (labelled T for translation) is single-factored: input
(English) lowercase word forms are directly translated to target (Czech) low-
ercase forms. A 3-gram language model (or more models based on various
corpora) checks the stream of output word forms. The baseline scenario thus
corresponds to a plain phrase-based SMT system:

English Czech
lowercase lowercase +LM
lemma lemma
morphology morphology

6http://www.statmt.org/wm1:07/

"Our preliminary experiments with the Prague Czech-English Dependency Treebank,
PCEDT v.1.0 ((v]mejrek et al., 2004), 20k sentences, gave similar results, although with a
lower level of significance due to a smaller evaluation set.
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In order to check the output not only for word-level coherence but also
for morphological coherence, we add a single generation step: input word
forms are first translated to output word forms and each output word form
then generates its morphological tag.

Two types of language models can be used simultaneously: a (3-gram)
LM over word forms and a (7-gram) LM over morphological tags.

We used tags with various levels of detail, see Section 4.5. We call this
the “T+C” (translate and check) scenario:

English Czech
lowercase —— lowercase +LM
lemma lemma :|
morphology morphology< +LM

As a refinement of T+C, we also used T+T+C scenario, where the mor-
phological output stream is constructed based on both output word forms
and input morphology. This setting should reinforce correct translation of
morphological features such as number of source noun phrases. To reduce
the risk of early pruning, the generation step operationally precedes the mor-
phology mapping step. Again, two types of language models can be used in
this “T+T+C” scenario:

English Czech
lowercase lowercase :| +LM

lemma lemma

morphology——morphology~ +LM

The most complex scenario we used is linguistically appealing: output
lemmas (base forms) and morphological tags are generated from input in
two independent translation steps and combined in a single generation step
to produce output word forms.

The “T+T+G” setting allows us to use three types of language models.
Trigram models are used for word forms and lemmas and 7-gram language
models are used over tags:

English Czech
lowercase lowercase +LM
lemma lemma % +LM

morphology——morphology— +LM
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BLEU
T+T+G 13.9+0.7
T+T+C 13.940.6
T+C 13.6+0.6
Baseline: T 12.94+0.6

Table 4.1: BLEU scores of various translation scenarios.

4.4.1 Experimental Results: Improved over T

Table 4.1 summarizes estimated translation quality of the various scenarios.
In all cases, a 3-gram LM is used for word forms or lemmas and a 7-gram
LM for morphological tags.

The good news is that multi-factored models always outperform the base-
line T.

Unfortunately, the more complex multi-factored scenarios do not bring
any significant improvement over T+C. Our belief is that this effect is caused
by search errors: with multi-factored models, more hypotheses get similar
scores and future costs of partial hypotheses might be estimated less reliably.
With a limited stack size (not more than 200 hypotheses of the same num-
ber of covered input words), the decoder may more often find sub-optimal
solutions. Moreover, the more steps are used, the more model weights have
to be tuned in the minimum error rate training. Considerably more tuning
data might be necessary to tune the weights reliably.

4.5 Granularity of Czech Part-of-Speech Tags

As stated above, the Czech morphological tag system is very complex: in
theory up to 4,000 different tags are possible. In our T+T+C scenario, we
experiment with various simplifications of the system to find the best balance
between richness and robustness of the statistics available in our corpus. (The
more information is retained in the tags, the more severe data sparseness is.)

Full tags (1200 unique seen in the 56k corpus): Full Czech positional
tags are used. A tag consists of 15 positions, each holding the value of
a morphological property (e.g. number, case or gender).®

8In principle, each of the 15 positions could be used as a separate factor. The set
of necessary generation steps to encode relevant dependencies would have to be carefully
determined.
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POS+case (184 unique seen): We simplify the tag to include only part
and subpart of speech (also distinguishes partially e.g. verb tenses). For
nouns, pronouns, adjectives and prepositions?, also the case is included.

CNGO1 (621 unique seen): CNGO1 refines POS. For nouns, pronouns
and adjectives we include not only the case but also number and gender.

CNGO02 (791 unique seen): Tag for punctuation is refined: the lemma
of the punctuation symbol is taken into account; previous models dis-
regarded e.g. the distributional differences between a comma and a
question mark. Case, number and gender added to nouns, pronouns,
adjectives, prepositions, but also to verbs and numerals (where appli-

cable).
CNGO03 (1017 unique seen): Optimized tagset:

e Tags for nouns, adjectives, pronouns and numerals describe the
case, number and gender; the Czech reflexive pronoun se or si is
highlighted by a special flag.

e Tag for verbs describes subpart of speech, number, gender, tense
and aspect; the tag includes a special flag if the verb was the
auxiliary verb byt (to be) in any of its forms.

e Tag for prepositions includes the case and also the lemma of the
preposition.

e Lemma included for punctuation, particles and interjections.

e Tag for numbers describes the “shape” of the number (all digits are
replaced by the digit 5 but number-internal punctuation is kept
intact). The tag thus distinguishes between 4- or 5-digit numbers
and it indicates the precision of floating point numbers.

e Part of speech and subpart of speech for all other words.

4.5.1 Experimental Results: CNGO03 Best

Table 4.2 summarizes the results of T+T+C scenario with varying detail in
morphological tag.

Our results confirm improvement over the single-factored baseline. De-
tailed knowledge of the morphological system also proves its utility: by choos-
ing the most relevant features of tags and lemmas but avoiding sparseness,

9Some Czech prepositions select for a particular case, some are ambiguous. Although
the case is never shown in the surface form of the preposition, the tagset includes this
information and Czech taggers are able to infer the case.
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BLEU
Baseline: T (single-factor) 12.940.6
T+T+C, POS+case 13.240.6
T+T+C, CNGO1 13.4£0.6
T+T+C, CNGO02 13.5+0.7
T+T+C, full tags 13.9£0.6
T+T+C, CNGO03 14.2+0.7

Table 4.2: BLEU scores of various granularities of morphological tags in
T+T+C scenario.

we can improve on BLEU score by about 0.3 absolute over T-+T-+C with full
tags.

4.6 More Out-of-Domain Data in T and T+C
Scenarios

In order to check if the method scales up with more parallel data available,
we extend our training data using the CzEng parallel corpus (Bojar and
Zabokrtsky, 2006). CzEng contains sentence-aligned texts from the Euro-
pean Parliament (about 75%), e-books and stories (15%) and open source
documentation. By “NC” corpus we denote the in-domain News Commen-
tary corpus only, by “mix” we denote the combination of training sentences
from NC and CzEng (1070k sentences, 13.9M Czech and 15.5 English to-
kens) where in-domain NC data amounts only to 5.2% sentences. The third
option, “weighted”, is a combination of NC and mix with a scaling factor «
optimized in MERT (i.e. NC is included twice).

Table 4.3 gives full details on our experiments with the additional data.
We varied the scenario (T or T+C), the level of detail in the T-+C scenario
(full tags vs. CNGO03) and the size of the training corpus. We extract phrases
from either the in-domain corpus only (NC) or the mixed corpus (mix). We
use either one LM per output factor, varying the corpus size (NC or mix),
or two LMs per output factors with weights trained independently in the
MERT procedure (weighted). Independent weights allow us to take domain
difference into account, but we exploit this in the target LM only, not the
phrases.

The only significant difference is caused by the scenario: T-+C outper-
forms the baseline T, regardless of corpus size. Other results (insignificantly)
indicate the following observations:
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weighted = aNC + (1 — a)mix

Scenario Phrases from LMs BLEU

T NC NC 12.9+0.6
T mix mix 11.8+0.6
T mix weighted 11.84+0.6
T+C CNG03 NC NC 13.74+0.7
T+C CNGO0O3 mix mix 13.14+0.7
T+C CNGO3 mix weighted 13.7£0.7
T+C full tags NC NC 13.6+0.6
T+C full tags mix mix 13.1£0.7
T+C full tags mix weighted 13.840.7

Table 4.3: The effect of additional data in T and T-+C scenarios.

e Ignoring the domain difference and using only the mixed domain LM in
general performs worse than allowing MERT to optimize LM weights
for in-domain and generic data separately.'’

e CNGO3 outperforms full tags only in small data setting, with large data
(treating the domain difference properly), full tags perform better.

