NPFL087 Statistical Machine Translation

Multi-Modal Translation Speech and Vision

Ondřej Bojar

🖬 May 7, 2020

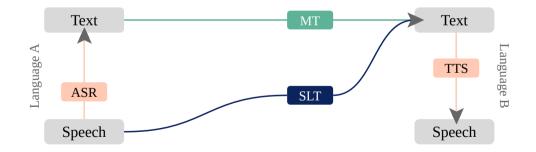
UROPEAN UNION uropean Structural and Investment Fund perational Programme Research, evelopment and Education Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

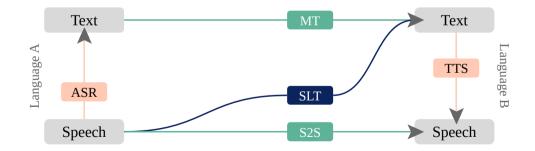
unless otherwise stated

Outline

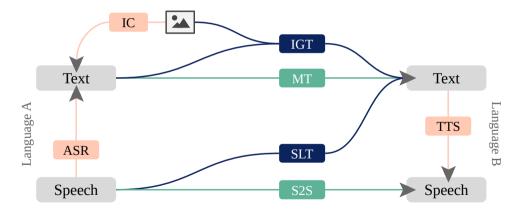
- Overview of Multi-Modal Translation.
- Speech Translation \approx ASR + MT.
 - Problems at ASR-MT boundary.
 - End-to-end SLT approaches.
- Visual information for MT.

Some pictures and tables from Sulubacak et al. (2019).



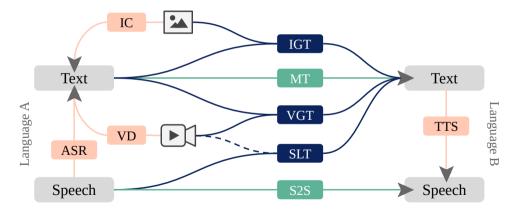


From survey by Sulubacak et al. (2019):



IGT = image-guided

From survey by Sulubacak et al. (2019):



IGT = image-guided, VGT = video-guided translation

Spoken Language Translation

Basic Terms

- MT = Machine Translation = Text Translation
 - Input are (mostly grammatically correct) individual sentences.
 - Sentences may come in documents or not.
 - (Document-level MT processes a sequence of sentences at once.)

Basic Terms

- MT = Machine Translation = Text Translation
 - Input are (mostly grammatically correct) individual sentences.
 - Sentences may come in documents or not.
 - (Document-level MT processes a sequence of sentences at once.)
- Incremental MT
 - MT of gradually growing input.
 - MT decides whether to wait for more words or emit current word.
 - Aims at stable output.

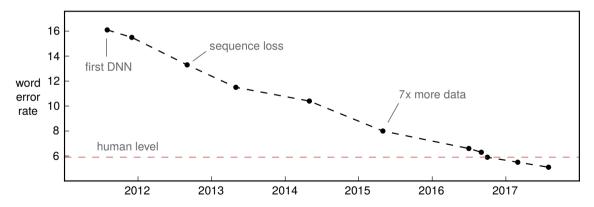
Basic Terms

- MT = Machine Translation = Text Translation
 - Input are (mostly grammatically correct) individual sentences.
 - Sentences may come in documents or not.
 - (Document-level MT processes a sequence of sentences at once.)
- Incremental MT
 - MT of gradually growing input.
 - MT decides whether to wait for more words or emit current word.
 - Aims at stable output.
- SLT = Spoken Language Translation
 - Input is the sound in one language.
 - Output is text (sometimes also speech).
 - Sentences may or may not be assumed and produced.
- S2S = S2ST = Speech-to-Speech Translation
 - Direct modelling, e.g. can aim to preserve voice or prosodics.

Spoken Language Translation Cascaded ASR + MT

NN Prospects: ASR Surpassing Humans

- Switchboard conversational speech benchmark (2000).
- 40 phone calls between two random native English speakers.



Plot by https://awni.github.io/speech-recognition/

MT Surpassing Humans for News

	Ave. %	Ave. z	sh→Czech 2018 _{System}
1	84.4	0.667	CUNI-Transformer
2	79.8	0.521	UEDIN
	78.6	0.483	Professional Translation
4	68.1	0.128	ONLINE-B
5	59.4	-0.178	ONLINE-A
5	54.1	-0.354	ONLINE-G

Doc-Aware English→German 2019

Ave.	Ave. z	System				
90.3	0.347	Facebook-FAIR				
93.0	0.311	Microsoft-WMT19-sent-doc				
92.6	0.296	Microsoft-WMT19-doc-level				
90.3	0.240	Professional Translation				
87.6	0.214	MSRA-MADL				
88.7	0.213	UCAM				
89.6	0.208	NEU				
87.5	0.189	MLLP-UPV				
87.5	0.130	eTranslation				
86.8	0.119	dfki-nmt				
84.2	0.094	online-B				
10 more systems here						
76.3	-0.400	online-X				
43.3	-1.769	en-de-task				

See lecture #1 for all caveats of MT evaluation.

