
M A T E M A T I C K O - F Y Z I K Á L N Í F A K U L T A

P R A H A

U N I V E R S I T A S C A R O L I N A P R A G E N S I S

TOOLS FOR MACHINE TRANSLATION QUALITY
INSPECTION

JAN BERKA, ONDŘEJ BOJAR, MARK FISHEL, MAJA POPOVIĆ, DANIEL ZEMAN

ÚFAL Technical Report
TR-2013-50

Copies of ÚFAL Technical Reports can be ordered from:

Institute of Formal and Applied Linguistics (ÚFAL MFF UK)

Faculty of Mathematics and Physics, Charles University

Malostranské nám. 25, CZ-11800 Prague 1

Czech Republic

or can be obtained via the Web: http://ufal.mff.cuni.cz/techrep

Tools for Machine Translation Quality Inspection

Jan Berka, Ondřej Bojar, Mark Fishel
Maja Popović, Daniel Zeman

Introduction

This report describes Addicter, tool for automatic error detection and evalua-
tion, providing its user also with graphical interface useful for browsing through
the dataset.

Section 1 introduces Addicter, Section 2 describes the installation process,
Section 3 shows how to prepare an experiment for evaluation using Addicter,
Section 4 gives information about the evaluation process and its results. The
graphical user interface is then described in Section 5. Related work is adressed
in Section 6.

1 About Addicter

Addicter stands for Automatic Detection and DIsplay of Common Translation
ERrors. It will be a set of tools (mostly scripts written in Perl) that help with
error analysis for machine translation.

The work on Addicter has started at the MT Marathon 2010 in Dublin,
within a broader 5-day project called Failfinder (Dan Zeman, Ondřej Bojar,
Martin Popel, David Mareček, Jon Clark, Ken Heafield, Qin Gao, Löıc Bar-
rault). The code that resulted from the project can be freely downloaded from
https://failfinder.googlecode.com/svn/trunk/. The nucleus that existed
just after the MT Marathon (4 Feb 2010) is Addicter version 0.1, to reflect that
this was by no means deemed a final product.

In 2011, the viewer was accompanied by an automatic error recognizer and
classifier, thanks to Mark Fishel. The development has been moved to ÚFAL
StatMT SVN repository (i.e. failfinder.googlecode.com is currently not main-
tained). Currently, Addicter can do the following:

� Find erroneous tokens and classify the errors in a way similar to Vilar’s
taxonomy.

� Browse the test data, sentence by sentence, and show aligned source sen-
tence, reference translation and system hypothesis.

� Browse aligned training corpus, look for example words in context.

� Show lines of the phrase table that contain a given word.

� Summarize alignments of a given word. This feature can also serve as a
primitive corpus-based dictionary.

1

� Search and group words sharing the same lemma. That way morphological
errors can be highlighted.

The viewing and browsing is performed using a web server that generates
web pages dynamically (to avoid pre-generating millions of static HTML docu-
ments). Words in sentences are clickable so that the user can quickly navigate
to examples and summaries of other than the current word. If you have access
to a webserver you may use Addicter with it; otherwise you can use Addicter’s
own lightweight server. A small subset can be also generated as static HTML
files and viewed without a web server: the test data browser.

2 Installation

� Addicter is written in Perl and you need a Perl interpreter to run Addicter.
This is usually no problem on Unix-like systems but you may need to
install Perl version ≥ 5.8 if you are working on Windows. Options include
Active Perl and Strawberry Perl.

� Addicter uses some general-purpose Perl libraries that are maintained in
a separate repository. Download these first, using username public and
password public. Then make sure that Perl finds these libraries. In Lin-
ux/bash, the following commands will do that:

svn --username public checkout

https://svn.ms.mff.cuni.cz/svn/dzlib ~/lib

export PERL5LIB=~/lib:$PERL5LIB

In Windows, you can use TortoiseSVN to access the repository.

� Check out the current version of Addicter from the StatMT SVN reposi-
tory, again using username public and password public:

svn --username public checkout

https://svn.ms.mff.cuni.cz/svn/statmt/trunk/addicter addicter

� There are three subfolders, testchamber, prepare and cgi. For every ex-
periment whose data shall be explored by addicter, create a subfolder in
cgi, e.g. cgi/fr-en-01

3 Experiment Preparation

This section describes chronologically the set of actions for preparing the ma-
chine translation experiment for evaluation using Addicter.

3.1 Data Acquisition

The first obvious step is to get the data. In order to complete the automatic
error detection, classification and summarization task, Addicter needs the source
text, reference translation and system translation (for which we will use the
term hypothesis). All text must be sentence-aligned, i.e. source, reference and
hypothesis must have the same number of lines and corresponding sentences on
equal lines.

