Basic Sequence-to-Sequence (with Attention)

Ondřej Bojar

March 14, 2019
• Basic NN building blocks for NMT.
• Processing Text.
• Neural Language Model.
• Vanilla Sequence-to-Sequence.
• Attention.

Slides on RNN LM, Enc-Dec and others by Jindra Helcl.
Basic NN Building Blocks
• One fully-connected layer converts an input (column) vector x to an output (column) vector h:

$$h = f(Wx + b),$$

1. W is a weight matrix of *input* columns and *output* rows,
2. b a bias vector of length of *output*,
3. $f(\cdot)$ is a non-linearity applied usually elementwise.
One Layer \(\tanh(Wx + b), \) 2D→2D

Skew:
\(W \)

Transpose:
\(b \)

Non-lin.:
\(\tanh \)

Feed-Forward Neural Network

\[
\begin{align*}
\text{STEP 1:} & \\
\text{Input: } & x \\
\text{Output: } & h_1 = f(W_1 x + b_1) \\
\text{STEP 2:} & \\
\text{Input: } & h_1 \\
\text{Output: } & h_2 = f(W_2 h_1 + b_2) \\
\text{STEP n:} & \\
\text{Input: } & h_{n-1} \\
\text{Output: } & h_n = f(W_n h_{n-1} + b_n) \\
\text{FINAL OUTPUT:} & o = g(W_o h_n + b_o) \\
\text{Loss:} & E = e(o, t)
\end{align*}
\]

- **BLUE**: Training item (input \(x\), output \(t\)), **red**: Trainable parameters.

\[
\frac{\partial E}{\partial W_o} = \frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial W_o}
\]

Basic NN Building Blocks Processing Text Neural Language Modeling Encoder-Decoder Architecture Attentive Sequence-to-Sequence Learning Encoder-Decoder vs. Attentive
Four Layers, Disentagling Spirals

Variable-length input can be handled by recurrent NNs:

- Processing one input symbol at a time.
 - Initial state $h_0 = (0)$ (or some sentence representation).
 - The same (trained) transformation A used every time.

$$h_t = A(h_{t-1}, x_t)$$ \hspace{1cm} (2)

- Unroll in time (up to a fixed length limit).
Vanilla RNN

\[h_t = \tanh(W[h_{t-1}; x_t] + b) \]

- Vanishing gradient problem.
- Non-linear transformation always applied.
 \(\Rightarrow \) Type theory: \(h_t \) and \(h_{t-1} \) live in different vector spaces.
LSTM and GRU Cells for RNN

- LSTM, Long Short-Term Memory Cells (Hochreiter and Schmidhuber, 1997).
- GRU, Gated Recurrent Unit Cells (Chung et al., 2014):

\[
\begin{align*}
 z_t &= \sigma (W_z[h_{t-1}; x_t] + b_z) \\
 r_t &= \sigma (W_r[h_{t-1}; x_t] + b_r) \\
 \tilde{h}_t &= \tanh (W[r_t \odot h_{t-1}; x_t]) \\
 h_t &= (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t
\end{align*}
\]

- Gates control:
 - what to use from input \(x_t \) (GRU: everything),
 - what to use from hidden state \(h_{t-1} \) (reset gate \(r_t \)),
 - what to put into output (update gate \(z_t \))
- Linear “information highway” preserved.

\(\Rightarrow \) All states \(h_t \) belong to the same vector space.
Processing Text
From Categorical Words to Numbers

• Map each word to a vector of 0s and 1s ("1-hot repr."):
 \[\text{cat} \mapsto (0, 0, \ldots, 0, 1, 0, \ldots, 0) \]

• Sentence is then a matrix:

<table>
<thead>
<tr>
<th></th>
<th>the</th>
<th>cat</th>
<th>is</th>
<th>on</th>
<th>the</th>
<th>mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>about</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Vocabulary size:
1.3M English
2.2M Czech

