

European Structural and Investment Funds Operational Programme Research, Development and Education

Word Sense Disambiguation using Word Embeddings Information

Monday Seminar at UFAL

Ebrahim Ansari 25/02/2019

European Structural and Investment Funds Operational Programme Research, Development and Education

Outline:

- Word Sense Disambiguation (WSD)
- Word representations
- Unsupervised Approach
- Supervised Approach
- Conclusion

European Structural and Investment Funds Operational Programme Research, Development and Education

Word Sense Disambiguation (WSD)

European Structural and Investment Funds Operational Programme Research, Development and Education

Human language is inherently ambiguous!

English	Persian		
 Bank (n): 1. Financial Institution 2. Riverside 	آن یکی شیر است اندر بادیه آن د <i>گ</i> ر شیر است اندر بادیه آن یکی شیر است کآدم می خورد و آن د <i>گ</i> ر شیر است کآدم میخورد		

European Structural and Investment Funds Operational Programme Research, Development and Education

Term	Meaning	Spelling	Pronunciation
Synophone	Different	Different	Similar but not identical
Synonym	Same	Different	Different
Polyseme	Different but related	Same	Same or different
Homophone	Different	Same or different	Same
Нотопут	Different	Same	Same
Homograph	Different	Same	Same or different
Heteronym	Different	Same	Different
Heterograph	Different	Different	Same
Capitonym	Different when capitalized	Same except for capitalization	Same or different

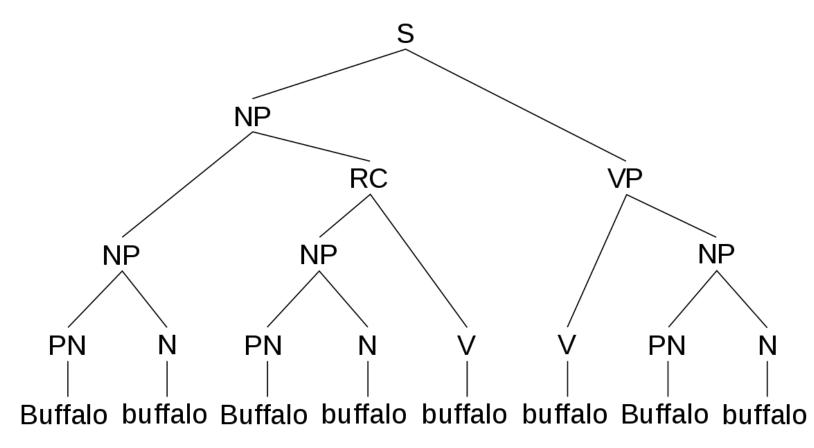
Word Sense: One of the meanings a word may have depending on the context:

- The man cashed a check at the bank.
- He sat on the **bank** of the river and watched the currents.

WSD: The process of automatically finding the correct sense of the polysemous words in a given text.

European Structural and Investment Funds Operational Programme Research, Development and Education

An example: Buffalo buffalo Buffalo buffalo buffalo buffalo buffalo.



WSD applications:

- Machine Translation
- Information Retrieval
- Word processing
- Information extraction and text mining
- Content and sentiment analysis

European Structural and Investment Funds Operational Programme Research, Development and Education

WSD approaches:

- Supervised
- Unsupervised
- Knowledge based approaches
- Semi-supervised
- Hybrid approaches

Most Frequent Sense (MFS): A baseline

- Among senses of a given word one sense is occurred more than others.
- MFS Identifies the most often used meaning and uses this meaning by default.
- The MFS baseline is often hard to beat for any WSD system and it is considered as the strongest baseline in WSD.
- For example Consider word "شير" in Persian:

Translations= {"milk", "lion", "faucet", ...}

MFS ("شير") is the Milk translation in English

Lesk Algorithm (unsupervised)

- Identify senses of words in context using definition overlap.
- Consider two words W_1 and W_2

(1) for each sense i of W_1

- (2) for each sense j of W_2
- (3) compute Overlap(i,j), the number of words in common between the definitions of sense *i* and sense *j*

(4) find *i* and *j* for which Overlap(i,j) is maximized

(5) assign sense *i* to W_1 and sense *j* to W_2

Lesk algorithm (example): Consider two words Pine and Cone

• Pine:

- 1. seven kinds of evergreen tree with needle-shaped leaves
- 2. pine
- 3. waste away through sorrow or illness
- 4. pine for something, pine to do something

• Cone:

- 1. solid body which narrows to a point
- 2. something of this shape, whether solid or hollow
- 3. fruit of certain evergreen trees (fir, pine)

Lesk algorithm (example): Consider two words Pine and Cone

- Pine:
 - 1. seven kinds of evergreen tree with needle-shaped leaves
 - 2. pine
 - 3. waste away through sorrow or illness
 - 4. pine for something, pine to do something

• Cone:

- 1. solid body which narrows to a point
- 2. something of this shape, whether solid or hollow
- 3. fruit of certain evergreen trees (fir, pine)