2

To be able to use the Word Explorer (see Section 5.3) a training corpus
with source and its reference translation with the alignment between them to-
gether with alignment between hypothesis and source text of the experiment
are needed. This is covered in more detail in Section 3.4.

For the example experiment in this paper 200 sentences from the English-
Czech translation task of the fourth Workshop on Statistical Machine Transla-
tion1 were used as a source and reference translation (English was the source
and Czech the target language). The hypothesis was obtained by the TectoMT
system [9].

The target side of the corpus (reference and hypothesis translations) can have
additional information, for example lemmas and part of speech tags. Addicter
needs the tokens to be in this format:

surface form|info1|info2

This is example of one sentence of reference translation of the data intro-
duced above, where the info1 is information, whether the token is punctuation,
content or auxiliary word, and the info2 part is token’s lemma:

”
|punct|” potřebujeme|content|potřebovat v́ıc|content|hodně citu|content|cit

a|aux|a v́ıc|content|hodně driblingu|content|dribling ,|punct|, “|punct|”
d̊urazně|content|d̊urazný řekl|content|̌ŕıci jol|content|jola .|punct|.

3.2 Experiment Folder

For each experiment, you must make a folder in the /cgi directory. In this case,
we create a folder named TectoMT WMT09. We then move our dataset into it,
naming the source corpus test.src, the machine translator output test.system.tgt
and the reference translation test.tgt.

File tree of the cgi directory after creating the new experiment looks as
follows:

c g i
|−− AddicterHTML .pm
|−− ReadFindErrs .pm
|−− TectoMT WMT09
|−− browsete s t . p l
|−− b r o w s e t e s t s t a t i c . p l
|−− cu−bojar
|−− de−en−jane
|−− example . p l
\−− index . p l

Addicter comes with two sample experiments (the directories cu-bojar and
de-en-jane), so everyone can try it even without his own data. The file tree of
the experiment TectoMT WMT09 is very simple:

TectoMT WMT09/
|−− t e s t . s r c
|−− t e s t . system . tg t
\−− t e s t . t g t

As we will continue with this example, the file tree will grow bigger.

1http://www.statmt.org/wmt09/

3

source sentence once somniloquy appears , try to keep calm .

reference translation když se objev́ı somnilokvie , pokuste se zachovat klid .
machine translation jednou somniloquy se zdá , že zkuśı držet klid .

align-hmm.pl output 2-1 4-4 8-8 9-9

Table 1: HMM Alignment Example

3.3 Reference to Hypothesis Alignments

To be able to automatically find and flag errors in translation, Addicter first
needs to have reference and hypothesis translations aligned.

There can be multiple alignments for a given experiment. Each alignment
has to be in its own subfolder in the experiment folder. The name of the
subfolder is then interpreted as the alignment name, when using the graphical
user interface (see Section 5). Addicter automatically applies all its alignments
to the experiment and creates subfolders for them.

Addicter implements a couple of alignment algorithms. The scripts are
stored in the testchamber directory. They are:

� align-hmm.pl: An alignment based on hidden Markov model

� align-greedy.pl: A greedy injective alignment

� align-lcs.pl: The alignment is done via the Longest Common Subse-
quence (LCS) algorithm

� align-viasource.pl: reference to hypothesis alignment done via com-
bining the source to reference and source to hypothesis alignments

Commands to run any of the Addicter’s internal alignment algorithms all
have the same structure.

a l i gn−xxx . p l [parameters] r e f e r e n c e f i l e h y p o t h e s i s f i l e

The resulting reference to hypothesis alignment is passed to standard output.
Table 1 shows an example of align-hmm output on single sentence. You can

use any alignment tool you wish, as long as its output format is the same.
The user can add his own alignments from other sources (human annotation,

Giza++, Meteor and others) manually just by creating a subfolder with the
alignment name and placing the alignment there under the name test.refhyp.ali.

Automatic alignment algorithms of course do mistakes, as the task is in
principle difficult and even humans cannot often agree on one correct alignment,
so for experiments with smaller corpus a tool for manualy editing alignments can
be handy. Addicter solves this problem by the script alitextview.pl, which
transforms the format of an alignment into beautiful tables in plain text, which
are easily human-readable and editable.

Addicter uses these alignment markers:

� * – sure

� o – possible

� O – phrasal

� @ – phrasal, sure

4

� ? – phrasal, possible

The script dealitextview.pl serves for switching the format back from text
tables. Once you are done with the alignment, put it into a subfolder of your
experiment under the name test.refhyp.ali. You can have various amount
of alignments in one experiment, as long as each has its own subfolder.