<table>
<thead>
<tr>
<th></th>
<th>the</th>
<th>cat</th>
<th>is</th>
<th>on</th>
<th>the</th>
<th>mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

↓
| | zebra | 0 | 0 | 0 | 0 | 0 |

Basic NN Building Blocks
Processing Text
Neural Language Modeling
Encoder-Decoder Architecture
Attentive Sequence-to-Sequence Learning
Encoder-Decoder vs. Attentive Models
Sub-Words to Reduce Vocabulary Size

- SMT struggles with productive morphology (>1M wordforms).
 - nejneobhodpodářovávatelnějšími, Donaudampfschifffahrts gesellschafts kapitän

- NMT can handle only 30–80k dictionaries.

⇒ Resort to sub-word units.

<table>
<thead>
<tr>
<th></th>
<th>český politik svezl migranty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orig</td>
<td></td>
</tr>
<tr>
<td>Syllables</td>
<td>čes ký po li tik sve zl mig ran ty</td>
</tr>
<tr>
<td>Morphemes</td>
<td>česk ý politik vez l migrant y</td>
</tr>
<tr>
<td>Char Pairs</td>
<td>česk ý po li ti k sv ez l mi gr an ty</td>
</tr>
<tr>
<td>Chars</td>
<td>česk ý politik vez l migrant y</td>
</tr>
</tbody>
</table>

BPE 30k český politik vezl migranty

BPE (Byte-Pair Encoding, (Sennrich et al., 2016)) or Google’s wordpieces (Wu et al., 2016) and Tensor2Tensor’s SubwordTextEncoder use \(n \) most common substrings (incl. frequent words).
Word (Actually Token) Embeddings

- **Idea:** Map each token to a dense vector in continuous space.
- **Result:** 300–2000 dimensions instead of 1–2M.
 - The dimensions have no clear interpretation.
- **The “embedding” is the mapping.**
 - Technically, the first layer of NNs for NLP is the matrix that maps 1-hot input to the first layer.

- **Embeddings are trained for each particular task.**
 - Sentence classification (sentiment analysis, etc.)
 - Neural language modelling.
 - The famous word2vec (Mikolov et al., 2013):
 - CBOW: Predict the word from its four neighbours.
 - Skip-gram: Predict likely neighbours given the word.
 - End-to-end neural MT.
Output: Softmax over Vocabulary

Outputs of the RNN are:

1. Projected (scaled up) to the size of the vocabulary V,
2. Normalized with softmax.

\Rightarrow Distribution over all possible target tokens.

- $l(w)_t = \text{logits/energies for word } w \text{ in time } t$
- W_l: weight matrix (hidden state × voc. size)

 \hspace{1cm} \ldots \text{this is } \textbf{big}.

- Softmax normalization: $\frac{\exp l(w)_t}{\sum_{w' \in V} \exp l(w')_t}$
 \hspace{1cm} \ldots \text{this is costly}.

- Tricks what to do with it (negative sampling, hierarchical softmax)

 \hspace{1cm} \text{– not frequently used}
Neural Language Modeling
RNN Language Model

- Train RNN as a **classifier for next words** (unlimited history):

 ![Diagram of RNN language model]

- Can be used:
 - To estimate sentence probability / perplexity.
 - To sample from the distribution:
Two Views on RNN LM

- RNN is a for loop / functional map over sequential data
- all outputs are conditional distributions
 → probabilistic distribution over sequences of words

\[P (w_1, \ldots, w_n) = \prod_{i=1}^{n} P (w_i | w_{i-1}, \ldots, w_1) \]
Bidirectional RNN for Input

- Read the input sentence from both sides.
- Concatenate hidden states from each direction.
- Every h_i stores information about the whole sentence.
Bidirectional RNN for Input

- read the input sentence from both sides
Bidirectional RNN for Input

- read the input sentence from both sides
- concatenate hidden states from each direction
- every h_i stores information about the whole sentence
Encoder-Decoder Architecture
Encoder-Decoder Architecture

