NPFL087 Statistical Machine Translation

Transformer and
Syntax in NMT

Ondrej Bojar

& April 16, 2020

Charles University @ 0 @
Faculty of Mathematics and Physics BY SA

Institute of Formal a d Appl el Liingpfsite unless otherwise stated

e Reminder: Seq2seq with Attention.
® Transformer Architecture.

® Focus on Self-Attention.
e Explicit Syntax in NMT.

® |n Network Structure.
® At Each Token.
® |n Attention.

Some images due to Jindfich Helcl and/or Jindfich Libovicky.

1/43

Reminder: Seq2seq with Attention

Inputs:

decoder state s,
encoder states h,; = [hT, h_J] Vi=1..T,
where h; = RNNg (h,_;,z;) =tanh(U h,_, + W E x; +b,)

Attention energies: ¢;; = v, tanh (W,s; 1 + U,h; + b,)
Attention distribution: a.. = _op(ey)
UYL expleyy,)

Tw
Context vector: ¢; = > .*, a;h;

3/43

Decoder state:

s; =tanh(Uys,_; + W Ey;_1 + Cc; + by)
Output projection:

t; =tanh (Uys; + W,Ey, 1 + Coc; +b,)

..context vector is mixed with the hidden state
Output distribution:

p(y; =k |s;y;-1,¢;) o exp (Wt,), + by

4/43

Transformer

Attention iS A" YOLI Need (Vaswani et al., 2017)

Add & Norm

Feed
Forward

Add & Norm

Add & Norm

Output
Probabilities

Feed
Forward

Multi-Head
Attention

Nx
Nx Add & Norm
Multi-Head Multi-Head
Attention Attention
A ’ A >
_l)
Positional A A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Multi-Head Attention

Scaled Dot-Product Attention

5/43

Transformer lllustrated:

® http://jalammar.github.io/illustrated-transformer/
(I am reusing the pictures.)

Transformer paper annotated with PyTorch code:
® http://nlp.seas.harvard.edu/2018/04/03/attention.html

e PyTorch by examples:
https://github.com/jcjohnson/pytorch-examples

Summary at Medium:
® https://medium.com/@adityathiruvengadam/
transformer-architecture-attention-is-all-you-need-aecc

6/43

http://jalammar.github.io/illustrated-transformer/
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://github.com/jcjohnson/pytorch-examples
https://medium.com/@adityathiruvengadam/transformer-architecture-attention-is-all-you-need-aeccd9f50d09
https://medium.com/@adityathiruvengadam/transformer-architecture-attention-is-all-you-need-aeccd9f50d09

Transformer = 6 Layers Enc 4+ 6 Dec

OUTPUT[I am a Student]

;

(- 3)
[ENCODER] [DECODER]
[) [)

[ENCODER] [DECODER]
4 4
[ENCODER] [DECODER]
4 4
[ENCODER] [DECODER]
[) [}

[ENCODER] [DECODER]
[) [)

[ENCODER] [DECODER]
_ 4 J

INPUT [je suis étudmnt]

7/43

Composition of One Layer

DECODER 1
' N\
Feed Forward
ENCODER A _ _J
1 2
{ ™\
(Feed Forward J Encoder-Decoder Attention
Y o J
{ = ™y
(Self-Attention J Self-Attention
o J

t t

8/43

Word Vectors in

Encoder

ENCODER A A A
{f” 1 1 1 “~\
Feed Forward j
t t 1
t t t
[Self-Attention j
P— f —
x+ [N x2 [N xs [ENTER
Je suis étudiant

9/43

FF Is Actually Position-Independent

ENCODER #2 kk

ENCODER #1

)

?

T

-

r+ (R
A
Feed Forward
Neural Network

r- [
A
Feed Forward
Neural Network

Self-Attention

3 /

t .
x: [24 I I
Thinking Machines

10/43

Positional Encoding

® Encode token position directly in the word vector:

POSITIONAL 1 1 084 [V 1 (XN 0.0002| -0.42 [
ENCODING

+

+ +
EMBEDDINGS x: [T x. [x; [T

INPUT Je suis étudiant

e Positional embedding can be random, or “frequency-like":

|

11/43

Self-Attention

® Sequences of arbitrary length n need to be processed.

