Basic Sequence-to-Sequence (with Attention)

Ondřej Bojar

March 12, 2020
Outline

- Basic NN building blocks for NMT.
- Processing Text.
- Neural Language Model.
- Vanilla Sequence-to-Sequence.
- Attention.

Many of the slides based on RANLP 2017 tutorial (Helcl and Bojar, 2017).
Encoder-Decoder Architecture

\[f = \text{(La, croissance, économique, s'est, ralentie, ces, dernières, années, .)} \]

\[e = \text{(Economic, growth, has, slowed, down, in, recent, years, .)} \]

Basic NN Building Blocks
One Fully Connected Layer

- One fully-connected layer converts an input (column) vector x to an output (column) vector h:

$$ h = f(Wx + b), $$

- W is a weight matrix of input columns and output rows,
- b a bias vector of length of output,
- $f(\cdot)$ is a non-linearity applied usually elementwise.
One Layer $\tanh(Wx + b)$, $2D \rightarrow 2D$

Skew: W

Transpose: b

Non-lin.: \tanh

Feed-Forward Neural Network

\[
\begin{align*}
 x & \\
 \downarrow & \\
 h_1 &= f(W_1 x + b_1) & \uparrow \\
 \downarrow & \\
 h_2 &= f(W_2 h_1 + b_2) & \uparrow \\
 \downarrow & \\
 \vdots & \\
 \downarrow & \\
 h_n &= f(W_n h_{n-1} + b_n) & \uparrow \\
 \downarrow & \\
 o &= g(W_o h_n + b_o) & \frac{\partial E}{\partial W_o} = \frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial W_o} \\
 \downarrow & \\
 E &= e(o, t) & \rightarrow & \frac{\partial E}{\partial o}
\end{align*}
\]

blue: Training item (input \(x\), output \(t\)), *red:* Trainable parameters \((W_1, b_1, \ldots)\).
Four Layers, Disentagling Spirals

Variable-Length Inputs and Outputs

Variable-length input can be handled by recurrent NNs:

- Processing one input symbol at a time.
 - Initial state $h_0 = (0)$ (or some sentence representation).
 - The same (trained) transformation A used every time.

\[
h_t = A(h_{t-1}, x_t)
\]

- Unroll in time (up to a fixed length limit).
Vanilla RNN

\[h_t = \tanh(W[h_{t-1}; x_t] + b) \]

- Vanishing gradient problem.
- Non-linear transformation always applied.
 \[[h_{t-1}; x_t] \] is concatenation of \(h_{t-1} \) and \(x_t \)
 \[\Rightarrow \text{Type theory: } h_t \text{ and } h_{t-1} \text{ live in different vector spaces.} \]
LSTM and GRU Cells for RNN

- LSTM, Long Short-Term Memory Cells (Hochreiter and Schmidhuber, 1997).
- GRU, Gated Recurrent Unit Cells (Chung et al., 2014):

\[
\begin{align*}
 z_t &= \sigma (W_z [h_{t-1}; x_t] + b_z) \\
 r_t &= \sigma (W_r [h_{t-1}; x_t] + b_r) \\
 \tilde{h}_t &= \tanh (W [r_t \odot h_{t-1}; x_t]) \\
 h_t &= (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t
\end{align*}
\]

- Gates control:
 - what to use from input \(x_t \) (GRU: everything),
 - what to use from hidden state \(h_{t-1} \) (reset gate \(r_t \)),
 - what to put into output (update gate \(z_t \))

- Linear “information highway” preserved.
 \(\Rightarrow \) All states \(h_t \) belong to the same vector space.
Processing Text
From Categorical Words to Numbers

- **Map each word to a vector of 0s and 1s ("1-hot repr."):**

 \[
 \text{cat} \mapsto (0, 0, \ldots, 0, 1, 0, \ldots, 0)
 \]

- **Sentence is then a matrix:**

<table>
<thead>
<tr>
<th></th>
<th>the</th>
<th>cat</th>
<th>is</th>
<th>on</th>
<th>the</th>
<th>mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>about</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>cat</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Vocabulary size:

- 1.3M English
- 2.2M Czech

Example Sentence:

\[
\begin{align*}
\text{the cat is on the mat} \\
\text{zebra}
\end{align*}
\]

Vocabulary size: 1.3M English, 2.2M Czech
Sub-Words to Reduce Vocabulary Size

- SMT struggles with productive morphology (>1M wordforms).
 nejneobhodpodařovávatelnějšími, Donaudampfschifffahrtsgesellschaftskapitän
- NMT can handle only 30–80k dictionaries.