3.4 Index Preparation

The word explorer (see Section 5.3) needs index files that will tell it where to
look for examples of a particular word. These are created by the indexing script
addictindex.pl. The indexer needs the following input files:

� train.src – source side of training corpus

� train.tgt – target side of training corpus

� train.ali – alignment of training corpus

� test.src – source side of test data

� test.tgt – reference translation of test data

� test.ali – alignment of the source and reference translation of test data

� test.system.tgt – system output for test data

� test.system.ali – alignment of the source and the system output for test
data

Once all the input files are ready, the indexer is invoked as follows (the -o
argument is the working directory, where the resulting index files will be stored):

add ic t index . p l \
−t r s t r a i n . en −t r t t r a i n . h i −t ra t r a i n . a l i \
−s t e s t . en −r t e s t . h i −h t e s t . system . h i −ra t e s t . a l i \
−ha t e s t . system . a l i \
−o w o r k i n g f o l d e r

The indexer splits the output index into multiple files in order to reduce size
of any individual file. All index files must be stored in the experiment folder so
that the CGI scripts can find them.

However, the indexer simultaneously reads the input files and copies the
corpus to the working directory, so it is safer to set the -o option to somewhere
else and copy the resulting indexes to the experiment folder afterwards.

4 Experiment Evaluation

After obtaining data, preparing the experiment folder and aligning reference
to hypothesis translation, we can run Addicter’s automatic error detection and
classification algorithm. Indexing the corpus is not necessary for this step.

Error taxonomy is taken from the work [1], which is based on the taxonomy
proposed by [8]. The detection is described in [10].

The error detection and classification is done via the script detecter.pl in the
prepare folder. The usage of this script is:

5

d e t e c t e r . p l −s s r c f i l e −r r e f f i l e −h h y p f i l e \
[−a al ignment] [−w workdir]

The outputs of this script are two files called tcali.txt and tcerr.txt. The first
one is just copy of the alignment, the second one is a XML file describing found
errors and their classes. The outputs should be stored in the folder with used
alignment, so Addicter can link errors to the alignment used for their detec-
tion, when showing the data in the GUI. When omitting the alignment option,
Addicter uses its align-greedy.pl script for reference to hypothesis alignment.

The script rundetection.pl runs automatically all Addicter’s alignment algo-
rithms and applies error detection based on them, so the user does not have to
make the alignments and copy them to the experiment file structure manually.
Note that this script runs all alignments just with implicit parameters, so the
user may want to run them manually even so. The script is invoked as follows:

rundetec t i on . p l −−s r c=s r c f i l e −−r e f=r e f e r e n c e f i l e \
−−hyp=h y p o t h e s i s f i l e [−−work=workdir]

Addicter can also run the error detection and classification based on Hjerson
from [6] and transform its output to the XML format readable by Addicter, so
the errors found by Hjerson can be viewed in Addicter’s GUI right next to errors
found by Addicter itself. The script transforming Hjerson’s output to Addicter’s
XML is hjersoner.pl located in the prepare folder, while the script runhjerson.pl
in the same folder runs automatically Hjerson, gets from it the alignment and
errors and transforms it all to Addicter format. The usage is following:

h j e r s o n e r . p l −−cat=e r r o r . c a t s −−a l i=re fhyp . a l i \
[−− s r c=source . txt]

runhjer son . p l −−r e f=r e f e r e n c e f i l e \
−−b a s e r e f=b a s e r e f e r e n c e f i l e −−hyp=h y p o t h e s i s f i l e \
−−basehyp=b a s e h y p o t h e s i s f i l e \
[−− s r c=s o u r c e f i l e −−work=workdir]

where error.cats is the output from Hjerson.

5 Graphical User Interface

All the experiment evaluation scripts work in command line interface, but one
of the powerful features of Addicter is its graphical user interface allowing the
user to easily gain more detailed view on the MT system behaviour.

The GUI uses a web server, that generates web pages dynamically (to avoid
pre-generating millions of static HTML documents). If you have access to a
webserver you may use Addicter with it; otherwise you can use Addicter’s own
lightweight server. It is invoked via the script server.pl. It will say something
like

Please contact me at: <URL:http://localhost:2588/cgi/index.pl>

which is the URL you should point your browser to. The server uses a
randomly picked port number unless you specify it as a commandline parameter:
server.pl 8080.

6

Figure 1: Example of a Sentence in Test Data Browser

The first page you will see is the list of experiments (stored in file structure
described in Section 3.2). All experiment names in the list are links to their
respective experiment main pages.