- 1. Run ASR.
- 2. Run MT.

- 1. Run ASR Recognize lowercase words.
- 2. Run MT Translate sentences.

1. Run ASR Recognize lowercase words.

- 2. Segment into sentences.
- 3. Run MT Translate sentences.

1. Run ASR Recognize lowercase words.

- 2. Segment into sentences.
- 3. Consider how to handle uncertainty!
- 4. Run MT Translate sentences.

- 1. Acquire sound.
- 2. Run ASR Recognize lowercase words.
- 3. Segment into sentences.
- 4. Consider how to handle uncertainty!
- 5. Run MT Translate sentences.
- 6. Present output.

SLT Pipeline When Deployed

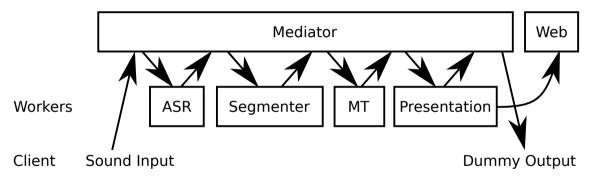
- 1. Acquire sound.
- 2. Ship to ASR worker.
- 3. Run ASR Recognize lowercase words.
- 4. Ship to sentence segmenter.
- 5. Segment into sentences.
- 6. Ship to translation worker.
- 7. Consider how to handle uncertainty!
- 8. Run MT Translate sentences.
- 9. Ship to presentation worker.
- 10. Present output.

SLT Pipeline When Deployed

- 1. Acquire sound.
- 2. Ship to ASR worker.
- time! 3. Run ASR Recognize lowercase words.
- 4. Ship to sentence segmenter.
- Segment into sent 5.
- 6. Ship to translation worker
- onsider how to handle uncertainty!
- 8. Run MT Trasste sentences.
- 9. Ship to presentation worker.
- 10. Present output.

Overall Architecture in ELITR

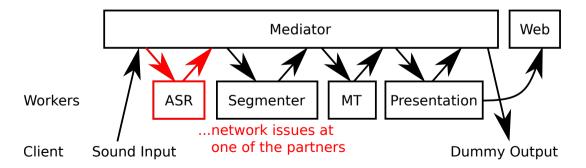
• Components can run distributed, connected via "bi-sockets".



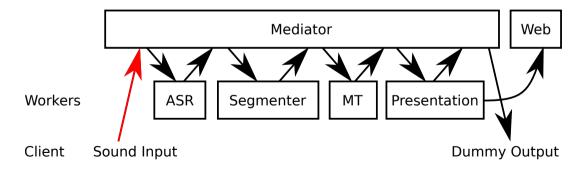
- Connections always open, reused across clients.
- TCP communication \Rightarrow relies on network capacity.

Spoken Language Translation Network Issues

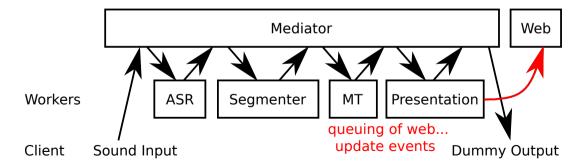
- slow network at various steps,
- partially working misconfiguration.



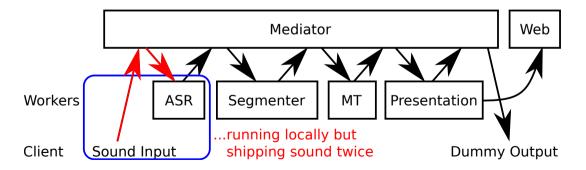
- slow network at various steps,
- partially working misconfiguration.



- slow network at various steps,
- partially working misconfiguration.

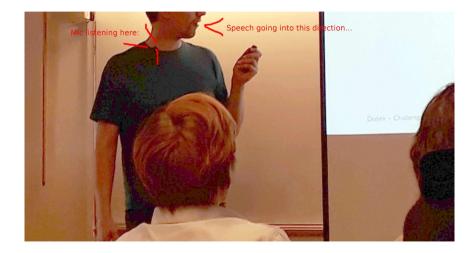


- slow network at various steps,
- partially working misconfiguration.



