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Outline

• Motivation for using more than 2 languages.
• Transfer Learning.

• Catastrophic Forgetting.
• Trivial Transfer Learning.

• Multi-Lingual NMT.
• Massively Multi-Lingual NMT.

Many slides on transfer learning by Tom Kocmi.
Many slides on multilingual models by Rico Sennrich and Adam Lopez.
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Why Multilingual MT

• Help in low-resource settings.
• Words, morphemes or syntactic patterns common to more languages.
• Learning can reuse patterns seen in another dataset.

• Improve translation quality.
• Words are ambiguous, the third language can disambiguate.

• Truly multi-lingual environments.
• United Nations: 6 languages.
• EU official languages: 24.
• EUROSAI official languages: 43.
• INTOSAI official languages…
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Transfer Learning
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Steps of Transfer Learning
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Steps of Transfer Learning
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Interlude: Catastrophic Forgetting
• Kocmi and Bojar (2017) explore curriculum learning:

• Start with simpler sentences first, add complex ones later.

• When “simpler” means “shorter”:

• Clear jumps in score as bins of longer sentences are allowed.
• Reversed curriculum unlearns to produce long sentences.
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Trivial Transfer Learning

• Early works (Zoph et al., 2016; Nguyen and Chiang, 2017) target
one common language (English).

• Kocmi and Bojar (2018) try even unrelated languages.
The trivial procedure:

• Train on one pair (“parent”), switch corpus to another (“child”).
• The only requirement: joint subword units across all langs.
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Getting Balanced Vocabulary
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Getting Balanced Vocabulary

the_
že_
ying_
staying_
pra
pracovat_
...

12/70



English on Same Side
Parent model Corpus size 

difference
Direction Baseline 

(BLEU)
Transfer 
(BLEU)

Δ
(BLEU)

Czech 9x from English 16.13 17.75 1.62 *

Czech 9x to English 19.19 22.42 3.23 *

Child model: Slovak

* statistically significant
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Parent model Corpus size 

difference
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Transfer 
(BLEU)

Δ
(BLEU)
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Child model: Slovak

* statistically significant

Parent model Corpus size 
difference

Direction Baseline 
(BLEU)

Transfer 
(BLEU)

Δ
(BLEU)

Finnish 3.5x from English 17.03 19.74 2.71 *

Russian 16x from English 17.03 20.09 3.06 *

Czech 50x from English 17.03 20.41 3.38 *

Finnish 3.5x to English 21.74 24.18 2.44 *

Russian 16x to English 21.74 23.54 1.80 *

Child model: Estonian
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English on Same Side, Parent Low-Resource

Parent model Corpus size 
difference

Direction Baseline 
(BLEU)

Transfer 
(BLEU)

Δ
(BLEU)

Estonian 0.3x from English 19.50 20.07 0.57 *

Estonian 0.3x to English 24.40 23.95 -0.45

Parent model Corpus size 
difference

Direction Baseline 
(BLEU)

Transfer 
(BLEU)

Δ
(BLEU)

Slovak 0.1x from English 23.48 22.99 -0.49 *

Slovak 0.1x to English 29.61 28.20 -1.41 *

Child model: Finnish

Child model: Czech

18/70



English on Same Side, Parent Low-Resource

Parent model Corpus size 
difference

Direction Baseline 
(BLEU)

Transfer 
(BLEU)

Δ
(BLEU)

Estonian 0.3x from English 19.50 20.07 0.57 *

Estonian 0.3x to English 24.40 23.95 -0.45

Parent model Corpus size 
difference

Direction Baseline 
(BLEU)

Transfer 
(BLEU)

Δ
(BLEU)

Slovak 0.1x from English 23.48 22.99 -0.49 *

Slovak 0.1x to English 29.61 28.20 -1.41 *

Child model: Finnish

Child model: Czech

19/70



English on the Other Side

Parent 
model

Child model Corpus size 
amplification

Baseline 
(BLEU)

Transfer 
(BLEU)

Δ
(BLEU)

Parent
Aligned Δ

EN - Finnish Estonian - EN 3.5x 21.74 22.75 1.01 * 2.44 *

EN - Russian Estonian - EN 16x 21.74 23.12 1.38 * 1.80 *

EN - Czech Estonian - EN 50x 21.74 22.80 1.06 *

Finnish - EN EN - Estonian 3.5x 17.03 18.19 1.16 * 2.71 *

Russian - EN EN - Estonian 16x 17.03 18.16 1.13 * 3.06 *
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No Language in Common

Parent model Corpus size 
amplification

Baseline 
(BLEU)

Transfer 
(BLEU)

Δ
(BLEU)

Arabic - Russian 12x 21.74 22.23 0.49

Spanish - French 12x 21.74 22.24 0.50 *

Spanish - Russian 12x 21.74 22.52 0.78 *

French - Russian 12x 21.74 22.40 0.66 *

Child model: Estonian to English
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The Better the Parent, the Better the Child
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The Lesser the Child, the Bigger the Gain
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Why it Helps? Not Really Vocabulary (1/2)
Length BLEU Components BP

Base ENET 35326 48.1/21.3/11.3/6.4 0.979
ENRU+ENET 35979 51.0/24.2/13.5/8.0 0.998
ENCS+ENET 35921 51.7/24.6/13.7/8.1 0.996

(The reference length in the matching tokenization was 36062.)