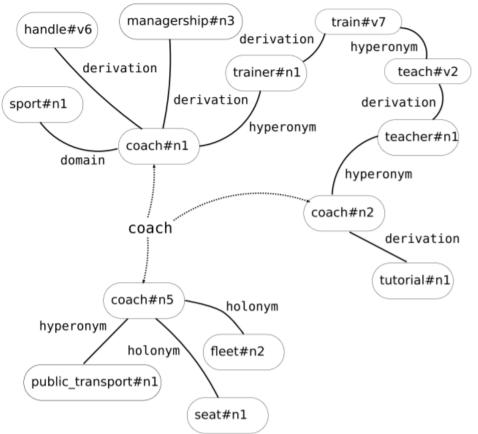
Overlap(pine1, cone3) = {"evergreen", "tree", "pine"}

European Structural and Investment Funds Operational Programme Research, Development and Education

Graph-based methods (Agirre et al., 2014)

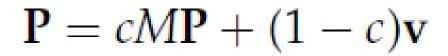
A WSD algorithm based on random walks over large Lexical Knowledge Bases (LKB)

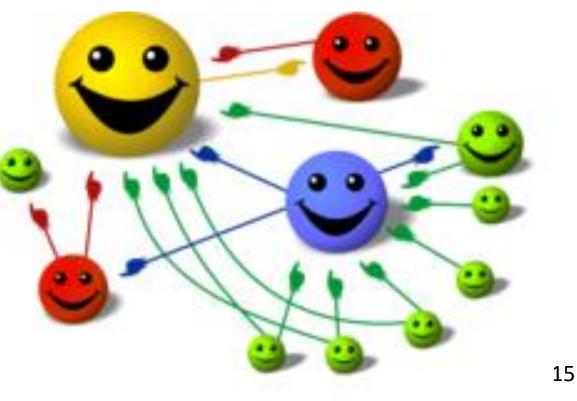
Best results when they used WordNet and eXtended WordNet



Graph-based methods (Agirre et al., 2014), cont.

- Uses random walk (page-rank)
- Uses WordNet to create graph





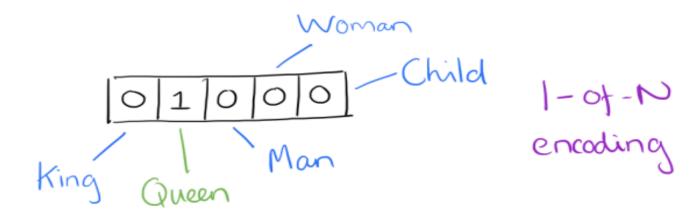
European Structural and Investment Funds Operational Programme Research, Development and Education

Word Representations

Word representations – one-hot vectors

Each word in vocabulary is represented with one bit in a huge vector.

- Ex: Hello is [000001000000] in a vocabulary of size 15.
- No contexts information



https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

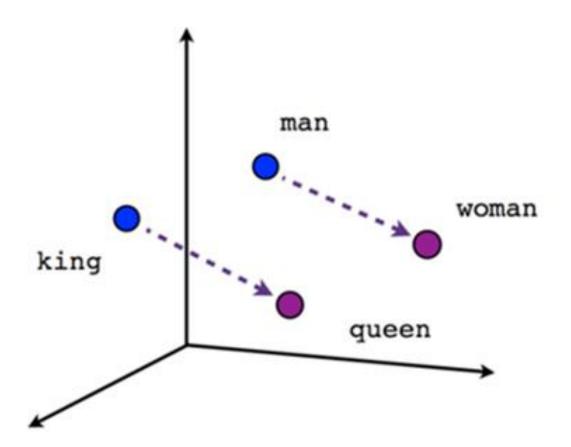
Word representations – word embeddings

Each word is represented as a point in a space with fixed number of dimensions

• Ex: Hello can be like [0.4, -0.11, 0.55, 1,]

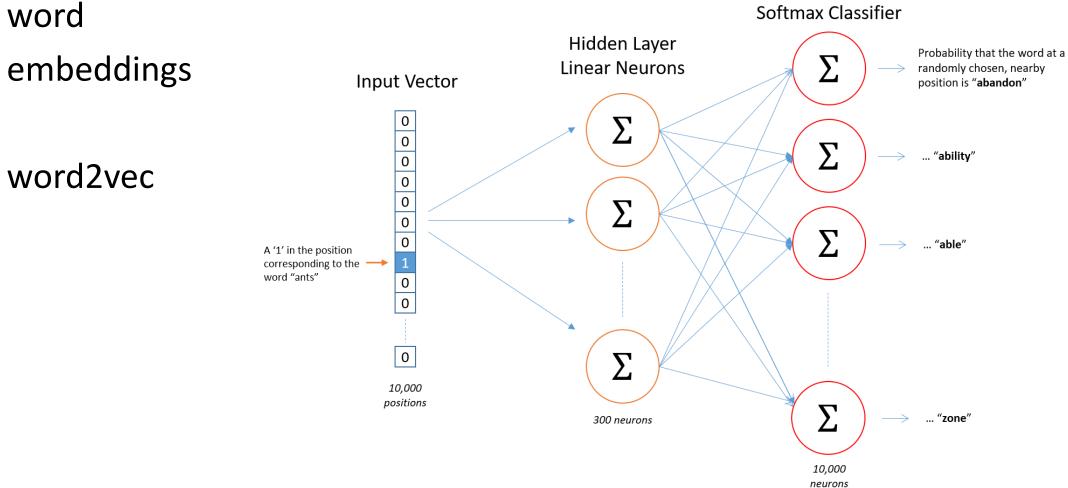
European Structural and Investment Funds Operational Programme Research, Development and Education

vector[Queen] = vector[King] - vector[Man] + vector[Woman]



