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Computational Linguistics
The study of human languag! 

using tools and techniques of computer science, 
"ith possible application to its automated processing
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Four Strands of 
Computational Linguistics

1. Science: Applying computational insights to the 
study of language
• formalism
• rigor
• process
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Four Strands of 
Computational Linguistics

1. Science: Applying computational insights to the 
study of language

2. Engineering: Construction or improvement of 
computational artifacts to solve user problems 
involving language
• speech recognition
• machine translation
• natural language interfaces to software systems
• information retrieval or extraction 
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Four Strands of 
Computational Linguistics

1. Science: Applying computational insights to the 
study of language

2. Engineering: Construction or improvement of 
computational artifacts to solve user problems 
involving language

3. Tool-building: Construction or improvement of 
tools to enable (1) or (2)
• weighted finite-state transducers
• synchronous tree-adjoining grammars
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Four Strands of 
Computational Linguistics

1. Science: Applying computational insights to the 
study of language

2. Engineering: Construction or improvement of 
computational artifacts to solve user problems 
involving language

3. Tool-building: Construction or improvement of 
tools to enable (1) or (2)

4. Philosophy: Applying computational insights to 
philosophical questions about languag!
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Lecture 1:

Resurrecting 
the Turing Test
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The Goal
Alan Turing, Computing Machinery and 
Intelligence,  1950:
• Can machines think?
• How could we tell?

Flashback to the 17th century:
• Do animals have souls?
• How could we tell?
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Descartes on the Singularity
of Verbal Behavior

“In fact, none of our external actions can show 
anyone who examines them that our body is not just 
a self-moving machine but contains a soul with 
thoughts, with the exception of spoken words, or other 
signs that have relevance to particular topics 
without expressing any passion.”

— René Descartes
Letter to the Marquess of Newcastle, 1646
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Cordemoy on 
Indistinguishability

“That if the Bodies, which are like mine, had 
nothing but the facilness of pronouncing Words, I 
should not therefore believe that they had the 
advantage of being united to Souls: But then, if I 
finde by a$ the Experiments, I am capable to make, tha% 
they use speech as I do, I shall think, I have infallible 
reason to believe that they have a soul as I.”

— Gèraud de Cordemoy 
A philosophicall discourse concerning speech, 1668
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Turing’s Agenda
“I propose to consider the question, ‘Can machines think?’  This should 
begin with definitions of the meaning of the terms ‘machine’ and 
‘think’. The definitions might be framed so as to reflect so far as 
possible the normal use of the words, but this attitude is 
dangerous. If the meaning of the words ‘machine’ and ‘think’ are to 
be found by examining how they are commonly used it is difficult 
to escape the conclusion that the meaning and the answer to the 
question, ‘Can machines think?’ is to be sought in a statistical 
survey such as a Gallup poll. But this is absurd. Instead of attempting 
such a definition I sha$ replace the question by another, which is closely 
related to it and is expressed in relatively unambiguous words.”

— Alan Turing
Computing machinery and intelligence, 1950
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Turing’s “Imitation Game”
Interrogator B (a person) A (a machine)
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Necessary versus 
Sufficient Conditions

Is ability to pass a Turing Test a necessary condition of 
intelligence?
• “May not machines carry out something which ought to 

be described as thinking but which is very different from 
what a man does? This objection is a very strong one, but 
at least we can say that if, nevertheless, a machine can be 
constructed to play the imitation game satisfactorily, we 
need not be troubled by this objection.” — Turing, 1950

Is ability to pass a Turing Test a sufficient condition of 
intelligence?
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Turing: 
Replace the Question

“Instead of attempting such a definition I shall replace the question by 
another. ... The original question, ‘Can machines think?’ I believe to be too 
meaningless to deserve discussion.”

— Turing, 1950
“If Turing intends that the question of the success of the machine at the 
imitation game replace the question about machines thinking, then it is 
difficult to understand how we are to judge the propriety and adequacy of th! 
replacement if the question being replaced is too meaningless to deserve discussion.  
Our potential interest in the imitation game is aroused not by the fact 
that a computer might learn to play yet another game, but that in some 
way this test reveals a connection between possible computer activities 
and our ordinary concept of human thinking.”

— Moor, 1976
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The Turing Test is not a sufficient condition for 
intelligence.

• Gunderson flexibility of behavior
• Davidson semantics
• Searle intentionality
• Block richness of information processing
• ...

The Turing Test is a sufficient condition for 
intelligence.

• Dennett

Current Views



Dennett: 
The Turing Test is Sufficient
“The Turing test in unadulterated, unrestricted form, as 
Turing presented it, is plenty strong if well used. I am 
confident that no computer in the next twenty years is going 
to pass the unrestricted Turing test. They may well win the 
World Chess Championship or even a Nobel Prize in 
physics, but they won’t pass the unrestricted Turing test. 
Nevertheless, it is not, I think, impossible in principle for a 
computer to pass the test, fair and square. I’m not running 
one of those a priori ‘computers can’t think’ arguments. I 
stand unabashedly ready, moreover, to declare that any computer 
that actua$y passes the unrestricted Turing test wi$ be, in every 
theoretica$y interesting sense, a thinking thing.”

— Dennett, 1985



I conclude that the capacity to emit sensible 
responses is not sufficient for intelligence, and so 
the neo-Turing Test conception of inte$igence is refuted 
(along with the older and cruder Turing Test 
conceptions). I also conclude that whether 
behavior is intelligent behavior is in part a matter 
of how it is produced. Even if a system has the 
actual and potential behavior characteristic of an 
intelligent being, if its internal processes are like 
those of the machine described, it is not intelligent.

