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Abstract. The Project ENTs aims at providing a universal high-level tool for 
prototyping human-like artificial agents. The main features of this tool are a 
virtual test-bed environment and E language, which enables description of 
human-like agents’ behaviours using various techniques, in particular reactive 
planning and BDI-architecture. In this paper, we present first generation of this 
tool together with an example agent—an artificial gardener that acts in a virtual 
family house. We then briefly discuss applicability of this tool and introduce 
some requirements for its second generation. 

1 Introduction 

An agent is an encapsulated computational system, that is situated in some 
environment, and that is capable of flexible, autonomous behaviour in order to meet 
its design objective [25]. Human-like agents (h-agents in following text) are agents 
designed to simulate human behaviour in a virtual environment similar to natural 
world. Such agents are used in educational applications, interactive drama, computer 
games or cognitive science. 

H-agents typically consist of a simulated body, sensors, efectors and a control unit 
(mind). One of the key problems in the field of h-agents simulation is how to design 
their mind, and thus their behaviour. It is because environments of h-agents are 
typically large and dynamic, h-agents must carry out complex tasks, and are persistent 
(they can not simply stop acting when a sub-task fail). Various approaches to control 
h-agents have been used so far; such as BDI-architecture [15] or subsumption 
architecture [5], hierarchical or any-time planning [8, 21], hierarchical rule-based 
system [16], finite state machines [26] or even neural networks [12]. Various 
techniques can be also used to create subsidiary components of h-agents’ mind—for 
example linguistic module or emotional block discussed in this paper.  

Although there are many individual applications featuring h-agents and special 
programming languages used to control them, it is hard to find any high-level tool that 
would simplify the development. In fact, not only computer experts create h-agents. 
From the development process point of view, designers and testers participate on the 
design, or debugging and parameterization of h-agents, respectively. From the 
academic point of view, students or non-computer researchers (like artists, librarians, 
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psychologists etc.) also create h-agents from time to time. Some pragmatic reasons, 
why these people find it difficult to develop h-agents, follow: 

 
a) Non-computer researchers usually cannot code in C++ or Java, therefore they are 

not able to build new h-agent or their environments from scratch. 
b) Students are often not able to see “the gap” between theory (i.e., artificial 

intelligence algorithms) and practice (i.e., implementation). Students cannot test 
their knowledge in practice and later they do not know how to use their knowledge.  

c) Due to complexity of h-agents’ mind, programmers or designers sometimes need to 
prototype it (it means to test several approaches and choose the best one). 
Languages like C++ or Java are not a good tool for prototyping. 

d) Researchers and programmers must often focus on supplementary low-level issues 
instead of their goals, repeatedly reinventing what has been already invented (for 
example how to design behaviour using reactive planning or how to program path-
finding). 
 

To address these issues we aimed at creating a universal high-level tool for 
prototyping human-like agents. The main goals were 1) to enable prototyping, thus to 
simplify and speed up the design (to solve a), b) and c)), 2) to let users focus on their 
main objective, not to supplementary issues (addressing d)). We did not attempt to 
integrate existing tools and libraries, preferring to create a high-level test-bed for 
artificial intelligence. We focused mainly on a control unit of h-agents.  

In this paper we present the first generation of this tool. Its main features are 1) a 
neat virtual environment with a graphical user interface (GUI), 2) a universal high-
level E language for prototyping h-agents’ mind, 3) a library of predefined 
behaviours, and 4) a linguistic and memory module. Later we discuss how we have 
met our goals and suggest requirements on second generation of the tool.    

The rest of the paper proceeds as follows: We recall some theoretical background 
and related works on h-agents simulation in section 2. Section 3 details the first 
generation of project ENTs. Section 4 presents a prototyped h-agent—a gardener—
controlled by reactive planning. In section 5, we evaluate the results and present some 
requirements for second generation of the tool. 

2 Related work 

In this section we present an overview of h-agents’ mind architectures and summarize 
some related works comprising both tools and applications featuring h-agents. We 
also compare presented applications with project ENTs. 

Reactive behaviour is a term used for reflexive behaviour responsible for quick 
reactions to unpredictable events, while deliberative behaviour involve deliberative 
reasoning about how to commit tasks. According to these criteria we will divide h-
agents in this section. 