® RNNs make the (time-unrolled) network as deep as n.
®

® ® ® ® ®
® ® ® ® - ®
® CNNs allow to trade kernel size k and depth for a target “receptive

field":
PSS ESSN SN
PESNLS T SN
AL BBBBBL A

01 b0

2, =0 embeddings X = (z4,...,zy) =0

Ty

12/43

® SANs (Self-Attentive Networks) can access in
constant time.

Operations Sequential Steps Memory

Recurrent O(n - d?) O(n) O(n-d)
Convolutional O(k - n - d?) O(1) O(n - d)
Self-attentive ~ O(n? - d) O(1) O(n?-d)

® Sequence length n, state dimensionality d, kernel size k.

® Assuming infinitely many GPU cores (or rather ALU),
operations can be run in parallel,
but may depend on each other, needing some Sequential Steps.

13/43

Self-Attention

® Goal: Aggregate arbitary-length input to fixed-size vector.
Allow data-driven, trainable aggregation.

14/43

Self-Attention

® Goal: Aggregate arbitary-length input to fixed-size vector.
Allow data-driven, trainable aggregation.

Given the sequence of inputs x4, ..., z,,:

Input Thinking Machines
. Embedding DT
® (Create three “views" of
them: queries, keys, Queries @[o[0T wa
values.
® Using trained matrices Keys [T [TT]
We WK WV,

Values vil T v [T

14/43

Match All Queries with All Keys

Input

Embedding
Queries
Keys
Values

Score

Thinking

x: [T
a [T
ki [T
vi O]

gie ki=112

Machines

x2 [T
a. [T
ke [T
v [T

q10k2 =96

15/43

Normalize Scores

Input
Embedding
Values
Score

Divide by 8 (d;.)

Softmax

Thinking

x T
vi [EE

g e ki=112

14

0.88

Machines

x. [
v. [T

Q1 » ko =96

12

0.12

16/43

Aggregate Values Accordingly

Input

Embedding
Values

Softmax
Softmax X Value

Sum

Thinking

x T
vi [EE

0.88

v [
2 [I1J

Machines

x. [
v. [T

0.12

z2]

17/43

Self-Attention as Matrix Calculation

X we Q

- - -
Q KT
v

) .) softmax(-) .) -

EEEE - - HH o
z
X wv v : -

18/43

Multi-Head Attention

ATTENTION HEAD #0

Thinking
Machines

Qo

Ko

mum

Vo

+H

ATTENTION HEAD #1

Q4

mmn

K1

mmn

V4

mER

19/43

Multi-Head Attention

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
A4
ATTENTION ATTENTION ATTENTION

HEAD #0 HEAD #1 HEAD #7

20/43

Self-Attention Summary

Thinking
Machines

21/43

Three uses of multi-head attention in Transformer
® Encoder-Decoder Attention:
® Q: previous decoder layers; K = V: outputs of encoder
= Decoder positions attend to all positions of the input.
® Encoder Self-Attention:
e Q = K = V: outputs of the previous layer of the encoder
= Encoder positions attend to all positions of previous layer.
® Decoder Self-Attention:
e Q = K = V: outputs of the previous decoder layer.
® Masking used to prevent depending on future outputs.
= Decoder attends to all its previous outputs.

22/43

Self-Attention at Enc Layer #5: 1 Head

Layer:| 5 #| Attention: | Input - Input %]

The_ The_
animal_ animal_
didn_ didn_
t_ i
CroSSs_ Cross_
the_ the_
street_ street_
because_) because_
it \ it_
was_ was_
too_ too_
tire tire

d d

23/43

Self-Attention at Enc Layer #5: 2 Heads

Layer:| 5 #| Attention: | Input - Input

The_
animal_

The_
animal_
didn_

24/43

Self-Attention at Enc Layer #5: 8 Heads

Layer:| 5 #| Attention: | Input - Input %]

The_
animal_
didn_

|
Cross_
the_
street_

because_

was_
too_
tire

25 /43

Explicit Linguistic

Information in NMT

e Construct network structure along linguistic structure.

~ What we discussed in Syntax in SMT.
® Tree-LSTMs.
® Graph-Convolutional Networks.
... Source information only.
® Enrich information at each token.

~ What we discussed in Morphology in SMT.
® Factors on the source side.
® Multi-Task on the target side.

® |mprove attention using linguistic annotation.

® Attention calculation respecting syntax.
® Attention forced to reflect syntax in multi-task.