Spoken Language Translation Sound Acquisition

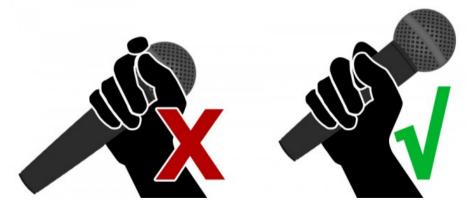
Microphone Position



A micro-test (just 3.5 minutes in total) with two microphones:

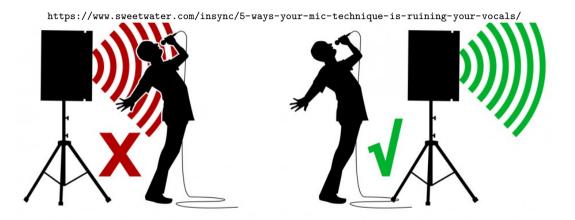
Word Error Rate	Headset	Shirt	Diff
EN ASR	0.32	0.39	-0.07
CS ASR	0.14	0.17	-0.03

https://www.sweetwater.com/insync/5-ways-your-mic-technique-is-ruining-your-vocals/



https://www.sweetwater.com/insync/5-ways-your-mic-technique-is-ruining-your-vocals/

https://www.sweetwater.com/insync/5-ways-your-mic-technique-is-ruining-your-vocals/



Volume Settings along the Pipeline

A number of volume controls is on the way:

- Wireless microphone output volume.
- Sound card input volume.
 - Line/Mic Level. Padding.
- Automatic clipping of too loud signal.
- \Rightarrow You need to carefully 'track' the signal step by step.

Audacil	ty						
e Edit S	Select View Transport	Tracks Generate Effe					
н н			₽ R -54 -48	-42 -36 -30	-24 -18 -12 -6 0	■ L R -54 -48	-423630
		<+×	X 🗋 🗂 🗤 🕪	<u></u>	<u>Q Q & ►</u>		
LSA	🗘 🌷 default		2 (Stereo) Recordir		\$		
F	45	1:00	1:15	1:30	1:45	2:00	2:15
Audio Track	1.0				ا ب الأ		
ute Solo	0.5	Too quiet				Better	
				m. denne	A AND A PLAN & PLAN AL	kus Mit Mildutkush	ha mailtanailtean
0 R	0.0	a second		and the second	PARTY AND THE PARTY AND	and the about the cash	A M. Ches. Richard
eo, 44100Hz at float	-0.5				- F Maria In		
	-1.0						

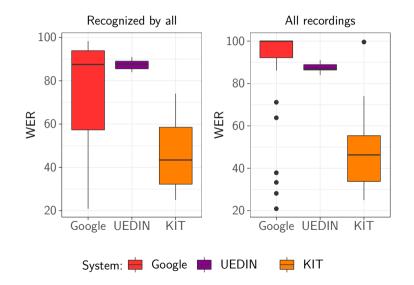
Spoken Language Translation Realistic ASR Quality

ASR Challenges

Speaker intents	You have a botel ? Oh, yes. We're situated in hearth of České Budějovice .			
Reality	You have a bottle ? Oh, yes. VeeR situated in haRd			
	of České Budějovice. + BACKGROUND NOISE			
Unknowledgeable	You have a bottle ? Oh, yes. We're situated in hearth			
person hears	of Che WHICH CITY?			
Noise-sensitive ASR	\emptyset oh yes the the of \emptyset			
Noise-resistent ASR	you have somebody to Oh, yes, we are situated in hard			
	which is can we do?			
Knowledgeable person	You have a botel ? Oh, yes, we're situated in hearth			
/ Future ASR	of České Budějovice.			

• Non-"standard" pronunciation, background noise, OOV, named entities

ASR on Non-Native High-School Students



ASR of Non-Natives in Noisy Environment

- Human error level: 4–6% WER (word error rate).
- Best neural nets are reportedly there, too.
- Our test of 90-second speeches of high-school students:
 - Average WER: 40–50% KIT, 80–90% Google, UEDIN.

The best recognized segment:

Manual	Google	UEDIN	KIT
why do you wear	why do Ø where	're ready where	why do <mark>are</mark> those
those high heels ,	<mark>does</mark> high heels if	tells us if you	highs heels if you
if you would wear	you would wear	would Ø sneaker	would where some
some sneakers ?	some sneakers I	us I know won the	sneakers i no one
I know one really	no one really good	really good store	really good stor <mark>y</mark>
good store, that	<mark>star</mark> that deals	that deals with the	that deals with the
deals with the	with the sale of	sale of free <mark>down</mark>	sale of free <mark>time</mark>
sale of freetime	freedown food to	food	food to our 20/53

Spoken Language Translation Realistic MT Quality

General Translation Errors, Domain Issues

- ASR But it is much more difficult to ask if you do not have any clue.
- MTde Aber es ist viel schwieringer zu fragen, ob Sie keine Vorstellung davon haben.
- MTcs Je však mnohem těžší ptát se, zda nemáte ponětí.
 - "if" should be translated as "wann"/"když" in this context.
- ASR You can be reported after some profanities.MTcs Můžete být hlášeni o některých profesních věcech.Gloss You can be reported due to some professional things.