European Structural and Investment Funds Operational Programme Research, **Development and Education**

Output Layer Softmax Classifier Hidden Layer Linear Neurons $\mathbf{\Delta}$ $\mathbf{\nabla}$



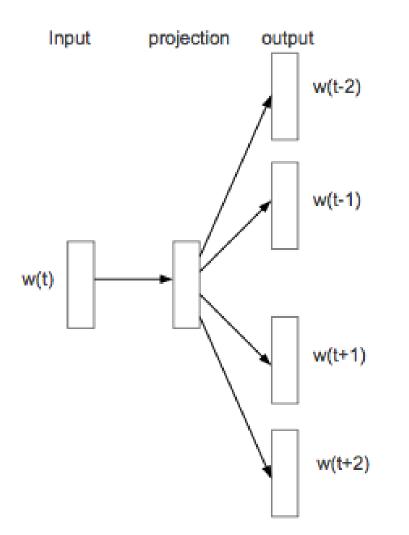
20

European Structural and Investment Funds Operational Programme Research, Development and Education

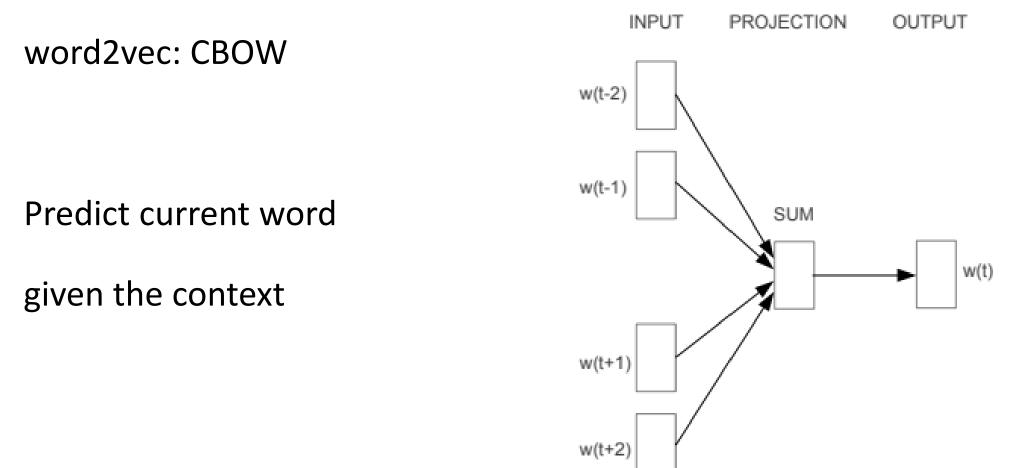
word2vec: Skip-Gram

Predict surrounding words

using given word



European Structural and Investment Funds Operational Programme Research, Development and Education



European Structural and Investment Funds Operational Programme Research, Development and Education

Unsupervised Approach

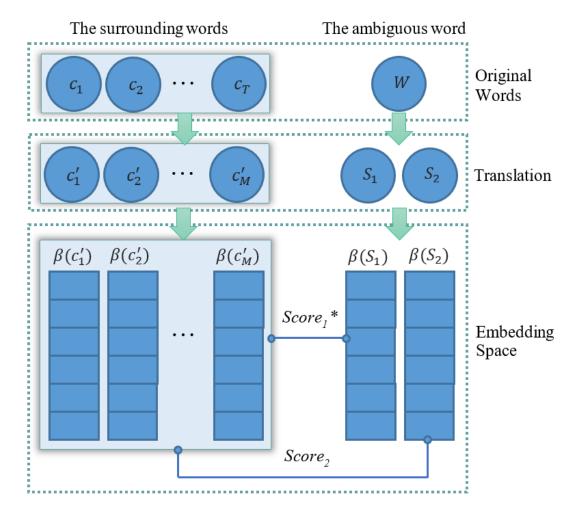
Unsupervised Word Sense Disambiguation using Word Embeddings

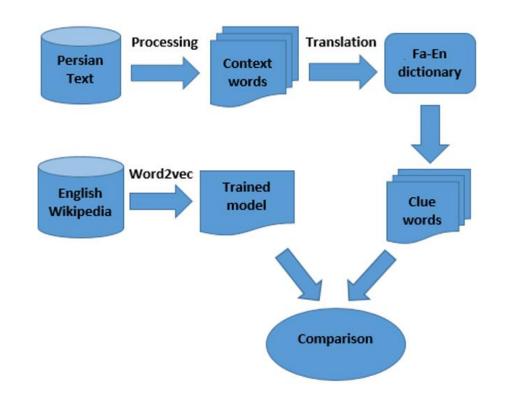
To Disambiguate words from the first language (i.e. Persian) by deploying the trained word embeddings model of the second language (i.e. English) using only a bilingual dictionary

