Word and Sentence Representations

Ondřej Bojar

May 9, 2019
Course Outline

— Part I: MT as a Practical Application.
 1. Metrics of MT Quality.
 2. Approaches to MT. SMT, PBMT, NMT, NP-hardness.
 3. NMT (Seq2seq, Attention. Transformer). Neural Monkey.
 4. Parallel texts. Sentence and word alignment. hunalign, GIZA++.
 5. PBMT: Phrase Extraction, Decoding, MERT. Moses.
 6. Morphology in MT. Factors or segmenting, data or linguistics.
 7. Syntax in SMT (constituency, dependency, deep).
 8. Syntax in NMT (soft constraints/multitask, network structure).
— Part II: MT as a Step Towards Understanding.
— Part III: Advanced Topics.
 11. Advanced: Multi-Lingual MT. Chef’s Tricks.
 12. Project presentations: May 23, 2019
Outline

- Semiotic Triangle: Towards Understanding.
- Continuous Word Representations.
- Continuous Phrase Representations.
- Continuous Sentence Representations.
- Relating Human and NN Meaning Representations.
Semiotic Triangle by Ogden and Richards (1923).
Danny approached the chair with a yellow bag.

Ambiguous sentence...
Semiotic Triangle

```
Danny approached the chair with a yellow bag.

Thought or Reference
Symbol Referent
Correct symbol symbolises
Adequate thought refers to
True symbol stands for

Ambiguous sentence correspond to two situations.
```
Danny approached the chair with a yellow bag.

Syntactic “meaning” distinguishes this already.
Lambda calculus makes the difference clear.
Danny approached the chair with a yellow bag.

NN activations will somehow differ, too.
Word Embeddings

- Map each word to a dense vector.
- In practice 300–2000 dimensions are used, not 1–2M.
 - The dimensions have no clear interpretation.
- Embeddings are trained for each particular task.
 - NNs: The matrix that maps 1-hot input to the first layer.
- The famous word2vec (Mikolov et al., 2013a):
 - CBOW: Predict the word from its four neighbours.
 - Skip-gram: Predict likely neighbours given the word.

Right: CBOW with just a single-word context (http://www-personal.umich.edu/~ronxin/pdf/w2vexp.pdf)
Word2vec embeddings show interesting properties:

\[v(\text{king}) - v(\text{man}) + v(\text{woman}) \approx v(\text{queen}) \] (1)
<table>
<thead>
<tr>
<th>Question Type</th>
<th>Sample Pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>capital-countries</td>
<td>Athens – Greece</td>
</tr>
<tr>
<td>capital-world</td>
<td>Abuja – Nigeria</td>
</tr>
<tr>
<td>currency</td>
<td>Algeria – dinar</td>
</tr>
<tr>
<td>city-in-state</td>
<td>Houston – Texas</td>
</tr>
<tr>
<td>family</td>
<td>boy – girl</td>
</tr>
<tr>
<td>adjective-to-adverb</td>
<td>calm – calmly</td>
</tr>
<tr>
<td>opposite</td>
<td>aware – unaware</td>
</tr>
<tr>
<td>comparative</td>
<td>bad – worse</td>
</tr>
<tr>
<td>superlative</td>
<td>bad – worst</td>
</tr>
<tr>
<td>present-participle</td>
<td>code – coding</td>
</tr>
<tr>
<td>nationality-adjective</td>
<td>Albania – Albanian</td>
</tr>
<tr>
<td>past-tense</td>
<td>dancing – danced</td>
</tr>
<tr>
<td>plural</td>
<td>banana – bananas</td>
</tr>
<tr>
<td>plural-verbs</td>
<td>decrease – decreases</td>
</tr>
</tbody>
</table>
Problems of the Testset

- Only 3 types of “semantic” questions:
 - city-state/country, country-currency, feminine-masculine.
 - Vylomova et al. (2016) mentions many other sem. relationships:
 - e.g. walk-run, dog-puppy, bark-dog, cook-eat and others.

- “Syntactic” questions broader, but:
 - Constructed from just a few dozens of word pairs, comparing pairs with each other.
 - Overall only 313 distinct pairs throughout the whole set of 10675 questions.
 - Moreover, 268 of the 313 pairs are regularly formed:
 - e.g. by adding the suffix +ly for adj→adv.