For h-agents created by our application we will use the term ent (this world comes 
from entity). 
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2.1 Deliberative agents 

Deliberative h-agents are such h-agents that act not only reactively, but also 
intentionally. These h-agents are typically based on cognitive paradigm.  

Fig. 1.  Elementary block scheme of deliberative h-agent. Gray blocks are optional. (*)Under-
standing filter is for example a linguistic module, (**)an example of additional block is 
an emotional module or vegetative system block. 

In both continuous and discrete time environments, it is usually not possible to 
deliberately plan behaviour of h-agents using STRIPS-like method [20], because the 
simulation can not be paused until the plan is finished, and an agent must also be 
reactive in some way; in such case the plan would have to be recomputed.  

Therefore plans how to achieve goals must be somehow explicitly prescripted and 
pure planning can be allowed only at times. The key function of a mind would be then 
an opportunistic switching among prescripted plans to find the one, which 
corresponds the best with the current situation in the environment. Another alternative 
is to use any-time planning. 

Well-known approach is Belief-Desire-Intention architecture (BDI) [25]. The mind 
of BDI-h-agents updates the internal world model (i.e., beliefs), generates 
opportunities accordingly (i.e., desires) and chooses among them (i.e., commits 
intentions). System JAM [13], which is a second-generation descendant of Procedural 
Reasoning System [10], provides an interpreter for BDI-architecture. H-agents like 
synthetic actors for interactive improvisational plays [15] are created in JAM. 
Expression power of JAM language is similar to E language. 

Another example of interpreter based on BDI-architecture paradigm is Jason [3]. 
Based on similar techniques, Mateas presents ABL/Hap language [19] for designing 
h-agents in virtual storytelling. Comparing with project ENTs, JAM, Jason and 
ABL/Hap are architectures or high-level programming languages, rather than 
complex tools with virtual environments. 

An alternative to BDI is a hierarchical rule-based system. An example is Soar—
the implementation of unified theory of cognition [16]. Soar offers not only rule-
based system, but also associative memory, meta-level reasoning and learning, as well 
as debugging tools. The disadvantage of Soar is that it is “low-level” and highly 
unintuitive for non-computer experts and therefore not applicable for prototyping 
(what is one of the goals of project Ent). An example of Soar-h-agent is Steve [23] or 
Quakebot [17]. 

Also some advanced planning techniques can be used to control h-agents. 
Hierarchical planning is used in Cavazza’s h-agents for virtual storytelling [8] and 
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anytime planning is used in Nareyek’s project Excalibur [21] that is aimed at h-agents 
operating in computer games. Both projects seem very promising, but they are not 
available in present time—therefore no additional comparison is possible.  

Reactive planning represents a trade-off between planning and reactive techniques. 
Based on it, Bryson developed a methodology for behaviour-oriented design [7], and 
proved it to be successful in primates agents simulation. As she suggests, her method 
can be also applied in JAM or Soar, and as we show in section 4, also in E.  

2.2 Reactive agents 

Pure reactive h-agent is an h-agent that reacts only to external or internal events 
(caused by an environment or an agent’s body, respectively). If an h-agent follows 
some goals, they are implicitly hidden in its architecture. Architecture of these h-
agents is often based on connectionist paradigm or on a so-called novel approach in 
artificial intelligence. H-agents behaviour is typically created in “bottom-up” manner. 

Various types of networks can be used to control reactive h-agents. Neural network 
controls animals in the computer game Creatures [12], Tyrrell uses hierarchical 
networks [24], Maes uses flat networks [18]. Unlike ents, agents controlled by 
networks are not h-agents in the sense that they do not carry out any complex tasks, 
but animal-like predator avoidance, eating or mating. Therefore their application 
domain is different than the one of ents. In addition, Tyrrell suggested that flat 
networks are much more complicated to design then hierarchical ones, and Bryson 
proved her reactive planning to be easier to design than Tyrrell’s hierarchical 
networks [6]. 

Novel approach to artificial intelligence came with Brooks and his robotic 
subsumption architecture [5]. Brooks opposed to the cognitive approach, because of 
the complexity of the external environments to be represented in a central manner. He 
and his followers do not use central world representation, instead they decompose 
behaviour into independent blocks that operate concurrently, and each block holds its 
own information, if it needs it. Because of complexity of h-agents environments, it 
seems meaningful to take inspiration from this approach, as proven by project Fear 
[9], a platform for prototyping h-agents in first-person shooters games. It combines 
subsumption architecture with several different techniques like neural networks or 
genetic algorithms. Fear is a well-documented complex tool, but serves only 
programmers of computer games—it uses 3D Quake environment and its h-agents are 
programmed in C++. Another example of a tool based on subsumption architecture is 
InViWo toolkit [22].  