ASR Errors Multiplied in MT

- Errors in ASR are mostly similar words.
 - Reasonably easy for the user to recover from transcript errors.
- MT takes these wrong words as fully trustworthy.
 - MT happily reorders the sentence to sound best, including wrong words.
 - No information about ASR and MT confidence available!

ASR	And the goal of my thesis is to fold.			
MTcs	A cílem mé teorie je rozdrobit se.			
Gloss And the goal of my theory is to fall apart				
Ref	A cíle má moje teze dva.			
Gloss And there are two goals of my thesis.				

Spoken Language Translation ASR + MT Integration

- ASR emits string of lowercase words.
- MT expects individual correct sentences.

Options to bridge the gap:

- 1. Insert punctuation into ASR output \Rightarrow new step: Segmentation.
- 2. Change ASR to predict directly correct punctuation.

3. Fully end-to-end SLT.

Approaches to Segmentation

• Language-Model-based: LM score without and with punctuation:

 $\mathsf{P}(\mathsf{some \ sneakers} \ \mathsf{I} \ \mathsf{know}) \gtrless \mathsf{P}(\mathsf{some \ sneakers}, \ \mathsf{I} \ \mathsf{know}) \gtrless$

 \geq P(some sneakers. I know) \geq P(some sneakers? I know)

- Sequence-labelling:
 - Label each word with punctuation that should follow it.
 - Many techniques possible: HMM, CRF, LSTM, ...
- Machine-translation:
 - Input: Text without punctuation.
 - Output: Text with punctuation.
 - Approaches: PBMT, NMT.

A critical decision whether to allow access to the sound:

• Delays, prosody, intonation are very informative.

• Errors in precision lead to confusing MT output:

Speaker...all too well...ASR+Segm...this approach does not generalize all too. Well,
so to somehow concludes that the whole talk.

• Errors in recall make too much content unstable, see below.

Spoken Language Translation End-to-End SLT

Motivation for End-to-End SLT

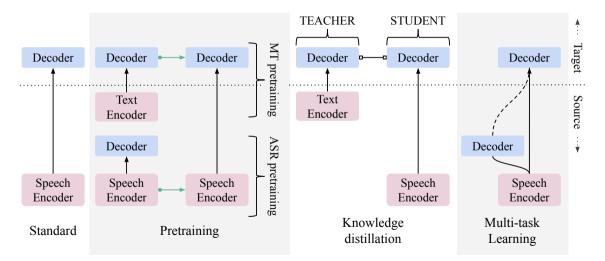
Benefits:

- Uncertainty directly handled.
 - Target-language considerations influence speech recognition.
- Potentially fewer NN parameters.

Drawbacks:

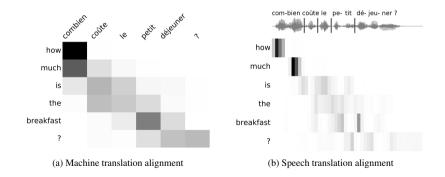
- Insufficient training data.
 - Speech + transcript and parallel texts much more common than speech + translation.
- 20–40x longer input sequences (sound timeframes vs. subwords).
- Difficult alignment problem within sentences/utterances.
- Non-golden utterance segmentation not yet much considered.

SLT Training Techniques



Proof-of-Concept End-to-End SLT (Berard et al., 2016)

- Synthetic French speech into English text (7 concatenative voices).
- MFCCs \rightarrow deep LSTM encoder \rightarrow attn \rightarrow deep LSTM decoder.



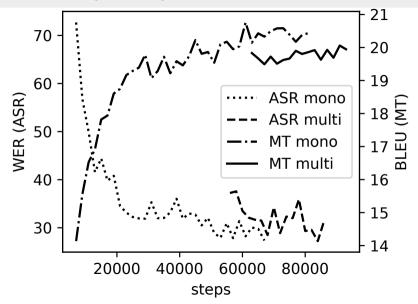
• End-to-end results not far from ASR+MT given synthetic input.

