
Transformer and
Syntax in NMT
Ondřej Bojar

April 16, 2020

NPFL087 Statistical Machine Translation

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics unless otherwise stated

Overview

• Reminder: Seq2seq with Attention.
• Transformer Architecture.

• Focus on Self-Attention.
• Explicit Syntax in NMT.

• In Network Structure.
• At Each Token.
• In Attention.

Some images due to Jindřich Helcl and/or Jindřich Libovický.

1/43

Reminder: Seq2seq with Attention
<s> x1 x2 x3 x4

~yi ~yi+1

h1h0 h2 h3 h4

...

+

×
α0

×
α1

×
α2

×
α3

×
α4

sisi-1 si+1

+

2/43

Attention – Formal Notation

Inputs:
decoder state 𝑠𝑖
encoder states ℎ𝑗 = [⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ℎ𝑗; ⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ℎ𝑗] ∀𝑖 = 1 … 𝑇𝑥
where ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ℎ𝑗 = RNNenc(ℎ𝑗−1, 𝑥𝑗) = tanh(𝑈𝑒 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ℎ𝑗−1 + 𝑊𝑒𝐸𝑒𝑥𝑗 + 𝑏𝑒)

Attention energies: 𝑒𝑖𝑗 = 𝑣⊤
𝑎 tanh (𝑊𝑎𝑠𝑖−1 + 𝑈𝑎ℎ𝑗 + 𝑏𝑎)

Attention distribution: 𝛼𝑖𝑗 = exp(𝑒𝑖𝑗)
∑𝑇𝑥

𝑘=1 exp(𝑒𝑖𝑘)

Context vector: 𝑐𝑖 = ∑𝑇𝑥
𝑗=1 𝛼𝑖𝑗ℎ𝑗

3/43

Attention Mechanism in Equations (2)
Decoder state:

𝑠𝑖 = tanh(𝑈𝑑𝑠𝑖−1 + 𝑊𝑑𝐸𝑑 ̂𝑦𝑖−1 + 𝐶𝑐𝑖 + 𝑏𝑑)

Output projection:

𝑡𝑖 = tanh (𝑈𝑜𝑠𝑖 + 𝑊𝑜𝐸𝑑 ̂𝑦𝑖−1 + 𝐶𝑜𝑐𝑖 + 𝑏𝑜)

…context vector is mixed with the hidden state
Output distribution:

𝑝 (𝑦𝑖 = 𝑘 |𝑠𝑖, 𝑦𝑖−1, 𝑐𝑖) ∝ exp (𝑊𝑜𝑡𝑖)𝑘 + 𝑏𝑘

4/43

Transformer

Attention is All You Need (Vaswani et al., 2017)

5/43

Transformer Detailed Walkthroughs

Transformer Illustrated:
• http://jalammar.github.io/illustrated-transformer/

Amazingly simple description! (I am reusing the pictures.)
Transformer paper annotated with PyTorch code:

• http://nlp.seas.harvard.edu/2018/04/03/attention.html
• PyTorch by examples:

https://github.com/jcjohnson/pytorch-examples
Summary at Medium:

• https://medium.com/@adityathiruvengadam/
transformer-architecture-attention-is-all-you-need-aeccd9f50d09

6/43

http://jalammar.github.io/illustrated-transformer/
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://github.com/jcjohnson/pytorch-examples
https://medium.com/@adityathiruvengadam/transformer-architecture-attention-is-all-you-need-aeccd9f50d09
https://medium.com/@adityathiruvengadam/transformer-architecture-attention-is-all-you-need-aeccd9f50d09

Transformer = 6 Layers Enc + 6 Dec

7/43

Composition of One Layer

8/43

Word Vectors in Encoder

9/43

FF Is Actually Position-Independent

10/43

Positional Encoding
• Encode token position directly in the word vector:

• Positional embedding can be random, or “frequency-like”:

11/43

Self-Attention

Self-Attention Motivation (1/2)
• Sequences of arbitrary length 𝑛 need to be processed.
• RNNs make the (time-unrolled) network as deep as 𝑛.

• CNNs allow to trade kernel size 𝑘 and depth for a target “receptive
field”:

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑛 = ⃗0
12/43

Self-Attention Motivation (2/2)
• SANs (Self-Attentive Networks) can access any position in

constant time.