4.7 Human Evaluation

The best system described in this chapter (T+C full tags with additional
CzEng data) took part in an open MT evaluation campaign carried out
during ACL 2007 Second Workshop on Statistical Machine Translation''.
Table 4.4 reproduces the results from Callison-Burch et al. (2007) for English
to Czech MT quality. The adequacy scale describes how well the translation
conveys the original meaning, the fluency reflects how grammatically correct
the MT output is and rank shows how often would human judges prefer to
get output from that particular system compared to other systems. The
constituent rank is a new scale introduced by Callison-Burch et al. (2007)

19Tn our previous experiments with PCEDT as the domain-specific data, the difference
was more apparent because the corpus domains were more distant. In the T scenario
reported here, the weighted LMs did not bring any improvement over “mix” and even
performed worse than the baseline NC. We attribute this effect to some randomness in
the MERT procedure.

Uhttp://www. statmt . org/wmt07/
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System Adequacy Fluency Rank Constituent
Our T+C (cu) 0.523 0.510  0.405 0.440
PC Translator (pct) 0.542 0.541 0.499 0.381

Single-Factored Moses (uedin) 0.449 0.433  0.249 0.258

Table 4.4: Human judgements of English—Czech MT quality at ACL WMT
2007.

that tries to simplify the task of ranking hypotheses by asking the judges to
rank only randomly selected sections of sentences.

Our system improved over the phrase-based baseline (provided by Uni-
versity of Edinburgh, uedin) and got very close to a major English-Czech
commercial MT system PC Translator'? by LangSoft (a rule-based system
with a long history of development). Despite the comparison not being com-
pletely fair (PC Translator is a generic MT system while our system was
trained and evaluated in the known domain of news commentaries), we con-
sider the result very promising.

We participated with a very similar setup also in ACL 2008 WM'T shared
task'® (Bojar and Haji¢, 2008). The only differences were that (1) we trained
our system on the recent release of CzEng 0.7 (Bojar et al., 2008) which
is slightly bigger, (2) we used “true-cased” data (preserve capitalization of
names but drop capitalization of sentence beginnings), and most importantly
(3) we included the Czech National Corpus SYN2006 (365M tokens) in a
4-gram language model over word forms and 7-gram language model over
morphological tags. As documented in Table 4.5 (results from Callison-Burch
et al. (2008)), the additional data allowed us to improve over PC Translator
for in-domain setting (Commentary). In the generic domain of News, PC
Translator performs better.

A somewhat surprising result of WMTO08 evaluation of English-to-Czech
translation is that while the systems fall into two rather distinct groups of
performance, it is always a statistical and a rule-based system that form a
group (our T+C and PC-Translator vs. TectoMT (Zabokrtsky, 2008b) and
single-factored Moses). We see that even very complementary strategies can
lead to comparable M'T quality, which suggest that the potential gain from
systems combination may be quite high.

Examples of output of various MT systems including the recently launched
Google Translate are available in Appendix A. Apart from indicating the
overall state-of-the-art quality of M'T, the examples also illustrate how diffi-
cult it is to compare MT systems, both manually or automatically.

2http://www.translator.cz/
Bhttp://www. statmt . org/wmt08/
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Commentary News
System (in-domain)  (out-of-domain)
Our T+C (cu-bojar) 71.4% 63.4%
PC Translator 66.3% 71.5%
TectoMT (cu-tectomt) 48.8% 49.4%
Single-Factored Moses (uedin) 48.6% 50.2%

Table 4.5: Percentage of sentences where the system was ranked better than
or equal to any other system (human judgements, ACL. WMTO08).

Translation of Verb Modifier
... preserves meaning 56% 79%
...1s disrupted 14% 12%
...1s missing 27% 1%
...is unknown (not translated) 0% 5%

Table 4.6: Analysis of 77 verb-modifier pairs in 15 sample sentences.

4.8 Untreated Morphological Errors

The previous sections described improvements gained on small data sets when
checking morphological agreement using T+T+C scenario (BLEU raised
from 12.9% to 13.9% or up to 14.2% with manually tuned tagset, CNG03).
However, the best result achieved is still far below the margin of lemmatized
BLEU (21%), as mentioned in Section 4.1.1.

When we searched for the unexploited morphological errors, visual in-
spection of MT output suggested that local agreement (within 3-word span)
is relatively correct but verb-modifier relations are often malformed causing
e.g. a bad case for the modifier. To quantify this observation we performed
a micro-study of our best MT output using an intuitive metric. We checked
whether verb-modifier relations are properly preserved during the translation
of 15 sample sentences.

The source text of the sample sentences contained 77 verb-modifier pairs.
Table 4.6 lists our observations on the two members in each verb-modifier
pair. We see that only 56% of verbs are translated correctly and 79% of
nouns are translated correctly. The system tends to skip verbs quite often
(27% of cases).

More importantly, our analysis has shown that even in the cases where
both the verb and the modifier are lexically correct, the relation between
them in Czech is either non-grammatical or meaning-disrupted in 56% of
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Input: Keep on investing.

MT output: Pokracovalo investovani. (grammar correct here!)

Gloss: Continued investing. (Meaning: The investing continued.)
Correct: Pokracujte v investovani.

Input: brokerage firms rushed out ads ...

MT Output: brokerské firmy vybéhl reklamy

Gloss: brokerage firmsy fem  Talggmasc adsﬁﬁﬁ%ff&
Correct: brokerské firmy vychrlily  reklamy,; gce
Comprehensible:  brokerské firmy vybéhly s reklamamiy; sty

Figure 4.2: Two sample errors in translating verb-modifier relations from
English to Czech.

these cases. Commented samples of such errors are given in Figure 4.2 be-
low. The first sample shows that a strong language model can lead to the
choice of a grammatical relation that nevertheless does not convey the orig-
inal meaning. The second sample illustrates a situation where the system
failed to choose an acceptable form for the relation between rush out and ads
most probably because it backed off to a generic pattern verb-nounaccusative,
This pattern is quite common for expressing the object role of many verbs
(such as vychrlit, see the Correct option in Figure 4.2), but does not fit well
with the verb vybéhnout. If the dictionary forced the system to use vybeéhnout,
a different preposition and case should have been chosen to render the output
at least comprehensible (the lexical choice is still problematic, the best equiv-
alent would probably be vyrazily s reklamami). While the target-side data
may be rich enough to learn the generalization vybéhnout s instr, no such
generalization is possible with language models over word forms or morpho-
logical tags only. The target side data will be hardly ever rich enough to learn
this particular structure in all correct morphological and lexical variants:
vybéhl s reklamou, vybéhla s reklamamsi, vybéhl s prohldsenim, vybéhli s
ozndmenim, . ... We would need a mixed model that combines verb lemmas,
prepositions and case information to properly capture the relations.
Unfortunately, our preliminary experiments that made use of automatic
Czech analytical trees to construct a factor explicitly highlighting the verb
(lexicalized) its modifiers (case and the lemma of the preposition, if present)
and boundary symbols such as punctuation or conjunctions and using a
dummy token for all other words did not bring any improvement over the
baseline. A possible reason is that we employed only a standard 7-gram lan-
guage model to this factor. A more appropriate treatment is to disregard
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the dummy tokens in the language model at all and use a “skipping” n-gram
language model that looks at last n — 1 non-dummy items.

4.9 Related Research

Class-based LMs (Brown et al., 1992) or factored LMs (Bilmes and Kirchhoff,
2003) are very similar to our T+C scenario. Given the small differences
in all T+...scenarios’ performance, class-based LM might bring equivalent
improvement. Yang and Kirchhoff (2006) have recently documented minor
BLEU improvement using factored LMs in single-factored SM'T to English.
The multi-factored approach to SM'T of Moses is however more general.