— Block, 1981

Block: The Turing Test
 is Insufficient
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If an agent passes a Turing Test, then it produces a 
sensible sequence of verbal responses to a sequence 
of verbal stimuli.

The Turing Syllogism
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If an agent passes a Turing Test, then it produces a 
sensible sequence of verbal responses to a sequence 
of verbal stimuli.

If an agent produces a sensible sequence of verbal 
responses to a sequence of verbal stimuli, then it is 
intelligent.

The Turing Syllogism



Division of Engineering and Applied Sciences
Harvard University
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sensible sequence of verbal responses to a sequence 
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If an agent produces a sensible sequence of verbal 
responses to a sequence of verbal stimuli, then it is 
intelligent.

Therefore, if an agent passes a Turing Test, then it 
is intelligent.

The Turing Syllogism
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If an agent passes a Turing Test, then it produces a 
sensible sequence of verbal responses to a sequence 
of verbal stimuli.

If an agent produces a sensible sequence of verbal 
responses to a sequence of verbal stimuli, then it is 
intelligent.

Therefore, if an agent passes a Turing Test, then it 
is intelligent.

The Turing Syllogism

The Turing Test conception of inte$igence:
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If an agent produces a 
sensible sequence of 
verbal responses to a 
sequence of verbal stimuli, 
then it is intelligent.

The Occasional Conception
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If an agent has the capacity to produce a sensible 
sequence of verbal responses to a sequence of 
verbal stimuli, whatever they may be, then it is 
intelligent.

The Capacity Conception

Promissory Note
The Turing Test needs to demonstrate

• Capacity a general capacity for sensible 
response to verbal stimuli
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The Aunt Bertha Machine
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[Intelligence is the capacity to emit sensible 
sequences of responses to stimuli, so long as this 
is accomplished in a way that averts exponential 
explosion of search. ... Dennett tells me that he 
advocates [this conception]. (Block, 1981)]

Exponential Explosion
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[Intelligence is the capacity to emit sensible 
sequences of responses to stimuli, so long as this 
is accomplished in a way that averts exponential 
explosion of search. ... Dennett tells me that he 
advocates [this conception]. (Block, 1981)]

If an agent has the capacity to produce a sensible 
sequence of verbal responses to a sequence of 
verbal stimuli, whatever they may be, and withou% 
requiring exponential storage, then it is intelligent.

The Compact Conception



Division of Engineering and Applied Sciences
Harvard University

Storage 
versus 
Length

1 2 3 4 5 6 7 8
0
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Length 
versus 

Storage
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If an agent has the capacity to produce a sensible 
sequence of verbal responses to a sequence of 
verbal stimuli, whatever they may be, and withou% 
requiring exponential storage, then it is intelligent.

The Compact Conception
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If an agent has the capacity to produce a sensible 
sequence of verbal responses to a sequence of 
verbal stimuli, whatever they may be, and withou% 
requiring exponential storage, then it is intelligent.
If an agent has the capacity to produce a sensible 
sequence of verbal responses to a sequence of 
verbal stimuli that is of length at least logarithmic i* 
the storage capacity of the agent, whatever they may be, 
then it is intelligent.

The Compact Conception
Modified

^
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The Turing Test needs to demonstrate
• Capacity a general capacity for sensible 

response to verbal stimuli
• Complexity of length at least logarithmic in 

the storage capacity of the subject 
under test.

Promissory Notes
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Proofs based on interaction and randomization.

Interactive Proofs
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1. P[rover] examines the jar 
to obtain bean count b0

2. V[erifier] privately 
removes d jelly beans (0 
or 1, chosen randomly) 
and shakes the jar

3. P examines the jar to 
obtain bean count b1

4. P reports b1 – b0

5. If d = b1 – b0, V accepts; 
otherwise V rejects

Jelly Bean Counting
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Probabilistic proof condition
• No false rejections
• False acceptance 1/2 the time

Exponential confidence
• For k rounds, false acceptance 1/2+

Only verifier receives proof
• Verifier can generate accepting protocols 

unilaterally

Properties of the Interactive 
Proof Protocol
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Interactive Proofs of a 
Capacity

• P has a capacity to 
compute f if P computes 
f correctly on a 
substantial fraction (tl) 
of inputs 

• Assume P computes f 
correctly on tp of the 
inputs.

tp > tl ?
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inputs.

tp > tl ?
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Interactive Proofs of a 
Capacity

• P has a capacity to 
compute f if P computes 
f correctly on a 
substantial fraction (tl) 
of inputs 

• Assume P computes f 
correctly on tp of the 
inputs.

• Assume P computes f 
correctly on t of the 
samples.
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P has a capacity to compute f if P computes f 
correctly on a substantial fraction (tl) of inputs 

Assume P computes f correctly on tp of the inputs.

Assume P computes f correctly on t of the samples.
Let ts > tl be a sample threshold.

Then,

Interactive Proofs of a 
Capacity

if tp < tl, Pr(t > ts)  < 1/c+
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Interactive Proofs of a 
Capacity

• tl = 1/2

• ts = 3/4

• k = 300 rounds

• If tp < 1/2,
Pr(t > 3/4) < 1/1010 
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The Turing Test as an 
Interactive Proof

Space of all possible
 verbal stimuli

Subspace of verbal stimuli 
with sensible responses
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Run k rounds of Turing 
Tests.  Observe that 
sensible responses are 
generated on a fraction of 
inputs greater than the 
threshold ts.  Then, with 
probability of error 
exponentially small in k, 
sensible responses are 
generated on at least a 
fraction tl of all inputs.

