
Basic
Sequence-to-Sequence
(with Attention)
Ondřej Bojar

March 12, 2020

NPFL087 Statistical Machine Translation

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics unless otherwise stated

Outline

• Basic NN building blocks for NMT.
• Processing Text.
• Neural Language Model.
• Vanilla Sequence-to-Sequence.
• Attention.

Many of the slides based on RANLP 2017 tutorial (Helcl and Bojar, 2017).

1/40

Encoder-Decoder Architecture

https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/
2/40

https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/

Basic NN Building Blocks

One Fully Connected Layer
• One fully-connected layer converts an input (column) vector 𝑥

to an output (column) vector ℎ:

ℎ = 𝑓(𝑊𝑥 + 𝑏), (1)
• 𝑊 is a weight matrix of input columns and output rows,
• 𝑏 a bias vector of length of output,
• 𝑓(⋅) is a non-linearity applied usually elementwise.

W
x

b

+f)(

3/40

One Layer tanh(𝑊𝑥 + 𝑏), 2D→2D

Skew:
𝑊

Transpose:
𝑏

Non-lin.:
tanh

Animation by http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
4/40

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feed-Forward Neural Network
𝑥

↓ ↓
ℎ1 = 𝑓(𝑊1𝑥 + 𝑏1) �

↓↑ ↓ ↑
ℎ2 = 𝑓(𝑊2ℎ1 + 𝑏2) �

↓↑ ↓ ↑
⋮ ⋮ �

↓↑ ↓ ↑
ℎ𝑛 = 𝑓(𝑊𝑛ℎ𝑛−1 + 𝑏𝑛) �

↓↑ ↓ ↑
𝑜 = 𝑔(𝑊𝑜ℎ𝑛 + 𝑏𝑜) ∂𝐸

∂𝑊𝑜
= ∂𝐸

∂𝑜 ⋅ ∂𝑜
∂𝑊𝑜

↓ ↓ ↑
𝐸 = 𝑒(𝑜, 𝑡) → ∂𝐸

∂𝑜

blue: Training item (input 𝑥, output 𝑡), red: Trainable parameters (𝑊1, 𝑏1, …).
5/40

Four Layers, Disentagling Spirals

Animation by http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
6/40

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Variable-Length Inputs and Outputs
Variable-length input can be handled by recurrent NNs:

• Processing one input symbol at a time.
• Initial state ℎ0 = (0) (or some sentence representation).
• The same (trained) transformation 𝐴 used every time.

ℎ𝑡 = 𝐴(ℎ𝑡−1, 𝑥𝑡) (2)

• Unroll in time (up to a fixed length limit).

7/40

Vanilla RNN

ℎ𝑡 = tanh (𝑊[ℎ𝑡−1; 𝑥𝑡] + 𝑏) (3)
[ℎ𝑡−1; 𝑥𝑡] is concatenation of ℎ𝑡−1 and 𝑥𝑡

• Vanishing gradient problem.
• Non-linear transformation always applied.

⇒ Type theory: ℎ𝑡 and ℎ𝑡−1 live in different vector spaces.
8/40

LSTM and GRU Cells for RNN
• LSTM, Long Short-Term Memory Cells (Hochreiter and Schmidhuber, 1997).
• GRU, Gated Recurrent Unit Cells (Chung et al., 2014):

𝑧𝑡 = 𝜎 (𝑊𝑧[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑧) (4)
𝑟𝑡 = 𝜎 (𝑊𝑟[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑟) (5)
ℎ̃𝑡 = tanh (𝑊[𝑟𝑡 ⊙ ℎ𝑡−1; 𝑥𝑡]) (6)
ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡 (7)

• Gates control:
• what to use from input 𝑥𝑡 (GRU: everything),
• what to use from hidden state ℎ𝑡−1 (reset gate 𝑟𝑡),
• what to put into output (update gate 𝑧𝑡)

• Linear “information highway” preserved.
⇒ All states ℎ𝑡 belong to the same vector space. 9/40

Processing Text

From Categorical Words to Numbers
• Map each word to a vector of 0s and 1s (“1-hot repr.”):

cat ↦ (0, 0, … , 0, 1, 0, … , 0)
• Sentence is then a matrix:

the cat is on the mat
↑ a 0 0 0 0 0 0

about 0 0 0 0 0 0
… … … … … … …
cat 0 1 0 0 0 0

Vocabulary size: … … … … … … …
1.3M English is 0 0 1 0 0 0
2.2M Czech … … … … … … …

on 0 0 0 1 0 0
… … … … … … …
the 1 0 0 0 1 0
… … … … … … …

↓ zebra 0 0 0 0 0 0
10/40

Sub-Words to Reduce Vocabulary Size
• SMT struggles with productive morphology (>1M wordforms).

nejneobhodpodařovávatelnějšími, Donaudampfschifffahrtsgesellschaftskapitän
• NMT can handle only 30–80k dictionaries.