Many researchers have tried to employ morphology in improving word
alignment techniques (e.g. (Popovi¢ and Ney, 2004)) or machine transla-
tion quality (Nieken and Ney (2001), Koehn and Knight (2003), Zollmann
et al. (2006), among others, for various languages; Goldwater and McClosky
(2005), Bojar et al. (2006) and Talbot and Osborne (2006) for Czech), how-
ever, they focus on translating from the highly inflectional language.

Durgar El-Kahlout and Oflazer (2006) report preliminary experiments
in English to Turkish single-factored phrase-based translation, gaining sig-
nificant improvements by splitting root words and their morphemes into a
sequence of tokens. It might be interesting to explore multi-factored scenarios
for different Turkish morphology representation suggested in the paper.

De Gispert et al. (2005) generalize over verb forms and generate phrase
translations even for unseen target verb forms. The T+T+G scenario al-
lows a similar extension if the described generation step is replaced by a
(probabilistic) morphological generator.

Nguyen and Shimazu (2006) translate from English to Vietnamese but
the morphological richness of Vietnamese is comparable to English. In fact
the Vietnamese vocabulary size is even smaller than English vocabulary size
in one of their corpora. The observed improvement due to explicit modelling
of morphology might not scale up beyond small-data setting.

As an alternative option to our verb-modifier experiments, structured
language models (Chelba and Jelinek, 1998) might be considered to improve
clause coherence. Birch et al. (2007) reports improvements in sentence co-
herence using factored translation with CCG supertags. For languages with
significant but predictable syntactic divergence such as German-to-English
translation, automatic preprocessing of the word order significantly increases
MT quality (Collins et al., 2005). Cufin (2006) reports improvement for
Czech-to-English translation using a similar preprocessing technique focused
on introducing required English auxiliary words. And surely, another op-
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tion to improve output grammaticality is to employ full-featured syntax-
based MT models (Wu and Wong (1998), Yamada and Knight (2002), Eisner
(2003), Chiang (2005), Quirk and Menezes (2006) and our own experiments
in Chapter 3 among many others).

4.10 Conclusion

Moving away from basic research of lexical acquisition (Chapter 2) and a
linguistically justified but complex system of syntax-based machine transla-
tion (Chapter 3) to a goal-oriented direct method, this chapter introduced
so-called phrase-based translation, currently best performing M'T technique
for many language pairs.

We summarized the extension of phrase-based systems to multi-factored
MT and experimented with various setups of additional factors (translation
scenarios), the level of detail in morphological tags and additional training
data.

Our results on English-to-Czech translation demonstrate significant im-
provement in BLEU scores by explicit modelling of morphology and using
a separate morphological language model to ensure the coherence. To our
knowledge, the original experiments as described in (Bojar, 2007) were among
the first to show the advantages of using multiple factors in M'T. With some
additional data, we were able to improve over a commercial MT system in a
known domain in 2008.

Errors in expressing verb-modifier relations have been studied and a factor
capturing these dependencies has been proposed. Unfortunately, this factor
has yet to bring any improvement.



Chapter 5

Concluding Discussion

The underlying topic of the thesis is the relation between linguistic data
and applications. We focused on creating a deep syntactic lexicon and on
two methods of machine translation: a deep syntax-based MT and a shallow
phrase-based MT.

To provide a larger picture, we survey available literature with a simple
question in mind: Do lexicons bring an improvement to NLP applications?
Not, surprisingly, there is not a simple and conclusive answer to this ques-
tion. Hopefully, we managed to keep a balanced view and to mediate some
interesting lessons to learn from the past projects.

5.1 When Lexicons Proved to Be Useful

Litkowski (2005) gives a good overview of the current state in computational
lexicography including illustrations of NLP tasks and explanations of how
lexicons can be employed in them. Litkowski’s main belief in lexicon utility
comes from the “semantic imperative”. “In considering the NLP applications
of word-sense disambiguation, information extraction, question answering,
and summarization, there is a clear need for increasing amounts of semantic
information. The main problem facing these applications is a need to identify
paraphrases, that is, identifying whether a complex string of words carries
more or less the same meaning as another string.” Later, he notes: “As yet,
the symbolic content of traditional dictionaries has not been merged with
the statistical properties of word usage revealed by corpus-based methods.”

Of the many dictionary-like resources available, there seems to be only one
that has been applied to a wide range of applications more or less successfully:
WordNet (Fellbaum, 1998).

In some situations, lexicons are used to improve coverage (recall). For
instance, WordNet can be used as a back-off to replace words not known to
the system with a suitable synonym or hyperonym. In some situations, lexi-
cons might improve the precision, such as a morphological lexicon in speech
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recognition (morphological lexicon is generally more accurate than rules de-
scribing valid word forms). A lexicon can be also used as an authoritative
source of terms, expressions of constructions (e.g. EuroVoc'). The system
can then guarantee a certain level of output quality.

5.1.1 Lexicon Improves Information Retrieval

In an information retrieval system described by Woods et al. (1999), the addi-
tion of a morphological dictionary, taxonomic information between concepts
(WordNet-like) and rules describing general entailment between words and
concepts improved significantly the performance. An additional improve-
ment was achieved by employing a morphological guesser to analyse words
not listed in the lexicon. As a matter of fact, both the taxonomic (semantic)
and the morphological guesser were used in an over-generation fashion: the
input query was relaxed using the lexicons. All the documents that match
the relaxed queries are then sorted so that documents with a closer match
(less relaxation) appear on top. The lexical information is thus used to im-
prove recall only, while the sufficient precision is ensured at no additional
cost by input data.

Similar techniques are used for morphologically rich languages in search
engines. An old example for Czech dates back to the ASIMUT system
(Kralikova and Panevova, 1990).

5.1.2 Subcategorization Improves Parsing

Subcategorization information can serve as an example where the lexicon
improves the precision of the system. A parse (i.e. a syntactic analysis of
a sentence) is suppressed, if the pattern of a word’s modifications is not
approved by a subcategorization lexicon.

As documented in (Carroll et al., 1998) and cited papers, including statis-
tics on the co-occurrence of lexical heads of phrases and the configurations
of members in the phrase (i.e. complements and adjuncts) brings substan-
tial improvements in parsing accuracy. Zeman (2002) also reports a sig-
nificant improvement in parsing accuracy of his dependency-based statistical
parser when subcategorization information was added. However, the absolute
level of his parser’s accuracy remains below modern versions of phrase-based
parsers that include head-lexicalized statistics such as Collins et al. (1999).

More importantly, we are not aware of any published result demonstrating
that subcategorization lezicons (built manually or automatically) would be

'http://europa.eu/eurovoc/
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used in top-performing parsers.?

The claim we want to make is that while subcategorization information is
important and it indeed helps parsing, it can be extracted automatically and
most probably in a simple form tailored for the task and thus more suitable
than lexicons prepared independently. In some settings though, the lexicons
might provide a bigger coverage than what can be observed in the training
data.

5.1.3 Lexicons Employed in MT

Liu et al. (2005) describe a log-linear model for word alignment where a bilin-
gual lexicon can be added as a feature. A hand-made lexicon of word-to-word
translation equivalents contributed slightly to the overall good performance
of the system. The structure of the lexicon is very simple and also the evalu-
ation is measured in terms of alignment error rate (AER) against alignments
annotated by humans. It is not clear, if we would observe an improvement in
an end-to-end evaluation of an MT system. (AER is known not to directly
correlate with MT quality measures (Lopez and Resnik, 2006))

Fujita and Bond (2002) describe a method of augmenting a translation
dictionary with subcategorization information available for similar words
(other possible translation equivalents) already listed in the dictionary. The
utility was evaluated on the ALT-J/E rule-based MT system (Ikehara et al.,
1991): based on a human judgement by a single native speaker, the transla-
tion quality of only about 100 evaluation sentences improved in 31% of cases
and degraded in 8% of cases. Fujita and Bond (2004) report a similar exper-
iment where available verb alternation data was used to add the missing half
of the translation lexicon entry of an alternating verb. The method requires
a list of verbs participating in a specific alternation, the description of the
alternation in terms of valency slot changes, including changes in syntactic
structure and selectional restrictions, and a seed bilingual translation dictio-
nary. No completely new verbs are added to the dictionary, but the existing
entries are augmented with the missing halves of the alternation. Evaluated
by two native speakers on 124 test sentences, the augmented lexicon leads to
a better translation in about 46% of sentences and to a worse translation in
about 15% of cases. However, the ALT-J/E system has probably never been
evaluated on a standard test set so it is difficult to assess its real usability.