The Turing Test as an 
Interactive Proof
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The Turing Test needs to demonstrate
• Capacity a general capacity for sensible 

response to verbal stimuli
• Complexity of length at least logarithmic in 

the storage capacity of the subject 
under test.

Promissory Notes
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Size of the Universe
Here, now

Big bang

15×109 light-years

Ti
m!
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Storage Capacity
 of the Universe

Volume: (15×109 light-years)3 = (15×109×1016 meters)3

Density: 1 bit per (10-35 meters)3

Total storage capacity: 10184 bits < 10200 bits ≅ 
2670 bits

Critical Turing Test length: 670 bits ≅ 670 
characters ≅ 140 words < 1 minute
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If an agent passes a Turing Test, then it produces a 
sensible sequence of verbal responses to a sequence 
of verbal stimuli.

If an agent produces a sensible sequence of verbal 
responses to a sequence of verbal stimuli, then it is 
intelligent.

Therefore, if an agent passes a Turing Test, then it 
is intelligent.

The Turing Syllogism
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If an agent has the capacity to produce a sensible 
sequence of verbal responses to a sequence of 
verbal stimuli, whatever they may be, and withou% 
requiring exponential storage, then it is intelligent.
If an agent has the capacity to produce a sensible 
sequence of verbal responses to a sequence of 
verbal stimuli that is logarithmic in the storage capacity 
of the agent, whatever they may be, then it is 
intelligent.

The Compact Conception
Modified

^
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If an agent passes k rounds of a Turing Test of at least one minute i* 
length, then with probability of error exponentia$y sma$ in k, it has the 
capacity to produce a sensible sequence of verbal responses to a 
sequence of verbal stimuli that is logarithmic in the storage 
capacity of the agent, whatever they may be.

If an agent has the capacity to produce a sensible sequence of 
verbal responses to a sequence of verbal stimuli that is 
logarithmic in the storage capacity of the agent, whatever they 
may be, then it is intelligent.

Therefore, if an agent passes a Turing Test, then it is intelligent.

The Turing Syllogism

The modified compact conception of inte$igence:
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The Turing Test can be most profitably viewed as 
an interactive proof of inte$igence:

• In form
• In performance

Who is right?
• Classical notion of proof: Block is right
• Interactive notion of proof: Dennett is right

Summary
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Four Strands of 
Computational Linguistics

1. Science: Applying computational insights to the 
study of language

2. Engineering: Construction or improvement of 
computational artifacts to solve user problems 
involving language

3. Tool-building: Construction or improvement of tools to 
enable (1) or (2)

4. Philosophy: Applying computational insights to 
philosophical questions about language
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Stuart M. Shieber

Lecture 2:

Towards a Universal 
Natural-Language Pipeline
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Motivation

Dragon Naturally Speaking 
Command Browser
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Voice to Commands

Voice Command
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Voice to Commands

Voice CommandWords
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Voice to Commands

Voice CommandWords

Samples WordsPhones Triphones

Hidden Markov Models
phonotactic models

dictionaries
language models
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Voice to Commands

Voice CommandWords

Samples WordsPhones Triphones

Hidden Markov Models
phonotactic models

dictionaries
language models

Weighted Finite State Transducers
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Voice to Commands

WFSTString String Command
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Voice to Commands

WFSTString String TreeParser ??? Command
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The Universal NL Pipeline

WFSTString String TreeParser ??? Tree

Strings is to WFST as trees is to ???
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Command interpretation
• Database query construction

Semantic interpretation
• Semantic disambiguation

Machine translation transfer
Parsed corpus manipulation and normalization
Natural language generation

• Logical form canonicalization

Ubiquity of Tree 
Transformation
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Finite-state automata and transducers
Weighted automata and transducers
Tree transducers (and their insufficiency)
Bimorphisms and synchronous grammars

Overview
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Regular Languages and 
Finite-State Automata
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A language is a set of strings.
Regular languages is the smallest class of languages 
including

• the empty language
• singleton languages
• closure under

• union
• concatenation
• iteration closure

Regular Languages

L1 ∪ L2

(L1 · L2)

(L1 ∪ L2)

(L∗)
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0 1 2

abba

! !

Finite-State Automata

initial state final state
transition

input
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0 1 2
εε

a bb a

Finite-State Automata

A derivation:
0 aaabba# → 0 aabba# → 0 abba# → 0 bba# 
      → 1 bba# → 1 a# → 2 a# → 2 # → #
Definition of recognition:

• accept w if and only if   0 w# →* #
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Lots of things make no difference:
• Granularity
• Epsilon removal
• Left-right reversal
• Determinization
• Minimization

Degrees of Freedom
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Finite-State Transducers
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Regular Relations
A string relation is a set of pairs of strings. 

input : outpu%
Regular relations is the smallest class of relations 
including:

• the empty language
• singleton languages, e.g.,  
• closure under

• union
• concatenation
• iteration closure

{a : ε}, {ε : a}, . . .
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0 1 2
εε

a bb a

Sample FST
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0 1 2

a : ε bb : c

εε

a : ε

Sample FST
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0 1 2

a : ε bb : c

εε

a : ε

Sample FST

A derivation:
0 aaabba# → 0 aabba# → 0 abba# → 0 bba# 
      → 1 bba# → c 1 a# → c 2 a# → c 2 # → c #
Definition of recognition:

• accept s:t if and only if   0 s # →* t #
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granularity of input and output
left-right reversal
epsilon removal *
pushing
determinization *
minimization *
inversio*
compositio*

Degrees of Freedom

* sometimes



Division of Engineering and Applied Sciences
Harvard University72

Granularity of Output

〈it〉 : it

〈is〉 : is

〈let〉 : let

A Spe$ing Dictionary
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〈let〉 : l

〈it〉 : i

〈is〉 : i ε : s

ε : tε : e

ε : t

Granularity of Output
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〈let〉 : l

〈it〉 : i

〈is〉 : i ε : s

ε : tε : e

ε : t

Left-Right Reversal

...by treating FST as FSA over cross-product 
vocabulary.
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〈let〉 : l

〈it〉 : i

〈is〉 : iε : s

ε : t ε : e

ε : t

Left-Right Reversal

...by treating FST as FSA over cross-product 
vocabulary.
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Inversion

〈let〉 : l

〈it〉 : i

〈is〉 : i ε : s

ε : tε : e

ε : t
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s : ε

t : ε

t : εe : εl : 〈let〉

i : 〈it〉

i : 〈is〉

Inversion
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Movement of output symbols along a path.

s : ε

t : ε

t : εe : εl : 〈let〉

i : 〈it〉

i : 〈is〉

Pushing
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e : 〈let〉

s : ε

t : ε

t : ε

i : 〈it〉

i : 〈is〉

l : ε

Pushing
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t : 〈let〉

t : 〈it〉

s : 〈is〉

e : εl : ε

i : ε

i : ε

Pushing
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e : εl : ε

s : ε

t : ε

t : ε

i : ε

i : ε

ε : 〈is〉
ε : 〈it〉

ε : 〈let〉

Pushing
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s : ε

t : ε

t : εe : εl : 〈let〉

i : 〈it〉

i : 〈is〉

Determinization
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No more determinization possible...

s : ε

t : ε

t : εe : εl : 〈let〉

i : 〈it〉
i : 〈is〉

Determinization
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No determinization possible (without pushing)...

t : 〈let〉

t : 〈it〉

s : 〈is〉

e : εl : ε

i : ε

i : ε

Determinization
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(The transducer determinization algorithm 
performs forward pushing implicitly.)

t : 〈let〉

t : 〈it〉

s : 〈is〉

e : εl : ε

i : ε

Determinization
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Composition
Given two transducers T and T ’, connect output of 
first to input of second
Result is a transducer T o T ’
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Application: Morphological Parser

Overview
‹sky› ‹+s› ‹wb› ‹child› ‹+s› ‹wb›

‹sky› ‹+s› ‹wb› ‹child› ‹+s› ‹wb›

‹sky› ‹+s› ‹wb› children ‹wb›

sky+s_children_

skies_children_

Language Model

Irregular Spelling

Regular Spelling

Orthography Model
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Application: Morphological Parser

Overview

%% Language model: nouns with optional plural marker
%% separated by word boundaries
macro(lm, [nouns, option('<+s>'), '<wb>']*).

%% Nouns
macro(nouns, id({'<boy>',

 '<child>',
 '<sky>',
 '<box>'
 })).
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Application: Morphological Parser

Overview
%% Replace irregular inflected forms with their spelling
macro(spellirreg, 
      replace(['<child>', '<+s>'] x word(children), [], [])).

%% Replace regular forms with their spelling
macro(spellreg, {'<boy>':word('boy'),

 '<child>':word('child'),
 '<sky>':word('sky'),
 '<box>':word('box'),
 '<+s>':word('+s'),
 '<wb>':' ',
 id(a..z)
}*).
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Application: Morphological Parser

Overview

%% Consonants
macro(consonant, {b, c, d, f, g, h, j, k, l, m, n,

  p, q, r, s, t, v, w, x, y, z}).

%% Orthographic rules for pluralization
macro(ortho,
      replace(word('y+'):word('ie'), consonant, s)
       o replace('+':e, {s, z, x, word(ch), word(sh)}, s)
       o replace('+':[], [], s)
     ).

%% Morphological parser that inverts orthography
macro(parse, invert(lm o spellirreg o spellreg o ortho)).
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Application: Morphological Parser

Demo
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Weighting
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FSAs have multiple paths
How to adjudicate?

• Notion of best path

Other applications:
• Numeric functions over strings

• perfect hashing

Why Weights?
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Defines probability distribution over strings:
• a   
• bb   
• ab   
• 1.0

Weighted Finite-State 
Automaton

b : .5

a : .1

a : .4

b : 1

1

.2

b : .8
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Defines probability distribution over strings:
• a   .02
• bb   
• ab   
• 1.0

b : .5

a : .1

a : .4

b : 1

1

.2

b : .8

Weighted Finite-State 
Automaton
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Defines probability distribution over strings:
• a   .02
• bb   .5
• ab   
• 1.0

b : .5

a : .1

a : .4

b : 1

1

.2

b : .8

Weighted Finite-State 
Automaton
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Defines probability distribution over strings:
• a   .02
• bb   .5
• ab   .48
• 1.0

b : .5

a : .1

a : .4

b : 1

1

.2

b : .8

Weighted Finite-State 
Automaton
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Best path through a weighted automaton
• Viterbi decoding
• Dijkstra’s algorithm
• dynamic programming

• computes score of best path from start state 
to each state

• for a given input, just intersect

Best Path

δq(0) =

{
1 if q = q0

0 otherwise

δq(t + 1) = max〈q′,a:p,q〉∈∆ δq′(t) · p
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Goal: describe probability of strings of a language 
based on a sample (training corpus)

