Approaches to MT: SMT, PBMT, NMT

Ondřej Bojar

March 5, 2020
Outline

• Approaches to MT.
• What makes MT statistical.
 • Probability of a sentence, Bayes’ law.
 • Log-linear model.
• Phrase-Based MT.
 • Features used.
 • Training Pipeline.
 • Unjustified independence assumptions.
• Neural MT.
 • Deep learning summary.
 • Representing text
 • Encoder-decoder architecture.
Approaches to Machine Translation

• The deeper analysis, the easier the **transfer** should be.
• A hypothetical interlingua captures pure meaning.
• Statistical systems learn “automatically” from data.
• Rule-based systems implemented by linguists-programmers.

Until NMT, it was best to combine the approaches.
Zap through History

• Rule-Based MT.
 Linguists/language experts write rules.
 Controlled Language: Authors restricted to produce MT-translatable text.

• Example-Based MT.
 Given translation memories, find examples similar to input.

• Statistical MT:
 1. Word-Based.
 2. Phrase-Based.
 3. Syntax-Based.
 4. Neural.
Quotes

Warren Weaver (1949):

I have a text in front of me which is written in Russian but I am going to pretend that it is really written in English and that it has been coded in some strange symbols. All I need to do is strip off the code in order to retrieve the information contained in the text.

Noam Chomsky (1969):

...the notion “probability of a sentence” is an entirely useless one, under any known interpretation of this term.

Frederick Jelinek (80’s; IBM; later JHU and sometimes ÚFAL)

Every time I fire a linguist, the accuracy goes up.

Hermann Ney (RWTH Aachen University):

\[MT = \text{Linguistic Modelling} + \text{Statistical Decision Theory} \]
The Statistical Approach

(Statistical = Information-theoretic.)

• Specify a probabilistic model.
 = How is the probability mass distributed among possible outputs given observed inputs.

• Specify the training criterion and procedure.
 = How to learn free parameters from training data.

Notice:

• Linguistics helpful when designing the models:
 • How to divide input into smaller units.
 • Which bits of observations are more informative.
Ultimate Goal of Traditional SMT

Find **minimum translation units** (MTUs) \sim graph partitions:

- such that they are frequent across many sentence pairs.
- without imposing (too hard) constraints on reordering.
- (ideally in an unsupervised fashion, no reliance on linguistics).

Available data: Word co-occurrence statistics:

- In large monolingual data (usually up to 10^9 words).
- In smaller parallel data (up to 10^7 words per language).
- Optional automatic rich linguistic annotation.
Given a source (foreign) language sentence \(f_1^J = f_1 \ldots f_j \ldots f_J \),
produce a target language (English) sentence \(e_1^I = e_1 \ldots e_j \ldots e_I \).
Among all possible target language sentences, choose the sentence with
the highest probability:

\[
\hat{e}_1^I = \underset{I, e_1^I}{\text{argmax}} \ p(e_1^I | f_1^J) \quad (1)
\]

We stick to the \(e_1^I, f_1^J \) notation despite translating from English to Czech.
Brute-Force MT

Translate only sentences listed in a “translation memory” (TM):

- Good morning. = Dobré ráno.
- How are you? = Jak se máš?
- How are you? = Jak se máte?

\[
p(e_1^I | f_1^J) = \begin{cases}
1 & \text{if } e_1^I = f_1^J \text{ seen in the TM} \\
0 & \text{otherwise}
\end{cases}
\] (2)

Any problems with the definition?
Brute-Force MT

Translate only sentences listed in a “translation memory” (TM):

Good morning. = Dobré ráno.
How are you? = Jak se máš?
How are you? = Jak se máte?

\[
p(e_1^I|f_1^J) = \begin{cases}
1 & \text{if } e_1^I = f_1^J \text{ seen in the TM} \\
0 & \text{otherwise}
\end{cases} \tag{2}
\]

• Not a probability. There may be \(f_1^J \), s.t. \(\sum_{e_1^I} p(e_1^I|f_1^J) > 1 \).

\implies \text{Have to normalize, use } \frac{\text{count}(e_1^I,f_1^J)}{\text{count}(f_1^J)} \text{ instead of } 1.

