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20 years, roughly

1988 ”A Statistical Approach to Language Translation”

(Brown et. all, COLING)

2009 a meeting in Prague
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Where are we now?

• Comparing rule-based and statistical approaches

• EuroMatrix organizes yearly evaluation campaign

– comparing participating research systems
– benchmarking against off-the-shelf commercial systems
– task: news translation

• A fair task?

– translation performance differs across domains, text types, etc.

– we do not have parallel corpora for news

– (... we do have monolingual corpora and development sets)

– off-the-shelf systems had no chance to optimize to task
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What works better?

Language Pair Winner
French-English statistical
English-French statistical
German-English rule-based
English-German rule-based
Spanish-English statistical
English-Spanish tie
Hungarian-English rule-based
Czech-English statistical
English-Czech rule-based
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Building statistical systems is quick
Target Language

en bg de cs da el es et fi fr hu it lt lv mt nl pl pt ro sk sl sv

en – 40.5 46.8 52.6 50.0 41.0 55.2 34.8 38.6 50.1 37.2 50.4 39.6 43.4 39.8 52.3 49.2 55.0 49.0 44.7 50.7 52.0
bg 61.3 – 38.7 39.4 39.6 34.5 46.9 25.5 26.7 42.4 22.0 43.5 29.3 29.1 25.9 44.9 35.1 45.9 36.8 34.1 34.1 39.9
de 53.6 26.3 – 35.4 43.1 32.8 47.1 26.7 29.5 39.4 27.6 42.7 27.6 30.3 19.8 50.2 30.2 44.1 30.7 29.4 31.4 41.2
cs 58.4 32.0 42.6 – 43.6 34.6 48.9 30.7 30.5 41.6 27.4 44.3 34.5 35.8 26.3 46.5 39.2 45.7 36.5 43.6 41.3 42.9
da 57.6 28.7 44.1 35.7 – 34.3 47.5 27.8 31.6 41.3 24.2 43.8 29.7 32.9 21.1 48.5 34.3 45.4 33.9 33.0 36.2 47.2
el 59.5 32.4 43.1 37.7 44.5 – 54.0 26.5 29.0 48.3 23.7 49.6 29.0 32.6 23.8 48.9 34.2 52.5 37.2 33.1 36.3 43.3
es 60.0 31.1 42.7 37.5 44.4 39.4 – 25.4 28.5 51.3 24.0 51.7 26.8 30.5 24.6 48.8 33.9 57.3 38.1 31.7 33.9 43.7
et 52.0 24.6 37.3 35.2 37.8 28.2 40.4 – 37.7 33.4 30.9 37.0 35.0 36.9 20.5 41.3 32.0 37.8 28.0 30.6 32.9 37.3
fi 49.3 23.2 36.0 32.0 37.9 27.2 39.7 34.9 – 29.5 27.2 36.6 30.5 32.5 19.4 40.6 28.8 37.5 26.5 27.3 28.2 37.6
fr 64.0 34.5 45.1 39.5 47.4 42.8 60.9 26.7 30.0 – 25.5 56.1 28.3 31.9 25.3 51.6 35.7 61.0 43.8 33.1 35.6 45.8
hu 48.0 24.7 34.3 30.0 33.0 25.5 34.1 29.6 29.4 30.7 – 33.5 29.6 31.9 18.1 36.1 29.8 34.2 25.7 25.6 28.2 30.5
it 61.0 32.1 44.3 38.9 45.8 40.6 26.9 25.0 29.7 52.7 24.2 – 29.4 32.6 24.6 50.5 35.2 56.5 39.3 32.5 34.7 44.3
lt 51.8 27.6 33.9 37.0 36.8 26.5 21.1 34.2 32.0 34.4 28.5 36.8 – 40.1 22.2 38.1 31.6 31.6 29.3 31.8 35.3 35.3
lv 54.0 29.1 35.0 37.8 38.5 29.7 8.0 34.2 32.4 35.6 29.3 38.9 38.4 – 23.3 41.5 34.4 39.6 31.0 33.3 37.1 38.0
mt 72.1 32.2 37.2 37.9 38.9 33.7 48.7 26.9 25.8 42.4 22.4 43.7 30.2 33.2 – 44.0 37.1 45.9 38.9 35.8 40.0 41.6
nl 56.9 29.3 46.9 37.0 45.4 35.3 49.7 27.5 29.8 43.4 25.3 44.5 28.6 31.7 22.0 – 32.0 47.7 33.0 30.1 34.6 43.6
pl 60.8 31.5 40.2 44.2 42.1 34.2 46.2 29.2 29.0 40.0 24.5 43.2 33.2 35.6 27.9 44.8 – 44.1 38.2 38.2 39.8 42.1
pt 60.7 31.4 42.9 38.4 42.8 40.2 60.7 26.4 29.2 53.2 23.8 52.8 28.0 31.5 24.8 49.3 34.5 – 39.4 32.1 34.4 43.9
ro 60.8 33.1 38.5 37.8 40.3 35.6 50.4 24.6 26.2 46.5 25.0 44.8 28.4 29.9 28.7 43.0 35.8 48.5 – 31.5 35.1 39.4
sk 60.8 32.6 39.4 48.1 41.0 33.3 46.2 29.8 28.4 39.4 27.4 41.8 33.8 36.7 28.5 44.4 39.0 43.3 35.3 – 42.6 41.8
sl 61.0 33.1 37.9 43.5 42.6 34.0 47.0 31.1 28.8 38.2 25.7 42.3 34.6 37.3 30.0 45.9 38.2 44.1 35.8 38.9 – 42.7
sv 58.5 26.9 41.0 35.6 46.6 33.3 46.6 27.4 30.9 38.9 22.7 42.0 28.2 31.0 23.7 45.6 32.2 44.2 32.7 31.3 33.5 –