First Truly End-to-End SLT

Bérard et al. (2018) presents the first truly end-to-end SLT:

- Speech encoder:
 - 2 layers converting n-dim input into n'-dim.
 - 2 layers of convolution
 - 3-layer bidirectional LSTM
- Attention
- Char-level decoder
 - Used either to predict English transcription (|V| = 46),
 - or French translation (|V| = 167)

Bérard et al. (2018) Pre-Training



Bérard et al. (2018) Results

	greedy	beam	ensemble	params
		(million)		
Cascaded	14.6	14.6	15.8	6.3 + 15.9
End-to-End	12.3	12.9		
Pre-trained	12.6	13.3	15.5†	9.4
Multi-task	12.6	13.4		

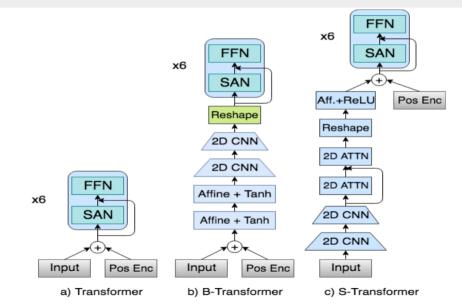
Table 4: AST results on Augmented LibriSpeech test. † combines the end-to-end, pre-trained and multi-task models.

Recent End-to-End SLT Results (Sulubacak et al., 2019)

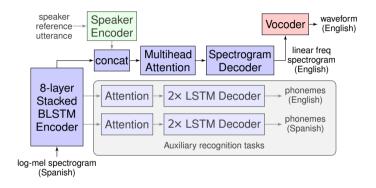
Table 4: BLEU scores for SLT methods on English \rightarrow French Augmented LibriSpeech/test. All systems are end-to-end, except for the pipeline system marked with a dagger (†).

Approach	BLEU ↑	Training data		ata	Description
		SLT (h)	ASR (h)	MT (sent)	
Berard et al (2018)	13.4	100h			CNN+LSTM. Multi-task.
Di Gangi et al $(2019b)$	13.8	236h			CNN+Transformer.
Bahar et al (2019)	17.0	100h	130h	95k	Pyramidal LSTM. Pretraining, augmentation.
Liu et al (2019)	17.0	100h			Transformer. Knowledge distillation.
Inaguma et al $(2019a)$	17.3	472h			CNN+LSTM. Multilingual.
Pino et al (2019)	21.7	100h	902h	29M	CNN+Transformer. Pretraining, augmentation.
Pino et al (2019) [†]	21.8	100h	902h	$29 \mathrm{M}$	End-to-end ASR. CNN+LSTM.

Transformer Adapted for Speech Input Gangi et al. (2019)



Translatotron (Jia et al., 2019)



- Speech transcripts still needed to train (but not at inference).
- Somewhat worse that SLT+TTS.
- Allows to transfer the voice across languages.

https://google-research.github.io/lingvo-lab/translatotron/

Spoken Language Translation Presentation

The Importance of Presentation

- Presentation issues can kill the whole show.
- Bad font size may make output impossible to follow.
- Too much flicker, jumping text, ...
 - Recent fully NN ASR operate on a moving window of say 8 seconds.
 - The output is too unstable to follow, let alone if translated by MT.
- Presentation must be tested on stage.
 - Sizing, visibility, ... cannot be checked remotely.

Subtitle View

The downside was that, overall, the trip was longer and it was a very complicated system. So here he is illustrating on this Sentence

Schattenseite bestand darin, dass die Reise insgesamt länger war und es sich um ein sehr kompliziertes System handelte. Hier

în general, călătoria a fost mai lungă și a fost un sistem foarte complicat. Așa că aici ilustrează această propoziție.

l'ensemble, le voyage était plus long et qu'il s'agissait d'un système très compliqué. Il illustre donc cette phrase.

hátrány az volt, hogy az út általánosságban hosszabb volt, és nagyon bonyolult rendszer volt. Itt illusztrálja ezt a mondatot.

hadden we meer opties. Hoe kunnen we bepaalde verschijnselen modellen? De keerzijde was dat de reis over het geheel genomen langer was en dat

भाषाई विश्लेषण का प्रयोग किया था , एक सौ कदम थे , जहां हम धीरे - धीरे अंग्रेजी वाका वेषण कर रहे थे ।

byla, že celkově ta cesta byla delší a byl to velmi komplikovaný systém. Takže tady zrovna ilustruje na této Větě

(h)

Paragraph View

evaluation so that we have the English sentences original from some English newspapers and the reference translations we get made by some professional translator, that's what they're saying.

- 27. Like the referendum is actually a translation, not the original sentence.
- 28. Well, of course, that's already here.
- 29. The problem I mentioned.
- 30. The translation may not be adequate.
- 31. Unless the translator did it the right way.
- 32. Or it may not be fully fluid.
- 33. And how was the first slide?
- 34. Occasionally the translator accent One mistake or another mistake Occasionally a different approach is used, when I take originally Czech sentences z.
- **35.** Let's say from originally Czech newspapers