5.1 Experiment Main Page

The experiment main page contains name of the experiment, first few sentences,
interface for searching for words in the corpus starting with given letters or via
Perl-style regular expressions, and links to the test data browser, word explorer
and error summary pages.

5.2 Test Data Browser

Test data browser is a tool for easy visualisation of individual sentences in the
test dataset. It displays the source text together with the reference and hy-
pothesis translations and their alignments. The detected errors are highlighted
(each class with a different color) and also summarized below.

The user can choose the underlying alignment which serves as the basis for
error detection. All words in the sentence are clickable and link directly to the
Word Explorer (5.3). By moving the mouse over a particular word, all words
matched by the alignment are highlighted.

Figure 1 shows a sample sentence in the Test Data Browser. With the
use of HMM (Hidden Markov Model) alignment errors of three categories are
detected. Clicking on the “WER” tab would display the same sentence with
different alignment (probably leading to detection of other errors).

7

Figure 2: The Word “stars” in Word Explorer

The test data browser can be also generated as static HTML files and viewed
without a web server.

5.3 Word Explorer

The word explorer enables to browse training and test data and search for sen-
tences containing a given word. It also displays simple statistics of co-occurrence
in the data and observed translations.

An example of World Explorer usage is shown in Figure 2. The word “stars”
occurred in three sentences in the corpus and got translated to the same Czech
word “hvězdy” every time. Word Explorer automatically displays the first sen-
tence with the word “stars” (source text with translation and alignment), en-
abling quick navigation through the rest.

The user can navigate into the Word Explorer from the Test Data Browser
by clicking on any word from the dataset, or directly from the experiment main
page (see Figure 3). All words are indexed by their first letter. Thus by clicking
on a letter or words starting with it are listed (on the Figure 3 all words in
the source data starting with the letter “p” are listed) and their Word Explorer
page is then accessible with next click.

The word explorer can be used only if the index was properly built by the
addictindex.pl script as described in Section 3.4. However, all other func-
tionalities of Addicter are independent of this step and thus Addicter can be
reasonably used without the need of training data and bilingual alignments.

5.4 Error Summary

Error summary page contains global, summarized information about the de-
tected errors with respect to given alignment. At the top, there is a table
showing absolute and relative counts of detected errors of different classes.

Under the table, there are numbers of sentences containing given error, serv-
ing also as direct links to these sentences in the test data browser.

8

Figure 3: Experiment Main Page

6 Related Work

Meteor [2] is an automatic machine translation evaluation system. It scores
hypotheses by aligning them to one or more reference translations. Alignments
are based on exact, stem, synonym, and paraphrase matches between words and
phrases. Segment and system level metric scores are calculated based on the
alignments between hypothesis-reference pairs. Meteor X-ray uses XeTeX and
Gnuplot to create visualizations of alignment matrices and score distributions
from the output of Meteor. These visualizations allow easy comparison of MT
systems or system configurations and facilitate in-depth performance analysis
by examination of underlying Meteor alignments. Final output is in PDF form
with intermediate TeX and Gnuplot files preserved for inclusion in reports or
presentations.2

Meteor is written in Java and is released under LGPL (includes some files
subject to the WordNet license) and is available for download at http://www.

cs.cmu.edu/~alavie/METEOR/. Once downloaded and unpacked, you can run
it without any arguments (like this: java -jar meteor-*.jar, * denoting the
version) to get a help message on its usage.

It also has a tool for visualizations, called the Meteor x-Ray (written in
Python). The x-Ray displays alignment tables as well as histograms of score
distribution either for one or for comparison of two systems

A tool for scoring machine translation with interactive and visual approach is
iBLEU [5]. Like Addicter viewer, it runs in web browser (Firefox v4 or higher;
v5 recommended). You can use it to explore output of a translation system
or compare outputs of two different systems, or compare output to Google
Translate or Bing Translator. It is available under the MIT license on http:

//code.google.com/p/ibleu/, where there is also a video showing the use of
this tool.

If you download and unpack iBLEU, you can start computing BLEU and
viewing different segments just by opening the bleu.html file in the browser.
It will look like something on Figure 4. After choosing files with source texts

2Taken over from http://www.cs.cmu.edu/\~alavie/METEOR/

9

Figure 4: iBLEU start page

(optional), hypothesis and reference translation – all in the NIST XML3 – and
clicking on the “Score” button the overall score will be displayed together with
a list of graphs of scores on individual sentences in individual documents. The
screenshot is in Figure 5.

You can further explore the individual segments in a document by click-
ing on the columns in the graph. Information about the segment will appear
together with source text, reference translation and hypothesis and their differ-
ences highlighted by red color. Figure 6 shows a screenshot from exploring one
segment from the demo dataset.

