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e Reminder: Seq2seq with Attention.
® Transformer Architecture.

® Focus on Self-Attention.
e Explicit Syntax in NMT.

® |n Network Structure.
® At Each Token.
® |n Attention.

Some images due to Jindfich Helcl and/or Jindfich Libovicky.
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Reminder: Seq2seq with Attention




Inputs:

decoder state s,
encoder states h,; = [hT, h_J] Vi=1..T,
where h; = RNNg (h,_;,z;) =tanh(U h,_, + W E x; +b,)

Attention energies: ¢;; = v, tanh (W,s; 1 + U,h; + b,)
Attention distribution: a.. = _op(ey)
UYL expleyy,)

Tw
Context vector: ¢; = > .*, a;h;
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Decoder state:

s; =tanh(Uys,_; + W Ey;_1 + Cc; + by)
Output projection:

t; =tanh (Uys; + W,Ey, 1 + Coc; +b,)

..context vector is mixed with the hidden state
Output distribution:

p(y; =k |s;y;-1,¢;) o exp (Wt,), + by
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Transformer



Attention iS A" YOLI Need (Vaswani et al., 2017)
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Embedding Embedding
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Multi-Head Attention

Scaled Dot-Product Attention
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Transformer lllustrated:

® http://jalammar.github.io/illustrated-transformer/
(I am reusing the pictures.)

Transformer paper annotated with PyTorch code:
® http://nlp.seas.harvard.edu/2018/04/03/attention.html

e PyTorch by examples:
https://github.com/jcjohnson/pytorch-examples

Summary at Medium:
® https://medium.com/@adityathiruvengadam/
transformer-architecture-attention-is-all-you-need-aecc
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http://jalammar.github.io/illustrated-transformer/
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Transformer = 6 Layers Enc 4+ 6 Dec

OUTPUT[I am a Student]
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INPUT [je suis étudmnt]
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Composition of One Layer

DECODER 1
' N\
Feed Forward
ENCODER A \_ _J
1 2
{ ™\
( Feed Forward J Encoder-Decoder Attention
Y o J
{ = ™y
( Self-Attention J Self-Attention
o J

t t

8/43



Word Vectors in

Encoder

ENCODER A A A
{f” 1 1 1 “~\
Feed Forward j
t t 1
t t t
[ Self-Attention j
P— f —
x+ [N x2 [N xs [ENTER
Je suis étudiant
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FF Is Actually Position-Independent
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Positional Encoding

® Encode token position directly in the word vector:

POSITIONAL 1 1 084 [V 1 (XN 0.0002| -0.42 [
ENCODING

+

+ +
EMBEDDINGS  x: [T x. [ x; [T

INPUT Je suis étudiant

e Positional embedding can be random, or “frequency-like":

|
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Self-Attention



® Sequences of arbitrary length n need to be processed.

® RNNs make the (time-unrolled) network as deep as n.
®

® ® ® ® ®
® ® ® ® - ®
® CNNs allow to trade kernel size k and depth for a target “receptive

field":
PSS ESSN SN
PESNLS T SN
AL BBBBBL A

01 b0

2, =0 embeddings X = (z4,...,zy) =0

Ty
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® SANs (Self-Attentive Networks) can access in
constant time.

Operations  Sequential Steps Memory

Recurrent O(n - d?) O(n) O(n-d)
Convolutional O(k - n - d?) O(1) O(n - d)
Self-attentive ~ O(n? - d) O(1) O(n?-d)

® Sequence length n, state dimensionality d, kernel size k.

® Assuming infinitely many GPU cores (or rather ALU),
operations can be run in parallel,
but may depend on each other, needing some Sequential Steps.
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Self-Attention

® Goal: Aggregate arbitary-length input to fixed-size vector.
Allow data-driven, trainable aggregation.
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Self-Attention

® Goal: Aggregate arbitary-length input to fixed-size vector.
Allow data-driven, trainable aggregation.