⇒ Resort to sub-word units.

<table>
<thead>
<tr>
<th></th>
<th>český politik svezl migranty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllables</td>
<td>čes ký □ po li tik □ sve zl □ mig ran ty</td>
</tr>
<tr>
<td>Morphemes</td>
<td>česk ý □ politik □ s vez l □ migrant y</td>
</tr>
<tr>
<td>Char Pairs</td>
<td>če sk ý □ po li ti k □ sv ez l □ mi gr an ty</td>
</tr>
<tr>
<td>Chars</td>
<td>č e s k ý □ p o l i t i k □ s v e z l □ m i g r a n t y</td>
</tr>
<tr>
<td>BPE 30k</td>
<td>český politik s@@ vez@@ l mi@@ granty</td>
</tr>
</tbody>
</table>

BPE (Byte-Pair Encoding, (Sennrich et al., 2016)) or Google’s wordpieces (Wu et al., 2016) and Tensor2Tensor’s SubwordTextEncoder use n most common substrings (incl. frequent words).
Word (Actually Token) Embeddings

- Idea: Map each token to a dense vector in continuous space.
- Result: 300–2000 dimensions instead of 1–2M.
 - The dimensions have no clear interpretation.
- The “embedding” is the mapping.
 - Technically, the first layer of NNs for NLP is the matrix that maps 1-hot input to the first layer.

- Embeddings are trained for each particular task.
 - Sentence classification (sentiment analysis, etc.)
 - Neural language modelling.
 - The famous word2vec (Mikolov et al., 2013):
 - CBOW: Predict the word from its four neighbours.
 - Skip-gram: Predict likely neighbours given the word.
 - End-to-end neural MT.
Output: Softmax over Vocabulary

Outputs of the RNN are:

1. Projected (scaled up) to the size of the vocabulary V,
2. Normalized with softmax.

⇒ Distribution over all possible target tokens.

$$p(w)_t = \frac{\exp l(w)_t}{\sum_{w' \in V} \exp l(w')_t}$$

- $l(w)_t = \logits/energies$ for word w in time t
- W_l: weight matrix (hidden state \times voc. size)
 ... this is **big**.
- Softmax normalization: $\frac{\exp \cdot}{\sum \exp \cdot}$
 ... this is costly.
- Tricks what to do with it
 (negative sampling, hierarchical softmax)
 – not frequently used
Neural Language Modeling
• Train RNN as a **classifier for next words** (unlimited history):

• Can be used:
 • To estimate sentence probability / perplexity.
 • To sample from the distribution:
Two Views on RNN LM

- RNN is a for loop / functional map over sequential data
- all outputs are conditional distributions
 → probabilistic distribution over sequences of words

\[P(w_1, \ldots, w_n) = \prod_{i=1}^{n} P(w_i | w_{i-1}, \ldots, w_1) \]
Bidirectional RNN for Input

- Read the input sentence from both sides.
- Concatenate hidden states from each direction.
- Every h_i stores information about the whole sentence.

Diagram:

- Input symbols $x_1, x_2, x_3, x_4,$ etc.
- Hidden states $h_0, h_1, h_2, h_3, h_4,$ etc.
- Arrows indicate the flow of information from input to hidden states in both directions.
Bidirectional RNN for Input

- read the input sentence from both sides
Bidirectional RNN for Input

- read the input sentence from both sides
- concatenate hidden states from each direction
- every h_i stores information about the whole sentence
Encoder-Decoder Architecture
Encoder-Decoder Architecture

- exploits the conditional LM scheme

Encoder-Decoder Architecture

- exploits the conditional LM scheme
- two networks

Encoder-Decoder Architecture

- exploits the conditional LM scheme
- two networks
 1. a network processing the input sentence into a single vector representation (encoder)