The iBLEU also allows to compare two systems and to easily (by one click)
compare your system to Google Translator or Bing Translator systems. How-
ever, unlike Addicter it does not classify errors in any way.

Asiya is an open toolkit for automatic machine translation evaluation. It
is available at http://nlp.lsi.upc.edu/asiya/ under LGPL license. It is “a
common interface to a compiled collection of evaluation and meta-evaluation
methods” (from [3]). Asiya operates on source text and a set of candidate
translation and set of reference translations. The tool is written in Perl and
operated by giving a main script Asiya.pl a path to a text configuration file.
The usage is documented on its webpage and in [3] (together with one use case).

Asiya has also its online version (available at http://falkor.lsi.upc.edu/
asiya/asiya_online.php), which is currently under development, but is usable
“to obtain automatic evaluation scores according to a selected set of metric
representatives, together with ULC combined score (i.e., arithmetic mean) over
a heuristically defined set of metrics”4. A screenshot of the online version with
user interface is on Figure 7, while Figure 8 shows a screenshot of results over
a demo corpus from iBLEU.

Unlike iBLEU or Asiya, Hjerson [6] is a tool which detects and classifies
errors into five classes: morphological, reodering, missing words, extra words
and lexical. It works with one or more reference translations and one candidate
translation together with their corresponding base forms. The output is count

3Described in ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-xml-v1.5.dtd
4from http://nlp.lsi.upc.edu/asiya/

10

Figure 5: iBLEU overall score

Figure 6: iBLEU sentence score

Figure 7: Asiya online tool interface

11

Figure 8: Asiya online tool results

and rate for each error class at the document and sentence level, as well as
original translations labelled with corresponding error class in text and HTML
format.

Hjerson is publicly available at http://www.dfki.de/~mapo02/hjerson/

under the GPL license. It is operated by a Python script hjerson.py. The
usage is very simple, the script needs just paths to file with reference translation,
its base form, candidate translation (hypothesis) and its base form, so it looks
something like this:

./hjerson.py -R reference -H hypothesis -B base form reference -b

base form hypothesis

The command ./hjerson --help will print out the description of all op-
tions. Moreover, Hjerson usage is described together with how it works in [6].

Woodpecker5 is a tool for diagnostic evaluation of machine translation via a
set of linguistic tests called checkpoints [11], such as an ambiguous word, noun
phrase and others. Woodpecker can extract the checkpoints automatically from
source and target sentences. Sadly it is available for Windows only and it is
currently aimed primarily at errors in English to Chinese and Chinese to English
translation because it relies on a pre-defined set of linguistic phenomena.

The Experimental Management System [4] is a tool allowing smart execution
of training and testing of machine translation experiment with one configuration
file, automatically detecting re-usable steps for multiple runs with changed set-
tings. It also provides analysis of the experiment run, such as n-gram precision
and recall and color-coded output in web browser.

Blast [7] is a tool for qualitative error analysis. It provides a graphical user
interface for manual annotation of errors, the user can work with different error
classification taxonomies and even define his own taxonomy. Blast can also
automatically preprocess the data and find similarities between the reference

5http://research.microsoft.com/en-us/downloads/ad240799-a9a7-4a14-a556-d6a7c7919b4a/

default.aspx

12

and hypothesis translations, summarize existing annotation in similar way to
Addicter error table and save and load annotations. Its main aim is manual
annotation.

Acknowledgements

This research has been supported by the grant of the Czech Ministry of Educa-
tion no. MSM0021620838 (2010), by the grants of the Czech Science Foundation
no. P406/11/1499 and P406/10/P259 and the Estonian Science Foundation tar-
get financed theme SF0180078s08 (2011).

References

[1] Ondřej Bojar. Analyzing Error Types in English-Czech Machine Transla-
tion. The Prague Bulletin of Mathematical Linguistics, 95, 2011.

[2] Michael Denkowski and Alon Lavie. Meteor 1.3: Automatic Metric for
Reliable Optimization and Evaluation of Machine Translation Systems. In
Proceedings of the EMNLP 2011 Workshop on Statistical Machine Trans-
lation, 2011.

[3] Jesús Giménez and Llúıs Màrquez. Asiya: An Open Toolkit for Automatic
Machine Translation (Meta-)Evaluation. The Prague Bulletin of Mathe-
matical Linguistics, (94):77–86, 2010.

[4] Phillip Koehn. An Experimental Management System. The Prague Bulletin
of Mathematical Linguistics, 94, 2010.