⇒ Resort to sub-word units.
Orig český politik svezl migranty
Syllables čes ký ⊔ po li tik ⊔ sve zl ⊔ mig ran ty
Morphemes česk ý ⊔ politik ⊔ s vez l ⊔ migrant y
Char Pairs če sk ý ⊔ po li ti k ⊔ sv ez l ⊔ mi gr an ty
Chars č e s k ý ⊔ p o l i t i k ⊔ s v e z l ⊔ m i g r a n t y
BPE 30k český politik s@@ vez@@ l mi@@ granty

BPE (Byte-Pair Encoding, (Sennrich et al., 2016)) or Google’s wordpieces (Wu et al., 2016) and
Tensor2Tensor’s SubwordTextEncoder use 𝑛 most common substrings (incl. frequent words).

11/40

Word (Actually Token) Embeddings
• Idea: Map each token to a dense vector in continuous space.
• Result: 300–2000 dimensions instead of 1–2M.

• The dimensions have no clear interpretation.
• The “embedding” is the mapping.

• Technically, the first layer of NNs for NLP is the matrix that maps 1-hot
input to the first layer.

• Embeddings are trained for each particular task.
• Sentence classification (sentiment analysis, etc.)
• Neural language modelling.
• The famous word2vec (Mikolov et al., 2013):

• CBOW: Predict the word from its four neighbours.
• Skip-gram: Predict likely neighbours given the word.

• End-to-end neural MT.
12/40

Output: Softmax over Vocabulary
Outputs of the RNN are:

1. Projected (scaled up) to the size of the vocabulary 𝑉 ,
2. Normalized with softmax.

⇒ Distribution over all possible target tokens.

𝑙(𝑤)𝑡 = 𝑊𝑙ℎ𝑡 + 𝑏𝑙

𝑝(𝑤)𝑡 = exp 𝑙(𝑤)𝑡
∑𝑤′∈𝑉 exp 𝑙(𝑤′)𝑡

• 𝑙(𝑤)𝑡 = logits/energies for word 𝑤 in time 𝑡
• 𝑊𝑙: weight matrix (hidden state × voc. size)

… this is big.
• Softmax normalization: exp ⋅

∑ exp ⋅
… this is costly.

• Tricks what to do with it
(negative sampling, hierarchical softmax)

– not frequently used
13/40

Neural Language Modeling

RNN Language Model
• Train RNN as a classifier for next words (unlimited history):

<s> w1 w2 w3 w4

p(w1) p(w2) p(w3) p(w4) p(w5)

• Can be used:
• To estimate sentence probability / perplexity.
• To sample from the distribution:

<s>

~w1 ~w2 ~w3 ~w4 ~w5

14/40

Two Views on RNN LM

• RNN is a for loop / functional map over sequential data
• all outputs are conditional distributions

→ probabilistic distribution over sequences of words

𝑃 (𝑤1, … , 𝑤𝑛) =
𝑛

∏
𝑖=1

𝑃 (𝑤𝑖|𝑤𝑖−1, … , 𝑤1)

15/40

Bidirectional RNN for Input

<s>
x1 x2 x3 x4

h1h0 h2 h3 h4

...

• read the input sentence from both sides
• concatenate hidden states from each direction
• every ℎ𝑖 stores information about the whole sentence

16/40

Bidirectional RNN for Input

<s>
x1 x2 x3 x4

h1h0 h2 h3 h4

...

• read the input sentence from both sides

• concatenate hidden states from each direction
• every ℎ𝑖 stores information about the whole sentence

16/40

Bidirectional RNN for Input

<s>
x1 x2 x3 x4

h1h0 h2 h3 h4

...

• read the input sentence from both sides
• concatenate hidden states from each direction
• every ℎ𝑖 stores information about the whole sentence

16/40

Encoder-Decoder
Architecture

Encoder-Decoder Architecture

• exploits the conditional LM scheme

• two networks

1. a network processing the input sentence into a single vector representation
(encoder)

2. a neural language model initialized with the output of the encoder
(decoder)

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning with neural networks.” Advances in neural information processing systems. 2014.

17/40

Encoder-Decoder Architecture

• exploits the conditional LM scheme
• two networks

1. a network processing the input sentence into a single vector representation
(encoder)

2. a neural language model initialized with the output of the encoder
(decoder)

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning with neural networks.” Advances in neural information processing systems. 2014.

17/40

Encoder-Decoder Architecture

• exploits the conditional LM scheme
• two networks

1. a network processing the input sentence into a single vector representation
(encoder)

2. a neural language model initialized with the output of the encoder
(decoder)

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning with neural networks.” Advances in neural information processing systems. 2014.

17/40

Encoder-Decoder Architecture

• exploits the conditional LM scheme
• two networks

1. a network processing the input sentence into a single vector representation
(encoder)

2. a neural language model initialized with the output of the encoder
(decoder)

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning with neural networks.” Advances in neural information processing systems. 2014.