Approximate under a Markovian assumption that 
words depend only on the previous N–1

Application:

Language Modeling

P (w1 · · · wc) =
k∏

i=1

P (wi | w1 · · · wi−1)

P (w1 · · · wc) =
k∏

i=1

P (wi | wi−N+1 · · · wi−1)
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N-gram approximation:

Maximum likelihood estimates of component N-
gram probabilities:

To start:

Application: Language Modeling

Training

P (w1 · · · wc) =
k∏

i=1

P (wi | wi−N+1 · · · wi−1)

P (wi | wi−N+1 · · · wi−1) ≈ c(wi−N+1 · · · wi)

c(wi−N+1 · · · wi−1)

P (w1 | w−N · · · w0) = P (w1 |
N − 1 times︷ ︸︸ ︷" · · · " )
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Let it be when it is mine to be sure 
let it be when it is mine when it is 
mine let it be to be sure when it is 
mine to be sure let it be let it be let 
it be to be sure let it be to be sure 
when it is mine to be sure let it to 
be sure when it is mine let it be to 
be sure let it be to be sure to be 
sure let it be to be sure let it be to 
be sure to be sure let it be to be 
sure let it be to be sure let it be to 
be sure let it be mine to be sure let 
it be to be sure to be mine to be 
sure to be mine to be sure to be 
mine let it be to be mine let it be 
to be sure to be mine to be sure let 
it be to be mine let it be to be sure 
let it be to be sure to be sure let it 
to be sure mine to be sure let it be 
mine to let it be to be sure to let it 
be mine when to be sure when to 
be sure to let it to be sure to be 
mine.

 — Gertrude Stein, 
An Acquaintance With Description, 1929

Application: Language 
Modeling

Example
Word Count 1-gram MLE

be 62 .276
to 41 .182
it 33 .147
sure 31 .138
let 27 .120
mine 17 .076
when 8 .036
is 6 .027

total 225
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Let it be when it is mine to be sure 
let it be when it is mine when it is 
mine let it be to be sure when it is 
mine to be sure let it be let it be let 
it be to be sure let it be to be sure 
when it is mine to be sure let it to 
be sure when it is mine let it be to 
be sure let it be to be sure to be 
sure let it be to be sure let it be to 
be sure to be sure let it be to be 
sure let it be to be sure let it be to 
be sure let it be mine to be sure let 
it be to be sure to be mine to be 
sure to be mine to be sure to be 
mine let it be to be mine let it be 
to be sure to be mine to be sure let 
it be to be mine let it be to be sure 
let it be to be sure to be sure let it 
to be sure mine to be sure let it be 
mine to let it be to be sure to let it 
be mine when to be sure when to 
be sure to let it to be sure to be 
mine.

 — Gertrude Stein, 
An Acquaintance With Description, 1929

Application: Language 
Modeling

Example
Trigram MLE Prob

it be be 0
it be is 0
it be it 0
it be let 0.083
it be mine 0.125
it be sure 0
it be to 0.708
it be when 0.083
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Application: Language Modeling

WFSA for N-gram Models

b : P (b)

a : P (a)

!

b : P (b |!)

a : P (a | !) a : P (a | a)

a : P (a | b)b : P (b | a)

b : P (b | b)

a

b

Unigra. Bigra.

One state per (N–1-gram) conditioning context
Transitions among states to change context
Start state is 〈"N−1〉



104
Division of Engineering and Applied Sciences

Harvard University

Application: Language Modeling

WFSA for N-gram Models

!!

! a

! b

aa

ab

ba

bb

a : P (a |!!)

a : P (a |! b) b : P (b | ab)

a : P (a | aa)

b : P (b |! a)

b : P (b | bb)b : P (b |! b)

b : P (b |!!)

a : P (a | ba)

a : P (a | ! a)

Trigra.
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!!

! a

! b

aa

ab

ba

bb

a : P (a | !!)

a : P (a |! b) b : P (b | ab)

a : P (a | aa)

b : P (b |! a)

b : P (b | bb)b : P (b |! b)

b : P (b |!!)

a : P (a | ba)

a : P (a |! a)

Application: Language Modeling

WFSA for N-gram Models

P (abbb) = P (a |!!) · P (b |! a) · P (b | ab) · P (b | bb)
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Combining output and weighting
Examples:

• typing models

Weighted Transducers
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Combining output and weighting
Examples:

• typing models

Weighted Transducers

i

b e

s

t

a : 2
b : 2
c : 2
d : 3
e : 3

...
y : 9
z : 9

2 : 2 : .8
2 : {1, 3, 4, 5, 6} : .03
2 : {7, 8, 9} : .016
3 : 3 : .8
3 : {2, 5, 6} : .05
3 : {1, 4, 7, 8, 9} : .01

...

keypaddictionary typing
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f u cn rd ths, u cn gt a gd jbif y cn rd ths, y cn gt a gd jb

Combining output and weighting
Examples:

• typing models
• abbreviation models

Weighted Transducers

Σ→Σ

V→ε

Ci→ Ci
Ci→ ε

Cj→ Cj
Cj→ ε

V→ε

Ci→ Ci Cj→ Cj

V→ε

Drop all vowels after the first character
Drop all but one repeated consonants
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Abbreviation Decoding

‹an› ‹example› ‹of› ‹NUM› ‹words›

‹an› ‹example› ‹of› ‹NUM› ‹words›

an_example_of_‹NUM›_words

an_exmpl_of_‹NUM›_wrds

an_exmpl_of_5_wrds

Language Model

Spelling Model

Compression Model

Unknowns Model
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Original Tex!
[cnn.com; 387 characters; 60 words]

Chinese military officials have boarded a grounded 
U.S. surveillance plane and removed equipment 
from it despite U.S. protests. In a signal that a 
standoff between the two nations is not likely to 
end soon, Pentagon sources told CNN today that 
China had begun removing sensitive eavesdropping 
equipment from the plane. Meanwhile, U.S. and 
Chinese diplomats were meeting on Hainan Island. 