• exploits the conditional LM scheme

Encoder-Decoder Architecture

- exploits the conditional LM scheme
- two networks

Encoder-Decoder Architecture

- exploits the conditional LM scheme
- two networks
 1. a network processing the input sentence into a single vector representation (encoder)

Encoder-Decoder Architecture

- exploits the conditional LM scheme
- two networks
 1. a network processing the input sentence into a single vector representation (encoder)
 2. a neural language model initialized with the output of the encoder (decoder)

source language input + target language LM
state = np.zeros(emb_size)
for w in input_words:
 input_embedding = source_embeddings[w]
 state, _ = enc_cell(encoder_state, input_embedding)

last_w = "<s>"
while last_w != "</s>":
 last_w_embedding = target_embeddings[last_w]
 state, dec_output = dec_cell(state, last_w_embedding)
 logits = output_projection(dec_output)
 last_w = np.argmax(logits)
yield last_w
Encoder-Decoder Model – Formal Notation

Data
input tokens (source language) \(x = (x_1, \ldots, x_{T_x}) \)
output tokens (target language) \(y = (y_1, \ldots, y_{T_y}) \)
Encoder-Decoder Model – Formal Notation

Data
input tokens (source language) \(x = (x_1, \ldots, x_{T_x}) \)
output tokens (target language) \(y = (y_1, \ldots, y_{T_y}) \)

Encoder
initial state \(h_0 \equiv 0 \)
\(j \)-th state \(h_j = \text{RNN}_{\text{enc}}(h_{j-1}, x_j) \)
final state \(h_{T_x} \)

Basic NN Building Blocks Processing Text Neural Language Modeling Encoder-Decoder Architecture Attentive Sequence-to-Sequence Learning Encoder-Decoder vs. Attentive Models
Data
input tokens (source language) \(x = (x_1, \ldots, x_{T_x}) \)
output tokens (target language) \(y = (y_1, \ldots, y_{T_y}) \)

Encoder
initial state \(h_0 \equiv 0 \)
\(j \)-th state \(h_j = \text{RNN}_{\text{enc}}(h_{j-1}, x_j) \)
final state \(h_{T_x} \)

Decoder
initial state \(s_0 = h_{T_x} \)
\(i \)-th decoder state \(s_i = \text{RNN}_{\text{dec}}(s_{i-1}, \hat{y}_i) \)
\(i \)-th word score \(t_{i+1} = U_o + V_o E y_i + b_o \)
\text{or multi-layer projection}
output \(\hat{y}_{i+1} = \text{arg max} t_{i+1} \)
Encoder-Decoder: Training Objective

For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_i}$ (softmax function)

...computing $\frac{\partial \mathcal{L}}{\partial t_i}$ is super simple ...

...but we expect the model to produce the exact word at the exact position!
For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_i}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1[y_i]$
For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_i}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1[y_i]$

Cross entropy \approx distance of \hat{p} and p:

$$\mathcal{L} = H(\hat{p}, p) = E_p (-\log \hat{p})$$
Encoder-Decoder: Training Objective

For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_i}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1[y_i]

Cross entropy \approx distance of \hat{p} and p:

$$\mathcal{L} = H(\hat{p}, p) = E_p (-\log \hat{p}) = -\sum_{v \in V} p(v) \log \hat{p}(v) = -\log \hat{p}(y_i)$$
Encoder-Decoder: Training Objective

For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\exp t_i}{\sum \exp t_i}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1[y_i]$

Cross entropy \approx distance of \hat{p} and p:

$$\mathcal{L} = H(\hat{p}, p) = \mathbf{E}_p (- \log \hat{p}) = - \sum_{v \in V} p(v) \log \hat{p}(v) = - \log \hat{p}(y_i)$$

...computing $\frac{\partial \mathcal{L}}{\partial t_i}$ is super simple
Encoder-Decoder: Training Objective

For output word y_i we have:

- estimated conditional distribution $\hat{p}_i = \frac{\text{exp} t_i}{\sum \text{exp} t_i}$ (softmax function)
- unknown true distribution p_i, we lay $p_i \equiv 1[y_i]