[5] Nitin Madnani. iBLEU: Interactively Debugging & Scoring Statistical Ma-
chine Translation Systems. In Proceedings of the Fifth IEEE International
Conference on Semantic Computing, 2011.

[6] Maja Popović. Hjerson: An Open Source Tool for Automatic Error Clas-
sification of Machine Translation Output. The Prague Bulletin of Mathe-
matical Linguistics, 96, 2011.

[7] Sara Stymne. Blast: A tool for error analysis of machine translation output.
In Proceedings of ACL-HLT 2011 System Demonstrations, pages 56–61,
Portland, Oregon, USA, 2011.

[8] David Vilar, Jia Xu, Luis Fernando D’Haro, and Hermann Ney. Error
analysis of machine translation output. In Proc. of LREC’06, pages 697–
702, Genoa, Italy, 2006.

[9] Zdeněk Žabokrtský, Jan Ptáček, and Petr Pajas. TectoMT: Highly modular
MT system with tectogrammatics used as transfer layer. In Proceedings of
the Third Workshop on Statistical Machine Translation, pages 167–170,
Columbus, Ohio, June 2008. Association for Computational Linguistics.

[10] Daniel Zeman, Mark Fishel, Ondřej Bojar, and Jan Berka. Addicter: What
Is Wrong with My Translations? The Prague Bulletin of Mathematical
Linguistics, 96, 2011.

13

[11] Ming Zhou, Bo Wang, Shujie Liu, Mu Li, Dongdong Zhang, and Tiejun
Zhao. Diagnostic evaluation of machine translation systems using automat-
ically constructed linguistic check-points. In Proceedings of the 22nd In-
ternational Conference on Computational Linguistics (Coling 2008), pages
1121–1128, Manchester, UK, 2008.

14

THE ÚFAL/CKL TECHNICAL REPORT SERIES

ÚFAL

ÚFAL (Ústav formální a aplikované lingvistiky; http://ufal.mff.cuni.cz) is the Institute of Formal and Applied

linguistics, at the Faculty of Mathematics and Physics of Charles University, Prague, Czech Republic. The Institute

was established in 1990 after the political changes as a continuation of the research work and teaching carried out by

the former Laboratory of Algebraic Linguistics since the early 60s at the Faculty of Philosophy and later the Faculty of

Mathematics and Physics. Together with the “sister” Institute of Theoretical and Computational Linguistics (Faculty

of Arts) we aim at the development of teaching programs and research in the domain of theoretical and computational

linguistics at the respective Faculties, collaborating closely with other departments such as the Institute of the Czech

National Corpus at the Faculty of Philosophy and the Department of Computer Science at the Faculty of Mathematics

and Physics.

CKL

As of 1 June 2000 the Center for Computational Linguistics (Centrum komputační lingvistiky; http://ckl.mff.cuni.cz)

was established as one of the centers of excellence within the governmental program for support of research

in the Czech Republic. The center is attached to the Faculty of Mathematics and Physics of Charles University

in Prague.

TECHNICAL REPORTS

The ÚFAL/CKL technical report series has been established with the aim of disseminate topical results of research

currently pursued by members, cooperators, or visitors of the Institute. The technical reports published in this Series

are results of the research carried out in the research projects supported by the Grant Agency of the Czech Republic,

GAČR 405/96/K214 (“Komplexní program”), GAČR 405/96/0198 (Treebank project), grant of the Ministry of

Education of the Czech Republic VS 96151, and project of the Ministry of Education of the Czech Republic

LN00A063 (Center for Computational Linguistics). Since November 1996, the following reports have been published.

ÚFAL TR-1996-01 Eva Hajičová, The Past and Present of Computational Linguistics at Charles University
Jan Hajič and Barbora Hladká, Probabilistic and Rule-Based Tagging of an Inflective Language
– A Comparison

ÚFAL TR-1997-02 Vladislav Kuboň, Tomáš Holan and Martin Plátek, A Grammar-Checker for Czech

ÚFAL TR-1997-03 Alla Bémová at al., Anotace na analytické rovině, Návod pro anotátory (in Czech)

ÚFAL TR-1997-04 Jan Hajič and Barbora Hladká, Tagging Inflective Languages: Prediction of Morphological
Categories for a Rich, Structural Tagset

ÚFAL TR-1998-05 Geert-Jan M. Kruijff, Basic Dependency-Based Logical Grammar

ÚFAL TR-1999-06 Vladislav Kuboň, A Robust Parser for Czech

ÚFAL TR-1999-07 Eva Hajičová, Jarmila Panevová and Petr Sgall, Manuál pro tektogramatické značkování (in
Czech)