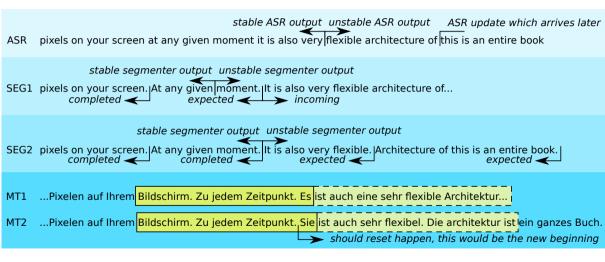
and contained and contacting induced die aus einigen englischen Zeitungen stammen, und die Referenzübersetzt uns von einem Berufsübersetzenden. 27 Wie bei dem Referendum handelt es sich eigentlich um eine Übersetzung, nicht um den ursprünglichen Satz. 28. Ja, das ist ja schon hier. 29. Das Problem, das ich erwähnt habe. 30. Vielleicht ist die Übersetzung nicht ausreichend. 31. Es sei denn, der Übersetzer hat es richtig gemacht. 32. Oder es ist vielleicht nicht völlig flüssig. 33. Und wie war der erste Verfall? 34. Gelegentlich wird bei einem Übersetzungsfehler oder einem anderen Fehler eine andere Vorgehensweise angewandt, wenn ich ursprünglich tschechische

Urteile z nehme. 35. Sagen wir aus den

ursprünglichen tschechischen Zeitungen. že máme anglické věty původní z nějakých anglických novin a referenční překlady si necháme vyrobit nějakým profesionálním překladatelem přeložit, tak to tady označují.
 Jako že ta referend Je ve skutečnosti překladem, nikoli tou původní větou.

- 28. Tak samozřejmě, to už je tady.
- 29. Ten problém, který jsem zmiňoval.
- Ten překlad nemusí být adekvátní.
- Pokud to ten překladatel neudělal úplně správně.
- 32. Nebo nemusí být plně plynulý.
- 33. A jak bylo na tom prvním slidu?
- 34. Občas ten překladatel přízvuk Jednu chybu nebo druhou chybu Občas se používá jiný přístup, kdy vezmu původně české věty z.
- 35. Dejme tomu z původně českých novin

ASR/Segmentation Updates (Cho et al., 2012; Cho et al., 2017)



Cognitive Load, Overall Usability

- Users confirm that transcript and slides must be on the same screen.
 - Adding slide streaming/sharing to both Subtitle and Paragraph view.
- Overall usability:
 - Often still bad, due to the cummulation of errors.
 - Two foreign colleagues reported they could follow a Czech talk, if fully focussed on the text.
- Desired settings differ from user to user:
 - Those who understand source language will need simultaneity over precision and stability.
 - Those who cannot understand source need stability and precision and are happy to wait for *seconds*.

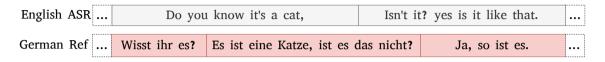
Spoken Language Translation Evaluation

Evaluating Spoken Language Translation

Three aspects o simultaneous ('on-line') SLT:

- Quality of the final translation.
 - ... equals standard MT quality estimates.
- Lag behind the source.
 - Some lag is inevitable, e.g. waiting for the German verb.
- Flicker
 - How many words are corrected?

Mismatch in Segmenting



- Consider English \rightarrow German SLT.
- No matter what the MT does with the recognized English, segments won't match.

Mismatch in Segmenting

Planned strategy:

- Follow reference segmentation.
- Find best matching hypothesis segmentation.
 - a) Expand by full segments.
 - b) Expand by a few words around the best-matching segment.

Or ignore the problem by force-segmenting into ${\sim}30$ s chunks.

Visual Information in MT

Motivation for Multi-Modal Translation (1/2)

InputA tennis player is getting ready.Output ATenista se připravuje.

Motivation for Multi-Modal Translation (1/2)

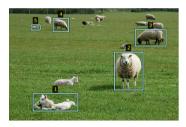
InputA tennis player is getting ready.Output ATenista se připravuje. ← maleOutput BTenistka se připravuje. ← female

Motivation for Multi-Modal Translation (1/2)

InputA tennis player is getting ready.Output ATenista se připravuje. ← maleOutput BTenistka se připravuje. ← female

Motivation for Multi-Modal Translation (2/2)

Hindi Visual Genome (Parida et al., 2019) provides 30k picture descriptions from visualgenome.org, translated into Hindi.



1: Two lambs lying in the sun. Hindi MT: दो भेड़ के बच्चे सूरज में **झूठ बोल** रहे हैं Gloss: Two baby sheep are <u>telling lies</u> ... Selected surrounding captions:

- 2. Sheep standing in the grass
- 3. Sheep with black face and legs
- 4. Sheep eating grass
- 5. Lamb sitting in grass.