- A better test set for Czech morphosyntax released by Kocmi and Bojar (2016)
The whole idea of evaluating word vector by similarity is risky.

- Human-produced datasets are subjective.
- Similarity vs. relatedness.
 - Relatedness: *teacher* \approx *student*, *coffee* \approx *cup*
 - Similarity: *teacher* \approx *professor*, *car* \approx *train*
- Hill et al. (2017) observed a soft tendency:
 - Monolingual models reflect non-specific relatedness,
 - NMT models reflect conceptual similarity.
- Even if we distinguish them, which should be reflected in embeddings?

Details: Faruqui et al. (2016); Survey of eval. methods: Bakarov (2018)
Abdou et al. (2017)

- English-to-Czech MT, English embeddings optionally pre-trained.
 - (No improvement for NMT; Kocmi and Bojar (2017) saw a quicker start of training.)
- Evaluated embeddings from monolingual and parallel training:

<table>
<thead>
<tr>
<th>Embeddings from Monolingual Training</th>
<th>NMT Training</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CBOB (no BPE)</td>
</tr>
<tr>
<td>Vocabulary</td>
<td></td>
</tr>
<tr>
<td>WordSim-353 (ρ)</td>
<td>0.320</td>
</tr>
<tr>
<td>MEN (ρ)</td>
<td>0.300</td>
</tr>
<tr>
<td>SimLex-999 (ρ)</td>
<td>0.064</td>
</tr>
</tbody>
</table>

Pairwise cosine similarity between embeddings and standard human judgments for the common subset of the vocabularies. Best result in each row in bold.
- “Baseline” = learned by NMT only, “Pretrained” = init. by CBOB (BPE).
- Parallel \Rightarrow best for Similarity, Monolingual \Rightarrow Relatedness (MEN).
Mikolov et al. (2013b) extend SkipGram to non-compositional phrases:

- Phrases identified in a pre-processing step used as atomic tokens.
- Vector compositionality: \(v(\text{Czech}) + v(\text{currency}) \approx v(\text{koruna}) \)

Cho et al. (2014) propose:

- encoder-decoder architecture and
- GRU unit (name given later by Chung et al. (2014))
- to score variable-length phrase pairs in PBMT.
⇒ Embeddings of Phrases
Reveal Syntactic Similarity
... and Semantic Similarity
Encoder-Decoder Architecture

\[f = (\text{La, croissance, économique, s'est, ralentie, ces, dernières, années, }) \]

\[e = (\text{Economic, growth, has, slowed, down, in, recent, years, }) \]
Continuous Space of Sentences

2-D PCA projection of 8000-D space representing sentences (Sutskever et al., 2014).
What can you cram into a single vector?

Raymond Mooney: You can’t cram the meaning of a whole %&!$ing sentence into a single $&!*ing vector!

Conneau and Kiela (2018) introduce SentEval:
- Given a sentence representation function, assess the fitness of the representation in multiple tasks.
 https://github.com/facebookresearch/SentEval/

Conneau et al. (2018) and others then compare several reprs incl.:
- SkipThough (Kiros et al., 2015):
 - Predict sentence given the surrounding sentences.
- InferSent (Conneau et al., 2017):
 - Train sentence representations on predicting entailment.
Cífka and Bojar (2018)

- Trained several variations of Cho et al. (2014).
 - Multiple heads, to emulate attention while having a fixed-size sentence representation.
- Evaluated the models in terms of NMT (BLEU) and meaning representation evaluations:
 - SentEval,
 - Similarity of vectors corresponding to paraphrases.
- All similarity measures correlate with each other.
- BLEU is negatively correlated with them.
 The better the translation in terms of BLEU, the worse the sentence representation serves in tasks like sentiment analysis etc.
Whan could vectors encode?

Karlgren and Kanerva (2019) show “Holographic Reduced Repr”:

- Addition: Preserves similarity, useful to represent bag-of-...
- Hadamard product (elem-wise multiplication),
 - Invertible; product dissimilar to its operands: $A \ast B \sim A$.
 - Bipolar vectors ($\{-1, +1\}^n$) are inverse of themselves.
 - Can represent variable assignment $\{x = a, y = b, z = c\}$ using bipolar vectors X, Y, and Z added into a vector $(X \ast A) + (Y \ast B) + (Z \ast C)$.