Cross entropy \approx distance of \hat{p} and p:

$$L = H(\hat{p}, p) = E_p (-\log \hat{p}) = -\sum_{v \in V} p(v) \log \hat{p}(v) = -\log \hat{p}(y_i)$$

...computing $\frac{\partial L}{\partial t_i}$ is super simple

...but we expect the model to produce the exact word at the exact position!
Implementation: Runtime vs. Training

Runtime: \hat{y}_j (decoded) \times **Training:** y_j (ground truth)

[Diagram showing processing text with encoder-decoder architecture and loss calculation]
Encoder-Decoder Architecture

Decoding
Greedy Decoding

- In each step, the model computes a distribution over the vocabulary V (given source x, the previous outputs h, and the model parameters θ).

$$p(y|h) = g(x, h, \theta)$$
Greedy Decoding

• In each step, the model computes a distribution over the vocabulary V (given source x, the previous outputs h, and the model parameters θ).

$$p(y|h) = g(x, h, \theta)$$

• In greedy decoding:

$$y^* = \arg\max_{y \in V} p(y|h)$$
Greedy Decoding

• In each step, the model computes a distribution over the vocabulary V (given source x, the previous outputs h, and the model parameters θ).

$$p(y|h) = g(x, h, \theta)$$

• In greedy decoding:

$$y^* = \arg\max_{y \in V} p(y|h)$$

• Repeat, until an end-of-sentence symbol ($<$s$>$) is decoded.
Greedy Decoding — cont.

• **Pros:**
 - Fast and memory-efficient
 - Gives reasonable results

• **Cons:**
 - We are interested in the most probable sentence:
 \[
 (y^*)_{i=0}^N = \arg\max_{(y)_{i=0}^N} p(y_0, \ldots, y_N|h)
 \]

 - Other methods: better results for the cost of a slow-down.
Beam Search

• Instead of taking the \(\text{argmax} \) in every step, keep a list (or beam) of \(k \)-best scoring hypotheses.

Hypothesis = partially decoded sentence \(\rightarrow \) score

\[\psi_t = (y_1, y_2, \ldots, y_t) \]

is the probability of the decoded sentence prefix up to \(t \)-th word.

\[p(y_1, \ldots, y_t | \phi) = p(y_1 | \phi) \cdot \cdots \cdot p(y_t | y_1, \ldots, y_{t-1} | \phi) \]

• Rule to compute the score of an extended hypothesis \(\psi_t \):

\[p(\psi_t, y_{t+1} | \phi) = p(\psi_t | \phi) \cdot p(y_{t+1} | \phi) \]

• Prefers shorter hypotheses \(\rightarrow \) normalization necessary.
Beam Search

• Instead of taking the \text{arg max} in every step, keep a list (or beam) of k-best scoring hypotheses.
• Hypothesis = partially decoded sentence \rightarrow score
Beam Search

• Instead of taking the \texttt{argmax} in every step, keep a list (or \texttt{beam}) of k-best scoring hypotheses.
• Hypothesis = partially decoded sentence \rightarrow score
• Hypothesis score $\psi_t = (y_1, y_2, \ldots, y_t)$ is the probability of the decoded sentence prefix up to t-th word.

$$p(y_1, \ldots, y_t | h) = p(y_1 | h) \cdot \cdots \cdot p(y_t | y_1, \ldots, y_{t-1} | h)$$
Beam Search

• Instead of taking the \(\text{arg max} \) in every step, keep a list (or beam) of \(k \)-best scoring hypotheses.
• Hypothesis = partially decoded sentence → score
• Hypothesis score \(\psi_t = (y_1, y_2 \ldots, y_t) \) is the probability of the decoded sentence prefix up to \(t \)-th word.

\[
p(y_1, \ldots, y_t | h) = p(y_1 | h) \cdot \cdots \cdot p(y_t | y_1, \ldots, y_{t-1} | h)
\]