Hindi Visual Genome Challenge Test Set

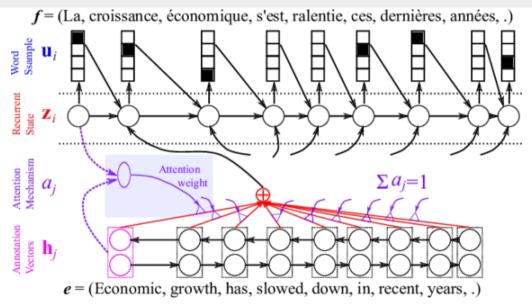
- A test set created by scanning the 3.15M unique strings for ambiguous words.
- Only 19 words with multiple (automatic) translations were identified:

	Word	Segment Count		Word	Segment Count
1	Stand	180	11	English	42
2	Court	179	12	Fair	41
3	Players	137	13	Fine	45
4	Cross	137	14	Press	35
5	Second	117	15	Forms	44
6	Block	116	16	Springs	30
7	Fast	73	17	Models	25
8	Date	56	18	Forces	9
9	Characters	70	19	Penalty	4
10	Stamp	60		Total	1400

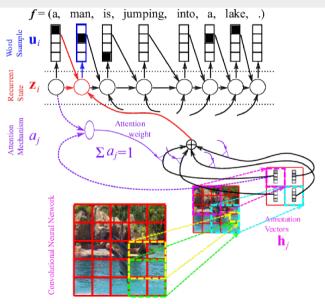
Example from the "Challenge Test Set"

Street sign advising of penalty. The penalty box is white lined.

Attention to Source Words (7)



Attention to Source Image



Hierarchical Attention (Libovický and Helcl, 2017)

Source: a man sleeping in a green room on a couch.

Reference: ein Mann schläft in einem grünen Raum auf einem Sofa.

Output with attention:

(1) source, (2) image, (3) sentinel

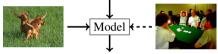
Recent Multi-Modal MT Results (Sulubacak et al., 2019)

	BLEU 1	METEOR $\ensuremath{\uparrow}$	${\rm Typ e}$	Description	Arch.
Elliott et al (2015) †	9.7 (N/A)	24.7 (N/A)	$_{\rm E,D}$	Conditional LMs	RNN
Caglayan et al (2016a) †	$29.3 (\downarrow 4.6)$	48.5 (4.3)	Α	Shared Attention	RNN
Calixto et al (2016) †	28.8 (N/A)	49.6 (N/A)	Α	Separate Attention	RNN
Huang et al (2016) †	36.8 (12.0)	54.4 (12.3)	IF	Parallel RCNN-LSTMs	RNN
Hitschler et al (2016) †	34.3 (N/A)	56.0 (N/A)	R	Retrieval + Reranking	SMT
Toyama et al (2016)	36.5 (1.6)	56.0 (10.7)	L	Variational	RNN
Shah et al (2016) †	34.8 (10.2)	56.7 († 0.1)	R	Visual Reranking	SMT
Caglayan et al (2016a) †	36.2 (-0.0)	2 (- 0.0) 57.5 (†0.1) R Visual Reranking		Visual Reranking	SMT
Helcl and Libovicky (2017)	31.9 (\$2.7)	49.4 (\$2.3)	А	Hierarchical Attention	RNN
Calixto and Liu (2017)	36.9 (13.2)	54.3 (¹ 2.0)	I	Input Prepend & Append	RNN
Calixto et al (2017)	36.5 (†2.8)	55.0 (12.7)	Α	Gated Attention	RNN
Calixto and Liu (2017)	37.3 (13.6)	55.1 ([†] 2.8)	D	Decoder Init.	RNN
Elliott and Kadar (2017)	36.8 (1.3)	55.8 († 1.8)	т	Imagination	RNN
Caglayan et al (2017a)	38.2 (10.1)	57.6 (10.3)	$_{\rm E,D}$	Encoder Decoder Init.	RNN
	37.8 (40.3)	57.7 (10.4)	0	Multiplicative Interaction	RNN
Delbrouck and Dupont (2017b)	40.5 (N/A)	57.9 (N/A)	Α	Encoder Attention $+$ CBN	RNN
Arslan et al (2018)	41.0 (†2.4)	53.5 (\$1.5)	А	Parallel Attention	Transformer
Calixto et al (2018)	37.6 (12.6)	56.0 († 1.1)	L	Variational	RNN
Helcl et al (2018b)	38.8 (10.7)	56.4 (10.2)	т	Imagination	Transformer
Libovicky et al (2018)	38.5 (10.2)	56.5 (J0.2)	Α	Hierarchical Attention	Transformer
	38.6(10.3)	57.4 (†0.7)	Α	Parallel Attention	Transformer
Ive et al (2019)	38.0 (10.1)	55.6 (J0.3)	DF	2-stage Decoder + Label Embs.	Transformer
Libovicky (2019)	37.6 (10.9)	56.0 (10.9)	Α	Hierarchical Attention	RNN
Caglayan (2019)	39.0 (10.1)	58.5 († 0.1)	$_{\rm E,D}$	Encoder Decoder Init.	RNN
	$39.4~(\uparrow 0.5)$	58.7 (†0.3)	Α	Separate Attention $+$ L ₂ Norm.	RNN
Unconstrained ensembles					
Helcl et al (2018b)	42.6 (12.2)	59.4 (10.4)	Т	Imagination	Transformer
Grânroos et al (2018)	45.5 (- 0.0)	(N/A)	IF	Input Prepend	Transformer