Boguslavsky et al. (2004) describe a range of dictionaries used in ETAP-3?

2An exception is the employment of VerbaLex lexicon in a Czech parser. Hlavackova
et al. (2006) demonstrate a dramatic reduction in parse ambiguity thanks to VerbaLex
entries. However, they do not evaluate the actual parsing accuracy.
*http://cl.iitp.ru/
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(Apresjan et al., 2003). Unfortunately, the MT system has probably neither
been evaluated on a standard test set nor has taken part in an evaluation
competition, but the authors claim and the web demo suggests that the
coverage of the system is sufficiently large. Based on the Meaning-Text-
Theory (Mel’¢uk, 1988) and implemented as hand written rules, the system
heavily depends on the quality of encoded lexicons. The applicability of
ETAP-3 therefore confirms the utility of its lexicons.

5.1.4 Lexicons Help Theories

A lexicon is also an indispensable tool in refining linguistic theories. As
explained above, a lexicon serves as a mapping between units on (typically)
two levels of language description. Given a multi-layer linguistic theory that
formally defines units at the various levels, a lexicon can prove or disprove the
appropriateness of the theory. If the lexicographic work proceeds smoothly
and large data is covered with lexical entries, then the theory was all right.
If problems are noticed, the theory can be adjusted accordingly as e.g. in
Lopatkova and Panevova (2005).

5.2 When Lexicons Were Not Needed

This section surveys some practical NLP tasks that are often used to motivate
the creation of lexicons. As we will see, depending on the specifics of the task
and method chosen, surprisingly good results can be often achieved without
any such lexicon.

5.2.1 PP Attachment without Lexicons

Calvo et al. (2005) conducts, to the best of our knowledge, the only exper-
iment directly evaluating the utility of a hand-written lexicon (WordNet in
particular) against a lexicon derived automatically from corpus data to solve
a common task: attachment of prepositional phrases (PP).

The authors describe a method of automatically building a thesaurus and
using the thesaurus as a back-off for the PP attachment problem. A compar-
ison with a similar method based on manual (WordNet) data indicates that
the results based on a manual and automatic resources are nearly identical.
Higher precision scores of PP attachment are achieved without any back-off,
but the coverage is very poor.

However, the task of PP attachment is notoriously hard and given the
relatively low performance of both the dictionary-based and the automatic
method, we cannot confidently claim superiority of any of the methods.
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5.2.2 MT without Lexicons

For the time being, top performing MT systems include statistical phrase-
based methods (Callison-Burch et al., 2007) and in some evaluations the
phrase-based systems win by a large margin.? These systems do not rely
on any translation dictionaries but rather build them automatically, given a
collection of word-aligned parallel texts. The “structure” of such lexicons is
typically very simple, they contain just pairs of (sequences of) word forms
in the source and target languages with no additional linguistic information,
except for a co-occurrence count/probability.

Stevenson (2003) reviews the hopes of word-sense disambiguation (WSD)
usefulness in various NLP tasks including MT. It seems that only very re-
cent experiments follow Stevenson’s wish: “the only way in which it can be
accurately determined whether these systems [e.g. MT| will benefit from the
information produced by some [WSD]| component is to integrate it as part
of the final system and record the change in performance.” Experiments to
date provide mixed results: Carpuat and Wu (2005) describe several tech-
niques of a loose combination of a WSD and an MT system that fail to bring
any significant improvement. While this particular experiment has some pe-
culiarities®, the same doubt on WSD utility came up in Senseval-3 panel
discussions® in 2004. It is also worth mentioning that already Senseval-2
included “system evaluation” as one of its subgoals” but it does not seem
that much success with WSD application has been reported in subsequent
Senseval competitions.

Only recently Carpuat and Wu (2007) achieved consistent improvements
by coupling the MT system with a WSD method rather tightly. One of the
interesting differences between the failing and the succeeding experiments
is that the latter do not rely on human-constructed lexicons of senses but
rather use phrase tables extracted automatically from a parallel corpus. We
can thus say that while WSD techniques can bring an improvement in MT
quality, this was not yet demonstrated using human-annotated lexical data.

One of the motivations for building valency lexicons and one of the main

ANIST 2005 official evaluation, http://www.nist.gov/speech/tests/.

5The WSD task is used for 20 words only with 2 to 8 senses per word and there is only 37
occurrences of the words in the training data. Also, the WSD module is not used a feature
in the SMT system, but rather employed in two hard ways: either in post-processing by
replacing the output word with the translation equivalent suggested by WSD (this can
break the cohesion of the sentence), or to prune all paths in the lattice that do not contain
the target word. A finer combination of WSD and SMT would allow to tune a weight
assigned to the WSD module.

Shttp://www.senseval.org/senseval3/panels

"http://www.itri.brighton.ac.uk/events/senseval/SENSEVAL2/task-design.ps
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reasons for introducing syntax-based models to MT is the aim to produce
correct valency structures of verbs and other elements in the sentence. If a
word is not accompanied by all grammatically required modifiers or if there
are unexpected additional modifiers, the sentence feels disfluent. Dependency
grammars equipped with a valency dictionary such as we have seen in Chap-
ter 2 should be able to identify the problem and prefer a different translation.
STSG models valency explicitly, treelet pairs can be seen as bilingual valency
frames.

In real world sentences though, dependency edges are relatively short
(Holan, 2003) and thus can be approximated reasonably well by plain adja-
cency of sentence elements (words). The phrase-based approach described in
Chapter 4 can thus in many cases capture and translate valency frames cor-
rectly, provided the phrase-length limit is large enough. The only real advan-
tage of syntax-based methods is a better ability to generalize, e.g. abstract
away all adjectives intervening between a verb and its object. It would be
interesting to evaluate how often does such a generalization capacity promise
to bring an improvement in a real MT task with fixed training and test data.

Finally, Och (2005) demonstrates that (according to current evaluation
metrics) the key features of MT systems that lead to success are: (1) sim-
plicity, such as a combination of independent features, relatively simple from
the linguistic point of view, (2) minimality of design and representation, such
as stemming of words, or only a few bits to represent probabilities, and (3)
vast amounts of textual data. These features are somewhat contradictory to
what we obtain from elaborated lexicons.

5.2.3 Question Answering without Deep Syntax

Mooney (2000) describes a system CHILL that converts questions in a nat-
ural language into Prolog queries. The answers are obtained by evaluating
the query on a database. The system performs very well on restricted do-
mains (geographical knowledge about the U.S.; a thousand of restaurants in
northern California or job opportunities). In the system, the deep syntactic
level is simply skipped. To start working on a new domain, only a set of (a
few hundreds of) sample questions and expected Prolog queries are needed
as the training data. CHILL learns a shift-reduce parser for input sentences
to produces directly the Prolog query. In Wong and Mooney (2007), the
direct translation from plain text sentence to the Prolog query is casted as
synchronous context-free grammar derivation, skipping any syntactic layer
again.

As Litkowski (2005) summarizes: “From the beginning, researchers viewed
this NLP task |Question Answering| as one that would involve semantic pro-
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cessing and provide a vehicle for deeper study of meaning and its represen-
tation. This has not generally proved to be the case, but many nuances have
emerged in handling different types of questions.”