• Rule to compute the score of an extended hypothesis \(\psi_t \):

\[
p(\psi_t, y_{t+1} | h) = p(\psi_t | h) \cdot p(y_{t+1} | h)
\]
Beam Search

• Instead of taking the \(\text{arg max} \) in every step, keep a list (or beam) of \(k \)-best scoring hypotheses.
• Hypothesis = partially decoded sentence \(\rightarrow \) score
• Hypothesis score \(\psi_t = (y_1, y_2 \ldots, y_t) \) is the probability of the decoded sentence prefix up to \(t \)-th word.

\[
p(y_1, \ldots, y_t | h) = p(y_1 | h) \cdot \ldots \cdot p(y_t | y_1, \ldots, y_{t-1} | h)
\]

• Rule to compute the score of an extended hypothesis \(\psi_t \):

\[
p(\psi_t, y_{t+1} | h) = p(\psi_t | h) \cdot p(y_{t+1} | h)
\]

• Prefers shorter hypotheses \(\rightarrow \) normalization necessary.
1. Begin with a single empty hypothesis in the beam.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
 2.3 Put the best k hypotheses in the new beam.
 2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we move it to the list of finished hypotheses.
3. Finish (1) at the final time step or (2) all k-best hypotheses end with ".".
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:

 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).

3. Finish (1) at the final time step or (2) all k-best hypotheses end with .
4. Sort the hypotheses by their score and output the best one.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.
2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.

2. In each time step:
 2.1 Extend all hypotheses in the beam by \(k \) most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
 2.3 Put the best \(k \) hypotheses in the new beam.

3. Finish (1) at the final time step or (2) all \(k \)-best hypotheses end with \(<\text{EOS}>\).

4. Sort the hypotheses by their score and output the best one.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.

2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
 2.3 Put the best k hypotheses in the new beam.
 2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all k-best hypotheses end.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.

2. In each time step:
 2.1 Extend all hypotheses in the beam by k most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
 2.3 Put the best k hypotheses in the new beam.
 2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all k-best hypotheses end with $</s>$.
Beam Search — Algorithm

1. Begin with a single empty hypothesis in the beam.

2. In each time step:
 2.1 Extend all hypotheses in the beam by \(k\) most probable words (we call these candidate hypotheses).
 2.2 Sort the candidate hypotheses by their score.
 2.3 Put the best \(k\) hypotheses in the new beam.
 2.4 If a hypothesis from the beam reaches the end-of-sentence symbol, we move it to the list of finished hypotheses.

3. Finish (1) at the final time step or (2) all \(k\)-best hypotheses end with \(</s>\).

4. Sort the hypotheses by their score and output the best one.
Encoder-Decoder Architecture

Model Ensembling
Model Ensembling

- Combine word probabilities from M models:

$$p(y|h) = \bigoplus_{m=0}^{M} p(y|h, \theta_m)$$

- The additive function \bigoplus:
 - Majority voting scheme (arithmetic mean):
 $$\bigoplus_{m=0}^{M} f(x) = \frac{1}{M} \sum_{m=0}^{M} f_m(x)$$
 - Consensus building scheme (geometric mean):
 $$\bigoplus_{m=0}^{M} f(x) = \sqrt[M]{\prod_{m=0}^{M} f_m(x)}$$
Model Ensembling — Picture
Attentive Sequence-to-Sequence Learning
Main Idea

Vanilla sequence-to-sequence was degrading with sentence length.