17/40

Encoder-Decoder Model – Image

<s><s> x1 x2 x3 x4

~y1 ~y2 ~y3 ~y4 ~y5

source language input + target language LM

18/40

Encoder-Decoder Model – Image

<s><s> x1 x2 x3 x4

~y1 ~y2 ~y3 ~y4 ~y5

source language input + target language LM
18/40

Encoder-Decoder Model – Code

state = np.zeros(sent_repr_size)
for w in input_words:

input_embedding = source_embeddings[w]
state, _ = enc_cell(state, input_embedding)

last_w = "<s>"
while last_w != "</s>":

last_w_embedding = target_embeddings[last_w]
state, dec_output = dec_cell(state, last_w_embedding)
logits = output_projection(dec_output)
last_w = np.argmax(logits)
yield last_w

19/40

Encoder-Decoder Model – Formal Notation

Data
input tokens (source language) x = (𝑥1, … , 𝑥𝑇𝑥

)
output tokens (target language) y = (𝑦1, … , 𝑦𝑇𝑦

)

Encoder
initial state ℎ0 ≡ 0
𝑗-th state ℎ𝑗 = RNNenc(ℎ𝑗−1, 𝑥𝑗) = tanh(𝑈𝑒ℎ𝑗−1 + 𝑊𝑒𝐸𝑒𝑥𝑗 + 𝑏𝑒)
final state ℎ𝑇𝑥

Decoder
initial state 𝑠0 = ℎ𝑇𝑥
𝑖-th decoder state 𝑠𝑖 = RNNdec(𝑠𝑖−1, ̂𝑦𝑖−1) = tanh(𝑈𝑑𝑠𝑖−1 + 𝑊𝑑𝐸𝑑 ̂𝑦𝑖−1 + 𝑏𝑑)
𝑖-th word score 𝑡𝑖 = tanh(𝑈𝑜𝑠𝑖 + 𝑊𝑜𝐸𝑑 ̂𝑦𝑖−1 + 𝑏𝑜) (“output projection”)
output ̂𝑦𝑖 = argmax𝑉𝑜𝑡𝑖

20/40

Encoder-Decoder Model – Formal Notation

Data
input tokens (source language) x = (𝑥1, … , 𝑥𝑇𝑥

)
output tokens (target language) y = (𝑦1, … , 𝑦𝑇𝑦

)
Encoder
initial state ℎ0 ≡ 0
𝑗-th state ℎ𝑗 = RNNenc(ℎ𝑗−1, 𝑥𝑗) = tanh(𝑈𝑒ℎ𝑗−1 + 𝑊𝑒𝐸𝑒𝑥𝑗 + 𝑏𝑒)
final state ℎ𝑇𝑥

Decoder
initial state 𝑠0 = ℎ𝑇𝑥
𝑖-th decoder state 𝑠𝑖 = RNNdec(𝑠𝑖−1, ̂𝑦𝑖−1) = tanh(𝑈𝑑𝑠𝑖−1 + 𝑊𝑑𝐸𝑑 ̂𝑦𝑖−1 + 𝑏𝑑)
𝑖-th word score 𝑡𝑖 = tanh(𝑈𝑜𝑠𝑖 + 𝑊𝑜𝐸𝑑 ̂𝑦𝑖−1 + 𝑏𝑜) (“output projection”)
output ̂𝑦𝑖 = argmax𝑉𝑜𝑡𝑖

20/40

Encoder-Decoder Model – Formal Notation

Data
input tokens (source language) x = (𝑥1, … , 𝑥𝑇𝑥

)
output tokens (target language) y = (𝑦1, … , 𝑦𝑇𝑦

)
Encoder
initial state ℎ0 ≡ 0
𝑗-th state ℎ𝑗 = RNNenc(ℎ𝑗−1, 𝑥𝑗) = tanh(𝑈𝑒ℎ𝑗−1 + 𝑊𝑒𝐸𝑒𝑥𝑗 + 𝑏𝑒)
final state ℎ𝑇𝑥

Decoder
initial state 𝑠0 = ℎ𝑇𝑥
𝑖-th decoder state 𝑠𝑖 = RNNdec(𝑠𝑖−1, ̂𝑦𝑖−1) = tanh(𝑈𝑑𝑠𝑖−1 + 𝑊𝑑𝐸𝑑 ̂𝑦𝑖−1 + 𝑏𝑑)
𝑖-th word score 𝑡𝑖 = tanh(𝑈𝑜𝑠𝑖 + 𝑊𝑜𝐸𝑑 ̂𝑦𝑖−1 + 𝑏𝑜) (“output projection”)
output ̂𝑦𝑖 = argmax𝑉𝑜𝑡𝑖

20/40

Encoder-Decoder: Training Objective
For output word 𝑦𝑖 we have:

• estimated conditional distribution ̂𝑝𝑖 = exp 𝑡𝑖
∑ exp 𝑡𝑗

(softmax function)

• unknown true distribution 𝑝𝑖, we lay 𝑝𝑖 ≡ 1 [𝑦𝑖]
Cross entropy ≈ distance of ̂𝑝 and 𝑝:

ℒ = 𝐻(̂𝑝, 𝑝) = E𝑝 (− log ̂𝑝) = − ∑
𝑣∈𝑉

𝑝(𝑣) log ̂𝑝(𝑣) = − log ̂𝑝(𝑦𝑖)

…computing ∂ℒ
∂𝑡𝑖

is quite simple
See https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

…but we expect the model to produce
the exact word at the exact position!