Each translation of the polysemous word is compared against word embeddings of translated surrounding words

Most similar word to vectors of translated surrounding words is selected as the correct translation

European Structural and Investment Funds Operational Programme Research, Development and Education





*Score_i: the score obtained from comparison between S_i and translated surrounding words

European Structural and Investment Funds Operational Programme Research, Development and Education

Definitions

 $C = \{ c_1, c_2, \dots, c_T \}, \text{ context words of w}$ $S = \{ s_1, s_2, \dots, s_N \}, \text{ possible senses of word w}$

• Using *D* as the bilingual dictionary:

$$C' = \{t_1^1, \dots, t_1^{N_{c_1}}, t_2^1, \dots, t_2^{N_{c_2}}, \dots, t_T^1, \dots, t_T^{N_{c_T}}\},\$$

 t_j^i represents the *i*-th candidate translation of c_j and N_{c_j} is the possible number of translations of word c_j .

Definitions (cont.)

• For simplicity assume that $M = \sum_{k=1}^{T} N_{c_k}$. Hence, another representation for C' is

$$C' = \{c'_1, \, c'_2, \, \dots, \, c'_M\}$$

• using β (word to vector function)

$$\begin{aligned} \beta(S) &= \{\beta(s_1), \beta(s_2), ..., \beta(s_N)\} \\ \beta(C') &= \{\beta(c_1'), \beta(c_2'), ..., \beta(c_M')\} \end{aligned}$$

Sum-Vec Strategy (SVS) – first strategy

- Sum vector of vectors within set $\beta(C')$ will be computed (named R)
- $F_i = f(\beta(s_i), R)$ represents similarity between *i*-th candidate translation and R. Thus the set $F = \{F_1, F_2, \dots, F_N\}$ is provided

$$s^* = argmax_{s \in S}F.$$

Each-Vec Strategy (EVS) – second strategy

- Each vector within $\beta(S)$ is compared against each vector within $\beta(C')$
- $F_i = \{f_{i1}, f_{i2}, \dots, f_{iM}\}$, where $f_{ij} = f(\beta(s_i), \beta(c'_j))$
- $G = \{G_1, G_2, ..., G_N\}$ where $G_i = \frac{1}{M} \sum_{j=1}^{M} f_{ij}$ (average value for F_i)

 $s^* = argmax_{s \in S}G.$

Data

- Data for this study were collected from Persian Wikipedia articles containing ambiguous words. Despite the difficulty of creating new test dataset, the producing of data was done manually.
- The dictionary used in this study is a word by word bilingual Persian-English dictionary including about 85K entries of Persian words

European Structural and Investment Funds Operational Programme Research, Development and Education

We use python implementation of *word2vec* embedded in Gensim.

In this experiment eight configurations are selected which are seen here

Configuration	Number of Dimensions	Window Size	Min Count
1	200	5	5
2	200	5	10
3	200	10	5
4	200	10	10
5	400	5	5
6	400	5	10
7	400	10	5
8	400	10	10

List of Configurations

European Structural and Investment Funds Operational Programme Research, Development and Education

Best results:

Senses	شیر [<i>Šir</i>]		سبک [Sabok/Sabk]		ج و [<i>Jo/Ja</i> v]		ج رم [Jorm/Jerm]	
	Milk	Lion	Style	Light	Atmosphere	Barley	Mass	Crime
# of senses	134	66	138	62	134	66	160	40
	126	42	117	46	128	61	158	32
# of corrects	168		163		189		190	
accuracy	84%		81.5%		94.5%		95%	

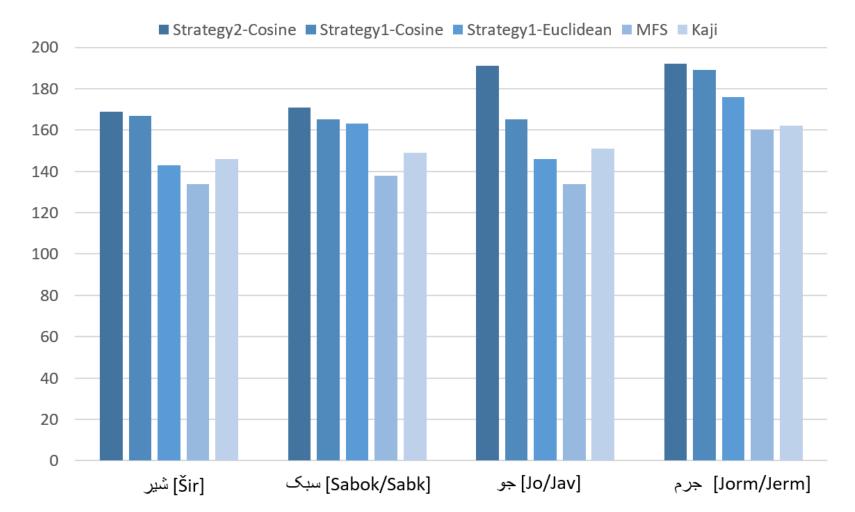
Table 4: Results of Each-Vec Strategy for cosine similarity in configuration 1

