Chapter 6
Decoding

Statistical Machine Translation
Decoding

- We have a mathematical model for translation

 \[p(e|f) \]

- Task of decoding: find the translation \(e_{\text{best}} \) with highest probability

 \[e_{\text{best}} = \arg\max_e p(e|f) \]

- Two types of error

 - the most probable translation is bad \(\rightarrow \) fix the model
 - search does not find the most probable translation \(\rightarrow \) fix the search

- Decoding is evaluated by search error, not quality of translations (although these are often correlated)
Translation Process

• Task: translate this sentence from German into English

 er geht ja nicht nach hause
Translation Process

• Task: translate this sentence from German into English

er geht ja nicht nach hause

• Pick phrase in input, translate

Chapter 6: Decoding
Translation Process

- Task: translate this sentence from German into English

\[\text{er geht ja nicht nach hause} \]

- Pick phrase in input, translate
 - it is allowed to pick words out of sequence reordering
 - phrases may have multiple words: many-to-many translation
Translation Process

• Task: translate this sentence from German into English

er geht ja nicht nach hause

he does not go

• Pick phrase in input, translate
Translation Process

- Task: translate this sentence from German into English

```
er geht ja nicht nach hause
he does not go home
```

- Pick phrase in input, translate
Computing Translation Probability

- Probabilistic model for phrase-based translation:

\[
e_{\text{best}} = \arg\max_e \prod_{i=1}^{I} \phi(\overline{f}_i|\overline{e}_i) \ d(\text{start}_i - \text{end}_{i-1} - 1) \ p_{\text{LM}}(e)
\]

- Score is computed incrementally for each partial hypothesis

- Components

 Phrase translation Picking phrase \(\overline{f}_i \) to be translated as a phrase \(\overline{e}_i \)
 \(\rightarrow \) look up score \(\phi(\overline{f}_i|\overline{e}_i) \) from phrase translation table

 Reordering Previous phrase ended in \(\text{end}_{i-1} \), current phrase starts at \(\text{start}_i \)
 \(\rightarrow \) compute \(d(\text{start}_i - \text{end}_{i-1} - 1) \)

 Language model For \(n \)-gram model, need to keep track of last \(n - 1 \) words
 \(\rightarrow \) compute score \(p_{\text{LM}}(w_i|w_{i-(n-1)}, \ldots, w_{i-1}) \) for added words \(w_i \)
Many translation options to choose from

- in Europarl phrase table: 2727 matching phrase pairs for this sentence
- by pruning to the top 20 per phrase, 202 translation options remain
- The machine translation decoder does not know the right answer
 - picking the right translation options
 - arranging them in the right order

 → Search problem solved by heuristic beam search
Decoding: Precompute Translation Options

consult phrase translation table for all input phrases
Decoding: Start with Initial Hypothesis

er geht ja nicht nach hause

initial hypothesis: no input words covered, no output produced
Decoding: Hypothesis Expansion

er geht ja nicht nach hause

pick any translation option, create new hypothesis
Decoding: Hypothesis Expansion

er geht ja nicht nach hause

create hypotheses for all other translation options
Decoding: Hypothesis Expansion

er geht ja nicht nach hause
are it he goes does not go to home
also create hypotheses from created partial hypothesis
Decoding: Find Best Path

backtrack from highest scoring complete hypothesis
Computational Complexity

- The suggested process creates exponential number of hypothesis

- Machine translation decoding is NP-complete

- Reduction of search space:
 - recombination (risk-free)
 - pruning (risky)
Recombination

- Two hypothesis paths lead to two matching hypotheses
 - same number of foreign words translated
 - same English words in the output
 - different scores

- Worse hypothesis is dropped
Recombination

• Two hypothesis paths lead to hypotheses indistinguishable in subsequent search
 – same number of foreign words translated
 – same last two English words in output (assuming trigram language model)
 – same last foreign word translated
 – different scores

• Worse hypothesis is dropped
Restrictions on Recombination

- **Translation model:** Phrase translation independent from each other
 → no restriction to hypothesis recombination

- **Language model:** Last $n - 1$ words used as history in n-gram language model
 → recombined hypotheses must match in their last $n - 1$ words

- **Reordering model:** Distance-based reordering model based on distance to end position of previous input phrase
 → recombined hypotheses must have that same end position

- Other feature function may introduce additional restrictions
Pruning

• Recombination reduces search space, but not enough
 (we still have a NP complete problem on our hands)