Encoder-Decoder Architecture

• exploits the conditional LM scheme
• two networks
 1. a network processing the input sentence into a single vector representation (encoder)
 2. a neural language model initialized with the output of the encoder (decoder)

source language input + target language LM
state = np.zeros(sent_repr_size)
for w in input_words:
 input_embedding = source_embeddings[w]
 state, _ = enc_cell(state, input_embedding)

last_w = "<s>
while last_w != "</s>":
 last_w_embedding = target_embeddings[last_w]
 state, dec_output = dec_cell(state, last_w_embedding)
 logits = output_projection(dec_output)
 last_w = np.argmax(logits)
 yield last_w
Data
input tokens (source language) \(x = (x_1, \ldots, x_{T_x}) \)
output tokens (target language) \(y = (y_1, \ldots, y_{T_y}) \)
Encoder-Decoder Model – Formal Notation

Data
- input tokens (source language) \(\mathbf{x} = (x_1, \ldots, x_{T_x}) \)
- output tokens (target language) \(\mathbf{y} = (y_1, \ldots, y_{T_y}) \)

Encoder
- initial state \(h_0 \equiv \mathbf{0} \)
- \(j \)-th state \(h_j = \text{RNN}_{\text{enc}}(h_{j-1}, x_j) = \tanh(U_e h_{j-1} + W_e E_e x_j + b_e) \)
- final state \(h_{T_x} \)
Data
input tokens (source language) \(x = (x_1, \ldots, x_{T_x}) \)
output tokens (target language) \(y = (y_1, \ldots, y_{T_y}) \)

Encoder
initial state \(h_0 \equiv 0 \)
j-th state \(h_j = \text{RNN}_{\text{enc}}(h_{j-1}, x_j) = \tanh(U_e h_{j-1} + W_e E_e x_j + b_e) \)
final state \(h_{T_x} \)

Decoder
initial state \(s_0 = h_{T_x} \)
i-th decoder state \(s_i = \text{RNN}_{\text{dec}}(s_{i-1}, \hat{y}_{i-1}) = \tanh(U_d s_{i-1} + W_d E_d \hat{y}_{i-1} + b_d) \)
i-th word score \(t_i = \tanh(U_o s_i + W_o E_d \hat{y}_{i-1} + b_o) \) ("output projection")
output \(\hat{y}_i = \text{arg max} V_o t_i \)
For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_j}$ (softmax function)
For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_j}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1[y_i]$
Encoder-Decoder: Training Objective

For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_j}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1[y_i]$

Cross entropy \approx distance of \hat{p} and p:

$$\mathcal{L} = H(\hat{p}, p) = E_p (-\log \hat{p})$$
Encoder-Decoder: Training Objective

For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_j}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1 [y_i]$

Cross entropy \approx distance of \hat{p} and p:

$$\mathcal{L} = H(\hat{p}, p) = E_p (-\log \hat{p}) = - \sum_{v \in V} p(v) \log \hat{p}(v) = - \log \hat{p}(y_i)$$
For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_j}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1[y_i]

Cross entropy \approx distance of \hat{p} and p:

$$
\mathcal{L} = H(\hat{p}, p) = E_p (-\log \hat{p}) = - \sum_{v \in V} p(v) \log \hat{p}(v) = - \log \hat{p}(y_i)
$$

...computing $\frac{\partial \mathcal{L}}{\partial t_i}$ is quite simple

See https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
Encoder-Decoder: Training Objective

For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_j}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1[y_i]

Cross entropy \approx distance of \hat{p} and p:

$$\mathcal{L} = H(\hat{p}, p) = E_p (-\log \hat{p}) = - \sum_{v \in V} p(v) \log \hat{p}(v) = - \log \hat{p}(y_i)$$

...computing $\frac{\partial \mathcal{L}}{\partial t_i}$ is quite simple

See https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

...but we expect the model to produce the exact word at the exact position!
Implementation: Runtime vs. Training

runtime: \hat{y}_j (decoded) × training: y_j (ground truth)

$x_1 \ x_2 \ x_3 \ x_4$

$\sim y_1 \ \sim y_2 \ \sim y_3 \ \sim y_4 \ \sim y_5$

$y_1 \ y_2 \ y_3 \ y_4$

loss
Greedy Decoding

• In each step, the model computes a distribution over the vocabulary V (given source x, the previous outputs h, and the model parameters θ).

\[p(y|h) = g(x, h, \theta) \]
Greedy Decoding

• In each step, the model computes a distribution over the vocabulary V (given source x, the previous outputs h, and the model parameters θ).

$$p(y|h) = g(x, h, \theta)$$

• In greedy decoding:

$$y^* = \arg\max_{y \in V} p(y|h)$$
Greedy Decoding

• In each step, the model computes a distribution over the vocabulary V (given source x, the previous outputs h, and the model parameters θ).

$$p(y|h) = g(x, h, \theta)$$

• In greedy decoding:

$$y^* = \underset{y \in V}{\text{argmax}} p(y|h)$$

• Repeat, until an end-of-sentence symbol ($</s>$) is decoded.
Greedy Decoding — cont.