• Child models produce longer outputs ⇒ lower brevity penalty.
• But 𝑛-gram precisions also better.

1-gram present in ENRU+ENET ENCS+ENET
Child, Base, Ref 15902 (44.2 %) 15924 (44.3 %)
Child only 9635 (26.8 %) 9485 (26.4 %)
Child, Base 7209 (20.0 %) 7034 (19.6 %)
Child, Ref 3233 (9.0 %) 3478 (9.7 %)
Total 35979 (100.0 %) 35921 (100.0 %)

• The 3k better toks are regular ET words, not NEs or numbers.
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Why it Helps? Not Really Vocabulary (2/2)
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Why it Helps? Sentence Lengths Somewhat

Parent Child
Sentence lengths BLEU Avg. words BLEU Avg. words

1-10 words 8.57 10.9 16.57 15.3
10-20 words 16.21 15.4 17.48 15.3
20-40 words 12.59 21.9 17.99 15.3
40-60 words 5.76 35.5 16.80 15.5
1-60 words 22.30 15.3 19.15 15.4
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Multilingual MT



Multilingual MT Configurations
• Pivot translation (Cascading).
• Multi-lingual source (also called multi-way).
• Multi-lingual multi-source.
• Multi-lingual target.
• Multi-lingual multi-target.
• Both sides multi-lingual.
• (Both sides multi-lingual, multi-source, multi-target. ;-)
• Zero-shot training.

• i.e. translating an unseen pair when both the source and target langs were
covered in the training data in other pairs.

• “Beyond zero-shot” is translating from an unseen language.
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Multi-Target and Multi-Source MT
• Multi-Target focus: Efficiency

• Decrease hardware resources compared using many separate models.
• Multi-Source focus: Resolving ambiguity thanks to existing translations.

• E.g. Translating German “Schloss” to French is easier
if we can feed in the English translation (“castle” or “lock”).

• Training on: Multi-parallel or bi-parallel multilingual corpora.
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Figure 2: Multi-Source MT
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Ideal: Flexible Multi-Lingual MT
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Figure 3: Flexible multilingual MT
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Multi-source translation
Quite an old idea (e.g. Och & Ney 2001)

R. Sennrich MT – 2018 – 11 5 / 23
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Multi-source translation
• Assorted techniques to do this in IBM-style or phrase-

based MT.

• Difficult to model directly due to independence 

assumptions of these models.

• Usually done as a kind of system combination 

(merging the output of two MT systems).

• But this introduces other problems, e.g. decoding.

• Fundamentally, it’s interpolation of conditional LMs.

R. Sennrich MT – 2018 – 11 6 / 23
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Direct multi-source
Zoph & Knight 2016

• Directly learns and uses p(English|French,German) 

• For attention: two context vectors (uses p-local attention of 

Luong, et al, but could use other methods).

R. Sennrich MT – 2018 – 11 7 / 23
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Multi-way MT
Firat et al. 2016 (two papers)

• Assume only many bilingual parallel corpora.

• For N languages: learn N encoders and N decoders.

• But what about attention?

R. Sennrich MT – 2018 – 11 9 / 23

36/70



Multi-way MT
Firat et al. 2016 (two papers)

• Assume only many bilingual parallel corpora. 

• For N languages: learn N encoders and N decoders. 

• But what about attention?

p(fi|fi−1, ..., f1, e) = g(fi−1, si, ci)

ci =

|e|∑

j=1

αijhj

αij =
exp(aij)

∑|e|
k=1

exp(aik)

aij = a(si−1, hj)

R. Sennrich MT – 2018 – 11 9 / 23

37/70



Multi-way MT
Firat et al. 2016 (two papers)

• As in Bahdanu et al. (2014), attention mechanism is 
a feedforward function of both decoder hidden state 
and encoder context vector. 

• Shared between all encoders and decoders.

p(fi|fi−1, ..., f1, e) = g(fi−1, si, ci)

ci =

|e|∑

j=1

αijhj

αij =
exp(aij)

∑|e|
k=1

exp(aik)

aij = a(si−1, hj)

Everything 

we need is 

right here!

