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Outline

• Intro: Dijskra and A* search.
• MT is NP-hard.
• Fast and optimal decoding.
• Stacks and future cost.
• Cube pruning.
• Hypergraph decoding.
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Dijkstra and A* Search

• Dijkstra’s algorithm for shortest path:
• Always extend the cheapest/shortest option.

• A* (A-Star) Search:
• Always extend the cheapest/shortest option.
• Include a consistent (optimistic) heuristic estimate of the remaining

distance (also called “future cost”).

Key data structure: stack of open hypotheses.
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A* Search

Dijkstra A*
a 1.5 a +4 = 5.5
d 2.0 b +2 = 5.5
b 3.5 d +4.5 = 6.5
e 5.0 e +2 = 7.0
c 5.5 goal +0 = 7.0

goal 7.0 c +4 = 9.5

Image from Wikipedia: http://en.wikipedia.org/wiki/A*_search_algorithm
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MT is NP-Hard
NP-hard problem:

• To solve the task of size 𝑛, strictly more than 𝑛𝑘 steps (for any
fixed 𝑘) have to be made.

• Usually this means, there are exponetially (𝑘𝑛) solutions to
consider.

Knight (1999) shows word-based MT is NP-hard for two reasons:
• Selecting source word order (→ Hamilton circuit).
• Grouping source words to form multi-word dictionary entries

(→ Minimum set cover).

• These are worst-case constructions.
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MT is NP-Hard (2/3)

• Remember the NP-hardness proof strategy:
• Use MT as a black box to solve an NP-complete task.

With a 2-gram language model, find-
ing the best word ordering solves the
Hamilton Circuit or Travelling Sales-
man Problem. (Knight, 1999)
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MT is NP-Hard (3/3)

Selecting a set of multi-word
translations to cover the whole
sentence solves Minimum Set
Cover Problem. (Knight, 1999)
Input: However, she cooked and left.
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Fast and Optimal Decoding
Germann et al. (2004) implement three word-based decoders:

• Stack-based.
• Similar to Moses but 2𝑛 stacks instead of 𝑛 stacks.

• Greedy.
• Start with the cheapest gloss.
• Modify alignment and translation to improve probability.

• Optimal (∼Traveling Salesman).
• Finding a tour through all source cities gives us target translation by

noting owners of hotels where we stayed.

Observations:
• Many pure modelling errors.
• Greedy decoding viable option.
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Stacks and Future Cost (1)
Remember Moses/Pharaoh stack-based decoding:

1 2 3 4 5 6

• 𝑛 stacks based on number of words covered.
• A stack contains hypotheses regardless which words were covered.

⇒ Not a fair comparison.
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Stacks and Future Cost (2)
dio una bofetada a la verdebrujanoMaria

Mary slap

e: Mary
f: *--------
p: .534

e: 
f: ---------
p: 1

e: ... slap
f: *-***----
p: .043

future
cost

future
costcovered covered

fc: .0006672 
p*fc:.000029 

0.1 0.006672

*

• Future cost to make the competition fair.
• Future cost = consistent heuristic estimate.

Optimistic, because LM will make attachments more expensive.
• No future cost would be needed, if stacks were infinite.
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Reranking
“Feature engineering”:

• Choosing the most promising hypotheses based on local
observations.

Some features need more context of output hypotheses, e.g.:
• Is the output hypothesis syntactically correct?

⇒ Need full parsing.
Reranking example:
1. Generate 𝑛-best list of hypotheses.
2. Parse all of them.
3. Prefer hypotheses with likely parses.
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Local vs. Non-local Features
Non-local features facilitate reranking of partial hyps. (Lopez, 2009)
While building partial hypotheses, decisions multiply:

0 1

Petr
Peter
Pete

2saw
noticed

3Mary
little Mary

3 ⋅ 2 ⋅ 2 = 12 hyps.
⇒ 𝑛-best lists
inevitably too short.

Local features access only input and current edge:
• Do we prefer to translate “Petr” as “Peter” or leave non-translated?

Non-local features access partial history:
• Do we prefer “Pete saw” or “Peter noticed”?
• Can be seen as state splitting depending on the relevant past context.
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Weighted Deduction

Lopez (2009) summarizes several decoders in a unified framework of
weighted deduction:

• Left-to-right, phrase-based, CKY.
• A hypergraph (see e.g. Huang (2008)) represents the

deductions: combining items according to deduction rules.
Non-local features:

• Accommodated by state splitting (“product” of logics).
See the slides by Adam Lopez.
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Cube Pruning

• Only a fraction of hypotheses constructed will escape pruning.
• Let’s not construct them at all!
• Instead: Construct elements of the product starting from the

(approximately) cheapest until the target stack is full.
• More details in Huang and Chiang (2007).
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Summary

• MT is NP hard.
• Sub-optimal algorithms (stack-based, greedy, …) used.

• Modelling errors are an issue.
• Future cost to reduce search errors.

• Local and non-local features.
• Unified view: translation as weighted deduction:

• State splitting.
• Cube pruning for stack-based decoding.
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