Main disadvantage of novel approach is that overall behaviour emerges from 
interaction of individual blocks and therefore it is difficult to design h-agents to fulfill 
complex tasks (see [25] for discussion). It is problem both in Fear and InViWo—
these tools are too “low-level” for non-computer experts. This is also reason why we 
follow cognitive approach. Nevertheless, cognitive approach has also some 
disadvantages, and in the section 5 we will discus possibilities of combination of 
several approaches. 
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3 Project ENTs 

This section describes the first generation of project ENTs. We will start with an 
overall description, then we will focus on the environment and the body of h-agents, 
and finally on the mind of h-agents. The whole project is detailed in [2]. 

3.1 Application architecture 

Project ENTs consists of three parts: 1) environment server (ES), 2) graphical user 
interface (a GUI) and 3) simulator of individual ents. All three parts have been 
developed as independent applications for Linux platform, so a user can use them 
separately. ES is a server to which several GUIs and ents can be connected. ES can 
instantiate different world models. Each GUI is able to simulate one user avatar.  

Simulation time goes in discrete time steps. Space is divided into rooms separated 
by doors, each room is divided to square tiles. Every tile can contain various objects.  

 

 

Fig. 2. Architecture of the first generation of project ENTs 

3.2 Virtual environment and the h-agents’ body 

The purpose of ES is to simulate artificial environment, it means to simulate all 
objects, and acting and moving of ents’ bodies. A user can instantiate different world-
models. As an example, a model of family house is included in the current release. 

ES recognizes about 100 types of objects. This set has been chosen to enable 
modeling of worlds similar to natural human environment. The set is fixed. The ent 
can take or manipulate with most objects. 

Bodies of ents are described just by several attributes (like position, hunger, thirst 
or sleepiness). All ents are autonomous, embodied h-agents, subject to constraints of 
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the environment, and therefore all their attributes are controlled by ES. Attributes like 
hunger or thirst that represent the needs of the ent are automatically increased in time 
and the ent can satisfy them just by acting in the world. The same rules stands for 
human avatar. 

Ents have two hands and they face no particular direction in their environment (the 
illusion of orientation is caused by the GUI—see Fig. 3).  

 
 

 
Fig. 3. A world of ents. From the left: a user-avatar and an ent holding a book. 

Sensing and acting. The ent (or the human avatar) senses events and objects only 
from the room it is located in (it can not see objects in closed containers). Sensing is 
passive. Whenever the ent comes into a room, it receives complete information about 
position and the state of objects in the room from ES. During next simulation steps it 
receives only changes from previous state—we call this information delta. 

Atomic instruction (a-instruction) is a basic action the ent can do. All a-instructions 
last one time step. In every time step, the ent sends one a-instruction to ES. ES returns 
information about its success together with the delta in the next time step. 

An example of an a-instruction is: 
aWatering( who, withWhat, whichBed )  

Each parameter uniquely identifies an actor (an ent), an object, or a subject, 
respectively. In this example who identifies the ent, withWhat identifies the can the 
ent is holding (i.e., the subject), and whichBed identifies the bed which is being 
watered (i.e., the object).  

ES recognizes about 70 predefined a-instructions. 
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3.3 The mind of an ent 

The idea behind architecture of ents mind is based on cognitive paradigm. That means 
the environment state is mapped into a symbolic representation transmitted to the ent 
as percepts (in a delta). When percepts are received, they are stored in a central 
memory of the ent to be later used by a control unit. A-instructions are generated from 
scripts written in E language in accordance with the information stored in ent’s 
memory (i.e., actual and past percepts, and internal state of the ent). The overall 
architecture is based on Fig. 1.  

Memory. Central memory consists of a list of records called memory-sentences (m-
sentences). They represent facts about the world and the ent, such as:  

to_be_what_where_since( object, position, time ) 

Each m-sentence has its plausibility; the information about the relevance of the m-
sentence. Memory module automatically decreases the plausibility in time; the ent can 
forget the m-sentence eventually. All m-sentences are based just on percepts or are 
created by an internal component of the ent—no secret connection from the memory 
to outer world is provided. 