R. Sennrich MT – 2018 – 11 9 / 23
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Multi-way MT
Firat et al. 2016 (two papers)

Low-resource simulation 

(using high-resource 

European languages)

R. Sennrich MT – 2018 – 11 10 / 23

39/70



Multi-way MT
Firat et al. 2016 (two papers)

R. Sennrich MT – 2018 – 11 11 / 23
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Multi-way MT
Firat et al. 2016 (two papers)

ok, but what about multi-source?

R. Sennrich MT – 2018 – 11 11 / 23
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Multi-way multi-source MT
Firat et al. 2016 (two papers)

• Still assumes only many bilingual parallel corpora. 

• What to do if there are multiple input sentences? 

• Early averaging (average context vectors). 

• Late averaging (aka linear interpolation).

Early and late averaging are orthogonal, can be combined.

R. Sennrich MT – 2018 – 11 12 / 23
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Multi-way multi-source MT
Firat et al. 2016 (two papers)

R. Sennrich MT – 2018 – 11 13 / 23
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Zero-shot MT
Firat et al. 2016 (two papers)

• Suppose our bilingual parallel data include a pair of 

languages for which we have no parallel data. 

• Q: Can we use the multi-way encoder-decoder system 

to translate Spanish into French?

English EnglishSpanish French

R. Sennrich MT – 2018 – 11 14 / 23
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Zero-shot MT
Firat et al. 2016 (two papers)

• Finetuning: what if we use a small amount of 

parallel data in this setting? 

• Q: Where would we get this data? Backtranslation

English EnglishSpanish French

R. Sennrich MT – 2018 – 11 15 / 23
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Zero-shot MT
Firat et al. 2016 (two papers)

• Finetuning: what if we use a small amount of 

parallel data in this setting?

R. Sennrich MT – 2018 – 11 16 / 23
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R. Sennrich MT – 2018 – 11 16 / 23
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Simple Data Mixing
Do we really need separate encoders and decoders?
… simply feed in various language pairs:

Source Sent 1 (De) 2en versetzen Sie sich mal in meine Lage !
Target Sent 1 (En) put yourselves in my position .
Source Sent 2 (En) 2nl I flew on Air Force Two for eight years .
Target Sent 2 (Nl) ik heb acht jaar lang met de Air Force Two gevlogen .

• The model of the same size will learn both pairs.
• Hopefully benefiting from various similarities.
• Risk of catastrophic forgetting.

See Johnson et al. (2016) or Ha et al. (2017).
54/70



55/70



56/70



“Language Embeddings” from 927 Bibles

English

multilingual
NMT model

Bible translations 
in 927 languages

vector space
of language
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learning to translate
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(“zero-shot MT”)

x1 x2 x3 x4

Ex

C

Z

Ey

y1 y2 y3

attention

en
co
de
r

de
co
de
r

h1 h2 h3 h4

train

language
flags

input sentence

output sentence
Helsinki Neural 

MT System

Tiedemann (2018)
57/70



“Language Embeddings” from 927 Bibles
Trans-New Guinea

Otomanguean

Quechuan

Indo-European

Austronesian

Nilo-Saharan

Afro-Asiatic

Mayan

Niger-Congo

Creole

t-SNE of the language-embedding vectors, colored by language family.
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Massively Multi-Lingual
Models



Available Data for EN↔100+ Langs
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Translation Quality of Bilingual MT
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Standard Transformer Model
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Google Transformer Sizes
GPipe (Huang et al., 2019) introduces microbatches for faster training
of deep models across multiple GPUs.

Enc/Dec Depth FF Dim Heads Total Parameters GPUs Used
6 8192 16 400M 1 default

12 16384 32 1.3B 2 “wide”
24 8192 16 1.3B 4 “deep”
32 16384 32 3.0B 8
64 16384 32 6.0B 16

• “Deep” better than “wide” on low-resource languages.
• Indicates better generalization.

• Further tricks needed to keep the training stable.
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Massively Multilingual Models
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Massive Massively Multilingual Models

64/70



Google-Sized Experiment
The recent 50 billion parameters Transformer needed further trick:

• sparsely-gated mixture of experts (Shazeer et al., 2017):

⇒ BLEU on 100 langs re-gained and improved by 125x larger model.
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
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Domain Adapters to Recover Practical Sizes
• Bapna and Firat (2019) propose tiny tunable “adapter” layers.

1. Pretrain on a large mixed-language corpus.
2. Inject adapter layers.
3. Finetune adapter layers for each of the target tasks.
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Domain Adapters into English
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Domain Adapters from English
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Summary
• Transfer learning in NMT works.

⇒ NMT can exploit more and less related data.
• Trivial Transfer: Parent just has to be larger.
• Even unrelated language pairs can help.
• Probably better initialization.

• Multi-source, multi-target, …, flexible multi-lingual setups.
• Language families emerge in language token embedding.
• Model capacity is the bottleneck.

• Models 125x large for 100 languages in one model
allow gains on high-resource languages, too.

• With tiny adaptors instead of mixture of experts
model sizes can decrease again.
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