5.2.4 Summarization without Meaning and Grammaticality
without Valency Lexicon

Barzilay and McKeown (2005) describe a sentence fusion technique employed
in summarization of multiple source documents, the Newsblaster® (McKeown
et al., 2002). Only shallow syntactic analysis of the input text (dependency
parsing) and generic knowledge collected from a larger text corpus are needed.
Output sentences are generated by reusing and altering phrases from several
source sentences. More specifically, a centroid sentence (an input sentence
most similar to other input sentences) is selected and its dependency tree is
gradually altered by adding information present only in (a majority of) other
sentences and by removing information not supported by a reasonable share
of other sentences. Grammaticality is ensured by keeping all modifications
very conservative: information is added, only if the root node of the added
subtree can be aligned to a node already present in the centroid sentence, and
nodes are deleted only in a small pre-defined set of cases (such as removing
components from conjunctions or removing adverbs). The lack of an explicit
valency lexicon is thus compensated by making use of “valency exhibited” in
input sentences.

Barzilay and McKeown (2005) also mention problems with the lineariza-
tion of the output dependency structure using a large-scale unification-based
text generation system FUF/SURGE. FUF/SURGE requires edges in the
input dependency trees to be labelled with syntactico-semantic roles such as
“manner” or “location”. If the roles are added automatically (and there is no
other option for machine-generated input trees), errors lead to completely
scrambled output, wrong prepositions etc. Barzilay and McKeown (2005)
achieve better results with a statistical linearization component, which is not
only more robust to errors but also more efficient, because it can make use of
phrases readily available in the data. The FUF/SURGE generation system
produces every phrase from scratch. Due to limitations inherent to cur-
rent n-gram based language modelling techniques, suboptimal linearizations
are sometimes chosen. Once language modelling techniques are improved
with respect to syntactic properties of the language, more grammatical out-
put will be produced. (As always, language-specific issues have to be taken
into account when drawing conclusions from other observations. If the tar-

8http://www.cs.columbia.edu/nlp/newsblaster/
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get language were a morphologically rich language such as Czech, the lan-
guage model employed in the statistical linearizer would perform significantly
worse. )

5.3 Discussion

Is there a common property of the above mentioned applications that were
successful without performing too deep analysis or needing advanced lexi-
cons? In our opinion, the most important common feature of the methods is
that the intelligence is left to the human.

e Grammaticality is ensured by reusing a text produced by humans (sen-
tence fusion).

e Selection of the translation equivalent is based on the choice of a human
in a similar context (MT).

e Overgeneration never hurts, if the output of the system is intersected
with some man-made data (information extraction).

Why are independently designed (manual or automatic) lexicons rela-
tively rarely used in applications? Our guess is the difficulty of adapting
the formats and more importantly the difference in types of decisions an
application has to make and hints a lexicon can offer.

On the other hand, we have mentioned several applications that build
their own lexicons (or probabilistic tables), the features of which are very
much influenced by linguistic insights incorporated in human lexicons.

Our belief is that linguistic theories provide an indispensable source of
inspiration that is being slowly reflected in the design of applications. Any
data produced by computational linguists remain difficult to reuse in prac-
tical NLP systems because they provide answers for questions the system is
nowhere near to ask.

5.4 Contribution of the Thesis

The first part of the thesis (Chapter 2) examined automatic ways of con-
structing a valency dictionary, an important resource for various applications
including rule-based or syntax-based M'T. Several methods of frame extrac-
tion were designed and evaluated using a novel metric that gives a partial
credit even for not quite complete frames by estimating the savings in a
lexicographer’s work.
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The second part (Chapters 3 and 4) focused directly on linguistic data
within the task of MT. First, we designed, implemented and evaluated a full-
fledged syntax-based M'T system. The generic engine was applied in various
settings ranging from transfer at a deep syntactic layer to an approximation
of an uninformed phrase-based translation. The results indicate that the best
translation quality is still achieved by the most simple methods; the main
reasons for this being the cumulation of errors, the loss in training data due
to both natural and random syntactic divergence between Czech and English
and finally a combinatorial explosion in the complex search space.

In Chapter 4 we moved to a relatively simple model of phrase-based MT
and we improved its accuracy by adding a limited amount of linguistic in-
formation. While word lemmas and morphological tags can be successfully
exploited by the phrase-based model thanks to their direct correspondence
to the sequence of words achieving a better morphological coherence of MT
output, the applicability of syntactic information remains an open research
question.

The thesis contributes to the art of natural language processing and ma-
chine translation in particular by designing and evaluating:

e an automatic metric estimating the savings in a lexicographer’s work;

e experiments with various methods for automatic deep valency frame
acquisition based on corpus observations;

e a machine translation system with a deep syntactic transfer, including
the evaluation of an end-to-end pipeline; the system can be applied also
at a surface-syntactic layer;

e improved word-alignment techniques by preprocessing parallel texts,
utilized in experiments reported here and fully described in Bojar et
al. (2006);

e various configurations of factored phrase-based models for English-to-
Czech translation improving target-side morphological coherence.

Moreover, we prepared and made the following data available for the
research community:

e a Czech-English parallel corpus CzEng, two public releases (Bojar and
Zabokrtsky, 2006; Bojar et al., 2008),

e manual Czech-English word-alignment data (Bojar and Prokopova,
2006), including an evaluation of inter-annotator agreement,
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e Golden VALEVAL, word-sense disambiguation data from the VALE-
VAL experiment (Bojar et al., 2005),

e a mildly cleaned-up collection of Czech-English translation dictionaries
(Bojar and Prokopova, 2007).

As it tends to happen, a thesis sometimes opens more questions than
it actually solves. Many suggestions on how to further improve or extend
our methods were mentioned throughout the thesis. We plan to continue
our research by further attempts to combine successful simple models with
linguistically-informed methods.
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Appendix A

Sample Translation Output

A.1 In-Domain Evaluation

This section illustrates the performace of various MT systems on articles
from Project Syndicate.! We can talk about “in-domain” evaluation for our
systems (etct and two configurations of Moses), because other texts from the
same source are part of our training data.

Because both the original and the reference translations are publicly avail-
able on Project Syndicate website, we can speculate whether e.g. Google
Translate had an opportunity to train on parts of this particular test set.

Source text, WMT 08 Commentary Test
Berlusconi at Bay

... Fifteen years later, Signor Berlusoni understood that the Italian state’s mono-
poly of television would not survive and jump-started what became Italy’s main
privately owned media group. But you don’t win in TV and the real estate business
without the right political connections. On both occasions, Berlusconi outwitted
his competitors by siding with the Socialists, at the time the rising stars of Ital-
ian political life. His long association with Bettino Craxi, Milan’s most influential
politician in the 1970’s and Italy’s prime minister through much of the 1980’s,
started early. On the other hand, political connections do not make a politician.
A Field Guide to Israeli Hawks

Prime Minister Ariel Sharon’s announcement that he plans to dismantle Jewish
settlements in the Gaza Strip, as well as some settlements in the West Bank, has
shocked and caught people off guard both in Israel and around the world. Many
denounced Sharon’s plan as a trick. But that surprise was wrong-headed from
the start. Despite the way it often looks to outsiders, debates in Israel about the
future of the occupied territories have never been confined to hawks and doves.
Like everything in Israel, the process is more complicated, especially where the
hawks are concerned. Basically, there are two species of Israeli hawks: call one
kind ideological and the other strategic.

"http://www.project-syndicate.org/
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etct, factored output nodes, preserve structure BLEU 4.98%

Berlusconi v zalivu.

... Fifteen let uz signoru berlusonus chépal, Ze italsky stat je monopol televize,
nakonec, nezije a, nastartuje zacne, co se stalo, italie je hlavni soukroma vlastni
medidlni skupina. V8ak vam je, zvitézi v televizi a skuteéného nemovitosti obchodu
spravnych politickych vztahti. Oba piilezitosti berlusconi outwit jeji konkurence
stranéni socialisté v dobé rostoucich hvézd italského politického zZivota. Jeji dlouho-
doba vazba bettino craxus milan je nejvlivnéjsi politik 70 je a italie je ministerska
vlada velké 80 je zacne brzy. Na druhé strané politické konexe jsou politik.
Oblasti vede izraelskych jestiabii.

