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Terminology

Speech recognition:

Automatic transcription of the sound of speech into text

Speech understanding:

Determination of intended meaning of observed speech
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A mathematical formulation

� Let � denote the acoustic evidence (data)

– � is a sequence of symbols taken from some (possibly
very large) alphabet � :

� � � �� � � �	� � � � � 
 � �
� �

� Let

� � � �� � � � � � � � � � � ��� �
denote a string of � words, each belonging to a fixed and

known vocabulary ��
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A mathematical formulation (Cont.)
� If � ��� � � � denotes the probability that the words� were

spoken, given that the evidence � was observed, then the
recognizer should decide in favor of a word string

�� satis-
fying

�� � �� 	�
 ��
 � � � � � �

� Bayes’ formula of probability theory allows us to re-write the
right-hand side probability as

� � 
 ��� ��� � � 
 � � � � � 
 �

� � � �

� Since the maximization is carried out with the variable � fixed,

�
 � �� ��� ��� � � 
 � � � � � 
 �
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Components of a speech recognizer
� Acoustic processing: What acoustic data � will be ob-

served?

– Decide on a ”front end”

� Acoustic modeling: Determine the value � � � �� � .

– To compute � � � �� � on the fly, we need a statistical
acoustic model

� Language modeling: Compute for every word string� the
à priori probability � ��� � that the speaker wishes to utter

� �

– Since

� � � � � �
�� �

� � � � � � ��	� � � � � ��� � �
We must determine estimates of the probabilities � � � � � � �� � � � � � ��� � ��
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Components of a speech recognizer (Cont.)
� Hypothesis search: We must search over all possible word

strings� to find the maximizing

�� .

– No brute force: space of� s is astronomically large.

– Search limited to word strings that are suggested by the
acoustics � observed.
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How to generate observed acoustic symbols �

� Example of a spectrogram: ”visible speech”
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Acoustic processor
1. At regular time intervals (100 times per second) the signal

processor outputs a vector of the speech energies mea-
sured in � selected frequency bands

� By vector we mean a slice through the spectrogram!

2. The pattern matcher compares that vector with pre-stored
prototypes and finds the nearest prototype.

3. Prototypes can be selected directly from speech data with-
out any human intervention.

4. The processor output is the identifier label of the nearest
prototype

Labels
Identifier

Speech Vectors

Prototypes
Vector

Matcher
Pattern

Processor
Signal

Spectral
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Comparison of original with the approximate
spectrogram derived from Acoustic Processor

output labels
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K-means clustering

Cluster centers
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Statistical models of production of acoustic
label string � by word string

� Model must be constructed from building blocks.
– Model for � � � � � �� � � � �� � � is the concatenation of models for the

individual words � ��

W W W W21 3 i

� The Hidden Markov Model (HMM) generates the string of
acoustic symbols a � ,a � ,a � ,... . It has states connected by
transitions.

– A starting and an ending state
– A transition � is taken with probability � � � �

– When state 	 is reached the model generates output 
 � � with
probability � � 
 � 	 ��
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Production of acoustic label string � by word
string (Cont.)

� Every word � � � will have its own HMM. The difference
between models are values of model parameters:

– the number of states �

– the transition probabilities � ��� � between them

– the acoustic label output probabilities � � � ��� �
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Visualizing the action of HMMs
� Example of a simple HMM

321

p(6)
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p(4)

p(3)
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� The HMM trellis: unwinding of its generating action in time

1

2

3

1

2

3

p(1)

p(2)

p(3)

p(1) p(1)

p(2) p(2)

p(3) p(3)

p(4) p(4)

p(5) p(5)

p(6) p(6)

a a a
1 2 3

3

2

11

The Johns Hopkins University



Three questions about HMMs
� How do we compute the probability of an observed string

� � � � � �� � � �
�

�

– This string can be generated by any state sequence along any path
that leads from the starting to the terminal state.

� How do we find the most probable path through the HMM?
– This path will yield the most probable sequence of words spoken.

� How do we determine the transition probabilities � ��� � and
output probabilites � � � ��� � ?

– We need to get them from data!

– User reads prepared text � � � � � � � � � � � into acoustic processor

– Acoustic processor generates corresponding output � � 
 � 
 � � � � 
 �

– System creates composite HMM for the text � �
Processor
Acoustic

a a  ... a
21 k

The answer: There are relatively simple algorithms that can ac-
complish all three tasks!