• **Pros:**
 • Fast and memory-efficient
 • Gives reasonable results

• **Cons:**
 • We are interested in the most probable sentence:
 \[
 (y^*)_{i=0}^N = \arg\max_{(y)_{i=0}^N} p(y_0, \ldots, y_N|h)
 \]
 • Other methods: better results for the cost of a slow-down.
• Instead of taking the \(\text{arg max} \) in every step, keep a list (or beam) of \(k \)-best scoring hypotheses.
Beam Search

• Instead of taking the \(\text{arg max} \) in every step, keep a list (or beam) of \(k \)-best scoring hypotheses.

• Hypothesis = partially decoded sentence \(\rightarrow \) score
Beam Search

• Instead of taking the \(\text{arg max} \) in every step, keep a list (or beam) of \(k \)-best scoring hypotheses.

• Hypothesis = partially decoded sentence → score

• Hypothesis score \(\psi_t = (y_1, y_2 \ldots, y_t) \) is the probability of the decoded sentence prefix up to \(t \)-th word.

\[
p(y_1, \ldots, y_t | h) = p(y_1 | h) \cdot \ldots \cdot p(y_t | y_1, \ldots, y_{t-1} | h)
\]
Beam Search

- Instead of taking the \texttt{argmax} in every step, keep a list (or \texttt{beam}) of k-best scoring hypotheses.
- Hypothesis = partially decoded sentence \rightarrow score
- Hypothesis score $\psi_t = (y_1, y_2, \ldots, y_t)$ is the probability of the decoded sentence prefix up to t-th word.

$$p(y_1, \ldots, y_t | h) = p(y_1 | h) \cdot \ldots \cdot p(y_t | y_1, \ldots, y_{t-1} | h)$$

- Rule to compute the score of an extended hypothesis ψ_t:

$$p(\psi_t, y_{t+1} | h) = p(\psi_t | h) \cdot p(y_{t+1} | h)$$
Beam Search

• Instead of taking the argmax in every step, keep a list (or \textit{beam}) of k-best scoring hypotheses.
• Hypothesis = partially decoded sentence \rightarrow score
• Hypothesis score $\psi_t = (y_1, y_2, \ldots, y_t)$ is the probability of the decoded sentence prefix up to t-th word.

$$p(y_1, \ldots, y_t | h) = p(y_1 | h) \cdot \ldots \cdot p(y_t | y_1, \ldots, y_{t-1} | h)$$

• Rule to compute the score of an extended hypothesis ψ_t:

$$p(\psi_t, y_{t+1} | h) = p(\psi_t | h) \cdot p(y_{t+1} | h)$$

• Prefers shorter hypotheses \rightarrow normalization necessary.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
 2.3 Put the best k hypotheses in the new beam.
 2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we move it to the list of finished hypotheses.
3. Finish (1) at the final time step or (2) all k-best hypotheses end.
4. Sort the hypotheses by their score and output the best one.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
3. Finish (1) at the final time step or (2) all k-best hypotheses end.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
3. Finish (1) at the final time step or (2) all k-best hypotheses end with \texttt{<eos>}.
4. Sort the hypotheses by their score and output the best one.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
 2.3 Put the best k hypotheses in the new beam.

3. Finishing (1) at the final time step or (2) all k-best hypotheses end with <end>.

4. Sort the hypotheses by their score and output the best one.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
 2.3 Put the best k hypotheses in the new beam.
 2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we move it to the list of finished hypotheses.
3. Finish (1) at the final time step or (2) all k-best hypotheses end with $\langle s \rangle$.
4. Sort the hypotheses by their score and output the best one.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.

2. In each time step:

 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
 2.3 Put the best k hypotheses in the new beam.
 2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all k-best hypotheses end with $</s>$.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.

2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
 2.3 Put the best k hypotheses in the new beam.
 2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all k-best hypotheses end with $</s>$.