 To recover the value of x, multiply by X:

 $X \ast (X \ast A) + X \ast (Y \ast B) + X \ast (Z \ast C)) = A + \text{noise} + \text{noise} \sim A$

- Vector permutation,
 - Also invertible; dissimilar; enormous number of permutations.
 - Useful to represent structures, e.g. lists: Π_1 for CAR Π_2 for CDR:

 (a, b) represented with $\Pi_1(a) + \Pi_2(b)$

(In highly-dimensional spaces, most vectors are dissimilar; cosine or Pearson correlation of 0.25 indicate close similarity.)
... let’s take inspiration in ape and human vision first.
Systems neuroscience: the non-human primate model

We think we know where the algorithms and representations that solve core object recognition live in the primate brain.

We can study those representations at the level of neuronal spikes in a model system with comparable behavioral abilities.

We can directly compare the properties of those representations with likely homologous regions in humans.
The ventral visual processing stream

Key cortical circuits and algorithms are unknown; remarkable potential
Are any IT neural codes sufficient to explain human object recognition?

The simple hypothesis:
Automatically-evoked spike rate codes distributed over non-human primate IT cortex can fully explain human object recognition

1. Define a set of challenging object recognition (O.R.) tasks
2. Measure human behavioral performance in all of those O.R. tasks

Same images

3. Measure large samples of neuronal population spiking responses

4. Ask: can these proposed links quantitatively explain O.R. behavior?

Strong correlational methods. Causality is our next step.

Our goal is NOT simply “extracting information” from the brain.
64 objects, can generate as many images as we like
full parametric control
“natural” statistics
uncorrelated, new background every image
not fully “natural” by design -- challenging for computer vision, doable by humans
DiCarlo 2013 Tutorial on Vision

Mosaic of human ability (d’)
Object recognition 1.0

Performance (d’)

Amount of variation

Low

Med

High

Animals

Boats

Cars

Chairs

Faces

Fruits

Planes

Tables

Astra

Beetle

BMW

Chlo

Alfa

Bora

Cello

23

Face1

Face2

Face3

Face4

Face5

Face6

Face7

Face8

Basic

Subordinate(cars)

Subordinate(faces)
Methods advance: large scale neuronal recording along the ventral stream
One decoder for each task

• Linear discriminant ("classifier")
• Learn weights that optimize performance

IT neural responses

Image #

IT Neuron #

These decoders are simple, specific, instantiated hypotheses about how neuronal activity gives rise to behavior.
DiCarlo 2013 Tutorial on Vision

- **IT.70-170ms.SVM**
 - Predicted human performance vs. actual human performance
 - $r = 0.91$
 - $n = 64$ tasks

- **V4.70-170ms.SVM**
 - Predicted human performance vs. actual human performance
 - $r = 0.49$
 - $n = 64$ tasks

- **Individual human**
 - Predicted human performance vs. actual human performance
 - $r = 0.937$
 - $n = 64$ tasks
IT population code that predicts behavior is available from 100 to 200 ms after stimulus onset.
Are any IT neural codes sufficient to explain human object recognition?

1. Define a set of challenging object recognition (O.R.) tasks

2. Measure human behavioral performance in all of those O.R. tasks

3. Measure large samples of neuronal population spiking responses

4. Ask: does the proposed link quantitatively predict O.R. behavior?

Compute predicted O.R. behavior from this neuronal activity ("codes", "decodes")

YES!
Vision: From Vision to Language

We can explain human/ape object recognition by:

- Recording apes’ neuronal activity and attaching a single-layer NN to interpret it
- Measuring human performance
 ... on the same object recognition tasks.
- and relating them.

Idea:

- Record NMT behaviour (all parameters accessible)
- and human behaviour, possibly recording:
 - Objective: reading studies, eye-tracking, ...
 - Subjective: introspection.
 ... on the same language processing tasks.
- and relate them.
Aspects of Meaning

- Meaning is a coarsening:
 - Pictures: Semantic segmentation ("reverse raytracing")
 - Programs: The output they give (caveat: undecidable).
 - Comp. Linguistics: Reference to real world? Speaker’s intention?

