Basic Sequence-to-Sequence (with Attention)

Ondřej Bojar

March 12, 2020
Outline

• Basic NN building blocks for NMT.
• Processing Text.
• Neural Language Model.
• Vanilla Sequence-to-Sequence.
• Attention.

Many of the slides based on RANLP 2017 tutorial (Helcl and Bojar, 2017).
Encoder-Decoder Architecture

\[f = (La, \text{ croissance, économique, s'est, ralentie, ces, dernières, années, .}) \]

\[e = (\text{Economic, growth, has, slowed, down, in, recent, years, .}) \]

Basic NN Building Blocks
One Fully Connected Layer

- One fully-connected layer converts an input (column) vector x to an output (column) vector h:

$$h = f(Wx + b), \tag{1}$$

- W is a weight matrix of input columns and output rows,
- b a bias vector of length of output,
- $f(\cdot)$ is a non-linearity applied usually elementwise.
One Layer $\tanh(Wx + b)$, 2D→2D

Skew: W

Transpose: b

Non-lin.: \tanh

Feed-Forward Neural Network

\[
\begin{align*}
 x & \downarrow \quad h_1 = f(W_1 x + b_1) \\
 h_1 & \uparrow \quad h_2 = f(W_2 h_1 + b_2) \\
 \vdots & \uparrow \quad h_n = f(W_n h_{n-1} + b_n) \\
 h_n & \uparrow \quad o = g(W_o h_n + b_o) \\
 E & = e(o, t) \quad \rightarrow \quad \frac{\partial E}{\partial W_o} = \frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial W_o}
\end{align*}
\]

blue: Training item (input \(x \), output \(t \)), red: Trainable parameters (\(W_1, b_1, \ldots \)).
Four Layers, Disentangling Spirals

Variable-Length Inputs and Outputs

Variable-length input can be handled by recurrent NNs:

- Processing one input symbol at a time.
 - Initial state $h_0 = (0)$ (or some sentence representation).
 - The same (trained) transformation A used every time.

$$h_t = A(h_{t-1}, x_t) \quad (2)$$

- Unroll in time (up to a fixed length limit).

\[\begin{array}{c}
\text{h}_0 \\
\downarrow \quad \downarrow \quad \downarrow \\
A \\
\downarrow \\
x_0
\end{array} \quad = \quad \begin{array}{c}
\text{h}_0 \\
\downarrow \quad \downarrow \\
A \\
\downarrow \\
x_0
\end{array} \quad \begin{array}{c}
\text{h}_1 \\
\downarrow \quad \downarrow \\
A \\
\downarrow \\
x_1
\end{array} \quad \begin{array}{c}
\text{h}_2 \\
\downarrow \\
A \\
\downarrow \\
x_2
\end{array} \quad \cdots \quad \begin{array}{c}
\text{h}_t \\
\downarrow \\
A \\
\downarrow \\
x_t
\end{array} \]
Vanilla RNN

\[h_t = \tanh(W[h_{t-1}; x_t] + b) \]

- Vanishing gradient problem.
- Non-linear transformation always applied.
 \[[h_{t-1}; x_t] \] is concatenation of \(h_{t-1} \) and \(x_t \)

\[\Rightarrow \] Type theory: \(h_t \) and \(h_{t-1} \) live in different vector spaces.
LSTM and GRU Cells for RNN

- LSTM, Long Short-Term Memory Cells (Hochreiter and Schmidhuber, 1997).
- GRU, Gated Recurrent Unit Cells (Chung et al., 2014):

\[
\begin{align*}
 z_t &= \sigma (W_z[h_{t-1}; x_t] + b_z) \\
 r_t &= \sigma (W_r[h_{t-1}; x_t] + b_r) \\
 \tilde{h}_t &= \tanh (W[r_t \odot h_{t-1}; x_t]) \\
 h_t &= (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t
\end{align*}
\]

- Gates control:
 - what to use from input \(x_t\) (GRU: everything),
 - what to use from hidden state \(h_{t-1}\) (reset gate \(r_t\)),
 - what to put into output (update gate \(z_t\))
- Linear “information highway” preserved.
 \(\Rightarrow\) All states \(h_t\) belong to the same vector space.
Processing Text
From Categorical Words to Numbers