Abbreviation Decoding
Demo
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Abbreviated Tex!
[279 characters]

Chns mltry ofcls hv brdd a grndd U.S. srvlnc pln 
and rmvd eqpmnt frm it dspt U.S. prtsts. In a sgnl 
tht a stndf btwn th tw ntns is nt lkly t end sn, 
Pntgn srcs tld CNN tdy tht Chn hd bgn rmvng 
snstv evsdrpng eqpmnt frm th pln. Mnwhl, U.S. and 
Chns dplmts wr mtng on Hainan Islnd.

Abbreviation Decoding
Demo
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Reconstructed Tex!
[4 errors]

Chinese military officials have bearded a grounded 
U.S. surveillance plan and removed equipment from 
it despite U.S. protests. In a signal that a standoff 
between the two nations is not likely to end soon, 
Pentagon sources told CANON today that China 
had begun removing sensitive eavesdropping 
equipment from the plan. Meanwhile, U.S. and 
Chinese diplomats were meeting on Hainan Island. 

Abbreviation Decoding
Demo
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Original
T mny ppl hv cm t th lctr t ft in th rm.

Reconstructed
Too many people have come to the lecture to fit in 
the room.

Abbreviation Decoding
Demo
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Abbreviation 
Decoding

Performance
un

ifo
r.

un
igr

a.

bi
gr

a.

tri
gr

a.

0

25

50

75

100

346

51
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Weighted finite-state transducers 
• provide an elegant, uniform, formalism
• cover a vast range of low-level natural-language 

processing tasks
• characterizable as string to string 

transformations
Generality based on properties such as

• composability (closure under composition)
• efficiency (determinizability and 

minimizability, enabled by pushing)
• weighting (for choice)

Summary
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Tree Automata
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S

NP VP

V NPKim

saw Pat

Trees as Terms

S(NP (Kim),
V P (V (saw), NP (Pat)))
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Example:

Propositional Formulae
Propositional formulae: T (Fprop)

Fprop = {∧2,∨2,¬1,true0, false0}
(Arities are given in the subscripts.)

1

∧
∨
¬

true

false

false

true ∧ (false ∨ ¬false)
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Tree Automaton Transitions
q(fn(x1, . . . , xn))→ fn(q1(x1), . . . , qn(xn))

q

fn q1 qn

fn
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Example Tree Automaton
q0(f (x1, x2))→ f (q0(x1), q0(x2))
q0(a)→ a
q0(b)→ b

q0

f

a

b

f

a

f

a

b

f

a
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q0

f

a

b

f

a

q0

Example Tree Automaton
q0(f (x1, x2))→ f (q0(x1), q0(x2))
q0(a)→ a
q0(b)→ b

f

a

b

f

a
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f

a

b

f

a

q0q0

Example Tree Automaton
q0(f (x1, x2))→ f (q0(x1), q0(x2))
q0(a)→ a
q0(b)→ b

f

a

b

f

a
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f

a

b

f

a

Example Tree Automaton
q0(f (x1, x2))→ f (q0(x1), q0(x2))
q0(a)→ a
q0(b)→ b

f

a

b

f

a
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qt(false ∨ ¬false)
→ qf(false) ∨ qt(¬false)
→ false ∨ qt(¬false)
→ false ∨ ¬qf(false)
→ false ∨ ¬false

1

qt(true) → true
qf(false) → false

qt(¬x1) → ¬qf(x1)
qf(¬x1) → ¬qt(x1)

qt(x1 ∧ x2) → qt(x1) ∧ qt(x2)
qf(x1 ∧ x2) → qt(x1) ∧ qf(x2)
qf(x1 ∧ x2) → qf(x1) ∧ qt(x2)
qf(x1 ∧ x2) → qf(x1) ∧ qf(x2)

qt(x1 ∨ x2) → qt(x1) ∨ qt(x2)
qt(x1 ∨ x2) → qt(x1) ∨ qf(x2)
qt(x1 ∨ x2) → qf(x1) ∨ qt(x2)
qf(x1 ∨ x2) → qf(x1) ∨ qf(x2)

1

Example:

Recognizing Valid Formulae
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Characterize context-free languages 
Closure under

• (left-right reversal)
• top-down–bottom-up reversal
• union
• substitution
• iterative substitution
• granularity
• epsilon removal:
• determinization: bottom-up only

Properties of Tree Automata

q(x) → q′(x)
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Tree Transducers
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Regarding tree transformations, 
results do not flow so easily. Several 
definitions are candidate for the label 
‘tree transductions’, with [unrelated] 
properties. People will keep in mind 
how gracefully behaved rational 
(word) transductions [are].