Premiér ministr ariel Saron je ozndmenti, ze je hodla odstranit zidovskych osad gaza
strip jak, tak, nékterd urovnani na zapadnim biehu, je, Sokoval a chytili lidé gardy
jak v izrael a po svété. Mnohém odsoudil, Saron je, plan trik. A to prekvapeni
bylo spravné , vede od zacidtku. Way, jeji ¢asto vypadé cizincii, se debaty izrael
o budoucnosti okupovanych tzemi nikdy tykaly jestFabii a holubicky. VsSechna
v izrael proces je slozitéjsi, predevsim kde se jestfabi tykaji. Vlastni jsou two
druhové izraelskych jesttabu : vyzvou jistou takovou ideologické a dalsi strategické.

TectoMT BLEU 9.28%

Berlusconi na zalivu.

... O patnéct rokt pozdéji pan Berlusoni rozumeél, ze by se italsky statni monopol
televize neptezil a jump-started, co se stalo hlavni soukromé vlastni sdélovaci
skupinou Italie. Ale nevyhrajete se v TV a ve skutetném realitnim obchodu
bez pravych politickych spojeni. Na obou pfilezitostech Berlusconi pfelstil svoje
konkurenty obklad se socialisty na ¢asu rostouci hvézdném italského politického
zivota. A jeho dlouhého sdruZeni s nulou politikem v roce 1970 Craxiho Milan
nejvlivnéjsi ministersky ministersky Italie velké 80. let vychozich rané. Na jiné
ruce politickd spojeni neucini politika.

Polni voditko k Izraelctim jestfabtm.

Ministerské ministerské Ariel ozndmeni Sharonu, 7e planuje demontaz Zzidovskych
urovnani v Gaze Gazy i jako néktera urovnani ve West bance Sokovalo a chytilo lidi
dozorce obojim v Izraeli a po svété. Mnoha vypovédél plan Sharonu jako trik. Ale
toto prekvapeni bylo wrong-headed ze zacatku. Navzdory zptisobu, to ¢asto vy-
padé k cizincim, debaty v Izraeli o budoucnosti okupovanych tizemi nikdy nebyly
omezeny k jesttabtim a k holubtim. Jako vSe v Izraeli proces je slozitéjsi, Ze se zej-
ména kde jestfabi jsou tykani. Vlastné jsou dva druhy izraelskych jestfabt: hovor
jeden vécny ideologicky a jiné strategicky.



A.1. In-Domain Evaluation 127

PC Translator 2007 BLEU 8.48%

Berlusconi v tzkych

... Patnact let pozdéji, pdn Berlusoni rozumél , Ze italsky statni monopol na tele-
vizi by ne by nepfezila a strmy start co stal se Italii- ovo hlavni v soukromém
vlastnictvi medialni skupina. Ale vy nevyhrajete v TV a obchodu nemovitosti bez
pravych politickych spojeni. Na obou pftilezitostech, Berlusconi pfechytraceny jeho
konkurenti vyhybkou se Socialists, v dobé& rostouci hvézdy italského politického 7i-
vota. Jeho dlouhé spojeni s Bettino Craxi, Milan- ovo nejvlivngjsi politik v 1970-
ovo a Italie- ovo ministersky piedseda skrz velkou ¢ast 1980- ovo, zac¢it brzo. Na
druhé strané, politické spojeni neudélaji politika.

A polni privodce po izraelskych jestfabech

Ministersky piedseda Ariel Sharon- ovo oznameni Ze on planuje rozebrat zidovska
osidleni v Pasmu Ghazy, stejné jako néjaka osidleni na zdpadnim biehu, Sokovali
a chycené lidi mimo straz v Izraeli a kolem svéta. Mnoho odsuzovaného Sharon-
ovo planu jak trik. Ale to pfekvapeni bylo zarputilé od za¢atku. Navzdory cesté to
casto vzhlizi k outsider, diskuse v Izraeli o budoucnosti obsazenych oblasti nikdy
nebyly uvéznéné v jestidbech a skokach. Jako vSechno v Izraeli, proces je vic komp-
likovany, zvlasté kde jesttabové se tykaji. Zakladnim zpisobem, tam jsou dva druzi
izraelskych jestfabi: volat jednoho druha ideologického a dalsi strategického.

Moses T+C, CzEng 0.7 data only BLEU 14.64%

Berlusconi v kouté

... Patnéct let nato, pficemz Berlusoni signor italského statnitho monopolu tele-
vize, a to by nebylo prezit a impulsem zacalo to, co se stalo v Italii v hlavnim
soukromém vlastnictvi medialni skupiny. Ale cozpak zvitézit v televizi a nemovi-
tosti podnikatelské bez patfiéné politické konexe. V obou pfipadech Berlusconi
outwitted soupefum tim, Ze stranéni socialistii, v dobé rostouci hvézdy italského
politického 7ivota. Jeho dlouh& spojitost se Bettino Craxi, Milan ’s nejvlivnéjsi
politickou v sedmdesatych a italského premiéra po vétsinu osmdesétych let, zacala
brzy. Na druhé strané vsak politické konexe nejsou vytvorit politik.

Smétovani k izraelskym jestrabtim oblasti,

Ministerského predsedy Ariela Sarona "je oznament, 7e plény na odstranén{ zidov-
skych osad v pasmu Gazy, stejné jako nékteré osady na zdpadnim biehu, mé za-
skoCen a chycen lidi mimo gardy, a to jak v Izraeli a po celém svété. Mnozi
odsoudili Sarontiv plan jako trik. Ale to, ze prekvapeni se myli hlavou od zacatku.
Navzdory tomu, aby byla ¢asto vypada pro nezasvécené debaty v Izraeli o budouc-
nosti na okupovanych tzemich nebyly nikdy neomezuji na jestfabi a holubi. Jako
V zasadé existuji dva druhy izraelskych jestfabt: volani jednoho druhu ideologické
a ostatni strategické.



128

Moses T+C, LM from SYN2006 BLEU 15.91%

Berlusconi v zalivu

... O patnact let pozdgji, signor Berlusoni pochopili, Ze italsky statni monopol
televize by to nepfezije a skok - zacalo to hlavni, co se stalo v Italii v soukromém
vlastnictvi medidlni skupiny. Ale vy zvitézit v televizi a realitni ¢innost bez patii¢né
politické konexe. V obou p¥ipadech Berlusconi outwitted soupeftim tim, Ze stranéni
socialistli, v dobé stoupajici hvézdy italského politického zivota. S Bettino Craxi
jeho dlouhé sdruzeni, Milan ’s nejvlivnéj§im politikem v sedmdesatych a italsky
premiér po vétsinu z osmdesétych let, zacal brzy. Na druhé strané vsak politické
konexe nejsou vytvofit politikem.

Voditko pro oblasti izraelskych jestirabi

Premiéra Ariela Sarona "je ozndmeni, ze plany na odstranéni Zzidovskych osad
v pasmu Gazy, stejné jako nékteré osady na zapadnim b¥ehu, byl Sokovan a chytil
od lidi, kte¥f stiezf jak v Izracli a na celém svéts. Mnozf odsoudil Saronovu planu
jako trik. Ale to prekvapeni bylo §patné - stoji od samého zacatku. Navzdory tak,
jak to casto vypad& pro cizince v Izraeli, debaty o budoucnosti na okupovanych
tuzemich nikdy nebyly omezeny na jestfabi a holubi. Jako vSe v Izraeli, proces je
existuji dva druhy izraelskych jestfabt: volani jednoho druhu ideologické a dalsi
strategické.

Google Translate, as of May 15, 2008 BLEU 21.14%

Berlusconi v tzkych

... Patnéct let poté, Signor Berlusoni pochopil, Ze italsky statni monopol na tele-
vizni by nepfezili a jump-zacalo to, co se stala Itélie v soukromém vlastnictvi,
hlavni medidlni skupiny. Ale nemusite vyhrat v TV a realitni ¢innost bez pravo
politické spojeni. V obou pfipadech Berlusconi outwitted jeho konkurenti o vlecka
s socialistli, v dobé stoupajici hvézdy na italského politického Zivota. Jeho dlouhé
spolupraci s Bettino Craxi, Milan nejvlivnéj§im politikem v 1970 a Italie premiér
prostfednictvim mnohem z roku 1980 se zacal brzy. Na druhou stranu, politické
propojeni nenutte politikem.