26/43

Linguistics in NN Structure

Memory comes from:

the single predecessor

children
Y1
Y2 4 Y3
z1
v Y2 Y3 Ya E:j/v va 3 v6
: ') toom A)
L > +——] L1 17 [
' ¥ 5 I
1 2 x3 T4 T4 x5 T6
plain LSTM Tree-LSTM

e Two flavors:

® Dependency trees: Sum over all children.
® Constituency trees: Up to N children, respecting order.

27/43

1l

= I

N gl

RS i i g

l=|p= |

g /u T T
Laps |

s B
e T]
= —
/YM 1= |

Tree-GRU Encoder:

e Constituency syntax of the tree provides additional states.

28/43

Bidirectional tree encoder.

® Can be seen as many RNNs running from each word up to the root
and back to the word.

29/43

Graph-Convolutional Networks (Bastings et al., 2017)

h [)
é hD ()
he [)

CNN

PAD The monkey eats a banana *PAD*
Figure 2: A 2-layer syntactic GCN on top of a convolutional encoder. Loop connections are depicted

with dashed edges, syntactic ones with solid (dependents to heads) and dotted (heads to dependents)
edges. Gates and some labels are omitted for clarity. 30/43

Linguistics at Each Token

Syntax reflects long-distance dependencies.

e What city is the Taj Mahal in?
e Where is the Taj Mahal ()?

The need to produce in depends on the What/Where.
e CCG tags for is differ = dependency highlighted.
e Following CCG tags, the decoder can if in is needed.
e CCG tags are denser than words = better generalization.

31/43

Syntax reflects long-distance dependencies.

e What city is the Taj Mahal in?
e Where is the Taj Mahal ()?

The need to produce in depends on the What/Where.
CCG tags for is differ = dependency highlighted.
Following CCG tags, the decoder can if in is needed.

CCG tags are denser than words = better generalization.

What(S[Wq]/(S[q]/NP))/N Clty the Ta_j Mahal in?
Wheres[wq]/(s[q]/Np) the TaJ Mahal?

31/43

® Source word factors easy to incorporate:

® (Concatenate embeddings of the various factors.
e POS tags, morph. features, source dependency labels help en<+de and
en—ro (Sennrich and Haddow, 2016).

® Target word factors:
® |Interleave for morphology: (Tamchyna et al., 2017)

Src there are a million different kinds of pizza .
Baseline (BPE) existuji miliony druht piz@Q@ zy .
Interleave existovat milion druh pizza

® Interleave for syntax: (Nadejde et al., 2017)
Src BPE Obama receives Net+ an+ yahu in the capital of USA
Tgt Obama receives Net+ an+ yahu in the

® Multiple decoders, each predicting own sequence.

car

32/43

My students Dan Kondratyuk and Ronald Cardenas retried Nadejde et
al. (2017) with:

® sequence-to-sequence model,
® Transformer model.
Predicting target syntax using:
® a secondary decoder
® interleaving.
As tags, they used:

e correct CCG tags, e random tags, e a single dummy tag.
(Kondratyuk et al. Replacing Linguists with Dummies. PBML 2019.)

33/43

Predicting Target Syntax (S2S)

Interleaved

Seq2seq Seq2seq

25F ! ! 7 25 M T T 1

20 [n s 20 I 1
]

15¢ 1 8§15 1

10+ } .Dé 10 | 8
E

50 12 st]

o R 0 a

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Training steps (millions) Training steps (millions)
—e— Baseline —#— CCG —e— Random —+— Same ‘ ‘ —e— Baseline —#— CCG —e— Random —+— Same

34/43

Predicting Target Syntax (Transformer)

Transformer Transformer

30F T T 1 T
| I 25+ 1
320/ 122 1
_E 15 | ég 15| |
210/ | 210 1
= 5| 12 5| |
0 8 Or BT]
6ﬁ4éémﬁﬂmﬁxﬁﬁ$$ 0246 810121416182022242628

Training steps (millions) Training steps (millions)

—e— Baseline —#— CCG —e— Random —+— Same ‘ ‘ —e— Baseline —#— CCG —e— Random —— Same

35/43

Syntax in Word Embeddings chen et al. (2017b)

S X X, X5 X5 X;

Dep Tuples PR ‘
]
~§ CNN CNN
2 R s W
M L::L[::;J LKUTI{UL,
T

i 2o i

® CNN-derived embeddings of nodes’ syntactic neighbourhood

included: (parent, siblings).
® Two mechanisms:
® Concatenated to standard embeddings.
® Separate attention over these word-level annotiations

36/43

Linguistics in Attention

Tree Coverage in Attention chen et al. (2017a)

) P . B
R N RN N S A SRCEDN

&

@'\

&

L

|

Tree coverage model:
e Attention coverage depends on source syntax.
e Without it (left), output is repeated.