4. Sort the hypotheses by their score and output the best one.
Attentive Sequence-to-Sequence Learning
Main Idea

Vanilla sequence-to-sequence was degrading with sentence length.

Goal of attention:
- Do not force the network to catch long-distance dependencies.
- Use decoder state only for:
 - target sentence dependencies (=LM) and
 - a as query for the source word sentence
Inspiration: Neural Turing Machine

- general architecture for learning algorithmic tasks, finite imitation of Turing Machine
Inspiration: Neural Turing Machine

- general architecture for learning algorithmic tasks, finite imitation of Turing Machine
- needs to address memory somehow – either by position or by content
Inspiration: Neural Turing Machine

- general architecture for learning algorithmic tasks, finite imitation of Turing Machine
- needs to address memory somehow – either by position or by content

- in fact does not work well
 - it hardly manages simple algorithmic tasks
Inspiration: Neural Turing Machine

- general architecture for learning algorithmic tasks, finite imitation of Turing Machine
- needs to address memory somehow – either by position or by content

- in fact does not work well
 - it hardly manages simple algorithmic tasks
- content-based addressing → attention
Attentive Sequence-to-Sequence Learning

Attention Mechanism
Attention Mechanism

\[
\begin{align*}
&<s> \\
&x_1 \quad x_2 \quad x_3 \quad x_4 \\
&h_0 \quad h_1 \quad h_2 \quad h_3 \quad h_4 \\
&\cdots \\
&s_{i-1} \quad s_i \quad s_{i+1} \\
&\sim y_i \quad \sim y_{i+1}
\end{align*}
\]
Attention Mechanism in Equations (1)

Inputs:
- decoder state s_i
- encoder states $h_j = [\overrightarrow{h}_j; \overleftarrow{h}_j]$ \quad \forall i = 1 \ldots T_x

Attention energies:
\[
e_{ij} = v_a^\top \tanh (W_a s_{i-1} + U_a h_j + b_a)
\]

Attention distribution:
\[
\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}
\]

Context vector:
\[
c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j
\]
Attention Mechanism in Equations (2)

Decoder state:

\[s_i = \tanh(U_d s_{i-1} + W_d E_d \hat{y}_{i-1} + C c_i + b_d) \]

Output projection:

\[t_i = \tanh(U_o s_i + W_o E_d \hat{y}_{i-1} + C_o c_i + b_o) \]

...context vector is mixed with the hidden state

Output distribution:

\[p(y_i = k \mid s_i, y_{i-1}, c_i) \propto \exp(W_o t_i)_k + b_k \]
Attention Visualization

The agreement on the European Economic Area was signed in August 1992.

It should be noted that the marine environment is the least known of environments.
Attentive Sequence-to-Sequence Learning

Attention vs. Alignment
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

Attention (NMT) **Alignment (SMT)**
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

<table>
<thead>
<tr>
<th></th>
<th>Attention (NMT)</th>
<th>Alignment (SMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Probabilistic</td>
<td>Discrete</td>
</tr>
</tbody>
</table>
Differences between attention model and word alignment used for phrase table generation:

<table>
<thead>
<tr>
<th>Attention (NMT)</th>
<th>Alignment (SMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic</td>
<td>Discrete</td>
</tr>
<tr>
<td>Declarative</td>
<td>Imperative</td>
</tr>
</tbody>
</table>
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

Attention (NMT)
- Probabilistic
- Declarative
- LM generates

Alignment (SMT)
- Discrete
- Imperative
- LM discriminates
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

<table>
<thead>
<tr>
<th>Attention (NMT)</th>
<th>Alignment (SMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic</td>
<td>Discrete</td>
</tr>
<tr>
<td>Declarative</td>
<td>Imperative</td>
</tr>
<tr>
<td>LM generates</td>
<td>LM discriminates</td>
</tr>
<tr>
<td>Learnt with translation</td>
<td>Prerequisite</td>
</tr>
</tbody>
</table>
Attention can appear on the neighbouring token.

To benefit from PBMT, append its output to NMT input.

Standard attentional model will learn to follow **both**.

Attention over CNN for image classification:

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Encoder-Decoder vs. Attentive Models
Two key papers on NMT in 2014:

- Bahdanau et al. (2015) Attention model,
- Sutskever et al. (2014) Seq2seq impressive empirical results:
 - Made researchers believe NMT is the way to go.
 - (Used reversed input.)