Given the sequence of inputs x4, ..., z,,:

Input Thinking Machines
. Embedding DT
® (Create three “views" of
them: queries, keys, Queries @[ o[0T wa
values.
® Using trained matrices Keys [T [TT]
We WK WV,

Values vil T v [T
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Match All Queries with All Keys

Input
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Normalize Scores

Input
Embedding
Values
Score

Divide by 8 ( d;. )

Softmax

Thinking

x T
vi [EE

g e ki=112

14

0.88

Machines

x. [
v. [T

Q1 » ko =96

12
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Aggregate Values Accordingly

Input

Embedding
Values

Softmax
Softmax X Value

Sum

Thinking

x T
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Self-Attention as Matrix Calculation

X we Q

- - -
Q KT
v

) . ) softmax( - ) . ) -
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Multi-Head Attention

ATTENTION HEAD #0
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Multi-Head Attention

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
A4
ATTENTION ATTENTION ATTENTION

HEAD #0 HEAD #1 HEAD #7
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Self-Attention Summary

Thinking
Machines
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Three uses of multi-head attention in Transformer
® Encoder-Decoder Attention:
® Q: previous decoder layers; K = V: outputs of encoder
= Decoder positions attend to all positions of the input.
® Encoder Self-Attention:
e Q = K = V: outputs of the previous layer of the encoder
= Encoder positions attend to all positions of previous layer.
® Decoder Self-Attention:
e Q = K = V: outputs of the previous decoder layer.
® Masking used to prevent depending on future outputs.
= Decoder attends to all its previous outputs.
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Self-Attention at Enc Layer #5: 1 Head

Layer:| 5 #| Attention: | Input - Input %]

The_ The_
animal_ animal_
didn_ didn_
t_ i
CroSSs_ Cross_
the_ the_
street_ street_
because_ ) because_
it \ it_
was_ was_
too_ too_
tire tire

d d
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Self-Attention at Enc Layer #5: 2 Heads

Layer:| 5 #| Attention: | Input - Input

The_
animal_

The_
animal_
didn_
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Self-Attention at Enc Layer #5: 8 Heads

Layer:| 5 #| Attention: | Input - Input %]

The_
animal_
didn_

|
Cross_
the_
street_

because_

was_
too_
tire
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Explicit Linguistic

Information in NMT




e Construct network structure along linguistic structure.

~ What we discussed in Syntax in SMT.
® Tree-LSTMs.
® Graph-Convolutional Networks.
... Source information only.
® Enrich information at each token.

~ What we discussed in Morphology in SMT.
® Factors on the source side.
® Multi-Task on the target side.

® |mprove attention using linguistic annotation.

® Attention calculation respecting syntax.
® Attention forced to reflect syntax in multi-task.
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Linguistics in NN Structure



Memory comes from:

the single predecessor

children
Y1
Y2 4 Y3
z1
v Y2 Y3 Ya E:j/v va 3 v6
: ' ) toom A )
L > +—— ] L1 17 [
' ¥ 5 I
1 2 x3 T4 T4 x5 T6
plain LSTM Tree-LSTM

e Two flavors:

® Dependency trees: Sum over all children.
® Constituency trees: Up to N children, respecting order.
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Tree-GRU Encoder:

e Constituency syntax of the tree provides additional states.
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Bidirectional tree encoder.

® Can be seen as many RNNs running from each word up to the root
and back to the word.
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Graph-Convolutional Networks (Bastings et al., 2017)

h [ )
é hD ( )
he [ )

CNN

*PAD* The monkey eats a banana *PAD*
Figure 2: A 2-layer syntactic GCN on top of a convolutional encoder. Loop connections are depicted

with dashed edges, syntactic ones with solid (dependents to heads) and dotted (heads to dependents)
edges. Gates and some labels are omitted for clarity. 30/43



Linguistics at Each Token



Syntax reflects long-distance dependencies.

e What city is the Taj Mahal in?
e Where is the Taj Mahal ()?

The need to produce in depends on the What/Where.
e CCG tags for is differ = dependency highlighted.
e Following CCG tags, the decoder can if in is needed.
e CCG tags are denser than words = better generalization.
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Syntax reflects long-distance dependencies.

e What city is the Taj Mahal in?
e Where is the Taj Mahal ()?

The need to produce in depends on the What/Where.
CCG tags for is differ = dependency highlighted.
Following CCG tags, the decoder can if in is needed.

CCG tags are denser than words = better generalization.

What(S[Wq]/(S[q]/NP))/N Clty the Ta_j Mahal in?
Wheres[wq]/(s[q]/Np) the TaJ Mahal?
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® Source word factors easy to incorporate:

® (Concatenate embeddings of the various factors.
e POS tags, morph. features, source dependency labels help en<+de and
en—ro (Sennrich and Haddow, 2016).