Goal of attention:

- Do not force the network to catch long-distance dependencies.
- Use decoder state only for:
 - target sentence dependencies (≈LM) and
 - a as query for the source word sentence
Inspiration: Neural Turing Machine

- general architecture for learning algorithmic tasks, finite imitation of Turing Machine
Inspiration: Neural Turing Machine

- General architecture for learning algorithmic tasks, finite imitation of Turing Machine
- Needs to address memory somehow – either by position or by content
Inspiration: Neural Turing Machine

- general architecture for learning algorithmic tasks, finite imitation of Turing Machine
- needs to address memory somehow – either by position or by content
- in fact does not work well
 - it hardly manages simple algorithmic tasks
Inspiration: Neural Turing Machine

- general architecture for learning algorithmic tasks, finite imitation of Turing Machine
- needs to address memory somehow – either by position or by content

- in fact does not work well
 - it hardly manages simple algorithmic tasks
- content-based addressing → attention
Attention Mechanism

\[\alpha_0 \times \alpha_1 \times \alpha_2 \times \alpha_3 \times \alpha_4 \]

Basic NN Building Blocks
Processing Text
Neural Language Modeling
Encoder-Decoder Architecture
Attentive Sequence-to-Sequence Learning
Encoder-Decoder vs. Attentive Models
Attention Mechanism in Equations (1)

Inputs:

- decoder state s_i
- encoder states $h_j = [\overrightarrow{h}_j; \overleftarrow{h}_j] \quad \forall i = 1 \ldots T_x$

Attention energies:

$$e_{ij} = v_a^\top \tanh(W_a s_{i-1} + U_a h_j + b_a)$$

Attention distribution:

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

Context vector:

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$
Attention Mechanism in Equations (2)

Output projection:

\[t_i = \text{MLP}(U_o s_{i-1} + V_o E y_{i-1} + C_o c_i + b_o) \]

...context vector is mixed with the hidden state

Output distribution:

\[p(y_i = k \mid s_i, y_{i-1}, c_i) \propto \exp(W_o t_i)_k + b_k \]
Attention Visualization

Basic NN Building Blocks
Processing Text
Neural Language Modeling
Encoder-Decoder Architecture
Attentive Sequence-to-Sequence Learning
Encoder-Decoder vs. Attentive Models
Attentive Sequence-to-Sequence Learning

Attention vs. Alignment
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

Attention (NMT) **Alignment (SMT)**
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

<table>
<thead>
<tr>
<th>Attention (NMT)</th>
<th>Alignment (SMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic</td>
<td>Discrete</td>
</tr>
</tbody>
</table>
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

Attention (NMT)
- Probabilistic
- Declarative

Alignment (SMT)
- Discrete
- Imperative
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

<table>
<thead>
<tr>
<th>Attention (NMT)</th>
<th>Alignment (SMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic</td>
<td>Discrete</td>
</tr>
<tr>
<td>Declarative</td>
<td>Imperative</td>
</tr>
<tr>
<td>LM generates</td>
<td>LM discriminates</td>
</tr>
</tbody>
</table>
Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

Attention (NMT)
- Probabilistic
- Declarative
- LM generates
- Learnt with translation

Alignment (SMT)
- Discrete
- Imperative
- LM discriminates
- Prerequisite
The relationship between Obama and Netanyahu has been stretched for years.
Attending to Two at Once

- To benefit from PBMT, append its output to NMT input.
- Standard attentional model will learn to follow **both**.

Image Captioning

Attention over CNN for image classification:

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Encoder-Decoder vs. Attentive Models
Two key papers on NMT in 2014:

- Bahdanau et al. (2015) Attention model,
- Sutskever et al. (2014) Seq2seq impressive empirical results:
 - Made researchers believe NMT is the way to go.
 - (Used reversed input.)

Evaluation on WMT14 EN → FR test set:

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU score</th>
</tr>
</thead>
<tbody>
<tr>
<td>vanilla SMT</td>
<td>33.0</td>
</tr>
<tr>
<td>tuned SMT</td>
<td>37.0</td>
</tr>
<tr>
<td>Sutskever et al.: reversed</td>
<td>30.6</td>
</tr>
<tr>
<td>−”−: ensemble + beam search</td>
<td>34.8</td>
</tr>
<tr>
<td>−”−: vanilla SMT rescoring</td>
<td>36.5</td>
</tr>
<tr>
<td>Bahdanau’s attention</td>
<td>28.5</td>
</tr>
</tbody>
</table>
Two key papers on NMT in 2014:

- Bahdanau et al. (2015) Attention model,
- Sutskever et al. (2014) Seq2seq impressive empirical results:
 - Made researchers believe NMT is the way to go.
 - (Used reversed input.)