Operations Sequential Steps Memory
Recurrent 𝑂(𝑛 ⋅ 𝑑2) 𝑂(𝑛) 𝑂(𝑛 ⋅ 𝑑)
Convolutional 𝑂(𝑘 ⋅ 𝑛 ⋅ 𝑑2) 𝑂(1) 𝑂(𝑛 ⋅ 𝑑)
Self-attentive 𝑂(𝑛2 ⋅ 𝑑) 𝑂(1) 𝑂(𝑛2 ⋅ 𝑑)

• Sequence length 𝑛, state dimensionality 𝑑, kernel size 𝑘.
• Assuming infinitely many GPU cores (or rather ALU),

operations can be run in parallel,
but may depend on each other, needing some Sequential Steps.

13/43

Self-Attention
• Goal: Aggregate arbitary-length input to fixed-size vector.

Goal: Allow data-driven, trainable aggregation.

Given the sequence of inputs 𝑥1, … , 𝑥𝑛:

• Create three “views” of
them: queries, keys,
values.

• Using trained matrices
𝑊 𝑄, 𝑊 𝐾, 𝑊 𝑉 .

14/43

Self-Attention
• Goal: Aggregate arbitary-length input to fixed-size vector.

Goal: Allow data-driven, trainable aggregation.
Given the sequence of inputs 𝑥1, … , 𝑥𝑛:

• Create three “views” of
them: queries, keys,
values.

• Using trained matrices
𝑊 𝑄, 𝑊 𝐾, 𝑊 𝑉 .

14/43

Match All Queries with All Keys

15/43

Normalize Scores

16/43

Aggregate Values Accordingly

17/43

Self-Attention as Matrix Calculation

18/43

Multi-Head Attention

19/43

Multi-Head Attention

20/43

Self-Attention Summary

21/43

Self-Attention in Transformer

Three uses of multi-head attention in Transformer
• Encoder-Decoder Attention:

• Q: previous decoder layers; K = V: outputs of encoder
⇒ Decoder positions attend to all positions of the input.

• Encoder Self-Attention:
• Q = K = V: outputs of the previous layer of the encoder

⇒ Encoder positions attend to all positions of previous layer.
• Decoder Self-Attention:

• Q = K = V: outputs of the previous decoder layer.
• Masking used to prevent depending on future outputs.

⇒ Decoder attends to all its previous outputs.

22/43

Self-Attention at Enc Layer #5: 1 Head

23/43

Self-Attention at Enc Layer #5: 2 Heads

24/43

Self-Attention at Enc Layer #5: 8 Heads

25/43

Explicit Linguistic
Information in NMT

Ways of Adding Linguistic Annotation

• Construct network structure along linguistic structure.
∼ What we discussed in Syntax in SMT.
• Tree-LSTMs.
• Graph-Convolutional Networks.
… Source information only.

• Enrich information at each token.
∼ What we discussed in Morphology in SMT.
• Factors on the source side.
• Multi-Task on the target side.

• Improve attention using linguistic annotation.
• Attention calculation respecting syntax.
• Attention forced to reflect syntax in multi-task.

26/43

Linguistics in NN Structure

Tree-LSTMs (Tai et al., 2015)
Memory comes from:

the single predecessor children

x1 x2 x3 x4

y1 y2 y3 y4

x1

x2

x4 x5 x6

y1

y2 y3

y4 y6

plain LSTM Tree-LSTM
• Two flavors:

• Dependency trees: Sum over all children.
• Constituency trees: Up to N children, respecting order. 27/43

Chen et al. (2017a) (1/2)

x1 x2 x3 x4 x5 x6

−→
h 1

−→
h 2

−→
h 3

−→
h 4

−→
h 5

−→
h 6

−→
h 1

←−
h 2

←−
h 3

←−
h 4

←−
h 5

←−
h 6

h↑7

h↑8

h↑9

h↑10
h↑11

Tree-GRU Encoder:
• Constituency syntax of the tree provides additional states.

28/43

Chen et al. (2017a) (2/2)

x1 x2 x3 x4 x5 x6

h↑1 h↑2 h↑3 h↑4 h↑5 h↑6h↓1 h↓2 h↓3 h↓4 h↓5 h↓6

h↑7 h↓7

h↑8 h↓8

h↑9 h↓9

h↑10 h↓10

h↑11 h↓11

Bidirectional tree encoder.
• Can be seen as many RNNs running from each word up to the root

and back to the word.
29/43

Graph-Convolutional Networks (Bastings et al., 2017)

W
(0)

det W
(0)

nsu
bj

W (0)
dobj W

(0)

det

W
(1)

det W
(1)

nsu
bj

W (1)
dobj W

(1)

det

PAD The monkey eats a banana *PAD*

h(0)

h(1)

h(2)

G
C
N

C
N
N

Figure 2: A 2-layer syntactic GCN on top of a convolutional encoder. Loop connections are depicted
with dashed edges, syntactic ones with solid (dependents to heads) and dotted (heads to dependents)
edges. Gates and some labels are omitted for clarity.