21/40

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

Encoder-Decoder: Training Objective
For output word 𝑦𝑖 we have:

• estimated conditional distribution ̂𝑝𝑖 = exp 𝑡𝑖
∑ exp 𝑡𝑗

(softmax function)
• unknown true distribution 𝑝𝑖, we lay 𝑝𝑖 ≡ 1 [𝑦𝑖]

Cross entropy ≈ distance of ̂𝑝 and 𝑝:

ℒ = 𝐻(̂𝑝, 𝑝) = E𝑝 (− log ̂𝑝) = − ∑
𝑣∈𝑉

𝑝(𝑣) log ̂𝑝(𝑣) = − log ̂𝑝(𝑦𝑖)

…computing ∂ℒ
∂𝑡𝑖

is quite simple
See https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

…but we expect the model to produce
the exact word at the exact position!

21/40

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

Encoder-Decoder: Training Objective
For output word 𝑦𝑖 we have:

• estimated conditional distribution ̂𝑝𝑖 = exp 𝑡𝑖
∑ exp 𝑡𝑗

(softmax function)
• unknown true distribution 𝑝𝑖, we lay 𝑝𝑖 ≡ 1 [𝑦𝑖]

Cross entropy ≈ distance of ̂𝑝 and 𝑝:

ℒ = 𝐻(̂𝑝, 𝑝) = E𝑝 (− log ̂𝑝)

= − ∑
𝑣∈𝑉

𝑝(𝑣) log ̂𝑝(𝑣) = − log ̂𝑝(𝑦𝑖)

…computing ∂ℒ
∂𝑡𝑖

is quite simple
See https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

…but we expect the model to produce
the exact word at the exact position!

21/40

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

Encoder-Decoder: Training Objective
For output word 𝑦𝑖 we have:

• estimated conditional distribution ̂𝑝𝑖 = exp 𝑡𝑖
∑ exp 𝑡𝑗

(softmax function)
• unknown true distribution 𝑝𝑖, we lay 𝑝𝑖 ≡ 1 [𝑦𝑖]

Cross entropy ≈ distance of ̂𝑝 and 𝑝:

ℒ = 𝐻(̂𝑝, 𝑝) = E𝑝 (− log ̂𝑝) = − ∑
𝑣∈𝑉

𝑝(𝑣) log ̂𝑝(𝑣) = − log ̂𝑝(𝑦𝑖)

…computing ∂ℒ
∂𝑡𝑖

is quite simple
See https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

…but we expect the model to produce
the exact word at the exact position!

21/40

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

Encoder-Decoder: Training Objective
For output word 𝑦𝑖 we have:

• estimated conditional distribution ̂𝑝𝑖 = exp 𝑡𝑖
∑ exp 𝑡𝑗

(softmax function)
• unknown true distribution 𝑝𝑖, we lay 𝑝𝑖 ≡ 1 [𝑦𝑖]

Cross entropy ≈ distance of ̂𝑝 and 𝑝:

ℒ = 𝐻(̂𝑝, 𝑝) = E𝑝 (− log ̂𝑝) = − ∑
𝑣∈𝑉

𝑝(𝑣) log ̂𝑝(𝑣) = − log ̂𝑝(𝑦𝑖)

…computing ∂ℒ
∂𝑡𝑖

is quite simple
See https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

…but we expect the model to produce
the exact word at the exact position!

21/40

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

Encoder-Decoder: Training Objective
For output word 𝑦𝑖 we have:

• estimated conditional distribution ̂𝑝𝑖 = exp 𝑡𝑖
∑ exp 𝑡𝑗

(softmax function)
• unknown true distribution 𝑝𝑖, we lay 𝑝𝑖 ≡ 1 [𝑦𝑖]

Cross entropy ≈ distance of ̂𝑝 and 𝑝:

ℒ = 𝐻(̂𝑝, 𝑝) = E𝑝 (− log ̂𝑝) = − ∑
𝑣∈𝑉

𝑝(𝑣) log ̂𝑝(𝑣) = − log ̂𝑝(𝑦𝑖)

…computing ∂ℒ
∂𝑡𝑖

is quite simple
See https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

…but we expect the model to produce
the exact word at the exact position!