European Structural and Investment Funds Operational Programme Research, Development and Education

Comparison:

	شیر [<i>Šir</i>]	سبک [Sabok/ <u>Sabk</u>]	جو [Jo/Jav]	ج رم [Jorm/Jerm]	Overall Accuracy
MFS	67%	69%	67%	80%	70.75%
Strategy1-Cosine	82.5%	81.5%	88.5%	94.5%	86.75%
Strategy1-Eucledean	77.5%	81%	75.5%	87.5%	80.40%
Strategy2-Cosine	84%	81.5%	94.5%	95%	88.75

European Structural and Investment Funds Operational Programme Research, Development and Education



European Structural and Investment Funds Operational Programme Research, Development and Education

https://iasbs.ac.ir/~ansari/nlp/wsdw2vec.html

A new unsupervised word sense disambiguation for Persain words using comparable corpora

Comaparable corpus

Click here to download 2016 English wikipedia articles

Click here to download 2016 Persian wikipedia articles

Dictionary

The dictionary we use is a bilingual word by word Persian-English. It contains 83505 Persian entries with their transaltions.

You can download Persian-English dictionary here

Test data and Goldtext

For each ambiguous word 200 text samples(paragraphs or simple sentences) are extracted from Persian articles of Wikipedia 2016. Then the ambiguous words were tagged with their sense manaully.

You can download test data for 4 words:

- <u>(Šir) شير</u>
- <u>(Sabok_Sabk)</u> سبک
- Jorm_Jerm) جرم
- <u>(Jo_Jav) جو</u>

Also there are some related data for disambiguating Persain words including extracted sentences with annotated ambiguous words from Hamshahri corpus provided by E. Ansari and H.Mousavi.

After preprocessing Hamshahri corpus, sentences containing 8 ambiguous Persian words are extracted then stopwords are removed and all senetnces are saved in xml files according their intended ambigous words

Extracted desired sentences(stopwords are removed):

words	number of sentences	download
(Aškâl_Eškâl) اشکال	7504	<u>download</u>
(Jo_Jav) ج و	10021	<u>download</u>

European Structural and Investment Funds Operational Programme Research, Development and Education

Supervised Approach

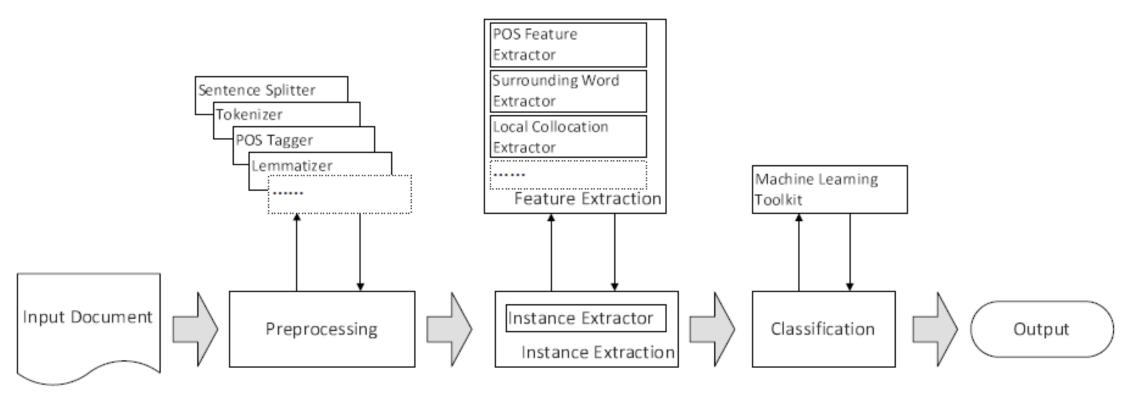
Supervised Word Sense Disambiguation Using New Features Based on Word Embeddings

Four improvements to existing state-of-the-art WSD methods

- A new model for assigning vector coefficients
- We applied a PCA dimensionality reduction process
- A new weighting scheme is suggested to tackle the problem of unbalanced data
- A novel voting idea is presented to combine word embedding features extracted from different independent corpora

European Structural and Investment Funds Operational Programme Research, Development and Education

IMS (Zhong and Ng, 2010)



Iacobacci et al., 2016

• Iacobacci et al. introduced a new method for using word embeddings as features to a WSD system.

We modified this work, proposing four novel ideas which will be discussed in more details in the next section.

European Structural and Investment Funds Operational Programme Research, Development and Education

lacobacci et al., 2016 (cont.)

$$\begin{array}{ll} \text{Concatenation} & e_i = \left\{ \begin{array}{cc} w_{i \ \text{mod} \ D, I - W} + \left\lfloor \frac{i}{D} \right\rfloor & if_{\left\lfloor \frac{i}{D} \right\rfloor} \langle W \\ w_{i \ \text{mod} \ D, I - W + 1} + \left\lfloor \frac{i}{D} \right\rfloor & otherwise \end{array} \right. \\ \text{Average} & e_i = \sum_{\substack{j = I - W \\ j \neq I}}^{I + W} \frac{w_{ij}}{2W} \end{array}$$

European Structural and Investment Funds Operational Programme Research, Development and Education

lacobacci et al., 2016 (cont.)