- Meaning can be shifted, modified.
- Meanings can be compared.
- Meaning is generally compositional.
- Linguistic meaning captures the structure of expressions:
 - Morphology, syntax, ...

- Pragmatics: Named entities, numbers, anaphora...
- Expressions are ambiguous.
- Meanings are vague.
- Continuousness.
Meaning as a Coarsening

Semantic Segmentation of Pictures

(a) input image

(b) object class segmentation of class *people*

(c) object instance segmentation of class *people*

(d) segmentation from expression “people in blue coat”

Manning (2015):

understanding novel and complex sentences crucially depends on being able to construct their meaning compositionally from smaller parts—words and multiword expressions—of which they are constituted.
Sentence-level embeddings always produced by an encoder.

- **Encoder** = A deterministic mapping from expression to meaning.
- Unclear how ambiguous expressions are and should be represented.

Ideally, an expression would correspond to a distribution over semantic space.
Meaning Statefulness

Stateful Meaning Representation:
- “The state of mind after having read this and produced this output so far.”
- Corresponds to models with attention.
- Btw needed to interpret humour (Gluscevskij, 2017).

Stateless Meaning Representation:
- Points correspond to expressions.
 - Ambiguity representation unclear.
- Points correspond to meanings.
 - As in models without attention.
Is Sentence Meaning Continuous?

We know that one English sentence can have 70k Czech translations (Bojar et al., 2013):

And even though he is a political veteran, the Councilor Karel Brezina responded similarly.

A ačkoli ho lze považovat za politického veterána, radní Březina reagoval obdobně.
A i přestože je politický matador, radní Karel Březina odpověděl podobně.
A přestože je to politický veterán, velmi obdobná byla i reakce radního K. Březiny.
A radní K. Březina odpověděl obdobně, jakkoli je politický veterán.
Byť ho lze označit za politického veterána, Karel Březina reagoval podobně.
Byť ho můžeme prohlásit za politického veterána, byla i odpověď K. Březiny velmi podobná.
K. Březina, i když ho lze prohlásit za politického veterána, odpověděl velmi obdobně.
Odpověď Karla Březiny byla podobná, navzdory tomu, že je politickým veteránem.
Radní Březina odpověděl velmi obdobně, navzdory tomu, že ho lze prohlásit za politického veterána.
Reakce K. Březiny, třebaže je politický veterán, byla velmi obdobná.
Velmi obdobná byla i odpověď Karla Březiny, ačkoli ho lze prohlásit za politického veterána.
Similarly for English (Dreyer and Marcu, 2012):

Premiere of Iraq Nuri al-Maliki was given an excuse by President Bush, who expressed his confidence in him, and he stated that the circumstances are complicated.
President Bush said that he trusts in Nouri Maliki, head of government of Iraq, and he stated that he finds an excuse for him "because the situation is tricky".
Head of cabinet of Iraq Nuri al-Maliki was given an excuse by President Bush, who expressed his trust in him, and he indicated that the circumstances are difficult.
Iraq’s head of cabinet Nuri al-Maliki was given a reason by President Bush, who expressed his trust in him, and he indicated that the case is tricky.
President Bush said that he has faith in Iraqi head of cabinet Nouri al-Maliki, and he stated that he finds an excuse for him "for the case is complicated".

Q: Are all these paraphrases close in sent embedding spaces?
Q: How entagled are manifolds of different sents?
... work in progress with Petra Barančíková
Examining Continuous Space

Proposed strategy:

1. Propose directions of exploration.
2. Generate seed pairs of sentences for each of the directions.
3. Collect specimens along the proposed directions:
 - interpolation, a “sentence in between”,
 - extrapolation, “a sentence further in the hinted direction”.
 - Allow people to say “impossible”.
4. Validate the relations.
5. Create the partially ordered set.
6. Search for a manifold covering the ordered set.

Work in progress with Chris Callison-Burch and Petra Barančíková.
Directions of Exploration (1/2)

- Politeness
- Tense
- Verity: How much the speaker believes the message.
- Modality: Willingness/Ability of the speaker to do it.
- “Counting” / Generic Numerals, Scalar adjectives
 - I saw a handful of people there. / a big crowd / a massive crowd.
 - freezing / cold / chilly
- “Negation”, but not only reversing the main predicate
- Complexity / simplicity, Length.