21/40

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

Implementation: Runtime vs. Training
runtime: ̂𝑦𝑗 (decoded) × training: 𝑦𝑗 (ground truth)

<s> x1 x2 x3 x4

<s>

~y1 ~y2 ~y3 ~y4 ~y5

<s>
y1 y2 y3 y4

loss

22/40

Encoder-Decoder Architecture

Decoding

Greedy Decoding

• In each step, the model computes a distribution over the
vocabulary 𝑉 (given source x, the previous outputs ℎ, and the
model parameters 𝜃).

𝑝(𝑦|ℎ) = 𝑔(x, ℎ, 𝜃)

• In greedy decoding:

𝑦∗ = argmax
𝑦∈𝑉

𝑝(𝑦|ℎ)

• Repeat, until an end-of-sentence symbol (</s>) is decoded.

23/40

Greedy Decoding

• In each step, the model computes a distribution over the
vocabulary 𝑉 (given source x, the previous outputs ℎ, and the
model parameters 𝜃).

𝑝(𝑦|ℎ) = 𝑔(x, ℎ, 𝜃)
• In greedy decoding:

𝑦∗ = argmax
𝑦∈𝑉

𝑝(𝑦|ℎ)

• Repeat, until an end-of-sentence symbol (</s>) is decoded.

23/40

Greedy Decoding

• In each step, the model computes a distribution over the
vocabulary 𝑉 (given source x, the previous outputs ℎ, and the
model parameters 𝜃).

𝑝(𝑦|ℎ) = 𝑔(x, ℎ, 𝜃)
• In greedy decoding:

𝑦∗ = argmax
𝑦∈𝑉

𝑝(𝑦|ℎ)

• Repeat, until an end-of-sentence symbol (</s>) is decoded.

23/40

Greedy Decoding — cont.

• Pros:
• Fast and memory-efficient
• Gives reasonable results

• Cons:
• We are interested in the most probable sentence:

(𝑦∗)𝑁
𝑖=0 = argmax

(𝑦)𝑁
𝑖=0

𝑝(𝑦0, … , 𝑦𝑁|ℎ)

• Other methods: better results for the cost of a slow-down.

24/40

Beam Search
• Instead of taking the argmax in every, step, keep a list (or beam)

of 𝑘-best scoring hypotheses.

• Hypothesis = partially decoded sentence → score
• Hypothesis score 𝜓𝑡 = (𝑦1, 𝑦2 … , 𝑦𝑡) is the probability of the

decoded sentence prefix up to 𝑡-th word.

𝑝(𝑦1, … , 𝑦𝑡|ℎ) = 𝑝(𝑦1|ℎ) ⋅ ⋯ ⋅ 𝑝(𝑦𝑡|𝑦1, … , 𝑦𝑡−1|ℎ)
• Rule to compute the score of an extended hypothesis 𝜓𝑡:

𝑝(𝜓𝑡, 𝑦𝑡+1|ℎ) = 𝑝(𝜓𝑡|ℎ) ⋅ 𝑝(𝑦𝑡+1|ℎ)
• Prefers shorter hypotheses → normalization necessary.

25/40

Beam Search
• Instead of taking the argmax in every, step, keep a list (or beam)

of 𝑘-best scoring hypotheses.
• Hypothesis = partially decoded sentence → score

• Hypothesis score 𝜓𝑡 = (𝑦1, 𝑦2 … , 𝑦𝑡) is the probability of the
decoded sentence prefix up to 𝑡-th word.

𝑝(𝑦1, … , 𝑦𝑡|ℎ) = 𝑝(𝑦1|ℎ) ⋅ ⋯ ⋅ 𝑝(𝑦𝑡|𝑦1, … , 𝑦𝑡−1|ℎ)
• Rule to compute the score of an extended hypothesis 𝜓𝑡:

𝑝(𝜓𝑡, 𝑦𝑡+1|ℎ) = 𝑝(𝜓𝑡|ℎ) ⋅ 𝑝(𝑦𝑡+1|ℎ)
• Prefers shorter hypotheses → normalization necessary.

25/40

Beam Search
• Instead of taking the argmax in every, step, keep a list (or beam)

of 𝑘-best scoring hypotheses.
• Hypothesis = partially decoded sentence → score
• Hypothesis score 𝜓𝑡 = (𝑦1, 𝑦2 … , 𝑦𝑡) is the probability of the

decoded sentence prefix up to 𝑡-th word.

𝑝(𝑦1, … , 𝑦𝑡|ℎ) = 𝑝(𝑦1|ℎ) ⋅ ⋯ ⋅ 𝑝(𝑦𝑡|𝑦1, … , 𝑦𝑡−1|ℎ)

• Rule to compute the score of an extended hypothesis 𝜓𝑡:

𝑝(𝜓𝑡, 𝑦𝑡+1|ℎ) = 𝑝(𝜓𝑡|ℎ) ⋅ 𝑝(𝑦𝑡+1|ℎ)
• Prefers shorter hypotheses → normalization necessary.