Fractional Decay

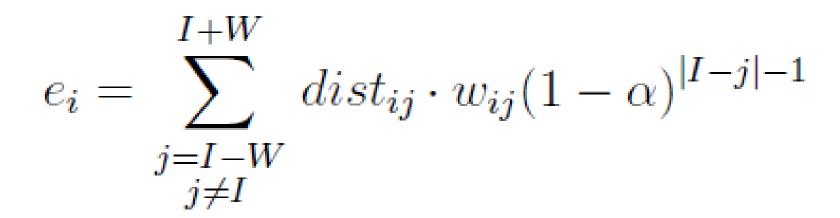
Exponential Decay

$$e_{i} = \sum_{\substack{j=I-W\\j\neq I}}^{I+W} w_{ij} \frac{W - |I-j|}{W}$$
$$e_{i} = \sum_{\substack{j=I-W\\j\neq I}}^{I+W} w_{ij} (1-\alpha)^{|I-j|-1}$$
$$\alpha = 1 - 0.1^{(W-1)^{-1}}$$

41

Idea 1 of 4 – Part 1

Using New Coeffs in Exponential Decay Strategy (distance)



Idea 1 of 4 – Part 2

Using New Coeffs in Exponential Decay Strategy (count)

$$e_i = \sum_{\substack{j=I-W\\j\neq I}}^{I+W} count_j \cdot w_{ij} (1-\alpha)^{|I-j|-1}$$

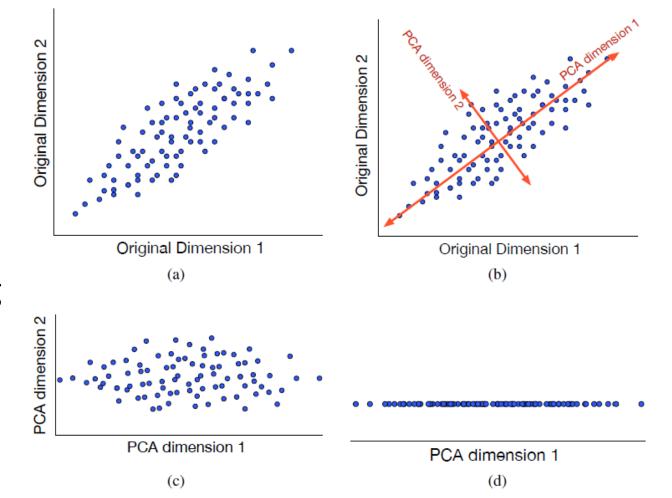
European Structural and Investment Funds Operational Programme Research, Development and Education

44

Idea 2 of 4 – Using PCA

Inspired by the work of Raunak (2017)

Even dimension changing Leads us better results



European Structural and Investment Funds Operational Programme Research, Development and Education

Idea 3 of 4: New Weighting Scheme

Data is imbalance

Word		Cool (a)	Party (n)
set	Sense 1	53	148
ining	Sense 2	25	15
in tra	Sense 3	3	16
ı sense	Sense 4	8	39
of each	Sense 5	0	17
Number of each sense in training set	Sense 6	1	-
Nu	Sense 7	18	-

45

Idea 3 of 4: New Weighting Scheme (cont.)

A possible hyper-plane can be represented by:

 $W\prime \cdot \Phi(x+b) = 0.$

Where W, is the weight vector normal to the hyperplane and $\Phi(x)$ is the mapping function that transforms data points to a higher dimensional space.

Idea 3 of 4: New Weighting Scheme (cont.)

The maximum margin hyper-plane can be found by solving the following optimization problem

$$\min(\frac{1}{2}W \cdot W + C^{+} \sum_{i|y_{j}=+1}^{l} \zeta_{i} + C^{-} + \sum_{i|y_{j}=-1}^{l} \zeta_{i})$$

s.t. $y_{i}(W \cdot \Phi(x_{i}) + b) \ge 1 - \zeta_{i}$
 $\zeta_{i} \ge 0, \quad i = 1, ...l$

Idea 3 of 4: New Weighting Scheme (cont.)

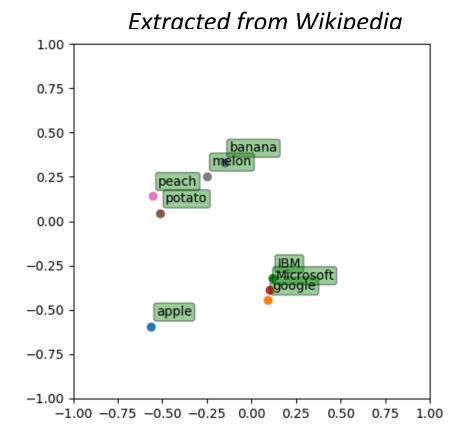
Akbani et al. argued that by setting C-/C+ equal to the minority to majority class ratio, an optimal solution is obtained.