Pole Priivodce izraelské Hawks

Ministersky predseda Ariel Sharon je oznameni, 7e plany likvidace zidovskych osad
v pasmu Gazy, stejné jako nékterych osad na zapadnim b¥ehu Jordanu, byl Sokovan
a ulovené lidi z straze, jak v Izraeli a po celém svété. Mnoho vypovézena Saroniv
plan jako trik. Ale to pfekvapeni bylo §patné-cele od zac¢atku. Navzdory tomu, Ze
zpusob, jak to ¢asto vypada na outsidery, diskuze v Izraeli o budoucnosti okupo-
vanych tzemi, nebyla nikdy omezena na jestfabi a holubice. Stejné jako vSechno
V zasadé existuji dva druhy izraelskych jestfabti: Vyzva jednoho druhu ideologick-
ych a jinych strategickych.
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Reference translation

Berlusconi v tzkych

... O patnact let pozdéji signor Berlusconi pochopil, Ze se italsky statni televizni
monopol neudrzi, a chopil se piilezitosti, kterd dala vzniknout nejvétsi italské
medialni skupiné v soukromych rukou. V televiznim a realitnim byznysu ovSem
nemuzete vitézit bez spravnych politickych styktd. V obou pfipadech Berlusconi
vyzral nad svymi konkurenty tim, Ze stranil socialisttim, tehdejsi stoupajici hvézdé
italského politického zivota. Velmi brzy zacalo jeho dlouholeté pratelstvi s Bet-
tinem Craxim, nejvlivnéjsim mildnskym politikem 70. let a italskym ministerskym
predsedou po vétsinu 80. let. Na druhé strané plati, ze politické konexe nevytvoii
politika.

Kli¢ k urcovani izraelskych jestirabi

Prohlageni ministerského piredsedy Ariela Sarona, 7e hodla odstranit zidovské osady
z pasma Gazy a nékteré osady ze Zapadniho biehu Jordanu, Sokovalo a zaskocilo
lidi jak v Izraeli, tak po celém svété. Mnozi Saroniv plan odsoudili jako uskok.
Ona ptekvapenost ale byla od poc¢atku pomylend. Navzdory tomu, jak se véc
¢asto jevi cizincium, vnitroizraelské debaty o budoucnosti okupovanych tizemi se
nikdy neomezovaly na jesttdby a holubice. Tento proces, jako vS8echno v Izraeli,
je slozitéjsi, obzvlasté co se jestidbi tyce. V zésadé existuji dva druhy izraelskych
jestiabli: jednomu fikejme ideologicky a druhému strategicky.

A.2 Out-of-Domain Evaluation

This sections illustrates the performance of various MT systems on news
text. For our contributions (etct and two setups of Moses), we can talk
about evaluation out of the original domain, because no texts from a similar
source or of a similar type are available in our training data.

As this particular test set was translated on demand for the purposes of
WMT 08, we can be nearly sure that none of the third-party systems had
access to the reference translations.

Source text, WMT 08 News Test
Food: Where European inflation slipped up

The skyward zoom in food prices is the dominant force behind the speed up in
eurozone inflation. November price hikes were higher than expected in the 13
eurozone countries, with October’s 2.6 percent yr/yr inflation rate followed by
3.1 percent in November, the EU’s Luxembourg-based statistical office reported.
Official forecasts predicted just 3 percent, Bloomberg said. As opposed to the US,
UK, and Canadian central banks, the European Central Bank (ECB) did not cut
interest rates, arguing that a rate drop combined with rising raw material prices
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and declining unemployment would trigger an inflationary spiral. The ECB wants
to hold inflation to under two percent, or somewhere in that vicinity.

New Russia-Ukraine gas row fears

A fresh gas price dispute is brewing between Ukraine and Russia, raising the risk
that Russian exports of the fuel to western Europe may be affected. Most of
Russia’s gas exports to the European Union (EU) are piped through Ukraine and
any row between the two nations is keenly watched. Kiev has warned that if
Moscow raises the price it has to pay for the gas it will charge Russia higher
transit fees. A previous dispute between the two last year reduced supplies to EU
states.

etct, factored output nodes, preserve structure BLEU 3.36%

Food :, kdyZ kde evropska inflace zakopla.

Skyward zoom potravin cen je dominantni sila rychlosti vysoké eurozone inflace.
Listopadu cenové zvyseni bylo vyssi, nez ocekdval ve 13 eurozone zemich, fijen 2.6
procenta yr / yr inflace mira el 3.1 procenta v listopadu, unie je lucembursko
az, zaloZeny statisticky ufad report. Piedstavitel odhady ptredpovidal pouhé 3
procenta, bloomberg ¥ekl. Odmital usa, britanie a kanadskych centralnich bank
evropské centralni banka ecb omezi tirokové sazby, tvrdil, Ze miry pokles, spojuje
rostly hrubé materialu ceny a klesala zaméstnanosti by vyvola infla¢ni spirdlu. Ecb
chce, ma inflaci two procenta a ona v tomto okoli.

Nova rusko ukrajiny plynu fada se obava.

Nového plynu ceny sporu, je, brewing mezi ukrajinou a mezi rusko zvysil riziko, ze
ruské vyvozy paliva zapadni evropa mohly ovliviiovat. Nejvétsi rusko je plynu ex-
porty evropské unie eu vzdusné ukrajiny a jakikoli fada mezi two zemémi naléhaveé
sleduje. Kyjev varoval, Ze, moskva zvysi cenu, je ma, plati plynu, jeji zaplati rusko
vys8i dopravy poplatky. Posledni spor mezi two poslednim rokem snizil zdroje eu
stati.

TectoMT BLEU 6.94%
Potravina: kde evropska inflace klopytla.

Skyward, ze se zvétsi, v cendch potraviny je dominantni platnost za rychlosti na-
horu v eurozong inflaci. Ze zvySeni listopadu ceny byla vyssi, nez se ocekaval ve 13
eurozénach zemich s ¥ijnem 2,6 desetiprocentni yr/yr infla¢ni sazbou nésledujici 3,1
procentem v listopadu, Luxembourg-based statisticky afad EU uvedl. Ze ufednik
predpovédi predpovédél pravé 3 procenta, Bloomberg tekl. Ze se stavél proti USA
proti UK a proti kanadskym centréalnim bankém, Evropan centralni banka (ECB)
nesnizila urokové sazby ¢éloveék, Ze by pausalni kapka kombinovana rist surovych
cen materidlu a poklesem nezaméstnanosti vyvolala infla¢ni spirdly. ECB chce
drzet inflaci k pod dvéma procentu nebo nékde v této blizkosti.



A.2. Out-of-Domain Evaluation 131

Nové e plynové radky strachy.

Cerstve plynové cenové sporné, ze je pivo mezi Ukrajinou a mezi Ruskem zvygeni,
riziko Ze ruské vyvozy paliva do zapadni Evropy mohou byt ovlivnény. Nejvétsi
vyvozii Ruska plynu do Evropana svazu (EU) je pichnut Ukrajinou a jakykoli fadek
mezi dvéma narody pronikavé je sledovan. Kyjev varoval, ze, pokud Moskva zvysi
cenu, ze to ma zaplatit za plyn, to bude uctovat Rusko vySsi tranzitni poplatky.
Ptedchozi spor mezi dvé poslednim rokem snizil dodavky na EU staty.

PC Translator 2007 BLEU 8.41%
Jidlo: Kde evropska inflace klopytla

K nebi najet transfokatorem potravinové ceny je dominantni sila za rychlosti na-
horu v eurozone inflaci. Listopad zvySeni cen byla vyssi nez o¢ekdvany v 13 euro-
zone zemich, s Fijnovym 2.6 procent yr/yr miry inflace nasledované 3.1 procent
v listopadu, EU- ovo Luxembourg - based statisticky uiad ohlésil. Oficidlni pfed-
povédi predpovidaly jen 3 procent, Bloomberg tekl. Jak protichidny k US, UK, a
kanadské tustfedni banky, Evropska centralni banka (ECB) ne Feze urokové sazby,
argumentovani ten piepocitaci pokles v kombinaci se stoupanim surovina ceny a
sestupné nezaméstnanost spoust infla¢ni spirdla. ECB Chci drzet inflaci pod dva
procent, nebo kdesi v tom sousedstvi.