E language. The core of ent’s mind is an interpreter of E language. The basic 
construct of the language is a behaviour-script (b-script). Highest-level b-scripts are 
called top-level and have priorities. Priorities are functions of time and are either 
constant or so-called trapezoidal (see  Fig. 5 for the example). Some b-scripts 
(including top-level ones), can have prerequisites—we call these b-scripts interrupts. 
The purpose of interpreter is to decompose top-level b-scripts to a-instructions.  

At one time, more top-level b-scripts can be active, but only one can be executed at 
a time—the one with the highest priority. A top-level b-script became active iff (a) its 
prerequisites became valid and (b) its trapezoidal priority is increased to more than 
zero (thus, top-level b-scripts without prerequisites and with constant priority is active 
all the time—see “bumming around” at the Fig. 5). Top-level b-scripts are tied up by 
a simple scheduler written in E.  

In each time-step, the interpreter performs an internal cycle. In each loop of the 
cycle the interpreter can perform one of the following: activate an interrupt, 
instantiate a sub-b-script, ask the memory, run a computational script, or send an a-
instruction. By sending an a-instruction the current time-step ends and the cycle is 
finished.  

Sub-b-scripts can have more variants—the interpreter performs “a meta-level 
reasoning” by computing a utility function for each of the variant. Active top-level b-
scripts with variants of sub-b-scripts can be seen as a set of AND-OR trees.  

Statements of E language include: if-then construction, for-cycles, RERUN, 
COMMIT and FAIL statements and optional Prolog-like backtracking. Custom C-
extensions are also possible. Denotation of RERUN is to restart a b-script and to 
reinitialize local variables, while denotation of COMMIT and FAIL is to interrupt a b-
script as satisfied or failed, respectively. 
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Basic data type of E is a handle and a list. The handle is an integer number or 
identifies uniquely an object (e.g., the ent, the carrot etc.) or a group of objects (e.g., 
any carrot or all carrots). The list is a list of more objects, with their properties 
optionally.  

By means of b-scripts, various cognitive techniques can be implemented; including 
BDI-architecture and reactive planning. Library of low-level behaviours like path-
finding or object-finding is provided, as well as a debugger of b-scripts. 

Linguistic module. The user (it means his or her avatar) can talk with ents in a 
simplified variety of Czech language. Although only sentences from predefined set of 
templates can be used, the conversation can be more complicated than Eliza-chats. 
For example, declension is implemented, as well as a concretization—that means 
finding out which object is exactly the current conversation topic (see Fig. 4).   

The purpose of linguistic module is to map natural language sentences to the m-
sentences (and vice versa), and to manage a communication, in particular a process of 
concretization. The linguistic module is an optional extension and custom modules 
can be provided. 

4 Example of an ent—a gardener 

The current implementation includes a model of a family house with prescripted 
ents—a gardener and a musician. This section briefly describes some top-level tasks 
of a gardener, in particular a task of watering a garden based on reactive planning.  

In the Fig. 5 are depicted priorities of morning tasks of the gardener. Trapezoidal 
priority of watering causes that the gardener, after waking up, goes to water all beds. 
When the timeout expires at about 8 a.m., the gardener switches to bumming around. 
If it wants to eat or to go to the toilet (or is asked by a user to perform a command), 
watering or bumming is interrupted by appropriate goal with higher priority. 

To evaluate E universality, we have written b-scripts using several techniques, 
namely BDI, reactive planning and hierarchical planning. B-script for watering 
presented here is inspired by reactive planning methodology developed by Bryson [7]. 

The final goal of watering is: there are no known dry beds. Its subtasks are: to find 
a watering-can, to fill the can, to find a bed, and to water the bed. They can appear in 
any order or even with a cycle (due to more beds and the fact that the can may be 
emptied). In addition, watering may be interrupted by a goal with higher priority (like 
going to eat). For path-finding or object-funding subtasks are used predefined scripts 
from E-library. 