25/40

Beam Search
• Instead of taking the argmax in every, step, keep a list (or beam)

of 𝑘-best scoring hypotheses.
• Hypothesis = partially decoded sentence → score
• Hypothesis score 𝜓𝑡 = (𝑦1, 𝑦2 … , 𝑦𝑡) is the probability of the

decoded sentence prefix up to 𝑡-th word.

𝑝(𝑦1, … , 𝑦𝑡|ℎ) = 𝑝(𝑦1|ℎ) ⋅ ⋯ ⋅ 𝑝(𝑦𝑡|𝑦1, … , 𝑦𝑡−1|ℎ)
• Rule to compute the score of an extended hypothesis 𝜓𝑡:

𝑝(𝜓𝑡, 𝑦𝑡+1|ℎ) = 𝑝(𝜓𝑡|ℎ) ⋅ 𝑝(𝑦𝑡+1|ℎ)

• Prefers shorter hypotheses → normalization necessary.

25/40

Beam Search
• Instead of taking the argmax in every, step, keep a list (or beam)

of 𝑘-best scoring hypotheses.
• Hypothesis = partially decoded sentence → score
• Hypothesis score 𝜓𝑡 = (𝑦1, 𝑦2 … , 𝑦𝑡) is the probability of the

decoded sentence prefix up to 𝑡-th word.

𝑝(𝑦1, … , 𝑦𝑡|ℎ) = 𝑝(𝑦1|ℎ) ⋅ ⋯ ⋅ 𝑝(𝑦𝑡|𝑦1, … , 𝑦𝑡−1|ℎ)
• Rule to compute the score of an extended hypothesis 𝜓𝑡:

𝑝(𝜓𝑡, 𝑦𝑡+1|ℎ) = 𝑝(𝜓𝑡|ℎ) ⋅ 𝑝(𝑦𝑡+1|ℎ)
• Prefers shorter hypotheses → normalization necessary.

25/40

Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.

2. In each time step:

2.1 Extend all hypotheses in the beam by 𝑘 most probable words (we call these
candidate hypotheses).

2.2 Sort the candidate hypotheses by their score.
2.3 Put the best 𝑘 hypotheses in the new beam.
2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we

move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all 𝑘-best hypotheses end
with </s>.

4. Sort the hypotheses by their score and output the best one.

26/40

Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:

2.1 Extend all hypotheses in the beam by 𝑘 most probable words (we call these
candidate hypotheses).

2.2 Sort the candidate hypotheses by their score.
2.3 Put the best 𝑘 hypotheses in the new beam.
2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we

move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all 𝑘-best hypotheses end
with </s>.

4. Sort the hypotheses by their score and output the best one.

26/40

Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:

2.1 Extend all hypotheses in the beam by 𝑘 most probable words (we call these
candidate hypotheses).

2.2 Sort the candidate hypotheses by their score.
2.3 Put the best 𝑘 hypotheses in the new beam.
2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we

move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all 𝑘-best hypotheses end
with </s>.

4. Sort the hypotheses by their score and output the best one.

26/40

Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:

2.1 Extend all hypotheses in the beam by 𝑘 most probable words (we call these
candidate hypotheses).

2.2 Sort the candidate hypotheses by their score.

2.3 Put the best 𝑘 hypotheses in the new beam.
2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we

move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all 𝑘-best hypotheses end
with </s>.

4. Sort the hypotheses by their score and output the best one.

26/40

Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:

2.1 Extend all hypotheses in the beam by 𝑘 most probable words (we call these
candidate hypotheses).

2.2 Sort the candidate hypotheses by their score.
2.3 Put the best 𝑘 hypotheses in the new beam.

2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we
move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all 𝑘-best hypotheses end
with </s>.

4. Sort the hypotheses by their score and output the best one.

26/40

Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:

2.1 Extend all hypotheses in the beam by 𝑘 most probable words (we call these
candidate hypotheses).

2.2 Sort the candidate hypotheses by their score.
2.3 Put the best 𝑘 hypotheses in the new beam.
2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we

move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all 𝑘-best hypotheses end
with </s>.

4. Sort the hypotheses by their score and output the best one.

26/40

Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:

2.1 Extend all hypotheses in the beam by 𝑘 most probable words (we call these
candidate hypotheses).

2.2 Sort the candidate hypotheses by their score.
2.3 Put the best 𝑘 hypotheses in the new beam.
2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we

move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all 𝑘-best hypotheses end
with </s>.

4. Sort the hypotheses by their score and output the best one.

26/40

Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:

2.1 Extend all hypotheses in the beam by 𝑘 most probable words (we call these
candidate hypotheses).

2.2 Sort the candidate hypotheses by their score.
2.3 Put the best 𝑘 hypotheses in the new beam.
2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we

move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all 𝑘-best hypotheses end
with </s>.