• Not “smooth”, no generalization:

Good morning. \implies \text{Dobré ráno.}
Good evening. \implies \emptyset
Bayes’ Law

Bayes’ law for conditional probabilities: \(p(a|b) = \frac{p(b|a)p(a)}{p(b)} \)

So in our case:

\[
\hat{e}_1^I = \arg\max_{I, e_1^I} p(e_1^I|f_1^J)
\]

Apply Bayes’ law

\[
= \arg\max_{I, e_1^I} \frac{p(f_1^J|e_1^I)p(e_1^I)}{p(f_1^J)}
\]

\[
= \arg\max_{I, e_1^I} p(f_1^J|e_1^I)p(e_1^I)
\]

\[
p(f_1^J) \text{ constant} \Rightarrow \text{irrelevant in maximization}
\]

Also called “Noisy Channel” model.
Motivation for Noisy Channel

\[\hat{e}_1^I = \arg \max_{I, e_1^I} p(f_1^J|e_1^I)p(e_1^I) \]

(3)

Bayes’ law divided the model into components:

\[p(f_1^J|e_1^I) \]
Translation model (“reversed”, \(e_1^I \rightarrow f_1^J \))

\[p(e_1^I) \]
Language model (LM)

...is it a likely translation?

...is the output a likely sentence of the target language?

- The components can be trained on different sources.
 There are far more monolingual data \(\Rightarrow \) language model can be more reliable.
Without Equations
Summary of Language Models

- $p(e_1^I)$ should report how “good” sentence e_1^I is.
- We surely want $p(\text{The the the.}) < p(\text{Hello.})$
- How about $p(\text{The cat was black.}) < p(\text{Hello.})$?

 …We don’t really care in MT. We hope to compare synonymic sentences.

LM is usually a 3-gram language model:

$$p(\overset{\leftarrow}{\text{The cat was black . } \overset{\leftarrow}{\longleftarrow}}) = p(\text{The} | \leftarrow \leftarrow) \cdot p(\text{cat} | \leftarrow \leftarrow) \cdot p(\text{was} | \leftarrow \leftarrow) \cdot p(\leftarrow \leftarrow | \leftarrow \leftarrow)$$

Formally, with $n = 3$:

$$p_{LM}(e_1^I) = \prod_{i=1}^{I} p(e_i | e_{i-n+1}^{i-1}) \quad (4)$$
Estimating and Smoothing LM

Unigram probabilities.

\[p(w_1) = \frac{\text{count}(w_1)}{\text{total words observed}} \]

Bigram probabilities.

\[p(w_2|w_1) = \frac{\text{count}(w_1w_2)}{\text{count}(w_1)} \]

Trigram probabilities.

\[p(w_3|w_2, w_1) = \frac{\text{count}(w_1w_2w_3)}{\text{count}(w_1w_2)} \]

Unseen ngrams (\(p(ngram) = 0 \)) are a big problem, invalidate whole sentence:

\[p_{LM}(e^I_1) = \cdots 0 \cdots = 0 \]

\[\Rightarrow \text{Back-off with shorter ngrams:} \]

\[p_{LM}(e^I_1) = \prod_{i=1}^{I} \left(0.8 \cdot p(e_i|e_{i-1}, e_{i-2}) + 0.15 \cdot p(e_i|e_{i-1}) + 0.049 \cdot p(e_i) + 0.001 \right) \neq 0 \]
Och (2002) discusses some problems of Equation 3:

- Models estimated unreliably \Rightarrow maybe LM more important:

 $$\hat{e}_{I}^{I} = \arg\max_{I, e_{I}^{I}} p(f_{I}^{J}|e_{I}^{I}) (p(e_{I}^{I}))^2$$

 (6)

- In practice, “direct” translation model equally good:

 $$\hat{e}_{I}^{I} = \arg\max_{I, e_{I}^{I}} p(e_{I}^{I}|f_{I}^{J}) p(e_{I}^{I})$$

 (7)

- Complicated to correctly introduce other dependencies. \Rightarrow Use log-linear model instead.
Log-Linear Model (1)

• \(p(e^I_1|f^J_1) \) is modelled as a weighted combination of models, called “feature functions”: \(h_1(\cdot, \cdot) \ldots h_M(\cdot, \cdot) \)

\[
p(e^I_1|f^J_1) = \frac{\exp\left(\sum_{m=1}^{M} \lambda_m h_m(e^I_1, f^J_1)\right)}{\sum_{e'^I_1} \exp\left(\sum_{m=1}^{M} \lambda_m h_m(e'^I_1, f^J_1)\right)}
\]

(8)

• Each feature function \(h_m(e, f) \) relates source \(f \) to target \(e \).
 E.g. the feature for \(n \)-gram language model:

\[
h_{LM}(f^J_1, e^I_1) = \log \prod_{i=1}^{I} p(e_i|e_{i-n+1}^{i-1})
\]

(9)