• Pruning: remove bad hypotheses early
 – put comparable hypothesis into stacks
 (hypotheses that have translated same number of input words)
 – limit number of hypotheses in each stack
Stacks

- Hypothesis expansion in a stack decoder
 - translation option is applied to hypothesis
 - new hypothesis is dropped into a stack further down
Stack Decoding Algorithm

1: place empty hypothesis into stack 0
2: for all stacks 0…n – 1 do
3: for all hypotheses in stack do
4: for all translation options do
5: if applicable then
6: create new hypothesis
7: place in stack
8: recombine with existing hypothesis if possible
9: prune stack if too big
10: end if
11: end for
12: end for
Pruning

• Pruning strategies
 – histogram pruning: keep at most k hypotheses in each stack
 – stack pruning: keep hypothesis with score $\alpha \times$ best score ($\alpha < 1$)

• Computational time complexity of decoding with histogram pruning

\[O(\text{max stack size} \times \text{translation options} \times \text{sentence length}) \]

• Number of translation options is linear with sentence length, hence:

\[O(\text{max stack size} \times \text{sentence length}^2) \]

• Quadratic complexity
Reordering Limits

• Limiting reordering to maximum reordering distance

• Typical reordering distance 5–8 words
 – depending on language pair
 – larger reordering limit hurts translation quality

• Reduces complexity to linear

\[O(\text{max stack size} \times \text{sentence length}) \]

• Speed / quality trade-off by setting maximum stack size
Translating the Easy Part First?

the tourism initiative addresses this for the first time

both hypotheses translate 3 words
worse hypothesis has better score
Estimating Future Cost

- Future cost estimate: how expensive is translation of rest of sentence?

- Optimistic: choose cheapest translation options

- Cost for each translation option
 - translation model: cost known
 - language model: output words known, but not context
 → estimate without context
 - reordering model: unknown, ignored for future cost estimation
Cost Estimates from Translation Options

the tourism initiative addresses this for the first time

-1.0 -2.0 -1.5 -2.4 -1.4 -1.0 -1.0 -1.9 -1.6

-4.0 -2.5 -2.2

-1.3 -2.4

-2.7

-2.3

-2.3

-2.3

cost of cheapest translation options for each input span (log-probabilities)
Cost Estimates for all Spans

- Compute cost estimate for all contiguous spans by combining cheapest options

<table>
<thead>
<tr>
<th>first word</th>
<th>future cost estimate for (n) words (from first)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>-1.0</td>
</tr>
<tr>
<td>tourism</td>
<td>-2.0</td>
</tr>
<tr>
<td>initiative</td>
<td>-1.5</td>
</tr>
<tr>
<td>addresses</td>
<td>-2.4</td>
</tr>
<tr>
<td>this</td>
<td>-1.4</td>
</tr>
<tr>
<td>for</td>
<td>-1.0</td>
</tr>
<tr>
<td>the</td>
<td>-1.0</td>
</tr>
<tr>
<td>first</td>
<td>-1.9</td>
</tr>
<tr>
<td>time</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

- Function words cheaper (the: -1.0) than content words (tourism -2.0)
- Common phrases cheaper (for the first time: -2.3)
 than unusual ones (tourism initiative addresses: -5.9)
Combining Score and Future Cost

- Hypothesis score and future cost estimate are combined for pruning
 - left hypothesis starts with hard part: the tourism initiative
 score: -5.88, future cost: -6.1 → total cost -11.98
 - middle hypothesis starts with easiest part: the first time
 score: -4.11, future cost: -9.3 → total cost -13.41
 - right hypothesis picks easy parts: this for ... time
 score: -4.86, future cost: -9.1 → total cost -13.96
Other Decoding Algorithms

- A* search
- Greedy hill-climbing
- Using finite state transducers (standard toolkits)
- Stochastic Search
A* Search

- Uses *admissible* future cost heuristic: never overestimates cost
- Translation agenda: create hypothesis with lowest score + heuristic cost
- Done, when complete hypothesis created
Greedy Hill-Climbing

• Create one complete hypothesis with depth-first search (or other means)

• Search for better hypotheses by applying change operators
 – change the translation of a word or phrase
 – combine the translation of two words into a phrase
 – split up the translation of a phrase into two smaller phrase translations
 – move parts of the output into a different position
 – swap parts of the output with the output at a different part of the sentence

• Terminates if no operator application produces a better translation
Summary

• Translation process: produce output left to right

• Translation options

• Decoding by hypothesis expansion

• Reducing search space
 – recombination
 – pruning (requires future cost estimate)

• Other decoding algorithms