• Map each word to a vector of 0s and 1s (“1-hot repr.”):
 \[\text{cat} \mapsto (0, 0, \ldots, 0, 1, 0, \ldots, 0) \]

• Sentence is then a matrix:

\[
\begin{array}{cccccccc}
& \text{the} & \text{cat} & \text{is} & \text{on} & \text{the} & \text{mat} \\
\uparrow & a & 0 & 0 & 0 & 0 & 0 & 0 \\
& \text{about} & 0 & 0 & 0 & 0 & 0 & 0 \\
& \ldots \\
& \text{cat} & 0 & 1 & 0 & 0 & 0 & 0 \\
\text{Vocabulary size:} & \ldots \\
\text{1.3M English} & \ldots \\
\text{2.2M Czech} & \text{is} & 0 & 0 & 1 & 0 & 0 & 0 \\
& \ldots \\
& \text{on} & 0 & 0 & 0 & 1 & 0 & 0 \\
& \ldots \\
& \text{the} & 1 & 0 & 0 & 0 & 1 & 0 \\
& \ldots \\
\downarrow & \text{zebra} & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Sub-Words to Reduce Vocabulary Size

- SMT struggles with productive morphology (>1M wordforms).
 nejneobhodpodárovávatelnějšími, Donaudampfschifffahrtsgesellschaftskapitän
- NMT can handle only 30–80k dictionaries.

⇒ Resort to sub-word units.

<table>
<thead>
<tr>
<th></th>
<th>český politik svezly migranty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllables</td>
<td>český po li tik sve zl mig ran ty</td>
</tr>
<tr>
<td>Morphemes</td>
<td>český politik s vez l migrant y</td>
</tr>
<tr>
<td>Char Pairs</td>
<td>český po li ti k sve zl mi gr an ty</td>
</tr>
<tr>
<td>Chars</td>
<td>český politik sve zl mig ran ty</td>
</tr>
<tr>
<td>BPE 30k</td>
<td>český politik vez migrant ty</td>
</tr>
</tbody>
</table>

BPE (Byte-Pair Encoding, (Sennrich et al., 2016)) or Google’s wordpieces (Wu et al., 2016) and Tensor2Tensor’s SubwordTextEncoder use n most common substrings (incl. frequent words).
Word (Actually Token) Embeddings

- Idea: Map each token to a dense vector in continuous space.
- Result: 300–2000 dimensions instead of 1–2M.
 - The dimensions have no clear interpretation.
- The “embedding” is the mapping.
 - Technically, the first layer of NNs for NLP is the matrix that maps 1-hot input to the first layer.

- Embeddings are trained for each particular task.
 - Sentence classification (sentiment analysis, etc.)
 - Neural language modelling.
 - The famous word2vec (Mikolov et al., 2013):
 - CBOW: Predict the word from its four neighbours.
 - Skip-gram: Predict likely neighbours given the word.
 - End-to-end neural MT.
Output: Softmax over Vocabulary

Outputs of the RNN are:

1. Projected (scaled up) to the size of the vocabulary V,
2. Normalized with softmax.

⇒ Distribution over all possible target tokens.

$$l(w)_t = W_l h_t + b_l$$

- $l(w)_t =$ logits/energies for word w in time t
- W_l: weight matrix (hidden state \times voc. size)
 ... this is big.

$$p(w)_t = \frac{\exp l(w)_t}{\sum_{w' \in V} \exp l(w')_t}$$

- Softmax normalization: $\frac{\exp \cdot}{\sum \exp \cdot}$
 ... this is costly.