• Model weights \(\lambda_1^M \) specify the relative importance of features.
As before, the constant denominator not needed in maximization:

\[
\hat{e}_1 = \arg\max_{I, e_1} \frac{\exp\left(\sum_{m=1}^{M} \lambda_m h_m(e^I_1, f^J_1)\right)}{\sum_{e'_1} \exp\left(\sum_{m=1}^{M} \lambda_m h_m(e'^I_1, f^J_1)\right)}
\]

(10)

\[
= \arg\max_{I, e_1} \exp\left(\sum_{m=1}^{M} \lambda_m h_m(e^I_1, f^J_1)\right)
\]
Relation to Noisy Channel

With equal weights and only two features:

- \(h_{\text{TM}}(e_1^I, f_1^J) = \log p(f_1^J | e_1^I) \) for the translation model,
- \(h_{\text{LM}}(e_1^I, f_1^J) = \log p(e_1^I) \) for the language model,

log-linear model reduces to Noisy Channel:

\[
\hat{e}_1^I = \arg\max_{I,e_1^I} \exp(\sum_{m=1}^{M} \lambda_m h_m(e_1^I, f_1^J)) = \arg\max_{I,e_1^I} \exp(h_{\text{TM}}(e_1^I, f_1^J) + h_{\text{LM}}(e_1^I, f_1^J)) = \arg\max_{I,e_1^I} \exp(\log p(f_1^J | e_1^I) + \log p(e_1^I)) = \arg\max_{I,e_1^I} p(f_1^J | e_1^I)p(e_1^I)
\] (11)
Common Features of PBMT

- Phrase translation probability:
 \[h_{\text{Phr}}(f_1^J, e_1^I, s_1^K) = \log \prod_{k=1}^{K} p(\tilde{f}_k | \tilde{e}_k) \]
 where \(p(\tilde{f}_k | \tilde{e}_k) = \frac{\text{count}(\tilde{f}, \tilde{e})}{\text{count}(\tilde{e})} \)

 ⇒ Are all used units \(\tilde{f} \leftrightarrow \tilde{e} \) likely translations?

- Word count/penalty: \(h_{\text{wp}}(e_1^I, \cdot, \cdot) = I \)
 ⇒ Do we prefer longer or shorter output?

- Phrase count/penalty: \(h_{\text{pp}}(\cdot, \cdot, s_1^K) = K \)
 ⇒ Do we prefer translation in more or fewer less-dependent bits?

- Reordering model: different basic strategies (Lopez, 2009)
 ⇒ Which source spans can provide continuation at a moment?

- \(n \)-gram LM: \(h_{\text{LM}}(\cdot, e_1^I, \cdot) = \log \prod_{i=1}^{I} p(e_i | e_{i-n+1}^{i-1}) \)
 ⇒ Is output \(n \)-gram-wise coherent?
Features: Constructing or Scoring?

Are features used to construct hypotheses or just score them?

- Phrase translation probabilities: ⇒ for construction, see below.
- Counts/penalties: ⇒ for scoring only.
- Language models: ⇒ for scoring only.
 But it *could* be used for construction: predict next word and confirm from translation.
Traditional MT “Pipeline”

“Training the Translation Model”

1. Find relevant parallel texts.
2. Align at the level of sentences.
3. Align at the level of words.
4. Extract translation units, with scores (co-oc. stats.).
 (Language Model similar, “simple” words co-oc. stats, no alignment.)

“Tuning” (“MERT”) = Actual training in the ML sense

5. Identify TM/LM/other model component weights.

Translation:

6. Decompose input into known units.
7. Search for best combinations of units.
1: Align Training Sentences

Nemám žádného psa. Viděl kočku.
I have no dog. He saw a cat.
Nemám žádného psa. I have no dog. Viděl kočku. He saw a cat.
Nemám žádného psa. I have no dog.

Viděl kočku. He saw a cat.
Nemám žádného psa.
I have no dog.

Viděl kočku.
He saw a cat.

New input: Nemám kočku.
Nemám žádného psa. I have no dog.
Viděl kočku. He saw a cat.

New input: Nemám kočku. New input: I don't have cat.
I have no dog.

He saw a cat.

I don't have cat.
New input: I have no dog. He saw a cat.

... I don't have cat.
Meaning Got Reversed!

Nemám žádného psa.
I have no dog.

Viděl kočku.
He saw a cat.

New input: Nemám kočku.
I don't have a cat.
\[\hat{e}_1^I = \arg\max_{I, e_1^I} p(f_1^J | e_1^I) p(e_1^I) = \arg\max_{I, e_1^I} \prod_{(\hat{f}, \hat{e}) \in \text{phrase pairs of } f_1^J, e_1^I} p(\hat{f} | \hat{e}) p(e_1^I) \] (12)

• Too strong phrase-independence assumption.
 • Phrases do depend on each other.
 Here “nemám” and “žádného” jointly express one negation.
 • Word alignments ignored that dependence.
 But adding it would increase data sparseness.