The Johns Hopkins University



The basic pronunciation model
� The system contains a finite pronunciation lexicon specify-

ing a correspondence between each word and its baseform
expressed as a phonetic sequence:

chair � ČÉR

� An utterance � is transformed into a phonetic string by
replacing each of its words by its baseform followed by a
delimiter

blue chair � � B L Ú � Č É R �

Phones are pronounced according to their immediate context: the
acoustic model of a phone is a tri-phone

��� B � l, b� L � ú, l� Ú � �� ú� � � č, ��� Č � é, č� É � r, é� R � �

The Johns Hopkins University



The basic acoustic model
� The microphone input is transformed by a signal processor

into a sequence � � � �� � � �
�
� � � of vectors of cepstral coeffi-

cients
– Vectors are generated 100 times a second

� Each tri-phone corresponds to a hidden Markov model (HMM) of the
same structure:

12
a

11
a

1

00
a

0

01
a

a 22

2

� Transitions take place once every centi-second. States gen-
erate normally distributed vectors.

– Tri-phones differ in that their statistical parameters have different
values.

– The parameter values are estimated from transcribed speech data
by the EM algorithm.
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New Raleigh Language revisited
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The compensatory power of statistics derived
from data

An experiment on New Raleigh Language task involving smaller building blocks
from which word models were constructed:

� Phonetic baseforms:

�� �� � �� �� �� 	 
�

Model statistics estimated by experts:
35% correct recognition

� Phonetic baseforms:

�� �� � �� �� �� 	 
�

Model statistics estimated automatically from data:

75% correct recognition

� Orthographic baseforms:

� � �� � �� �� � � 	 � � 
 �
Model statistics estimated automatically from data:

43% correct recognition.
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Advantages of the HMM formulation
� Simple and uniform structure� The complete model for the language (e.g., the New Raleigh

Model) is one large composite HMM:
– the transitions between words are ordinary HMM transitions be-

tween the final state of the previous word and the initial state of
the next word

� The search for the best word sequence

�� is just a search
for the best path through the composite HMM.� It turns out that we can determine the values of the model
parameters directly from speech data:

– Aplies to all languages
– No experts are needed!
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Equivalence Classification for Language
Modeling

� � � � � can be formally decomposed as

� � 
 � �
�

�� �
� � � � � � � �� � � � � ��� � �

The past � � �� � � � � ��� � is referred to as history and is denoted by � ��

� For a vocabulary of size ��� � there are ��� � ��� � different histories! For

� � �� �� � � and �� � , ��� � � is equal to 125 billion!

� Let 	 be a (many to one) mapping of histories into 
 of equivalence
classes. If 	 � � � �� � � � � ��� � � denotes the equivalence class of the string

� � �� � � � � ��� � , then

� � 
 � �
�

�� �
� � � � � 	 � � � �� � � � � ��� � � �

� If at time � � � class 	 ��� � � � � � � �� � � � 
 � is reached,

� � 
 � �
�

�� �
� � � � � 	 ��� � �
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Centrality of prediction (and of statistics)
� � � � � ��� ��� � � where� � � � �� � � � � � � �

� The future is unknown. Can only be predicted via statistics.

� Equivalence classification is central:

– � is ideally a function of meaning and grammar

– In principle, a better � indicates a better theory about
language

– Entropy is an operational measure of the quality of �

� measure provided by Information Theory

� measure related to maximum likelihood
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The equivalence of entropy and maximum
likelihood

� We have
� � � � � �

�� �
� � � � ��� � � �

� � 	
� � � ��� ��� � � � 	 �

where

� � � � � � � � �
��� � � � � � � � �
�

�
�� �
� � � �� � �� � � �� � �

and the Kronecker delta function

� � � � � � � � if � � �

	 if � 
� �

� Therefore,

�
� � � 	 � � � � �
� � 	
� � � � � � � � 	 � � � ��� �
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The equivalence of entropy and maximum
likelihood (Cont.)

� We would like to have estimated � � � ��� � so as to maximize�� � � 	 � � � �� That is, we want

�

� � � � � �� � �
�

� � � 	
� � � � � � � � 	 � � � �� � �

	
� 	

�
� � � ��� ���

�
� 	

� The solution is

� � � ��� � � � � � � � �

� � � �
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The equivalence of entropy and maximum
likelihood (Cont.)

� The above solution represents the maximum likelihood as-
signment of � � � �� � .

� Therefore we want to find an equivalence classification �

that would minimize the entropy

� � �
� � 	
� � � � � � � � 	 � � � ��� �

� However, we actually want to maximize � � � � over test
data, not training data. So cross-entropy

�
� � 	
� � � � � � � � 	 � � � ��� �

is a measure of that.
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Estimation of probabilities
� Run the text’s word sequences through equivalence classi-

fier
� � � � � � � � � � � � � � � � � � � �� � � �

� � � � � � � � � � � � � � � � � � � �� � � �

� Accumulate counts� � � � � � of the number of times the
word � occurred after history was in class � .