- Tricks what to do with it
 (negative sampling, hierarchical softmax)
 – not frequently used
Neural Language Modeling
RNN Language Model

• Train RNN as a **classifier for next words** (unlimited history):

```
<s> w1 w2 w3 w4
p(w1) p(w2) p(w3) p(w4)
```

• Can be used:
 • To estimate sentence probability / perplexity.
 • To sample from the distribution:

```
<s> ~w1 ~w2 ~w3 ~w4 ~w5
p(w1) p(w2) p(w3) p(w4) p(w5)
```
Two Views on RNN LM

- RNN is a for loop / functional map over sequential data
- all outputs are conditional distributions
 \[\rightarrow \text{probabilistic distribution over sequences of words} \]

\[
P(w_1, \ldots, w_n) = \prod_{i=1}^{n} P(w_i \mid w_{i-1}, \ldots, w_1)
\]
Bidirectional RNN for Input

- Read the input sentence from both sides.
- Concatenate hidden states from each direction.
- Every h_i stores information about the whole sentence.
Bidirectional RNN for Input

- read the input sentence from both sides
Bidirectional RNN for Input

- read the input sentence from both sides
- concatenate hidden states from each direction
- every h_i stores information about the whole sentence
Encoder-Decoder Architecture
Encoder-Decoder Architecture

- exploits the conditional LM scheme

Encoder-Decoder Architecture

• exploits the conditional LM scheme
• two networks

Encoder-Decoder Architecture

- exploits the conditional LM scheme
- two networks
 1. a network processing the input sentence into a single vector representation (encoder)

Encoder-Decoder Architecture

- exploits the conditional LM scheme
- two networks
 1. a network processing the input sentence into a single vector representation (encoder)
 2. a neural language model initialized with the output of the encoder (decoder)

Encoder-Decoder Model – Image

<x1> x2 x3 x4
~y1 ~y2 ~y3 ~y4 ~y5

source language input + target language LM
Encoder-Decoder Model – Image

source language input + target language LM
state = np.zeros(sent_repr_size)
for w in input_words:
 input_embedding = source_embeddings[w]
 state, _ = enc_cell(state, input_embedding)

last_w = "<s>
while last_w != "</s>":
 last_w_embedding = target_embeddings[last_w]
 state, dec_output = dec_cell(state, last_w_embedding)
 logits = output_projection(dec_output)
 last_w = np.argmax(logits)
 yield last_w
Encoder-Decoder Model – Formal Notation

Data
input tokens (source language) \(x = (x_1, \ldots, x_{T_x}) \)
output tokens (target language) \(y = (y_1, \ldots, y_{T_y}) \)
Encoder-Decoder Model – Formal Notation

Data
input tokens (source language) \(\mathbf{x} = (x_1, \ldots, x_{T_x}) \)
output tokens (target language) \(\mathbf{y} = (y_1, \ldots, y_{T_y}) \)

Encoder
initial state \(h_0 \equiv \mathbf{0} \)
j-th state \(h_j = \text{RNN}_{\text{enc}}(h_{j-1}, x_j) = \tanh(U_e h_{j-1} + W_e E_e x_j + b_e) \)
final state \(h_{T_x} \)
Data
input tokens (source language) \(\mathbf{x} = (x_1, \ldots, x_{T_x}) \)
output tokens (target language) \(\mathbf{y} = (y_1, \ldots, y_{T_y}) \)

Encoder
initial state \(h_0 \equiv \mathbf{0} \)
\(j \)-th state \(h_j = \text{RNN}_{\text{enc}}(h_{j-1}, x_j) = \tanh(U_e h_{j-1} + W_e E_e x_j + b_e) \)
final state \(h_{T_x} \)

Decoder
initial state \(s_0 = h_{T_x} \)
\(i \)-th decoder state \(s_i = \text{RNN}_{\text{dec}}(s_{i-1}, \hat{y}_{i-1}) = \tanh(U_d s_{i-1} + W_d E_d \hat{y}_{i-1} + b_d) \)
\(i \)-th word score \(t_i = \tanh(U_o s_i + W_o E_d \hat{y}_{i-1} + b_o) \) (“output projection”)
output \(\hat{y}_i = \arg\max V_o t_i \)
For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_j}$ (softmax function)
Encoder-Decoder: Training Objective

For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_j}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1 [y_i]$
Encoder-Decoder: Training Objective

For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_j}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1[y_i]

Cross entropy \approx distance of \hat{p} and p:

$$\mathcal{L} = H(\hat{p}, p) = \mathbb{E}_p (-\log \hat{p})$$
Encoder-Decoder: Training Objective