462 translation systems for all but one official EU-27 languages, using Acquis corpus
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Why are some language pairs harder?

• Simple linear regression models showing correlation of bleu with explanatory
factors. Extension of Birch et al. [EMNLP 2008]

Factor R2 Significant?
Phrase translation entropy 0.276 ***
Reordering amount 0.267 ***
Language relatedness 0.115 ***
Target vocabulary size 0.101 ***
Source corpus size 0.034 ***
Target corpus size 0.034 ***
Source vocabulary size 0.001

• These factors explain 74.5% of score differences
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Where are we going?

Linguistics

Machine Learning

Human-Computer Interaction
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Linguistics: Progress

word-based models

1990 2000 2010

phrase-based models

formal grammar-based models

linguistic grammar-based models
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Translation Rules

• Phrase translation
the house → das Haus

• Factored phrase translation(
the
det

) (
house

n

)
→

(
das
det

) (
Haus

n

)
• Hierarchical phrase translation [Chiang, ACL 2005]

must seek x → muss x suchen

• Syntactified translation [Marcu et al., ACL 2006]

s [ np1 must seek np2 ] → s [ np1 muss np2 suchen ]
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The Future: Syntax

• Phrase-structure grammar or dependency structure?

• Context-sensitive, context-free?

• Syntax at the source or the target?

• Automatically learn transfer syntax, or use tree-banks, rules?

• S-CFG, S-TIG, S-TAG, CCG, LFG, ... ?
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Lexical Semantics

• Words have different meanings, we need to distinguish them.

• bank

1. financial institution
2. shore of a river

• Statistical machine translation already handles this rather well.
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Lexical Semantics

• Statistical models use context words as features to determine word sense

• money and depost indicate financial sense

After collecting the money, he went to deposit it in the bank.

• sand and ships indicate river sense

She sat in the sand at the bank, gazing at the ships in the distance.
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Inference Semantics

He was more comfortable with his
female relatives. He did not like his
brothers, but he loved spending the
summer with his cousin.

• When translating cousin into English, you need to determine the gender.

• Required:

– anaphora resolution that relatives and cousin co-refer
– inference that comfortable with and loved spending are connected

• We have made little progress on this.
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Machine Learning: Progress

probabilistic models

1990 2000 2010

parameter tuning

large-scale discriminative training

Philipp Koehn, U Edinburgh Staistical Machine Translation 13 May 2009



14

Machine Learning Methods

• There are many parameter in a statistical machine translation system

– language model n-grams
– translation rules
– reordering features
– syntactic relationships
– impact of context features
– relative importance of language model and translation model

• Should we model the training data or optimize on translation performance?

maximize p(data)⇔ maximize bleu

• The big problem: scaling to millions of features, millions of sentence pairs
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Data

Don’t think about algorithms, get more data.
If you want to think, think about getting more data.

Eric Brill, 2001

• Getting more data

– crawling the web for parallel corpora
– acquiring translation memories from language service providers

• Thinking about getting more data

– collaborating with users - WikiTrans
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Human-Computer Interaction

• Main application of machine translation: gisting

• But: much bigger need for publication-quality translation

• How can machine translation help human translators?

– translation memories are industry standard
– post-editing machine translation used increasingly

• Better interactions?
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Post-Editing

• Correcting machine translation faster than translating from scratch?

– faster and better: yes
– more enjoyable: no
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Trans-Type: Sentence Completion

• Based on work of the EC project TransType2

– system makes suggestion how to complete the sentence
– user accepts it, or types in own translation
– system computes new suggestion
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Other Types of Assistance

• Translation options from the phrase table, ranked by probability

• Many other types of assistance possible (confidence, fluency models, ...)
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Logging the Activity

red: accepting translation predcition, black: keystroke, purple: deletion, grey: cursor movement

x-axis: time in seconds, y-axis: length of translation in characters

• Enables insight into the translation process

• Helps with improving translation tools
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Our Translation Tool

• Work carried out within EuroMatrixPlus

• Available online: http://tool.statmt.org/

• User study [MT Summit, 2009, submitted]

– users faster and better with each type of assistance
– but: better translators often ignore assistance
– fastest and best with post-editing, but self-report that it is less useful
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Final Comments

• A vibrant field

– rapid progress, fueled by competitions
– new ideas spread quickly

• Progress on many fronts

– linguistics
– machine learning
– tools for translators

• Engaging the community

– open source tools and corpora
– many stake-holders, many languages
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