ÚFAL TR-2000-08 Tomáš Holan, Vladislav Kuboň, Karel Oliva, Martin Plátek, On Complexity of Word Order

ÚFAL/CKL TR-2000-09 Eva Hajičová, Jarmila Panevová and Petr Sgall, A Manual for Tectogrammatical Tagging
of the Prague Dependency Treebank

ÚFAL/CKL TR-2001-10 Zdeněk Žabokrtský, Automatic Functor Assignment in the Prague Dependency Treebank

ÚFAL/CKL TR-2001-11 Markéta Straňáková, Homonymie předložkových skupin v češtině a možnost jejich
automatického zpracování

ÚFAL/CKL TR-2001-12 Eva Hajičová, Jarmila Panevová and Petr Sgall, Manuál pro tektogramatické značkování
(III. verze)

ÚFAL/CKL TR-2002-13 Pavel Pecina and Martin Holub, Sémanticky signifikantní kolokace

ÚFAL/CKL TR-2002-14 Jiří Hana, Hana Hanová, Manual for Morphological Annotation

ÚFAL/CKL TR-2002-15 Markéta Lopatková, Zdeněk Žabokrtský, Karolína Skwarská and Vendula Benešová,
Tektogramaticky anotovaný valenční slovník českých sloves

ÚFAL/CKL TR-2002-16 Radu Gramatovici and Martin Plátek, D-trivial Dependency Grammars with Global Word-
Order Restrictions

ÚFAL/CKL TR-2003-17 Pavel Květoň, Language for Grammatical Rules

ÚFAL/CKL TR-2003-18 Markéta Lopatková, Zdeněk Žabokrtský, Karolina Skwarska, Václava Benešová, Valency
Lexicon of Czech Verbs VALLEX 1.0

ÚFAL/CKL TR-2003-19 Lucie Kučová, Veronika Kolářová, Zdeněk Žabokrtský, Petr Pajas, Oliver Čulo, Anotování
koreference v Pražském závislostním korpusu

ÚFAL/CKL TR-2003-20 Kateřina Veselá, Jiří Havelka, Anotování aktuálního členění věty v Pražském závislostním
korpusu

ÚFAL/CKL TR-2004-21 Silvie Cinková, Manuál pro tektogramatickou anotaci angličtiny

ÚFAL/CKL TR-2004-22 Daniel Zeman, Neprojektivity v Pražském závislostním korpusu (PDT)

ÚFAL/CKL TR-2004-23 Jan Hajič a kol., Anotace na analytické rovině, návod pro anotátory

ÚFAL/CKL TR-2004-24 Jan Hajič, Zdeňka Urešová, Alevtina Bémová, Marie Kaplanová, Anotace na
tektogramatické rovině (úroveň 3)

ÚFAL/CKL TR-2004-25 Jan Hajič, Zdeňka Urešová, Alevtina Bémová, Marie Kaplanová, The Prague Dependency
Treebank, Annotation on tectogrammatical level

ÚFAL/CKL TR-2004-26 Martin Holub, Jiří Diviš, Jan Pávek, Pavel Pecina, Jiří Semecký, Topics of Texts.
Annotation, Automatic Searching and Indexing

ÚFAL/CKL TR-2005-27 Jiří Hana, Daniel Zeman, Manual for Morphological Annotation (Revision for PDT 2.0)

ÚFAL/CKL TR-2005-28 Marie Mikulová a kol., Pražský závislostní korpus (The Prague Dependency Treebank)
Anotace na tektogramatické rovině (úroveň 3)

ÚFAL/CKL TR-2005-29 Petr Pajas, Jan Štěpánek, A Generic XML-Based Format for Structured Linguistic
Annotation and Its application to the Prague Dependency Treebank 2.0

ÚFAL/CKL TR-2006-30 Marie Mikulová, Alevtina Bémová, Jan Hajič, Eva Hajičová, Jiří Havelka, Veronika
Kolařová, Lucie Kučová, Markéta Lopatková, Petr Pajas, Jarmila Panevová, Magda Razímová,
Petr Sgall, Jan Štěpánek, Zdeňka Urešová, Kateřina Veselá, Zdeněk Žabokrtský, Annotation on
the tectogrammatical level in the Prague Dependency Treebank (Annotation manual)

ÚFAL/CKL TR-2006-31 Marie Mikulová, Alevtina Bémová, Jan Hajič, Eva Hajičová, Jiří Havelka, Veronika
Kolařová, Lucie Kučová, Markéta Lopatková, Petr Pajas, Jarmila Panevová, Petr Sgall, Magda
Ševčíková, Jan Štěpánek, Zdeňka Urešová, Kateřina Veselá, Zdeněk Žabokrtský, Anotace na
tektogramatické rovině Pražského závislostního korpusu (Referenční příručka)