For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_j}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1[y_i]$

Cross entropy \approx distance of \hat{p} and p:

$$\mathcal{L} = H(\hat{p}, p) = E_p (-\log \hat{p}) = - \sum_{v \in V} p(v) \log \hat{p}(v) = - \log \hat{p}(y_i)$$

See https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
Encoder-Decoder: Training Objective

For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_j}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1 [y_i]$

Cross entropy \approx distance of \hat{p} and p:

$$
\mathcal{L} = H(\hat{p}, p) = \mathbb{E}_p (-\log \hat{p}) = - \sum_{v \in V} p(v) \log \hat{p}(v) = - \log \hat{p}(y_i)
$$

...computing $\frac{\partial \mathcal{L}}{\partial t_i}$ is quite simple

See https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_j}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1 [y_i]$

Cross entropy \approx distance of \hat{p} and p:

$$\mathcal{L} = H(\hat{p}, p) = \mathbf{E}_p (-\log \hat{p}) = - \sum_{v \in V} p(v) \log \hat{p}(v) = - \log \hat{p}(y_i)$$

...computing $\frac{\partial \mathcal{L}}{\partial t_i}$ is quite simple

See https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

...but we expect the model to produce the exact word at the exact position!
Implementation: Runtime vs. Training

runtime: \(\hat{y}_j \) (decoded) \(\times \) training: \(y_j \) (ground truth)

\[
\begin{align*}
\text{x1} \quad \text{x2} \quad \text{x3} \quad \text{x4} \\
\text{~y1} \quad \text{~y2} \quad \text{~y3} \quad \text{~y4} \quad \text{~y5} \\
\text{y1} \quad \text{y2} \quad \text{y3} \quad \text{y4} \\
\text{loss}
\end{align*}
\]
Encoder-Decoder Architecture

Decoding
Greedy Decoding

- In each step, the model computes a distribution over the vocabulary \(V \) (given source \(x \), the previous outputs \(h \), and the model parameters \(\theta \)).

\[
p(y|h) = g(x, h, \theta)
\]
In each step, the model computes a distribution over the vocabulary V (given source x, the previous outputs h, and the model parameters θ):

$$p(y|h) = g(x, h, \theta)$$

In greedy decoding:

$$y^* = \arg\max_{y \in V} p(y|h)$$
Greedy Decoding

• In each step, the model computes a distribution over the vocabulary V (given source x, the previous outputs h, and the model parameters θ).

$$p(y|h) = g(x, h, \theta)$$

• In greedy decoding:

$$y^* = \arg\max_{y \in V} p(y|h)$$

• Repeat, until an end-of-sentence symbol ($\langle /s \rangle$) is decoded.
• **Pros:**
 • Fast and memory-efficient
 • Gives reasonable results

• **Cons:**
 • We are interested in the most probable sentence:

\[(y^*)_{i=0}^N = \underset{(y)_{i=0}^N}{\text{argmax}} \, p(y_0, \ldots, y_N|h) \]

• Other methods: better results for the cost of a slow-down.
Beam Search

Instead of taking the \texttt{argmax} in every step, keep a list (or \texttt{beam}) of k-best scoring hypotheses.
Beam Search

- Instead of taking the arg max in every step, keep a list (or beam) of k-best scoring hypotheses.
- Hypothesis = partially decoded sentence \rightarrow score
Beam Search

• Instead of taking the \texttt{arg max} in every step, keep a list (or \texttt{beam}) of \(k\)-best scoring hypotheses.