37/43

Dependency heads Output probabilities

i
argmax
|

— Tranformer Decoder

Self-attention
weights

Previous target
tokens

Transformer Encoder

Self-attention
head #1

Self-attention
head #8

-

Self-attention
head #8

Self-attention

head #1 Layer 1

e Pham et al. (2019) noticed that

attention head could be interpreted as

dependency parse.
® Add secondary objective to

head #1 to match source dependency

tree.

38/43

e Czech-to-English translation (BLEU).
® Czech dependency parse from head #1 (UAS).

BLEU UAS

Dev Test | Dev Test
Transformer Baseline 37.28 36.66 - -
Parse from layer 0 36.95 36.60 | 81.39 82.85
Parse from layer 1 90.17 90.78
Parse from layer 2 3850 37.87 | 91.31 91.18
Parse from layer 3 38.37 37.67 | 91.43 91.43
Parse from layer 4 37.86 37.60
Parse from layer 5 37.63 37.67 | 91.44 9146

39/43

Dummy Dependency Tree

W &8
shot
AT

| shot an elephant in my pajamas pajamas

40/43

BLEU

Dev

Test

Precision

Dev

Test

Transformer Baseline

37.28

36.66

Dummy Parse from layer 0
Dummy Parse from layer 1
Dummy Parse from layer 2
Dummy Parse from layer 3
Dummy Parse from layer 4
Dummy Parse from layer 5

38.68

37.85
37.93
37.68
37.53

38.06
37.85
37.70
37.47
37.54

99.97

99.98
99.97
99.98
99.96

99.96

99.98
99.98
99.96
99.95

True Parse from layer 1

90.17

90.78

41/43

® Transformer is a great replacement for RNN.

® Constant-time processing.

® (CNNs can be comparable, but Gehring et al. (2016) was kind of missed.)
e Explicit syntax can be useful.

® Many options how to include it.
® Some gains hard to reproduce.
® Dummy information

® Transformer

42/43

Joost Bastings, lvan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Simaan. 2017. Graph convolutional encoders
for syntax-aware neural machine translation. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 1947-1957. Association for Computational Linguistics.

Huadong Chen, Shujian Huang, David Chiang, and Jiajun Chen. 2017a. Improved Neural Machine Translation with a
Syntax-Aware Encoder and Decoder. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1936-1945, Vancouver, Canada, July. Association for Computational
Linguistics.

Kehai Chen, Rui Wang, Masao Utiyama, Lemao Liu, Akihiro Tamura, Eiichiro Sumita, and Tiejun Zhao. 2017b. Neural
Machine Translation with Source Dependency Representation. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 2846—2852, Copenhagen, Denmark, September. Association for
Computational Linguistics.

Jonas Gehring, Michael Auli, David Grangier, and Yann N. Dauphin. 2016. A convolutional encoder model for neural
machine translation. CoRR, abs/1611.02344.

Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn, and Alexandra
Birch. 2017. Predicting target language ccg supertags improves neural machine translation. In Proceedings of the
Second Conference on Machine Translation, Volume 1: Research Paper, pages 68-79, Copenhagen, Denmark,
September. Association for Computational Linguistics.

Thuong-Hai Pham, Dominik Machacek, and Ondfej Bojar. 2019. Promoting the knowledge of source syntax in
transformer nmt is not needed. Computacién y Sistemas, 23(3):923-934.

Rico Sennrich and Barry Haddow. 2016. Linguistic input features improve neural machine translation. In Proceedings
of the First Conference on Machine Translation, pages 83-91, Berlin, Germany, August. Association for Computational
Linguistics. 43/43

	Transformer
	Self-Attention
	Explicit Linguistic Information in NMT
	Linguistics in NN Structure
	Linguistics at Each Token
	Linguistics in Attention