• Language model is a separate unit.
 • \(p(e_1^I) \) models the target sentence independently of \(f_1^J \).
What if we modelled $p(e_1^I|f_1^J)$ directly, word by word:

$$p(e_1^I|f_1^J) = p(e_1, e_2, \ldots e_I|f_1^J)$$

$$= p(e_1|f_1^J) \cdot p(e_2|e_1, f_1^J) \cdot p(e_3|e_2, e_1, f_1^J) \cdots$$

$$= \prod_{i=1}^{I} p(e_i|e_1, \ldots e_{i-1}, f_1^J)$$

...this is “just a cleverer language model.”

$$p(e_1^I) = \prod_{i=1}^{I} p(e_i|e_1, \ldots e_{i-1})$$

Main Benefit: All dependencies available. But what technical device can learn this?
NNs: Universal Approximators

- A neural network with a single hidden layer (possibly huge) can approximate any continuous function to any precision.
- (Nothing claimed about learnability.)

\[-0.43x_1 - 0.89x_2 + 2.0 > 0\]
and \[-0.67x_1 + 0.89x_2 + 2.1 > 0\]
and \[1.4x_1 - 0.067x_2 + 2.3 > 0\]
A DL “Program” Is Just a Computation…

In fact:
\[1 \tanh(-0.43x_1 - 0.89x_2 + 2.0) \]
\[+ 1 \tanh(-0.67x_1 + 0.89x_2 + 2.1) \]
\[+ 1 \tanh(1.4x_1 - 0.067x_2 + 2.3) - \pi/2 > 0 \]
In fact:

\[1 \tanh(-0.43x_1 - 0.89x_2 + 2.0) + 1 \tanh(-0.67x_1 + 0.89x_2 + 2.1) + 1 \tanh(1.4x_1 - 0.067x_2 + 2.3) - \pi/2 > 0\]
Perfect Features

\[1x_1^2 + 1x_2^2 - 1 < 0 \]
Bad Features & Low Depth
Too Complex NN Fails to Learn

This is the output from one neuron. Hover to see it larger.

The outputs are mixed with varying weights, shown by the thickness of the lines.
Deep NNs for Image Classification

It's deep if it has more than one stage of non-linear feature transformation.
• Map each word to a vector of 0s and 1s (“1-hot repr.”):

\[
\text{cat} \mapsto (0, 0, \ldots, 0, 1, 0, \ldots, 0)
\]

• Sentence is then a matrix:

<table>
<thead>
<tr>
<th></th>
<th>the</th>
<th>cat</th>
<th>is</th>
<th>on</th>
<th>the</th>
<th>mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>about</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>cat</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>is</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>the</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>↓</td>
<td>zebra</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Vocabulary size:

- 1.3M English
- 2.2M Czech

Main drawback: No relations, all words equally close/far.
Processing Text with NNs

- **Map each word to a vector of 0s and 1s (“1-hot repr.”):**

 \[
 \text{cat} \mapsto (0, 0, \ldots, 0, 1, 0, \ldots, 0)
 \]

- **Sentence is then a matrix:**

<table>
<thead>
<tr>
<th>the</th>
<th>cat</th>
<th>is</th>
<th>on</th>
<th>the</th>
<th>mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>about</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>cat</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>is</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>zebra</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Vocabulary size:

- 1.3M English
- 2.2M Czech

Main drawback: No relations, all words equally close/far.
Processing Text with NNs

- Map each word to a vector of 0s and 1s ("1-hot repr."):
 \[\text{cat} \mapsto (0, 0, \ldots, 0, 1, 0, \ldots, 0) \]

- Sentence is then a matrix:

<table>
<thead>
<tr>
<th></th>
<th>the</th>
<th>cat</th>
<th>is</th>
<th>on</th>
<th>the</th>
<th>mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>about</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cat</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Vocabulary size: 1.3M English, 2.2M Czech

Main drawback: No relations, all words equally close/far.
Solution: Word Embeddings

- **Idea:** Map each word to a dense vector.
- **Result:** 300–2000 dimensions instead of 1–2M.
 - The dimensions have no clear interpretation.
- **The “embedding” is the mapping.**
 - Technically, the first layer of NNs for NLP is the matrix that maps 1-hot input to the first layer.