Is Visual Information Needed? (1/2)

- Elliott (2018) used MM systems with shuffled, incongruent images.

Two dogs play with an orange toy in tall grass.



Zwei Hunde spielen im hohen Gras mit einem orangen Spielzeug.

- Only the hierarchical attention was sensitive to images other multi-modal systems performed equally with congruent and incongruent images.
- Caglayan et al. (2019) list other papers where images have not helped much.

Is Visual Information Needed? (2/2)

Elliott (2018) degrade the textual input and show that multi-modal MT performs better:

SRC: a young [v] in [v] holding a tennis [v]
NMT: <u>un</u> jeune <u>garçon</u> en <u>bleu</u> tenant une raquette de tennis (a young boy in blue holding a tennis racket)
MMT: une jeune femme en blanc tenant une raquette de tennis REF: une jeune femme en blanc tenant une raquette de tennis

(a young girl in white holding a tennis racket)

- SRC: little girl covering her face with a [v] towel
 NMT: une petite f lle couvrant son visage avec une serviette <u>blanche</u> (a little girl covering her face with a white towel)
 MMT: une petite f lle couvrant son visage avec une serviette bleue
 REF: une petite f lle couvrant son visage avec une serviette bleue
 - (a little girl covering her face with a blue towel)

Summary

- Speech translation:
 - Simple cascading suffers from uncertainty loss, error cummulation.
 - Problems with segmentation.
 - End-to-end systems recently approaching cascaded ones.
 - Practical deployment of live subtitling is a challenge.
- Translation with visual features:
 - Motivation: Image can be the missing context for ambiguity resolution.
 - Discussion on image utility.

A picture is worth a thousand words

Summary

- Speech translation:
 - Simple cascading suffers from uncertainty loss, error cummulation.
 - Problems with segmentation.
 - End-to-end systems recently approaching cascaded ones.
 - Practical deployment of live subtitling is a challenge.
- Translation with visual features:
 - Motivation: Image can be the missing context for ambiguity resolution.
 - Discussion on image utility.

A picture is worth a thousand words in one of a thousand cases.

References

Alexandre Berard, Olivier Pietquin, Christophe Servan, and Laurent Besacier. 2016. Listen and translate: A proof of concept for end-to-end speech-to-text translation. <u>CoRR</u>, abs/1612.01744. Published at NIPS. A. Bérard, L. Besacier, A. C. Kocabiyikoglu, and O. Pietquin. 2018. End-to-end automatic speech translation of audiobooks. In <u>2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</u>, pages 6224–6228.

Ozan Caglayan, Pranava Madhyastha, Lucia Specia, and Loïc Barrault. 2019. Probing the need for visual context in multimodal machine translation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages

4159–4170, Minneapolis, Minnesota, June. Association for Computational Linguistics.

E. Cho, J. Niehues, and A. Waibel. 2012. Segmentation and punctuation prediction in speech language translation using a monolingual translation system. In Proceedings of the Ninth International Workshop on Spoken Language Translation (IWSLT).

Eunah Cho, Jan Niehues, and Alex Waibel. 2017. NMT-based segmentation and punctuation insertion for real-time spoken language translation. In Interspeech 2017. ISCA, aug.

Desmond Elliott. 2018. Adversarial evaluation of multimodal machine translation. In <u>Proceedings of the 2018</u> <u>Conference on Empirical Methods in Natural Language Processing</u>, pages 2974–2978, Brussels, Belgium. Association for Computational Linguistics.

Mattia A. Di Gangi, Matteo Negri, and Marco Turchi. 2019. Adapting Transformer to End-to-End Spoken Language Translation. In Proc. Interspeech 2019, pages 1133–1137.

Ye Jia, Ron J. Weiss, Fadi Biadsy, Wolfgang Macherey, Melvin Johnson, Zhifeng Chen, and Yonghui Wu. 2019. Direct speech-to-speech translation with a sequence-to-sequence model. <u>CoRR</u>, abs/1904.06037.

Jindřich Libovický and Jindřich Helcl. 2017. Attention strategies for multi-source sequence-to-sequence learning. In 53/53