After the task is finished, the ent must perform cleaning: to empty and put down the 
can. The code-schema for the watering is on the Fig. 6. Notice local interrupts, which 
restart the watering (by RERUN statement). They are activated in order given by their 
local priorities (which do not influence the priorities of top-level interrupts). Thanks 
to restarting technique, cycles can appear in the behaviour. 
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User:  To <this one>.(User points 

at the case by mouse.) 
(Ent puts the can to the case.) 
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ig. 4. Conversation with an ent— 
oncretization process (translated from 
zech language). 

 

Fig. 5. Priorities of morning top-level 
tasks of the gardener. Values of priorities 
are written on the left. Notice trapezoidal 
priority of watering and prerequisities of 
interrupts. 

top_levelGoal_WaterAllBeds :- 

 // if everything is watered, try to put the can and commit 
  if GOAL_COND then { try sgPutCan, COMMIT } fi, 

// if  you are not holding a can, find it and take it; then activate a local interrupt 
// that tests whether the can is still at hands -- if not, restart the watering 

  if ! holdCan then sgFindAndTakeCan fi, 

  localHook( ! holdCan, localPrioMax-1, { RERUN }, id1 ), 

// if  you are not holding an empty can, fill it; then activate a local interrupt that  
// tests whether can is not empty -- if it is, restart the watering 

  if holdCan and canInHandEmpty then sgFillCan fi, 

  localHook( holdCan and canInHandEmpty, localPrioMax-2, 

    { RERUN }, id2 ), 

 // follows the same for other subgoals... 
  ... 

ig. 6. Schema of a b-script for watering a garden. Subgoals start with sg. Local interrupts are 
ctivated by localHook statements and their prerequisities are checked in every time-step. 

 Evaluation and future work 

he project ENTs has proven to be successful in deliberative h-agents prototyping, 
owever some final goals (see section 1) have been achieved only partially. The main 
oint is the lack of tool universality. In this section we go through some issues the 
ritics may point to, and suggest solutions for second generation of the tool. 
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Cognitive paradigm and robustness of E. Imagine what happens when an ent comes 
to the garden. It receives an update of 2197 carrots and the speed of the system goes 
down. This problem (and other similar ones) could be solved by techniques not based 
on cognitive paradigm (such as active sensing or distributed memory)—but these 
techniques are not supported in our tool, in particular by E language and memory 
module. 
Solution: When we perceive each individual h-agent as a multi-agent system [25], 
various different techniques and paradigms can be combined, for example every 
component could have its own memory. Such a distributed system with no central 
element could profit from advantages of subsumption architecture [5], while avoiding 
its disadvantages. In addition, each component can theoretically be coded in different 
language (not only in E). See [4] for more detailed discussion on this topic. 

Environment flexibility. Even though a user of ENTs can instantiate different world 
models, the world topology and the set of objects and a-instructions remain fixed.  
Solution: Imagine a user who wants to add new object and new a-instruction to an 
environment. How an h-agent recognizes them? A theory of affordances is applied 
here—each object “manifests” in the environment its attributes and actions the agent 
can do with it [11, 14]. For topology we aimed at following way-point approach—the 
ent follows nodes (way-points) in a graph [9]. 

Reusability. Although every ent is an independent program, it is hard to connect it to 
an external environment. Thus, ents cannot be used in another projects. 
Comment: This is a never-ending problem with interfaces, and in fact, our tool is 
focused on prototyping, and not as a universal interface. Nevertheless we plan to use 
world-agent standards for artificial intelligence in computer games [1]. 
 
Considering all the above-mentioned problems, we come to the following conclusion:  
The reason, why project ENTs achieves some of its goals only partially, lies in its 
relatively small flexibility and robustness. Specifically, it utilizes on purely cognitive 
approach (neither connections, nor novel approach) and its three main components 
(ES, simulator of individual ents and a GUI) are designed as monolithic blocks, rather 
than multiple-component systems. 

It is quite clear that a fully universal tool for prototyping all types of h-agents will 
probably never exist, but we believe the universality of our tool will increase 
significantly with solutions suggested above.  

6 Conclusion 

In this paper we have presented a first generation of project ENTs—a tool for human-
like artificial agents prototyping. Modular virtual environment and a universal E 
language for cognitive behaviour-design have been introduced as main parts of this 
tool. The contribution of this tool is twofold. First, students and researchers can use it 
as a test-bed for cognitive human-like agents. Second, the whole tool serves as a large 
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case-study for more general application. Requirements for the second generation of 
the tool would not have been available without previous experience. These 
requirements have been also presented. 
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