- **Embeddings are trained for each particular task.**
 - Sentence classification (sentiment analysis, etc.)
 - Neural language modelling.
 - The famous word2vec (Mikolov et al., 2013):
 - CBOW: Predict the word from its four neighbours.
 - Skip-gram: Predict likely neighbours given the word.
 - End-to-end neural MT.
Further Compression: Sub-Words

- SMT struggled with productive morphology (>1M wordforms).
 nejneobhodpodařovávatelnějšími, Donaudampfschifffahrtsgesellschaftskapitän
- NMT can handle only 30–80k dictionaries.

⇒ Resort to sub-word units.

<table>
<thead>
<tr>
<th></th>
<th>český politik svezl migranty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syllables</td>
<td>čes ký ⊔ po li tik ⊔ sve zl ⊔ mig ran ty</td>
</tr>
<tr>
<td>Morphemes</td>
<td>česk ý ⊔ politik ⊔ s vez l ⊔ migrant y</td>
</tr>
<tr>
<td>Char Pairs</td>
<td>če sk ý ⊔ po li ti k ⊔ sv ez l ⊔ mi gr an ty</td>
</tr>
<tr>
<td>Char Pairs</td>
<td>če s k ý ⊔ p o l i t i k ⊔ s v e z l ⊔ m i g r a n t y</td>
</tr>
<tr>
<td>BPE 30k</td>
<td>český politik s@@ vez@@ l mi@@ granty</td>
</tr>
</tbody>
</table>

BPE (Byte-Pair Encoding) uses n most common substrings (incl. frequent words).
Variable-Length Inputs

Variable-length input can be handled by recurrent NNs:

- Reading one input symbol at a time.
 - The same (trained) transformation used every time.
- Unroll in time (up to a fixed length limit).

Tricks needed to train (to avoid “vanishing gradients”):

- LSTM, Long Short-Term Memory Cells (Hochreiter and Schmidhuber, 1997).
- GRU, Gated Recurrent Unit Cells (Chung et al., 2014).

\[z_t = \sigma (W_z \cdot [h_{t-1}, x_t]) \]
\[r_t = \sigma (W_r \cdot [h_{t-1}, x_t]) \]
\[\tilde{h}_t = \tanh (W \cdot [r_t \ast h_{t-1}, x_t]) \]
\[h_t = (1 - z_t) \ast h_{t-1} + z_t \ast \tilde{h}_t \]
Cho et al. (2014) proposed:

- encoder-decoder architecture and
- GRU unit (name given later by Chung et al. (2014))
- to score variable-length phrase pairs in PBMT.
Sutskever et al. (2014) use:

- LSTM RNN encoder-decoder
- to consume and produce variable-length sentences.

First the Encoder:
Then the Decoder

Remember: $p(e_1^I|f_1^J) = p(e_1|f_1^J) \cdot p(e_2|e_1, f_1^J) \cdot p(e_3|e_2, e_1, f_1^J) \ldots$

- Again RNN, producing one word at a time.
- The produced word fed back into the network.
 - (Word embeddings in the target language used here.)
Encoder-Decoder Architecture

\[f = (\text{La, croissance, économique, s’est, ralentie, ces, dernières, années, .}) \]

\[e = (\text{Economic, growth, has, slowed, down, in, recent, years, .}) \]

Ultimate Goal of SMT vs. NMT

Goal of “classical” SMT (e.g. PBMT):
Find minimum translation units ~ graph partitions:
 • such that they are frequent across many sentence pairs.
 • without imposing (too hard) constraints on reordering.
 • in an unsupervised fashion.

Goal of neural MT:
Avoid minimum translation units. Find NN architecture that
 • Reads input in as original form as possible.
 • Produces output in as final form as possible.
 • Can be optimized end-to-end in practice.
Summary of the Lecture

- Statistical MT chooses the most probable sentence:
 \[\hat{e}_1 = \text{argmax}_{I,e} p(e_1^I | f_1^J) \]

- The probability modelled in Bayes’ or Log-Linear decomposition:
 \[\hat{e}_1 = \text{argmax}_{I,e} p(f_1^J | e_1^I)p(e_1^I) \]
 or \[\hat{e}_1 = \text{argmax}_{I,e} \exp(\sum_{m=1}^{M} \lambda_m h_m(e_1^I, f_1^J)) \]

- Phrase-Based MT models \(p(f_1^J | e_1^I) \) as product of phrase translation probabilities in a segmentation \(s^K_1: \prod_{k=1}^{K} p(\tilde{f}_k | \tilde{e}_k) \)

- Other (ling.-motivated) decompositions or features possible.

- Probabilities estimated from data (parallel/monolingual).

- Neural MT predict word by word; “just a clever LM”.
 - Sub-word units, word embeddings, encoder-decoder.
References