® Target word factors:
® |Interleave for morphology: (Tamchyna et al., 2017)

Src there are a million different kinds of pizza .
Baseline (BPE) existuji miliony druht piz@Q@ zy .
Interleave existovat milion druh pizza

® Interleave for syntax: (Nadejde et al., 2017)
Src BPE  Obama receives Net+ an+ yahu in the capital of USA
Tgt Obama receives Net+ an+ yahu in the

® Multiple decoders, each predicting own sequence.

car
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My students Dan Kondratyuk and Ronald Cardenas retried Nadejde et
al. (2017) with:

® sequence-to-sequence model,
® Transformer model.
Predicting target syntax using:
® a secondary decoder
® interleaving.
As tags, they used:

e correct CCG tags, e random tags, e a single dummy tag.
(Kondratyuk et al. Replacing Linguists with Dummies. PBML 2019.)
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Predicting Target Syntax (S2S)

Interleaved

Seq2seq Seq2seq

25F ! ! 7 25 M T T 1

20 [ n s 20 I 1
]

15¢ 1 8§15 1
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E

50 12 st ]

o R 0 a

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Training steps (millions) Training steps (millions)
—e— Baseline —#— CCG —e— Random —+— Same ‘ ‘ —e— Baseline —#— CCG —e— Random —+— Same
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Predicting Target Syntax (Transformer)

Transformer Transformer

30F T T 1 T
| I 25+ 1
320/ 122 1
_E 15 | ég 15| |
210/ | 210 1
= 5| 12 5| |
0 8 Or BT ]
6ﬁ4éémﬁﬂmﬁxﬁﬁ$$ 0246 810121416182022242628

Training steps (millions) Training steps (millions)

—e— Baseline —#— CCG —e— Random —+— Same ‘ ‘ —e— Baseline —#— CCG —e— Random —— Same
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Syntax in Word Embeddings chen et al. (2017b)

S X X, X5 X5 X;

Dep Tuples PR ‘
]
~§ CNN CNN
2 R s W
M L::L[::;J LKUTI{UL,
T

i 2o i

® CNN-derived embeddings of nodes’ syntactic neighbourhood

included: (parent, siblings).
® Two mechanisms:
® Concatenated to standard embeddings.
® Separate attention over these word-level annotiations
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Linguistics in Attention




Tree Coverage in Attention chen et al. (2017a)

) P . B
R N RN N S A SRCEDN

&

@'\

&

L

|

Tree coverage model:
e Attention coverage depends on source syntax.
e Without it (left), output is repeated.
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Dependency heads Output probabilities

i
argmax
|

— Tranformer Decoder

Self-attention
weights

Previous target
tokens

Transformer Encoder

Self-attention
head #1

Self-attention
head #8

-

Self-attention
head #8

Self-attention

head #1 Layer 1

e Pham et al. (2019) noticed that

attention head could be interpreted as

dependency parse.
® Add secondary objective to

head #1 to match source dependency

tree.
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e Czech-to-English translation (BLEU).
® Czech dependency parse from head #1 (UAS).

BLEU UAS

Dev Test | Dev  Test
Transformer Baseline 37.28 36.66 - -
Parse from layer 0 36.95 36.60 | 81.39 82.85
Parse from layer 1 90.17 90.78
Parse from layer 2 3850 37.87 | 91.31 91.18
Parse from layer 3 38.37 37.67 | 91.43 91.43
Parse from layer 4 37.86 37.60
Parse from layer 5 37.63 37.67 | 91.44 9146
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Dummy Dependency Tree

W &8
shot
AT

| shot an elephant in my pajamas  pajamas
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BLEU

Dev

Test

Precision

Dev

Test

Transformer Baseline

37.28

36.66

Dummy Parse from layer 0
Dummy Parse from layer 1
Dummy Parse from layer 2
Dummy Parse from layer 3
Dummy Parse from layer 4
Dummy Parse from layer 5

38.68

37.85
37.93
37.68
37.53

38.06
37.85
37.70
37.47
37.54

99.97

99.98
99.97
99.98
99.96

99.96

99.98
99.98
99.96
99.95

True Parse from layer 1

90.17

90.78
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® Transformer is a great replacement for RNN.

® Constant-time processing.

® (CNNs can be comparable, but Gehring et al. (2016) was kind of missed.)
e Explicit syntax can be useful.

® Many options how to include it.
® Some gains hard to reproduce.
® Dummy information

® Transformer
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