ÚFAL/CKL TR-2006-32 Marie Mikulová, Alevtina Bémová, Jan Hajič, Eva Hajičová, Jiří Havelka, Veronika
Kolařová, Lucie Kučová, Markéta Lopatková, Petr Pajas, Jarmila Panevová, Petr Sgall,Magda
Ševčíková, Jan Štěpánek, Zdeňka Urešová, Kateřina Veselá, Zdeněk Žabokrtský, Annotation on
the tectogrammatical level in the Prague Dependency Treebank (Reference book)

ÚFAL/CKL TR-2006-33 Jan Hajič, Marie Mikulová, Martina Otradovcová, Petr Pajas, Petr Podveský, Zdeňka
Urešová, Pražský závislostní korpus mluvené češtiny. Rekonstrukce standardizovaného textu z
mluvené řeči

ÚFAL/CKL TR-2006-34 Markéta Lopatková, Zdeněk Žabokrtský, Václava Benešová (in cooperation with Karolína
Skwarska, Klára Hrstková, Michaela Nová, Eduard Bejček, Miroslav Tichý) Valency Lexicon of
Czech Verbs. VALLEX 2.0

ÚFAL/CKL TR-2006-35 Silvie Cinková, Jan Hajič, Marie Mikulová, Lucie Mladová, Anja Nedolužko, Petr Pajas,
Jarmila Panevová, Jiří Semecký, Jana Šindlerová, Josef Toman, Zdeňka Urešová, Zdeněk
Žabokrtský, Annotation of English on the tectogrammatical level

ÚFAL/CKL TR-2007-36 Magda Ševčíková, Zdeněk Žabokrtský, Oldřich Krůza, Zpracování pojmenovaných entit
v českých textech

ÚFAL/CKL TR-2008-37 Silvie Cinková, Marie Mikulová, Spontaneous speech reconstruction for the syntactic and
semantic analysis of the NAP corpus

ÚFAL/CKL TR-2008-38 Marie Mikulová, Rekonstrukce standardizovaného textu z mluvené řeči v Pražském
závislostním korpusu mluvené češtiny. Manuál pro anotátory

ÚFAL/CKL TR-2008-39 Zdeněk Žabokrtský, Ondřej Bojar, TectoMT, Developer's Guide

ÚFAL/CKL TR-2008-40 Lucie Mladová, Diskurzní vztahy v češtině a jejich zachycení v Pražském závislostním
korpusu 2.0

ÚFAL/CKL TR-2009-41 Marie Mikulová, Pokyny k překladu určené překladatelům, revizorům a korektorům textů

z Wall Street Journal pro projekt PCEDT

ÚFAL/CKL TR-2011-42 Loganathan Ramasamy, Zdeněk Žabokrtský, Tamil Dependency Treebank (TamilTB) – 0.1
Annotation Manual

ÚFAL/CKL TR-2011-43 Ngụy Giang Linh, Michal Novák, Anna Nedoluzhko, Coreference Resolution in the
Prague Dependency Treebank

ÚFAL/CKL TR-2011-44 Anna Nedoluzhko, Jiří Mírovský, Annotating Extended Textual Coreference and

Bridging Relations in the Prague Dependency Treebank

ÚFAL/CKL TR-2011-45 David Mareček, Zdeněk Žabokrtský, Unsupervised Dependency Parsing

ÚFAL/CKL TR-2011-46 Martin Majliš, Zdeněk Žabokrtský, W2C – Large Multilingual Corpus

ÚFAL TR-2012-47 Lucie Poláková, Pavlína Jínová, Šárka Zikánová, Zuzanna Bedřichová, Jiří Mírovský,

Magdaléna Rysová, Jana Zdeňková, Veronika Pavlíková, Eva Hajičová,

Manual for annotation of discourse relations in the Prague Dependency Treebank

ÚFAL TR-2012-48 Nathan Green, Zdeněk Žabokrtský, Ensemble Parsing and its Effect on Machine Translation

ÚFAL TR-2013-49 David Mareček, Martin Popel, Loganathan Ramasamy, Jan Štěpánek, Daniel Zemana,
Zdeněk Žabokrtský, Jan Hajič Cross-language Study on Influence of Coordination Style on
Dependency Parsing Performance

ÚFAL TR-2013-50 Jan Berka, Ondřej Bojar, Mark Fishel, Maja Popović, Daniel Zeman,
Tools for Machine Translation Quality Inspection