Bastings et al. (2017)
30/43

Linguistics at Each Token

CCGs to Encode Syntax at Each Token
Syntax reflects long-distance dependencies.

• What city is the Taj Mahal in?
• Where is the Taj Mahal ∅?

The need to produce in depends on the What/Where.
• CCG tags for is differ ⇒ dependency highlighted.
• Following CCG tags, the decoder can know if in is needed.
• CCG tags are denser than words ⇒ better generalization.

• What(S[wq]/(S[q]/NP))/N city is(S[q]/P P)/NP the Taj Mahal in?
• WhereS[wq]/(S[q]/NP) is(S[q]/NP)/NP the Taj Mahal?

31/43

CCGs to Encode Syntax at Each Token
Syntax reflects long-distance dependencies.

• What city is the Taj Mahal in?
• Where is the Taj Mahal ∅?

The need to produce in depends on the What/Where.
• CCG tags for is differ ⇒ dependency highlighted.
• Following CCG tags, the decoder can know if in is needed.
• CCG tags are denser than words ⇒ better generalization.
• What(S[wq]/(S[q]/NP))/N city is(S[q]/P P)/NP the Taj Mahal in?
• WhereS[wq]/(S[q]/NP) is(S[q]/NP)/NP the Taj Mahal?

31/43

Factors in NMT
• Source word factors easy to incorporate:

• Concatenate embeddings of the various factors.
• POS tags, morph. features, source dependency labels help en↔de and

en→ro (Sennrich and Haddow, 2016).
• Target word factors:

• Interleave for morphology: (Tamchyna et al., 2017)
Src there are a million different kinds of pizza .
Baseline (BPE) existují miliony druhů piz@@ zy .
Interleave VB3P existovat NNIP1 milion NNIP2 druh NNFS2 pizza Z: .

• Interleave for syntax: (Nadejde et al., 2017)
Src BPE Obama receives Net+ an+ yahu in the capital of USA
Tgt NP Obama ((S[dcl]\NP)/PP)/NP receives NP Net+ an+ yahu PP/NP in NP/N the N capital (NP\NP)/NP of NP USA

• Multiple decoders, each predicting own sequence.
32/43

Predicting Target Syntax

My students Dan Kondratyuk and Ronald Cardenas retried Nadejde et
al. (2017) with:

• sequence-to-sequence model,
• Transformer model.

Predicting target syntax using:
• a secondary decoder
• interleaving.

As tags, they used:
• correct CCG tags, • random tags, • a single dummy tag.

(Kondratyuk et al. Replacing Linguists with Dummies. PBML 2019.)

33/43

Predicting Target Syntax (S2S)

Training steps (millions)

Baseline CCG Random Same

0 2 4 6 8 10 12 14 16 18

0

5

10

15

20

25

In
te
rl
ea
ve
d

Seq2seq

Training steps (millions)

Baseline CCG Random Same

M
ul
ti-
D
ec
od

er

0 2 4 6 8 10 12 14 16 18

0

5

10

15

20

25

Seq2seq

34/43

Predicting Target Syntax (Transformer)

Training steps (millions)

Baseline CCG Random Same

0 2 4 6 8 10121416182022242628

0

5

10

15

20

25

30

In
te
rl
ea
ve
d

Transformer

Training steps (millions)

Baseline CCG Random Same

M
ul
ti-
D
ec
od

er

0 2 4 6 8 10121416182022242628

0

5

10

15

20

25

Transformer

35/43

Syntax in Word Embeddings Chen et al. (2017b)

Src dep

Src

U2=<x3, x1, x4, x7 , ε>Dep Tuples U1

E
n
co
de
r

Vx1 VU1

h1

Vx2 VU2

h2

VxJ VUJ

hJ

……

…

Decoder

UJ

CNNCNN CNN CNN

x1 x2 x3 x4 x5 x6 x7

root

…

,1i
,2i … ,i J

• CNN-derived embeddings of nodes’ syntactic neighbourhood
included: (parent, siblings).