• Hypothesis = partially decoded sentence \(\rightarrow\) score

• Hypothesis score \(\psi_t = (y_1, y_2 \ldots, y_t)\) is the probability of the decoded sentence prefix up to \(t\)-th word.

\[
p(y_1, \ldots, y_t | h) = p(y_1 | h) \cdot \ldots \cdot p(y_t | y_1, \ldots, y_{t-1} | h)
\]
Beam Search

• Instead of taking the argmax in every step, keep a list (or beam) of k-best scoring hypotheses.
• Hypothesis = partially decoded sentence \rightarrow score
• Hypothesis score $\psi_t = (y_1, y_2, \ldots, y_t)$ is the probability of the decoded sentence prefix up to t-th word.

$$p(y_1, \ldots, y_t | h) = p(y_1 | h) \cdot \cdots \cdot p(y_t | y_1, \ldots, y_{t-1} | h)$$

• Rule to compute the score of an extended hypothesis ψ_t:

$$p(\psi_t, y_{t+1} | h) = p(\psi_t | h) \cdot p(y_{t+1} | h)$$
Beam Search

- Instead of taking the argmax in every step, keep a list (or beam) of k-best scoring hypotheses.
- Hypothesis = partially decoded sentence \rightarrow score
- Hypothesis score $\psi_t = (y_1, y_2 \ldots, y_t)$ is the probability of the decoded sentence prefix up to t-th word.

$$p(y_1, \ldots, y_t|h) = p(y_1|h) \cdot \ldots \cdot p(y_t|y_1, \ldots, y_{t-1}|h)$$

- Rule to compute the score of an extended hypothesis ψ_t:

$$p(\psi_t, y_{t+1}|h) = p(\psi_t|h) \cdot p(y_{t+1}|h)$$

- Prefers shorter hypotheses \rightarrow normalization necessary.
1. Begin with a single empty hypothesis in the beam.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
 2.3 Put the best k hypotheses in the new beam.
 2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we move it to the list of finished hypotheses.
3. Finish (1) at the final time step or (2) all k-best hypotheses end with $\text{}</s>$.
4. Sort the hypotheses by their score and output the best one.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
3. Finish (1) at the final time step or (2) all k-best hypotheses end.
4. Sort the hypotheses by their score and output the best one.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.

2. In each time step:

 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).

 2.2 Sort the candidate hypotheses by their score.

3. Finish (1) at the final time step or (2) all k-best hypotheses end with <s>.

4. Sort the hypotheses by their score and output the best one.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
 2.3 Put the best k hypotheses in the new beam.
3. Finish (1) at the final time step or (2) all k-best hypotheses end with end.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.

2. In each time step:

 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).

 2.2 Sort the candidate hypotheses by their score.

 2.3 Put the best k hypotheses in the new beam.

 2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all k-best hypotheses end.

4. Sort the hypotheses by their score and output the best one.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.

2. In each time step:

 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).

 2.2 Sort the candidate hypotheses by their score.

 2.3 Put the best k hypotheses in the new beam.

 2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all k-best hypotheses end with $</s>$.
1. Begin with a single empty hypothesis in the beam.

2. In each time step:

 2.1 Extend all hypotheses in the beam by \(k \) most probable words (we call these candidate hypotheses).

 2.2 Sort the candidate hypotheses by their score.

 2.3 Put the best \(k \) hypotheses in the new beam.

 2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all \(k \)-best hypotheses end with \(</s>\).

4. Sort the hypotheses by their score and output the best one.
Attentive Sequence-to-Sequence Learning
Main Idea

Vanilla sequence-to-sequence was degrading with sentence length.

Goal of attention:
- Do not force the network to catch long-distance dependencies.
- Use decoder state only for:
 - target sentence dependencies (≈LM) and
 - a as query for the source word sentence
Inspiration: Neural Turing Machine

- general architecture for learning algorithmic tasks, finite imitation of Turing Machine

![Diagram of Neural Turing Machine](image)
Inspiration: Neural Turing Machine

- general architecture for learning algorithmic tasks, finite imitation of Turing Machine
- needs to address memory somehow – either by position or by content
Inspiration: Neural Turing Machine

- general architecture for learning algorithmic tasks, finite imitation of Turing Machine
- needs to address memory somehow – either by position or by content

- in fact does not work well
 - it hardly manages simple algorithmic tasks
Inspiration: Neural Turing Machine

• general architecture for learning algorithmic tasks, finite imitation of Turing Machine
• needs to address memory somehow – either by position or by content

• in fact does not work well
 – it hardly manages simple algorithmic tasks
• content-based addressing \rightarrow attention
Attentive Sequence-to-Sequence Learning