� � � � �
�
� � � � � �

Relative frequency

� � � � ��� � � � � � � � � �� � �

� � � �

� First order approximation:

� � � � ��� � � �� � � � � ��� � �
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Equivalence classification requirements:

1. The classification must be sufficiently refined to provide ad-
equate information about the history� so it can serve as a
basis for prediction.

2. It must yield its � possible classes frequently enough so
that the probabilities � � � ��� � can be reliably estimated (not
necessarily by the above crude relative frequency approach).
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Linear Smoothing
� Approximation � � � � � 	 � ��� � � � � � � 	 � � not good enough (gives 0 prob-

ability to events that were not observed but are still possible)

� Experiment:
– Vocabulary: 1K words
– 1.5 M words used for training
– 300K words to test
– Result: 23% of trigrams in test were absent from training

� Linear smoothing

� � � � � 	 � ��� � � � � � � 	 � �� � � � � �� � � � �

where� � � � is a suitable distribution with full support.

� To be more accurate, � may be made to depend on the confidence we
have in � � � � � 	 � ���

� � � �� � 	 � �

� We choose � to maximize our estimate of heldout data (separate from
development data used to estimate � � � � � 	 � � )

�
�� �� � � ��	



�� �

� 	 � � � � 	 � �
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The trigram language model
� The language model that is most frequently used is the tri-

gram model

� � � � � �
�� �

�� � � � � � ��� � � � ��� � �

� We have

�� � � � � � ��� � � � ��� � � � � � � � � � � ��� � � � ��� � � � � � � � �
�� � � � � � ��� � �

� Where

�� � � � � � ��� � � �
� � � � � � � ��� � � � � � � � � � � � � �

� And

� � � �� � � ��� � � � ��� � � �

�

�
� �� � � ��� � � �
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Backing off
� The basic idea is

�� � � � � � �� � � � �
��

� ��
� � � � � � �� � � � if� � � �� � � � � � � � �

� � � � � � � � �� � � � if � 	 � � � �� � � � � � ��
 �

� � � �� � � �
�� � � � � � � � otherwise

where � and � are appropriately chosen so that the prob-
ability

�� � � � � � �� � � � is properly normalized.

� Furthermore,

�� � � � � � � � �
��

� ��
� � � � � � � � if� � � � � � � � ��


� � � � � � � � � � if � 	 � � � � � � � ��
 


� � � � � � � � � � otherwise

� � and � are chosen so that the total probability assigned to
all events that have been seen exactly once in the training
data is equal to the total probability of events never seen in
training data.
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Another example of the power of trigrams
Reconstruction of a short sentence from a bag of words:

� Scramble words of a sentence

� Use trigram language model to find most probable word order, i.e.,

– From set � � � � � � �� � � � � � � find the sequence

� ��� � � � � � � � � � � �� � � � � � � � � �

that will maximize the value of

� � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �

puts
matches

patternlabels
to

ou
t

user
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Sentence reconstruction results
� 38 randomly selected sentences of � 	 � 	 words

� 24 sentences reconstructed exactly (63%).

� 9 more reconstructions have same meaning as originals
(24%)

� Reconstruction error only 13%.
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Reconstruction examples
� Meaning preserved:

� �� �� � �� � � � � � � �� � � � � � � � � � 	

� � � � �� �� � � � � � � �� � � � � � � � � � 	

� � � �� � 
 � 
 � � � � � � 	 � 
 � � �

�� � 
 � 
 � � � � � � 	 � 
 � � � � � �

� � � � � 	 
 � � 
 � � 
� � 	 �

� � 	 
 � � 
 � � 
� � 	 � � � �

� � � � � � � � 	 	� � � � 
 � � �� � 	 � 
 �� � �

� � � 	 � � � � � 	� � � � 
 � � �� � 	 � 
 �� � �

� Meaning destroyed:

� � �� � � �� 
 � �
 
 � � � � �� 	� 
 � � � � 
 	 � � � 
 � 	 	 � � � 	 �� � �� � 
 � 	 	 � � � 	 �� 	� 
 � � � � �� 
 � �
 
 � � � � � 
 	 � � � �

� � 
 � � � � � � � � � � 	 
 �� � � �� � � � � � 	 � � � � �� 
 � �

� �� 
 � � 	 � � � � � 
 � � � � � � � � � � 	 
 �� � � �� � � � � �

The Johns Hopkins University



HMM graph: unigram language model
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Language Model Constructed via Maximum
Entropy Estimation

� Must approximate language model probability � � � �� � ��

� � � ��� ��� � � where � ��� � denotes the equivalence class
to which the history� belongs.