Thanks to Šárka Zikánová for some of the ideas.
Directions of Exploration (2/2)

- Specificity / Generality, Vagueness.
 - Geese fly / Geese migrate / Geese migrate south / The Canadian geese flew over the pond at friendly Farms in their southward migration.
 - Hammer the hook into the wall. / Put the hook on the wall. / Do the thingy in there.

- Contextual boundness.
 - Give it to him. / Give the parcel to the man at the counter. / Give your parcel to the operator at the post office.

- High/low style/English/class.
 - Hey y’all it’s a nice day ain’t it?
 - Greetings! Lovely weather we are having.
Can you please give me a minute? Could you leave me alone?
Close the door. Close the damn door man
Can you help me find something? I need you to help me get something.
May I talk to Mary? Is Mary here?
I’m sorry—I don’t believe we have met.
Can you move so I can see the screen? You aren’t made of glass, you know.
Will you kindly exit?
I do not want you here!
Would you please get the mail?
Get the mail!
Can I help you?
What do you want?
Can you please help me with this?
Get over here and help me!
Can you make me breakfast?
Why are you not making me breakfast right now?
I tried to call were you busy?
You never answer your phone.
Can you help me find something?

Would you help me look?
Find this for me.
Help me find something.
Please help me find something.
Will you help me?
Your assistance in finding something is required.
I need you to help me get something.
Can you please give me a minute?
I’d like a minute alone.
Please wait.
Give me a minute.
One moment.
I need more time.
Come back later
Hey give me a minute.
One minute.
I need a minute to myself.
Could you leave me alone?
Can you move so I can see the screen?

Blocking the view, friend.
Move your blocking the screen
Could you move a little bit, you’re blocking the screen.
Can you please move?
I can’t see, can you move a little?
Hey can you move.
Please move.
Can you move a bit?
You aren’t made of glass, you know.
After the Midpointing...

- Can you hurry eating?
- Are you finished with your food?
- Are you almost done eating?
- Are you finished with your food yet?
- Are you done eating yet?
- All done?
- Finished yet?
- Done with the food?
- You're still not done with your food?
Can you hurry eating?

Are you finished with your food?

Are you almost done eating?

Are you finished with your food yet?

Are you done eating yet?

All done?

Finished yet?

Done with the food?

You're still not done with your food?
Find Methods for Manifold Learning

- Can you hurry eating?
- All done?
- Are you almost done eating?
- Are you finished with your food? (Then: When will you be done with your food?)
- Are you finished with your food yet? (Then: Are you done eating yet?)
- Are you done eating yet? (Then: All done? or Finished yet? or Done with the food?)
- You're still not done with your food?
Match Posets with Learned Manifolds

- Can you hurry eating?
- All done?
- Are you almost done eating?
- Are you finished with your food?
- Are you finished with your food yet?
- Are you done eating yet?
- When will you be done with your food?
- You're still not done with your food?
- All done?
- Finished yet?
- Done with the food?

Manifold learning (semi-supervised)
Some Techniques of NN Inspection

- MicroNNs, e.g. Shi et al. (2016) learning length.
- Lobotomy.
- Exploring representation space.
 - t-SNE and PCA for sentence pairs
 - Translation by search = similarity in meaning reflected in space
 - Attaching an NN to see if it can infer:
 - POS or morphology from NMT
 - Subject-Verb agreement (Linzen et al. TACL/EACL 2017)
- Linguistic exploration:
 - Various test suites (Burlot 2017, Burchhardt MQM).
 - Stanford Natural Language Inference (SNLI)
 https://nlp.stanford.edu/projects/snli/
 - Paraphrases (see above).
Summary

- Word vectors common and heavily used.
 - With NNs or without, esp. for fallback/robustness.
 - Usually evaluated by similarity/relatedness (somewhat dubious).

- Phrase/sentence representations very actively studied.
 - As with words, sentence representations can capture many things.
 - Representations good for NMT so far not good for meaning.

- NMT/DL very attractive for studying human language.
 - Aspects of meaning discussed.
 - NNs fit very closely to the given task (BLEU vs. SentEval).

⇒ Multitask setups needed (still waiting for positive results).
References