Attention Mechanism
Attention Mechanism

\[
\begin{align*}
&\langle s \rangle \\
&\rightarrow h_0 \\
&\rightarrow h_1 \\
&\rightarrow h_2 \\
&\rightarrow h_3 \\
&\rightarrow h_4 \\
&\quad \vdots \\
&\rightarrow s_{i-1} \\
&\rightarrow s_i \\
&\rightarrow s_{i+1} \\
&\rightarrow \sim y_i \\
&\rightarrow \sim y_{i+1}
\end{align*}
\]
Attention Mechanism in Equations (1)

Inputs:
- decoder state s_i
- encoder states $h_j = [\overrightarrow{h}_j; \overleftarrow{h}_j] \quad \forall i = 1 \ldots T_x$

Attention energies:

$$e_{ij} = v_a^\top \tanh (W_a s_{i-1} + U_a h_j + b_a)$$

Attention distribution:

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

Context vector:

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$
Attention Mechanism in Equations (2)

Decoder state:

\[s_i = \tanh(U_d s_{i-1} + W_d E_d \hat{y}_{i-1} + C c_i + b_d) \]

Output projection:

\[t_i = \tanh(U_o s_i + W_o E_d \hat{y}_{i-1} + C_o c_i + b_o) \]

...context vector is mixed with the hidden state

Output distribution:

\[p(y_i = k \mid s_i, y_{i-1}, c_i) \propto \exp(W_o t_i)_k + b_k \]
Attention Visualization

The agreement on the European Economic Area was signed in August 1992.

It should be noted that the marine environment is the least known of environments.
Attentive Sequence-to-Sequence Learning

Attention vs. Alignment
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:
Differences between attention model and word alignment used for phrase table generation:

Attention (NMT) Alignment (SMT)
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

Attention (NMT)
Probabilistic

Alignment (SMT)
Discrete
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

Attention (NMT)
Probabilistic
Declarative

Alignment (SMT)
Discrete
Imperative
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

<table>
<thead>
<tr>
<th>Attention (NMT)</th>
<th>Alignment (SMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic</td>
<td>Discrete</td>
</tr>
<tr>
<td>Declarative</td>
<td>Imperative</td>
</tr>
<tr>
<td>LM generates</td>
<td>LM discriminates</td>
</tr>
</tbody>
</table>
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

<table>
<thead>
<tr>
<th>Attention (NMT)</th>
<th>Alignment (SMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic</td>
<td>Discrete</td>
</tr>
<tr>
<td>Declarative</td>
<td>Imperative</td>
</tr>
<tr>
<td>LM generates</td>
<td>LM discriminates</td>
</tr>
<tr>
<td>Learnt with translation</td>
<td>Prerequisite</td>
</tr>
</tbody>
</table>
Attention Off by One

The relationship between Obama and Netanyahu has been stretched for years.

- Attention can appear on the neighbouring token.

• To benefit from PBMT, append its output to NMT input.
• Standard attentional model will learns to follow both.

Attention over CNN for image classification:

- A woman is throwing a **frisbee** in a park.
- A **dog** is standing on a hardwood floor.
- A **stop** sign is on a road with a mountain in the background.
- A little **girl** sitting on a bed with a teddy bear.
- A group of **people** sitting on a boat in the water.
- A giraffe standing in a forest with **trees** in the background.

Encoder-Decoder vs. Attentive Models
Sutskever+ (2014) × Bahdanau+ (2014)

Two key papers on NMT in 2014:
- Bahdanau et al. (2015) Attention model,
- Sutskever et al. (2014) Seq2seq impressive empirical results:
 - Made researchers believe NMT is the way to go.
 - (Used reversed input.)

Evaluation on WMT14 EN → FR test set:

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU score</th>
</tr>
</thead>
<tbody>
<tr>
<td>vanilla SMT</td>
<td>33.0</td>
</tr>
<tr>
<td>tuned SMT</td>
<td>37.0</td>
</tr>
<tr>
<td>Sutskever et al.: reversed</td>
<td>30.6</td>
</tr>
<tr>
<td>""-": ensemble + beam search</td>
<td>34.8</td>
</tr>
<tr>
<td>""-": vanilla SMT rescoring</td>
<td>36.5</td>
</tr>
<tr>
<td>Bahdanau’s attention</td>
<td>28.5</td>
</tr>
</tbody>
</table>
Two key papers on NMT in 2014:

- Bahdanau et al. (2015) Attention model,
- Sutskever et al. (2014) Seq2seq impressive empirical results:
 - Made researchers believe NMT is the way to go.
 - (Used reversed input.)