Nova Russia - Ukraine plynova fada boji se

A Cerstvy plynovy cenovy spor vaif mezi Ukrajinou a Ruskem, péstovani riziko ty
ruské exporty paliva zdpadni Evropa muze byt ovlivnény. Vétsiny ruskych plyno-
vych exporti k Evropské unii (EU) jsou vedeni potrubim skrz Ukrajinu a néjaky
/kazdy /zadny fada mezi dvéma narody je nadSené sledovany. Kyjev varoval Ze
jestli Moskva zvedne cenu, kterou to musi platit za plyn, ktery to bude uctovat
Rusku vyssi poplatky tranzitu. A predchozi spor mezi dvéma minulym rokem
snizené dodavky EU stoji.

Moses T+C, CzEng 0.7 data only BLEU 9.75%

Jidlo: kam evropska inflace sklouzla nahoru,

K tomu, Ze vzlétl jesté vyse priblizit ceny potravin je dominantni silou v pozadi
urychli v eurozoné inflace. Listopadové cenové zvysSeni bylo vyssi, nez se o¢ekévalo,
7e v fijnu 13 zemé eurozony, s tim, ze 2, 6 procenta Yr / Yr miru inflace nasledovana
3, 1 procenta v listopadu, EU a Lucembursko - zaloZeny statisticky tiFad ohlésil.
Oficialni ptedpovédi predpovédély pravé, 3 procent, Bloomberg fekl. Na rozdil
od USA, Britanii a kanadskou centréalni banky, evropska centralni banka (ECB),
nikoliv snizit arokové sazby, a tvrdi, Ze sazby klesnou spojovany s rostoucimi cenami
surovin a klesajici nezaméstnanosti vyvolava inflacni spiradle. ECB si chce udrzet
inflaci, aby se podle dvou procent, nebo nékde v téchto mistech.

Nové Rusko - Ukrajina plynu obava poriadi.
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A Cerstvé ceny plynu bublaji spor mezi Ukrajinou a Ruskem, zvysi riziko, Ze rusky
export paliva pro zapadni Evropu, mtze byt ovlivnén. Vétsina ruskych vyvozu
plynu do evropské unie (EU) je zaveden prostFednictvim Ukrajiny a kazda fada
mezi obéma zemémi je naléhavé sledoval. Kyjev upozornila, ze pokud Moskva zvysi
cena, kterd ma platit za plyn bude tacétovat Rusko vys§gich tranzitnich poplatkd. A
piedchozi spor mezi témito dvéma loni snizi dodavky do ¢lenskych statti EU.

Moses T+C, LM from SYN2006 BLEU 11.93%
V pripadé potravin sklouzla do evropské inflace:

Vzhledem k tomu, Ze vzlétl jesté vysSe priblizit ceny potravin je dominantni silou
za urychleni v eurozéné inflace. V listopadu byly vyssi nez o¢ekavané zvyseni ceny
v oblasti zemé eurozony, 13. ¥ijna ’s 2, 6 procenta s Yr / Yr miru inflace 3, 1 pro-
centa, nasledované v listopadu, EU v Lucemburku statisticky afad hlasi zalozeny.
Jen 3 procenta oficidlni predpovédi predpovédél, Bloomberg tekl. Na rozdil od
americkych, britskych a kanadskych centralnich bank, evropski centralni banka
(ECB), nikoliv snizit urokové sazby, a tvrdi, Ze sazby klesnou spolu s rostoucimi
cenami surovin a klesajici nezaméstnanosti vyvolalo inflaéni spirdle. ECB chce
udrzet inflaci do dvou procent, nebo nékde v téchto mistech.

Nové Rusko - Ukrajina plynu obava radek.

A Cerstvé ceny plynu bublaji spor mezi Ukrajinou a Ruskem, zvysi riziko, ze rusky
vyvoz paliva do zdpadni Evropy, mtze byt ovlivnén. Vétsina ruskych vyvozi plynu
do evropské unie (EU) jsou pistala pres Ukrajinu a kazdy fadek mezi obéma néarody
je naléhavé stfezen. Kyjev jiz varoval, ze pokud Moskva zvysSuje cenu, kterd se ma
platit za plyn bude uctovat vyssi tranzitni poplatky v Rusku. A pfedchozi spor
mezi dvéma v lofiském roce snizené dodavky pro staty EU.

Google Translate, as of May 15, 2008 BLEU 12.82%

Strava: Tam, kde se evropské inflace stréila do

Na obloze zoom cen potravin, je dominantni silou urychleni inflace v eurozéné.
Listopad riist cen byl vy$si nez se ofekdva v 13 zemich eurozény, v fijnu na 2,6
procenta r / r mira inflace nasledoval o 3,1 procenta v listopadu, EU, Lucembursko-
zalozené statistického tfadu hlagena. Ufedni prognozy predpovédét jen 3 procenta,
Bloomberg tekl. Na rozdil od USA, Velké Britanii, a kanadské centralni banky,
Evropska centralni banka (ECB) nebyla sniZeni urokovych sazeb a tvrdil, Ze mira
poklesu v kombinaci s rostouci ceny surovin a klesajici nezaméstnanosti by podnitit
infla¢ni spirdly. ECB chce drzet inflaci pod dvé procenta, nebo nékde v blizkosti.

Nové Rusko-Ukrajina plynovy radku obavy

A fresh cen zemniho plynu je pivovarské spor mezi Ukrajinou a Ruskem, a tim
zvysit riziko, ze rusky vyvoz paliva do zapadni Evropy miize byt ovlivnéna. Vétsina
z ruského vyvozu zemniho plynu do Evropské unie (EU) je propojen pies Ukrajinu
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a jakékoli fadku mezi ob&ma narody je horlivé sledoval. Kyjev méa varoval, Ze
pokud Moskva se zvy3uje cena, kterou musi zaplatit za benzin, Ze Rusko bude
uétovat vyssi poplatky za tranzit. Pfedchozi spor mezi dvéma poslednim roce
snizena dodavky do stati EU.

Reference translation

Inflace v Evropé poskocdila kviili potravinam

Zrychlujici se inflace naméfend v eurozéné je zplsobena piedevsim neustalym
ristem cen potravin. Listopadovy riist cen ve 13 zemich eurozény byl nad ocekavani
vy$8i, po 2,6 procenta v Fijnu byla zaregistrovana roc¢ni inflace 3,1 procenta, oznédmil
lucembursky statisticky afad Unie. Oficidlni predpovéd predpokladala pouze 3
procenta, sdélila agentura Bloomberg. Na rozdil od americké, britské a kanadské
emisni banky Evropska centralni banka (ECB) nesnizila zakladni urokovou sazbu
s tim, Ze sniZzeni by spolu se zvyS§ujicimi se cenami surovin a klesajici nezaméstna-
nosti vedlo ke vzniku infla¢ni spirdly. ECB by rdda udrzela miru inflace pod dvéma
procenty, ovSem v jejich blizkosti.

Obavy z nové hadky o plyn mezi Ruskem a Ukrajinou

Mezi Ruskem a Ukrajinou pravé probihd spor o ceny zemniho plynu, a tak se
zvy&uje riziko toho, Zze mohou byt ovlivnény ruské dodavky tohoto paliva do za-
padni Evropy. Vétgina ruského paliva vyvazeného do Evropské unie (EU) je vedena
potrubim pfes Ukrajinu a jakykoliv spor mezi témito dvéma zemémi je ostie sle-
dovan. Kyjev varoval, ze pokud Moskva zvedne Ukrajiné ceny plynu, bude Rusku
uétovat vyssi tranzitni poplatky. Predchozi spor mezi témito dvéma minuly rok
snizil dodavky do stati EU.
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