— Raoult, 1992

Tree Transducers
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Generalizing Transitions

q(fn(x1, . . . , xn))→ fn(q1(x1), . . . , qn(xn))

q(fn(x1, . . . , xn))→ T [q1(x1), . . . , qn(xn)]
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∧
¬

true false

Example:

Concrete Syntax of Formulae
q0(¬x) →un(¬, q∧∨(x))
q0(x ∧ y) → bin(q∧∨(x),∧, q∨(y))
q0(x ∨ y) → bin(q∨(x),∨, q0(y))
q0(true) → true
q0(false) → false
q∧∨(¬x) →un(¬, q∧∨(x))
q∧∨(x ∧ y)→ par([, bin(q∧∨(x),∧, q∨(y)), ])
q∧∨(x ∨ y)→ par([, bin(q∨(x),∨, q0(y)), ])
q∧∨(true) → true
q∧∨(false) → false
q∨(¬x) →un(¬, q∧∨(x))
q∨(x ∧ y) → bin(q∧∨(x),∧, q∨(y))
q∨(x ∨ y) → par([, bin(q∨(x),∨, q0(y)), ])
q∨(true) → true
q∨(false) → false

un

par

bin[ ]

∧

¬

true false
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Example
MT Transfer

qS(S(x1, x2)) → S(qS(x1), qS(x2))
qS(NP (x1)) → NP (qNP (x1))

qS(V P (x1, x2)) → V P (qV P (x1), qV P (x2))
qV P (V (x1)) → V (qV (x1))

qV P (NP (x1)) → NP (qNP (x1))
qNP (Marie) → Mary

qNP (Kuchen) → cake
qV (esse) → eats

S

NP

V

VP

NP

esse

Marie

Kuchen
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Example
MT Transfer

qS(S(x1, x2)) → S(qS(x1), qS(x2))
qS(NP (x1)) → NP (qNP (x1))

qS(V P (x1, x2)) → V P (qV P (x1), qV P (x2))
qV P (V (x1)) → V (qV (x1))

qV P (NP (x1)) → NP (qNP (x1))
qNP (Marie) → Mary

qNP (Kuchen) → cake
qV (esse) → eats

S

NP

V

VP

NP

esse

Marie

Kuchen

qS
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S

NP

V

VP

NP

esse

Marie

Kuchen

qS qS

Example
MT Transfer

qS(S(x1, x2)) → S(qS(x1), qS(x2))
qS(NP (x1)) → NP (qNP (x1))

qS(V P (x1, x2)) → V P (qV P (x1), qV P (x2))
qV P (V (x1)) → V (qV (x1))

qV P (NP (x1)) → NP (qNP (x1))
qNP (Marie) → Mary

qNP (Kuchen) → cake
qV (esse) → eats
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qV PqNP

S

NP

V

VP

NP

esse

Marie

Kuchen

qV P

Example
MT Transfer

qS(S(x1, x2)) → S(qS(x1), qS(x2))
qS(NP (x1)) → NP (qNP (x1))

qS(V P (x1, x2)) → V P (qV P (x1), qV P (x2))
qV P (V (x1)) → V (qV (x1))

qV P (NP (x1)) → NP (qNP (x1))
qNP (Marie) → Mary

qNP (Kuchen) → cake
qV (esse) → eats
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qNPqV

S

NP

V

VP

NP

esse

Mary

Kuchen

Example
MT Transfer

qS(S(x1, x2)) → S(qS(x1), qS(x2))
qS(NP (x1)) → NP (qNP (x1))

qS(V P (x1, x2)) → V P (qV P (x1), qV P (x2))
qV P (V (x1)) → V (qV (x1))

qV P (NP (x1)) → NP (qNP (x1))
qNP (Marie) → Mary

qNP (Kuchen) → cake
qV (esse) → eats
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Example
MT Transfer

qS(S(x1, x2)) → S(qS(x1), qS(x2))
qS(NP (x1)) → NP (qNP (x1))

qS(V P (x1, x2)) → V P (qV P (x1), qV P (x2))
qV P (V (x1)) → V (qV (x1))

qV P (NP (x1)) → NP (qNP (x1))
qNP (Marie) → Mary

qNP (Kuchen) → cake
qV (esse) → eats

S

NP

V

VP

NP

eats

Mary

cake
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Consider
• I like Mary.
• Marie gefällt mir.

Why Rotations?

like Mary

S

NP VP

V NPI

S

NP VP

V NPMarie

gefällt mir
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q(f (xgxy, z)) → f (q1(xgxy), g(q2(xgxy), q(z)))
q1(g(x, y)) → q(x)
q2(g(x, y)) → q(y)

1

Expressing Rotations
f

g

x y

z

f

gx

y z

q(f (g(x, y), z))→ f (q(x), g(q(y), q(z)))

requires
nonlinearity
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Generating perfect binary trees:

Nonlinearity Generates 
Exponential Transductions

q(f (x))→ g(q(x), q(x))
q(a) → a

q(f (a)) → g(q(a), q(a)) →∗ g(a, a)

q(f (f (a))) → g(q(f (a)), q(f (a))) →∗ g(g(a, a), g(a, a))

q(f (f (f (a)))) →∗ g(g(g(a, a), g(a, a)), g(g(a, a), g(a, a)))

|q(fn(a))| = 2n − 1

Exponential growth implies no composition 
closure



Division of Engineering and Applied Sciences
Harvard University139

VP

VP

VP

give

the patient

the pillNP

NP

V

Consider
• Dann wird der Doktor dem patienten die Pille geben
• Then the doctor will give the patient the pill

Why Global Rotations?

geben

dem Patienten

die Pille

VP

VP

VPNP

NP

V
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No Global Rotations
f

f

f

f

w

x

y

z

#

f

f

f

fx

y

z

w

#

cf. macro tree transducers
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Linearity would be helpful
• closure under composition
• no exponential growth
• invertibility