In a multi-label classification task using SVM, the C parameter of each class is computed as follows:

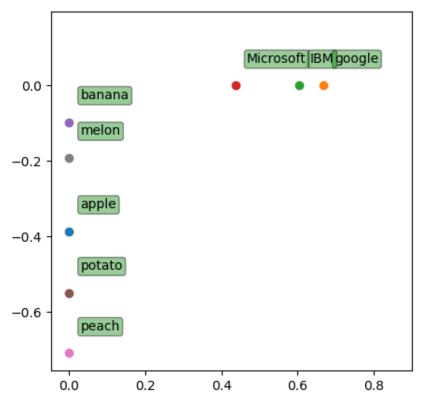
$$C_i = \max(S) / \operatorname{count}(i)$$

European Structural and Investment Funds Operational Programme Research, Development and Education

• Idea 4 of 4 – Voting as a Word Embeddings Aggregation Method



Extracted from Google News

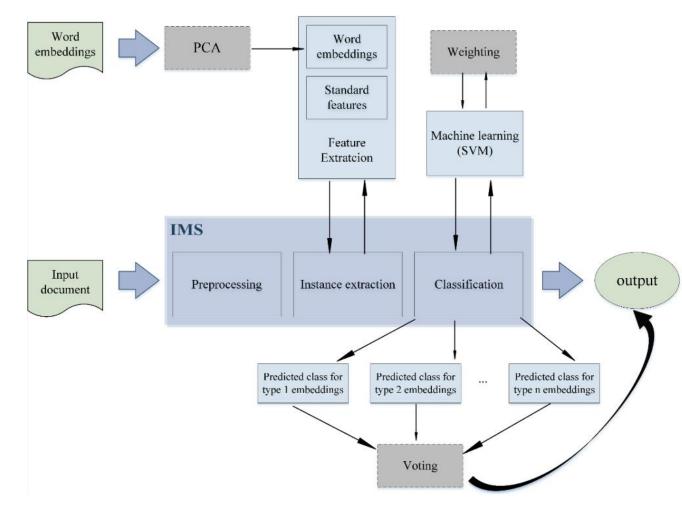


• Idea 4 of 4 – *Voting (cont.)*

Sense_v = arg max_s f(w, s) $f(w, s) = \sum_{i=1}^{n} (s_i | s_i \text{ is the probability of}$ sense s of word w for embedding type i.)

where *n* is the total number of embedding types

European Structural and Investment Funds Operational Programme Research, Development and Education



European Structural and Investment Funds Operational Programme Research, Development and Education

Experiments:

Word Embedding Properties

Dataset Description

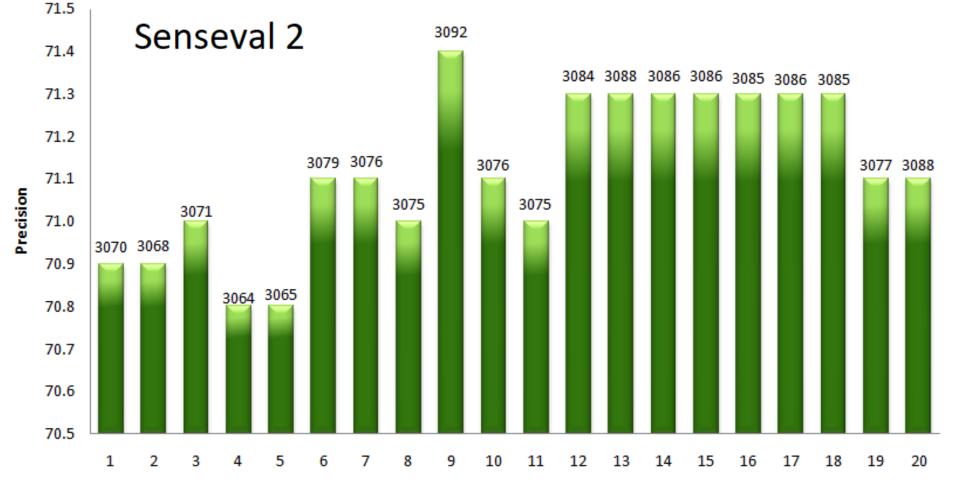
Word Embeddings	Dimensions	Tokens
Wikipedia 2014	400	1604163
Google news	300	3000000
Fasttext	300	2519370

	Senseval 2	Senseval 3
Word Types	73	57
Training Samples	8611	8022
Test Samples	4328	3944