Evaluation on WMT14 EN \rightarrow FR test set:

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU score</th>
</tr>
</thead>
<tbody>
<tr>
<td>vanilla SMT</td>
<td>33.0</td>
</tr>
<tr>
<td>tuned SMT</td>
<td>37.0</td>
</tr>
<tr>
<td>Sutskever et al.: reversed</td>
<td>30.6</td>
</tr>
<tr>
<td>–“–: ensemble + beam search</td>
<td>34.8</td>
</tr>
<tr>
<td>–“–: vanilla SMT rescoring</td>
<td>36.5</td>
</tr>
<tr>
<td>Bahdanau’s attention</td>
<td>28.5</td>
</tr>
</tbody>
</table>
Two key papers on NMT in 2014:

- Bahdanau et al. (2015) Attention model,
- Sutskever et al. (2014) Seq2seq impressive empirical results:
 - Made researchers believe NMT is the way to go.
 - (Used reversed input.)

Evaluation on WMT14 EN → FR test set:

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU score</th>
</tr>
</thead>
<tbody>
<tr>
<td>vanilla SMT</td>
<td>33.0</td>
</tr>
<tr>
<td>tuned SMT</td>
<td>37.0</td>
</tr>
<tr>
<td>Sutskever et al.: reversed</td>
<td>30.6</td>
</tr>
<tr>
<td>–"–: ensemble + beam search</td>
<td>34.8</td>
</tr>
<tr>
<td>–"–: vanilla SMT rescoring</td>
<td>36.5</td>
</tr>
<tr>
<td>Bahdanau’s attention</td>
<td>28.5</td>
</tr>
</tbody>
</table>

Why worse?
<table>
<thead>
<tr>
<th>Sutskever et al.</th>
<th>Bahdanau et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>vocabulary</td>
<td>160k enc, 80k dec</td>
</tr>
<tr>
<td>encoder</td>
<td>$4 \times$ LSTM, 1,000 units</td>
</tr>
<tr>
<td>decoder</td>
<td>$4 \times$ LSTM, 1,000 units</td>
</tr>
<tr>
<td>word embeddings</td>
<td>1,000 dimensions</td>
</tr>
<tr>
<td>training time</td>
<td>7.5 epochs</td>
</tr>
<tr>
<td></td>
<td>30k both</td>
</tr>
<tr>
<td></td>
<td>bidi GRU, 2,000</td>
</tr>
<tr>
<td></td>
<td>GRU, 1,000 units</td>
</tr>
<tr>
<td></td>
<td>620 dimensions</td>
</tr>
<tr>
<td></td>
<td>5 epochs</td>
</tr>
</tbody>
</table>
Sutskever et al. Bahdanau et al.

<table>
<thead>
<tr>
<th>Component</th>
<th>Sutskever et al.</th>
<th>Bahdanau et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>vocabulary</td>
<td>160k enc, 80k dec</td>
<td>30k both</td>
</tr>
<tr>
<td>encoder</td>
<td>4× LSTM, 1,000 units</td>
<td>bidi GRU, 2,000</td>
</tr>
<tr>
<td>decoder</td>
<td>4× LSTM, 1,000 units</td>
<td>GRU, 1,000 units</td>
</tr>
<tr>
<td>word embeddings</td>
<td>1,000 dimensions</td>
<td>620 dimensions</td>
</tr>
<tr>
<td>training time</td>
<td>7.5 epochs</td>
<td>5 epochs</td>
</tr>
</tbody>
</table>

Comparison with Bahdanau’s model size:

<table>
<thead>
<tr>
<th>method</th>
<th>BLEU score</th>
</tr>
</thead>
<tbody>
<tr>
<td>encoder-decoder</td>
<td>13.9</td>
</tr>
<tr>
<td>attention model</td>
<td>28.5</td>
</tr>
</tbody>
</table>
We discussed:

- Basic building blocks of NN for NMT.
 - Fully-connected, RNN, LSTM and GRU.
 - Output softmax.
- Neural LM.
- Sequence-to-sequence (two RNNs attached).
 - Architecture.
 - Training.
 - Decoding (Greedy vs. Beam)
- Attention (decoder attends to a mix on encoder states).
References