But linearity is insufficient...
• no local rotation

and even nonlinear transducers are insufficient
• global rotations
• fringe

Summary
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Extended Transducers:
Bimorphisms
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Tree Homomorphisms
Replace each symbol with a fixed subtree
Equivalent to one-state tree transducers

a

g

x

a

!→

!→

f

zyx g

y z

f

f fa

a a a a a a
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Tree Homomorphisms
Replace each symbol with a fixed subtree
Equivalent to one-state tree transducers

a

g

x

a

!→

!→

f

zyx g

y z

g

g

gaa

a a a

a a

g

g

g
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f

a

g

x x

a

!→

!→
x

Example

Perfect Binary Trees

f

f

f

a

g

g

g

a a

g

a a

g

a a

g

a a

g
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Linear (L)
• no repeated variables

Complete (C)
• no dropped variables

Epsilon-free (F)
• some structure on output

Symbol-to-symbol (S)
• output of height 1
• (implies epsilon-free)

Delabeling (D)
• = linear complete symbol-to-symbol

Restricting Homomorphisms
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Bimorphisms
Bimorphism:

• regular (tree) language
• two homomorphisms

Bimorphisms define tree relations:
•    

〈hin, L, hout〉

h−1
in ◦ L ◦ hout
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Intuition for Restriction

q(fn(x1, . . . , xn))→ T [q1(x1), . . . , qn(xn)]

fn(x1, . . . , xn)
(≈ fn)

arbitrary morphism (M)delabeling (D)

hin hout

T [x1, . . . , xn]
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Bimorphism 
Characterization

The class of bottom-up tree transductions is 
equivalent to the relations defined by tree 
bimorphisms where the first homomorphism is a 
delabeling.

If the homomorphisms are linear (epsilon-free, 
complete), the bimorphism characterizes a linear 
(resp., epsilon-free, complete) transduction.

This asymmetry explains, e.g., lack of invertibility.
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B(x, y) bimorphisms with homomorphisms of 
type x and y

• M any homomorphism
• L linear
• C complete
• F epsilon-free
• D delabeling

B(D, M) equivalent to tree transducers

Types of Bimorphisms
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B(M, M)
• very powerful; composition is Turing-

equivalent
B(L, L)

• expands input power; contracts output power
• not closed under composition
•   

B(LCF, LCF)
•    

B(LC, LC)
• = synchronous tree substitution grammars

Regaining Symmetry

B(L, L) ⊂ B(L, L)2 ⊂ B(L, L)3 ⊂ B(L, L)4 = B(L, L)5

B(LCF,LCF ) ⊂ B(LCF,LCF )2 = B(LCF,LCF )3
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Context-free grammars as tree substitution

Synchronous Grammars

S

NP VPKim Vlikes Sandy

NP VPV NP

NP

Kim

NP

S

NP VP

Kim

S

NP VP

V

VP

NP

S

NP

Kim V

VP

NP
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Synchronous
Context-Free Grammars

V

eat

cake

VP

V

NP

NP V

esse

Kuchen

VP

V

NP

NP
V

VP

NP V

VP

NP

eat

V

esse

V

cake

NP

Kuchen

NP
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Synchronous
Context-Free Grammars

V

eat

cake

VP

V

NP

NP V

esse

Kuchen

VP

V

NP

NP
V

VP

NP V

VP

NP

eat essecake Kuchen
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Domain of locality is too small

Problems With SCFG

like Mary

S

NP VP

V NPI

S

NP VP

V NPMarie

gefällt mir
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S

NP

V

VP

NP

isst

Kim

NP

NP

Kuchen

Kim

NP NP

Kuchen

S

NP

V

VP

NP

isst

Expands domain of locality to elementary tree.

Tree Substitution Grammars
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Kim

NP NP

Kuchen

S

NP

V

VP

NP

isst

Expands domain of locality to elementary tree.

Tree Substitution Grammars

No additional expressive power over CFG.

S

NP

V

VP

NP

isst

Kim

Kuchen
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Synchronous Tree-
Substitution Grammars

Kim

NPNP

Kuchen

S

NP

V

VP

NP

isst

Kim

NPNP

cake

S

NP

V

VP

NP

eats

Kim

NP

NP

Kuchen

S

NP

V

VP

NP

isst

Kim

NP

NP

cake

S

NP

V

VP

NP

eats
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Synchronous Tree-
Substitution Grammars
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The STSG Payoff
S

NP
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VP

NP

isst
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eats
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STSG as Bimorphism

Kim

NPNP

Kuchen

S

NP

V

VP

NP

isst

Kim

NPNP

cake

S

NP

V

VP

NP

eats

hi(α1) = S(x, V P (V (eats), y)
ho(α1) = S(x, V P (V (isst), y)
hi(α2) = NP (cake)
ho(α2) = NP (Kuchen)
hi(α3) = NP (Kim)
ho(α3) = NP (Kim)

hi(α4) = S(x, V P (V (likes), y)
ho(α4) = S(y, V P (V (gefällt), x)
hi(α5) = NP (I)
ho(α5) = NP (mir)

NB: linear, complet"
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Formalisms for the UNLP

For strings: weighted finite-state transducers

For trees:
• tree transducers: profligate growth, uninvertible
• linear tree transducers: no rotation
• bimorphisms unify transducer view and synchronous 

grammar view
• synchronous grammars may be in the right direction

• Scansoft back-end

WFSTString String TreeParser ??? Tree