• Two mechanisms:
• Concatenated to standard embeddings.
• Separate attention over these word-level annotiations

36/43

Linguistics in Attention

Tree Coverage in Attention Chen et al. (2017a)

Tree coverage model:
• Attention coverage depends on source syntax.
• Without it (left), output is repeated.

37/43

Multi-Task to Request Dependency Tree (1/2)

• Pham et al. (2019) noticed that
attention head could be interpreted as
dependency parse.

• Add secondary objective to require
head #1 to match source dependency
tree.

38/43

Multi-Task to Request Dependency Tree (2/2)

• Czech-to-English translation (BLEU).
• Czech dependency parse from head #1 (UAS).

BLEU UAS
Dev Test Dev Test

Transformer Baseline 37.28 36.66 – –
Parse from layer 0 36.95 36.60 81.39 82.85
Parse from layer 1 38.51 38.01 90.17 90.78
Parse from layer 2 38.50 37.87 91.31 91.18
Parse from layer 3 38.37 37.67 91.43 91.43
Parse from layer 4 37.86 37.60 91.65 91.56
Parse from layer 5 37.63 37.67 91.44 91.46

39/43

Dummy Dependency Tree

I shot an elephant in my pajamas

I
shotan

elephant
inmy

pajamas

RO
OT

I sh
otan ele
ph

an
t

in my pa
jam

as

40/43

Multi-Task to Request Dummy Tree

BLEU Precision
Dev Test Dev Test

Transformer Baseline 37.28 36.66 – –
Dummy Parse from layer 0 38.68 38.14 99.97 99.96
Dummy Parse from layer 1 39.11 38.06 99.99 99.99
Dummy Parse from layer 2 37.85 37.85 99.98 99.98
Dummy Parse from layer 3 37.93 37.70 99.97 99.98
Dummy Parse from layer 4 37.68 37.47 99.98 99.96
Dummy Parse from layer 5 37.53 37.54 99.96 99.95
True Parse from layer 1 38.51 38.01 90.17 90.78

41/43

Summary

• Transformer is a great replacement for RNN.
• Constant-time processing.
• (CNNs can be comparable, but Gehring et al. (2016) was kind of missed.)

• Explicit syntax can be useful.
• Many options how to include it.
• Some gains hard to reproduce.
• Dummy information can be equally useful.
• Transformer seems to learn syntax for free.

42/43

References
Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Simaan. 2017. Graph convolutional encoders
for syntax-aware neural machine translation. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 1947–1957. Association for Computational Linguistics.
Huadong Chen, Shujian Huang, David Chiang, and Jiajun Chen. 2017a. Improved Neural Machine Translation with a
Syntax-Aware Encoder and Decoder. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1936–1945, Vancouver, Canada, July. Association for Computational
Linguistics.
Kehai Chen, Rui Wang, Masao Utiyama, Lemao Liu, Akihiro Tamura, Eiichiro Sumita, and Tiejun Zhao. 2017b. Neural
Machine Translation with Source Dependency Representation. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 2846–2852, Copenhagen, Denmark, September. Association for
Computational Linguistics.
Jonas Gehring, Michael Auli, David Grangier, and Yann N. Dauphin. 2016. A convolutional encoder model for neural
machine translation. CoRR, abs/1611.02344.
Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn, and Alexandra
Birch. 2017. Predicting target language ccg supertags improves neural machine translation. In Proceedings of the
Second Conference on Machine Translation, Volume 1: Research Paper, pages 68–79, Copenhagen, Denmark,
September. Association for Computational Linguistics.
Thuong-Hai Pham, Dominik Macháček, and Ondřej Bojar. 2019. Promoting the knowledge of source syntax in
transformer nmt is not needed. Computación y Sistemas, 23(3):923–934.
Rico Sennrich and Barry Haddow. 2016. Linguistic input features improve neural machine translation. In Proceedings
of the First Conference on Machine Translation, pages 83–91, Berlin, Germany, August. Association for Computational
Linguistics.
Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 1556–1566, Beijing, China, July. Association for Computational Linguistics.
Aleš Tamchyna, Marion Weller-Di Marco, and Alexander Fraser. 2017. Modeling target-side inflection in neural
machine translation. In Proceedings of the Second Conference on Machine Translation, Volume 1: Research Paper,
pages 32–42, Copenhagen, Denmark, September. Association for Computational Linguistics.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 6000–6010.
Curran Associates, Inc.

43/43

	Transformer
	Self-Attention
	Explicit Linguistic Information in NMT
	Linguistics in NN Structure
	Linguistics at Each Token
	Linguistics in Attention