4. Sort the hypotheses by their score and output the best one.
26/40

Attentive
Sequence-to-Sequence

Learning

Main Idea

Vanilla sequence-to-sequence was degrading with sentence length.
Goal of attention:

• Do not force the network to catch long-distance dependencies.
• Use decoder state only for:

• target sentence dependencies (=LM) and
• a as query for the source word sentence

27/40

Inspiration: Neural Turing Machine

• general architecture for
learning algorithmic tasks,
finite imitation of Turing
Machine

• needs to address memory
somehow – either by position
or by content

• in fact does not work well
– it hardly manages simple algorithmic tasks

• content-based addressing → attention

28/40

Inspiration: Neural Turing Machine

• general architecture for
learning algorithmic tasks,
finite imitation of Turing
Machine

• needs to address memory
somehow – either by position
or by content

• in fact does not work well
– it hardly manages simple algorithmic tasks

• content-based addressing → attention

28/40

Inspiration: Neural Turing Machine

• general architecture for
learning algorithmic tasks,
finite imitation of Turing
Machine

• needs to address memory
somehow – either by position
or by content

• in fact does not work well
– it hardly manages simple algorithmic tasks

• content-based addressing → attention

28/40

Inspiration: Neural Turing Machine

• general architecture for
learning algorithmic tasks,
finite imitation of Turing
Machine

• needs to address memory
somehow – either by position
or by content

• in fact does not work well
– it hardly manages simple algorithmic tasks

• content-based addressing → attention
28/40

Attentive Sequence-to-Sequence Learning

Attention Mechanism

Attention Mechanism
<s> x1 x2 x3 x4

~yi ~yi+1

h1h0 h2 h3 h4

...

+

×
α0

×
α1

×
α2

×
α3

×
α4

sisi-1 si+1

+

29/40

Attention Mechanism in Equations (1)
Inputs:

decoder state 𝑠𝑖
encoder states ℎ𝑗 = [⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ℎ𝑗; ⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ℎ𝑗] ∀𝑖 = 1 … 𝑇𝑥

Attention energies:
𝑒𝑖𝑗 = 𝑣⊤

𝑎 tanh (𝑊𝑎𝑠𝑖−1 + 𝑈𝑎ℎ𝑗 + 𝑏𝑎)
Attention distribution:

𝛼𝑖𝑗 = exp(𝑒𝑖𝑗)
∑𝑇𝑥

𝑘=1 exp(𝑒𝑖𝑘)

Context vector:
𝑐𝑖 = ∑𝑇𝑥

𝑗=1 𝛼𝑖𝑗ℎ𝑗
30/40

Attention Mechanism in Equations (2)
Decoder state:

𝑠𝑖 = tanh(𝑈𝑑𝑠𝑖−1 + 𝑊𝑑𝐸𝑑 ̂𝑦𝑖−1 + 𝐶𝑐𝑖 + 𝑏𝑑)

Output projection:

𝑡𝑖 = tanh (𝑈𝑜𝑠𝑖 + 𝑊𝑜𝐸𝑑 ̂𝑦𝑖−1 + 𝐶𝑜𝑐𝑖 + 𝑏𝑜)

…context vector is mixed with the hidden state
Output distribution:

𝑝 (𝑦𝑖 = 𝑘 |𝑠𝑖, 𝑦𝑖−1, 𝑐𝑖) ∝ exp (𝑊𝑜𝑡𝑖)𝑘 + 𝑏𝑘

31/40

Attention Visualization

32/40

Attentive Sequence-to-Sequence Learning

Attention vs. Alignment

Attention vs. Alignment

Differences between attention model and word alignment used for
phrase table generation:

Attention (NMT) Alignment (SMT)
Probabilistic Discrete
Declarative Imperative

LM generates LM discriminates
Learnt with translation Prerequisite

33/40

Attention vs. Alignment

Differences between attention model and word alignment used for
phrase table generation:

Attention (NMT) Alignment (SMT)

Probabilistic Discrete
Declarative Imperative

LM generates LM discriminates
Learnt with translation Prerequisite

33/40

Attention vs. Alignment

Differences between attention model and word alignment used for
phrase table generation:

Attention (NMT) Alignment (SMT)
Probabilistic Discrete

Declarative Imperative
LM generates LM discriminates

Learnt with translation Prerequisite

33/40

Attention vs. Alignment

Differences between attention model and word alignment used for
phrase table generation:

Attention (NMT) Alignment (SMT)
Probabilistic Discrete
Declarative Imperative

LM generates LM discriminates
Learnt with translation Prerequisite

33/40

Attention vs. Alignment

Differences between attention model and word alignment used for
phrase table generation:

Attention (NMT) Alignment (SMT)
Probabilistic Discrete
Declarative Imperative

LM generates LM discriminates

Learnt with translation Prerequisite

33/40

Attention vs. Alignment

Differences between attention model and word alignment used for
phrase table generation:

Attention (NMT) Alignment (SMT)
Probabilistic Discrete
Declarative Imperative

LM generates LM discriminates
Learnt with translation Prerequisite

33/40

Attention Off by One

da
s

V
er
hä
ltn

is

zw
is
ch
en

O
ba
m
a

un
d

N
et
an
ya
hu

is
t

se
it

Ja
hr
en

ge
sp
an
nt

.

the
relationship

between

Obama

and
Netanyahu

has

been

stretched

for
years

. 11

47

81

72

87

93

95

38

21

17

16

14

38

19

33

90

32

26

54

77

12

17

• Attention can appear on the neighbouring token.
Philipp Koehn and Rebecca Knowles (2017). Six Challenges for Neural Machine Translation. NMT workshop.

34/40

Attending to Two at Once

• To benefit from PBMT, append its output to NMT input.
• Standard attentional model will learns to follow both.

Jan Niehues, Eunah Cho, Thanh-Le Ha, and Alex Waibel. 2016. Pre-translation for neural machine translation.
35/40

Image Captioning
Attention over CNN for image classification:

Source: Xu, Kelvin, et al. ”Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.” ICML. Vol. 14. 2015.
36/40

Encoder-Decoder vs.
Attentive Models

Sutskever+ (2014) × Bahdanau+ (2014)
Two key papers on NMT in 2014:

• Bahdanau et al. (2015) Attention model,
• Sutskever et al. (2014) Seq2seq impressive empirical results:

• Made researchers believe NMT is the way to go.
• (Used reversed input.)

Evaluation on WMT14 EN → FR test set:
Model BLEU score
vanilla SMT 33.0
tuned SMT 37.0
Sutskever et al.: reversed 30.6
–”–: ensemble + beam search 34.8
–”–: vanilla SMT rescoring 36.5
Bahdanau’s attention 28.5

← Why worse?

37/40

Sutskever+ (2014) × Bahdanau+ (2014)
Two key papers on NMT in 2014:

• Bahdanau et al. (2015) Attention model,
• Sutskever et al. (2014) Seq2seq impressive empirical results:

• Made researchers believe NMT is the way to go.
• (Used reversed input.)

Evaluation on WMT14 EN → FR test set:
Model BLEU score
vanilla SMT 33.0
tuned SMT 37.0
Sutskever et al.: reversed 30.6
–”–: ensemble + beam search 34.8
–”–: vanilla SMT rescoring 36.5
Bahdanau’s attention 28.5 ← Why worse?

37/40

Sutskever+ (2014) × Bahdanau+ (2014)
Sutskever et al. Bahdanau et al.

vocabulary 160k enc, 80k dec 30k both
encoder 4× LSTM, 1,000 units bidi GRU, 2,000
decoder 4× LSTM, 1,000 units GRU, 1,000 units
word embeddings 1,000 dimensions 620 dimensions
training time 7.5 epochs 5 epochs

Comparison with Bahdanau’s model size:
method BLEU score
encoder-decoder 13.9
attention model 28.5

38/40

Sutskever+ (2014) × Bahdanau+ (2014)
Sutskever et al. Bahdanau et al.

vocabulary 160k enc, 80k dec 30k both
encoder 4× LSTM, 1,000 units bidi GRU, 2,000
decoder 4× LSTM, 1,000 units GRU, 1,000 units
word embeddings 1,000 dimensions 620 dimensions
training time 7.5 epochs 5 epochs

Comparison with Bahdanau’s model size:
method BLEU score
encoder-decoder 13.9
attention model 28.5

38/40

Summary

We discussed:
• Basic building blocks of NN for NMT.

• Fully-connected, RNN, LSTM and GRU.
• Output softmax.

• Neural LM.
• Sequence-to-sequence (two RNNs attached).

• Architecture.
• Training.
• Decoding (Greedy vs. Beam)

• Attention (decoder attends to a mix on encoder states).

39/40

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align
and translate. In Proceedings of ICLR.
Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recurrent
neural networks on sequence modeling. CoRR, abs/1412.3555.
Jindřich Helcl and Ondřej Bojar. 2017. Deep Learning in MT / NMT. Tutorial at RANLP 2017, August.
Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput., 9(8):1735–1780,
November.
Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector
space. CoRR, abs/1301.3781.
Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1715–1725, Berlin, Germany, August. Association for Computational Linguistics.
Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence Learning with Neural Networks. In
Advances in neural information processing systems, pages 3104–3112.
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,
Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s neural machine translation system: Bridging the gap between human and machine translation. CoRR,
abs/1609.08144.

40/40

	Basic NN Building Blocks
	Processing Text
	Neural Language Modeling
	Encoder-Decoder Architecture
	Decoding

	Attentive Sequence-to-Sequence Learning
	Attention Mechanism
	Attention vs. Alignment

	Encoder-Decoder vs. Attentive Models