� Equivalence classification necessary

1. to have fewer parameters to estimate,

2. so that available data be sufficient for the estimation,

3. so the probability can be constructed in a timely manner at recog-
nition time from parameter values occupying limited storage.

� Basic idea: construct the probability � � � � � � by insisting
that

– � � � ��� � should satisfy certain linear constraints,

– � � � ��� � should reflect our ignorance about everything not speci-
fied by these constraints.
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Example: Trigram language model constraints
� Consider the case� � � � � � � � � � � � and constraints

� ��� � � � � � ��� � � � if� ��� � � � � �

� ��� � � � � � ��� � � � if� ��� � � � � �

� ��� � � � � � ��� � � � if� ��� � � � � �

� ��� � � � ��� � if� ��� � �


� ��� � � � ��� � if� ��� � �


� � �� � ��� � � � � �

� The first set of constraints is equivalent to

��� �� �
� ���

� � �
�

� � ���
� � �
�

�� � � � � � ��� � � �

where

� ���
� � �
�

�� � � � � � if�
� � � � �
� � � � � ��� � � � � �

	 otherwise

� Remaining 5 constraint sets can be similarly expressed
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The General Solution
� Let � � � �� � � �	� � � � � � denote a sequence of � random vari-

ables.

Let � � � ��� � denote the � � � constraint function

� Determine � � � � so that

– it satisfies � � � � � � � � � ��� � � � � � �

for given constraint targets � � � �� � � � � � � � � � � � �

– the entropy� ��� � is maximal

� For � � � � � � � � we must add the 	 � � constraint function

� � � � 	 � � � � 	 � for all �
with the constraint target � � 	 � � ��

The Johns Hopkins University



The General Solution (Cont.)
� Straightforward application of calculus results in solution

� � � � � �
� � � � � � � � � � � � �

where multipliers � � are chosen to satisfy the constraints

�
� �

�
� � � � � � � � � � �
� � � �� � � � � � � for �

� 	 � � � � � � � �

� Observe that the derived probability � ��� ��	� � � � � � � is equal
to a product of factors ( �

� � ), one for each constraint in which
the particular argument� �� � � � � � � participates (� such that

� ��� �� � � � � � � ��� � � � ).
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The practical problem
� Two basic questions:

1. how to choose the constraints,

2. how to solve for the parameters � � .

� One method for finding � � is called iterative projection:

1. Guess at the values of � � � �� � � � �� � � � 
 .

2. For � � � to 
 , do:

keeping � � , � �� � fixed, find ��� � so as to satisfy the ��� � constraint;

set � �� �� � ;

end;

3. If all the constraints are sufficiently satisfied, then stop. Else go to
2.

� The convergence of iterative projection may be slow, partic-
ularly if the number of constraints � is large.
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Some unsolved problems
� How to find appropriate constraints

� How to find target values � � � �

– If these targets are marginal probabilities, better esti-
mates than relative frequencies exist

– How do we use better estimates and preserve the mu-
tual consistency of all the constraints?

� There will always be uncertainty about the value of the tar-
gets � � � �� How are we to incorporate it into the formulation?
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Essentials of the statistical approach
� A clear statement of the problem and of the goal

– Communication theory formulation of the recognition process

– Search for

�
 maximizing � � � � � � � � � �

� Based on data related to the process:

– Speech transcribed and raw (for � and � � � � � � )
– Training text (for � � � � )

� Choice of parametric models

– HMMs for � � � � � �
– Trigrams for � � � �

� Equivalence classification of data states

– Speech vector prototypes
– HMM building blocks
– Equivalence sets for language model

� Estimation of model parameters based on a clearly defined criterion

– Find

�
� maximizing � � � � � � �

– Find

�
� maximizing �

� � � �

� A unified point of view
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In Conclusion
� The statistical approach provides us with a unified point of view appli-

cable to all languages and requiring a minimum of expert preparation

� A clear statement of the problem and of the goal

– Search for
�
 maximizing � � � � � � � � � � �

� The entire design of the recognizer is based on actual data related to
the process:

– Raw and transcribed speech (for � and � � � � � � )
– Training text (for � � � � )

� Modern speech recognizers are capable of transcribing natural dictated
speech using tens of thousands of words as the vocabulary with less
than a 10% error rate.

� The next challenges:

– Transcription of telephone conversations
– Real speech understanding
– Language translation
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