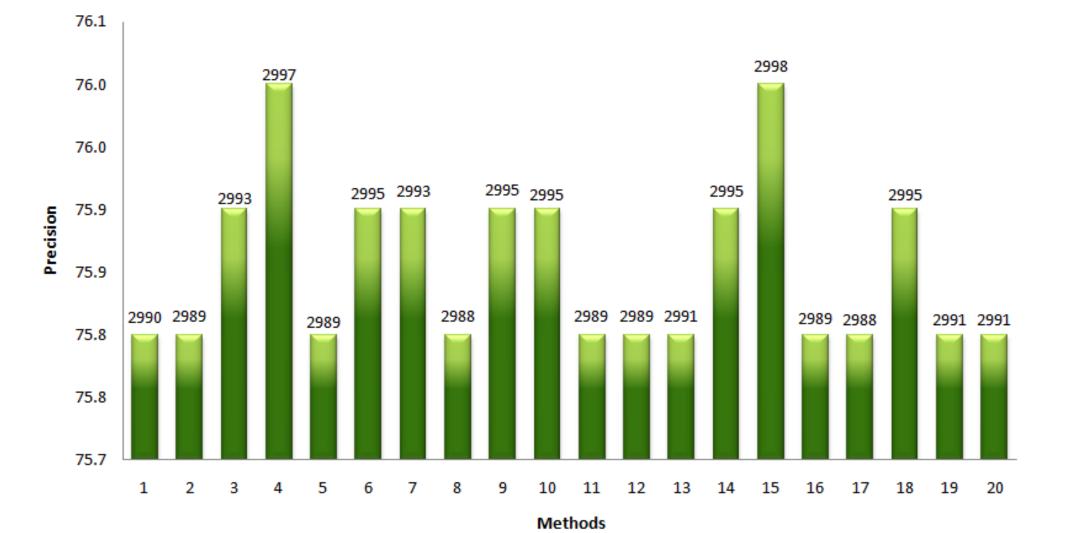
European Structural and Investment Funds Operational Programme Research, Development and Education

		Senseval2		Senseval3	
	Method	Correct/All	Precision	Correct/All	Precision
1	IMSEMBED (On Wiki Corpus- Original)	3070/4328	70.9 (%)	2990/3944	75.8 (%)
2	IMS EMBED + Coeff (V1)	3068/4328	70.9	2989/3944	75.8
3	IMS EMBED + Coeff (V2)	3071/4328	71.0	2993/3944	75.9
4	IMS EMBED + Wcount (V1)	3064/4328	70.8	2997/3944	76.0
5	IMS EMBED + Wcount (V2)	3065/4328	70.8	2989/3944	75.8
6	IMS EMBED + Weighting	3079/4328	71.1	2995/3944	75.9
7	IMSEMBED $+$ PCA (400)	3076/4328	71.1	2993/3944	75.9
8	IMSEMBED + PCA (400) + Coeff $(V1)$	3075/4328	71.0	2988/3944	75.8
9	IMSEMBED + PCA (400) + Coeff $(V2)$	3092/4328	71.4	2995/3944	75.9
10	IMS EMBED + PCA (400) + Wcount $(V1)$	3076/4328	71.1	2995/3944	75.9
11	IMS EMBED + PCA (400) + Wcount $(V2)$	3075/4328	71.0	2989/3944	75.8
12	IMSEMBED + PCA (400) + Weighting	3084/4328	71.3	2989/3944	75.8
13	IMSEMBED + PCA (400) + Coeff $(V1)$ + Weighting	3088/4328	71.3	2991/3944	75.8
14	IMSEMBED + PCA (400) + Coeff $(V2)$ + Weighting	3086/4328	71.3	2995/3944	75.9
15	IMSEMBED + PCA (400) + Wcount (V1) + Weighting	3086/4328	71.3	2998/3944	76.0
16	IMSEMBED + PCA (400) + Wcount (V2) + Weighting	3085/4328	71.3	2989/3944	75.8
17	IMSEMBED + Coeff (V1) + Weighting	3086/4328	71.3	2988/3944	75.8
18	IMSEMBED + Coeff (V2) + Weighting	3085/4328	71.3	2995/3944	75.9
19	IMSEMBED + Wcount (V1) + Weighting	3077/4328	71.1	2991/3944	75.8
20	IMSEMBED + Wcount (V2) + Weighting	3078/4328	71.1	2991/3944	75.8

European Structural and Investment Funds Operational Programme Research, Development and Education



European Structural and Investment Funds Operational Programme Research, Development and Education



55

European Structural and Investment Funds Operational Programme Research, Development and Education

Results of using the voting scheme:

	Senseval 2		Senseval 3		
Method	Correct	Precision (%)	Correct	Precision (%)	
IMSE	3070	70.9	2990	75.8	
IMSE + Voting	3071	71.0	3004	76.2	

Conclusion

- Word embeddings information can be used in WSD task
- We reviewed A novel and simple unsupervised method to disambiguate words by deploying the trained word embeddings model of another language using only a bilingual dictionary.
- The main idea of this work is to use information provided by Englishtranslated surrounding words to disambiguate Persian words using trained English word2vec model.

Conclusion (cont.)

- In the second part, we introduced four improvements to existing state-of-the-art supervised WSD approaches:
 - A new model for assigning vector coefficients
 - Applying a PCA dimensionality reduction process to find a better transformation of feature matrices
 - A new weighting scheme
 - A voting strategy to combine word embedding features extracted from different independent corpora.

References:

- Ignacio Iacobacci, Mohammad Taher Pilehvar, and Roberto Navigli.
 2015. Sensembed: Learning sense embeddings for word and relational similarity.
- Behzad Moradi and Ebrahim Ansari, "Unsupervised Word Sense Disambiguation using Word Embeddings" 2019 (under review).
- Sadi, M. F., Ansari, E. and Afsharchi, M., "Supervised Word Sense Disambiguation Using New Features Based on Word Embeddings," 2019 (under review).

European Structural and Investment Funds Operational Programme Research, Development and Education

Thanks.