Evaluation on WMT14 EN \rightarrow FR test set:

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU score</th>
</tr>
</thead>
<tbody>
<tr>
<td>vanilla SMT</td>
<td>33.0</td>
</tr>
<tr>
<td>tuned SMT</td>
<td>37.0</td>
</tr>
<tr>
<td>Sutskever et al.: reversed</td>
<td>30.6</td>
</tr>
<tr>
<td>$-\rightarrow$: ensemble + beam search</td>
<td>34.8</td>
</tr>
<tr>
<td>$-\rightarrow$: vanilla SMT rescoring</td>
<td>36.5</td>
</tr>
</tbody>
</table>
| Bahdanau’s attention | 28.5 | Why worse?
Sutskever+ (2014) × Bahdanau+ (2014)

<table>
<thead>
<tr>
<th></th>
<th>Sutskever et al.</th>
<th>Bahdanau et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>vocabulary</td>
<td>160k enc, 80k dec</td>
<td>30k both</td>
</tr>
<tr>
<td>encoder</td>
<td>4× LSTM, 1,000 units</td>
<td>bidi GRU, 2,000</td>
</tr>
<tr>
<td>decoder</td>
<td>4× LSTM, 1,000 units</td>
<td>GRU, 1,000 units</td>
</tr>
<tr>
<td>word embeddings</td>
<td>1,000 dimensions</td>
<td>620 dimensions</td>
</tr>
<tr>
<td>training time</td>
<td>7.5 epochs</td>
<td>5 epochs</td>
</tr>
</tbody>
</table>

Comparison with Bahdanau's model size:

<table>
<thead>
<tr>
<th>method</th>
<th>BLEU score</th>
</tr>
</thead>
<tbody>
<tr>
<td>encoder-decoder</td>
<td>13.9</td>
</tr>
<tr>
<td>attention model</td>
<td>28.5</td>
</tr>
</tbody>
</table>

Basic NN Building Blocks

- Processing Text
- Neural Language Modeling
- Encoder-Decoder Architecture
- Attentive Sequence-to-Sequence Learning

Encoder-Decoder vs. Attentive Models

<table>
<thead>
<tr>
<th>Method</th>
<th>BLEU Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder-Decoder</td>
<td>13.9</td>
</tr>
<tr>
<td>Attention Model</td>
<td>28.5</td>
</tr>
</tbody>
</table>
Sutskever et al. Bahdanau et al.

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th>160k enc, 80k dec</th>
<th>30k both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder</td>
<td>4× LSTM, 1,000 units</td>
<td>bidi GRU, 2,000</td>
</tr>
<tr>
<td>Decoder</td>
<td>4× LSTM, 1,000 units</td>
<td>GRU, 1,000 units</td>
</tr>
<tr>
<td>Word Embeddings</td>
<td>1,000 dimensions</td>
<td>620 dimensions</td>
</tr>
<tr>
<td>Training Time</td>
<td>7.5 epochs</td>
<td>5 epochs</td>
</tr>
</tbody>
</table>

Comparison with Bahdanau’s model size:

<table>
<thead>
<tr>
<th>Method</th>
<th>BLEU Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder-decoder</td>
<td>13.9</td>
</tr>
<tr>
<td>Attention model</td>
<td>28.5</td>
</tr>
</tbody>
</table>
We discussed:

• Basic building blocks of NN for NMT.
 • Fully-connected, RNN, LSTM and GRU.
 • Output softmax.

• Neural LM.

• Sequence-to-sequence (two RNNs attached).
 • Architecture.
 • Training.
 • Decoding (Greedy vs. Beam)
 • Ensembling.

• Attention (decoder attends to a mix on encoder states).
References

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence Learning with Neural Networks. pages 3104–3112.