Evaluation on WMT14 EN → FR test set:

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU score</th>
</tr>
</thead>
<tbody>
<tr>
<td>vanilla SMT</td>
<td>33.0</td>
</tr>
<tr>
<td>tuned SMT</td>
<td>37.0</td>
</tr>
<tr>
<td>Sutskever et al.: reversed</td>
<td>30.6</td>
</tr>
<tr>
<td>−”−: ensemble + beam search</td>
<td>34.8</td>
</tr>
<tr>
<td>−”−: vanilla SMT rescoring</td>
<td>36.5</td>
</tr>
<tr>
<td>Bahdanau’s attention</td>
<td>28.5</td>
</tr>
</tbody>
</table>

Why worse?
Sutskever et al. (2014) × Bahdanau et al. (2014)

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th>Sutskever et al.</th>
<th>160k enc, 80k dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder</td>
<td>4× LSTM, 1,000 units</td>
<td>4× LSTM, 1,000 units</td>
</tr>
<tr>
<td>Decoder</td>
<td>1,000 dimensions</td>
<td>1,000 dimensions</td>
</tr>
<tr>
<td>Word Embeddings</td>
<td>7.5 epochs</td>
<td>620 dimensions</td>
</tr>
<tr>
<td>Training Time</td>
<td>5 epochs</td>
<td>7.5 epochs</td>
</tr>
</tbody>
</table>

Comparison with Bahdanau's model size:

<table>
<thead>
<tr>
<th>Method</th>
<th>BLEU Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder-Decoder</td>
<td>13.9</td>
</tr>
<tr>
<td>Attention Model</td>
<td>28.5</td>
</tr>
</tbody>
</table>

Method

- *Sutskever et al.*
 - Vocabulary: 160k enc, 80k dec
 - Encoder: 4× LSTM, 1,000 units
 - Decoder: 4× LSTM, 1,000 units
 - Word Embeddings: 1,000 dimensions
 - Training Time: 7.5 epochs

- *Bahdanau et al.*
 - Vocabulary: 30k both
 - Encoder: bidi GRU, 2,000 units
 - Decoder: GRU, 1,000 units
 - Word Embeddings: 620 dimensions
 - Training Time: 5 epochs
Sutskever et al. Bahdanau et al.

<table>
<thead>
<tr>
<th>vocabulary</th>
<th>160k enc, 80k dec</th>
<th>30k both</th>
</tr>
</thead>
<tbody>
<tr>
<td>encoder</td>
<td>$4 \times$ LSTM, 1,000 units</td>
<td>bidi GRU, 2,000</td>
</tr>
<tr>
<td>decoder</td>
<td>$4 \times$ LSTM, 1,000 units</td>
<td>GRU, 1,000 units</td>
</tr>
<tr>
<td>word embeddings</td>
<td>1,000 dimensions</td>
<td>620 dimensions</td>
</tr>
<tr>
<td>training time</td>
<td>7.5 epochs</td>
<td>5 epochs</td>
</tr>
</tbody>
</table>

Comparison with Bahdanau’s model size:

<table>
<thead>
<tr>
<th>method</th>
<th>BLEU score</th>
</tr>
</thead>
<tbody>
<tr>
<td>encoder-decoder</td>
<td>13.9</td>
</tr>
<tr>
<td>attention model</td>
<td>28.5</td>
</tr>
</tbody>
</table>
Summary

We discussed:

• Basic building blocks of NN for NMT.
 • Fully-connected, RNN, LSTM and GRU.
 • Output softmax.

• Neural LM.

• Sequence-to-sequence (two RNNs attached).
 • Architecture.
 • Training.
 • Decoding (Greedy vs. Beam)

• Attention (decoder attends to a mix on encoder states).

