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1 Introduction

The notion of free-order dependency grammar (or simply dependency gram-
mar) was introduced in [3] as a formal system suitable for a dependency-
based parsing of natural languages. In a certain way this notion enriches the
types of dependency grammars described in [1].

The proposal of this system was based upon the experience acquired dur-
ing the development of a grammar-checker for Czech ([2]) and as a possible
next step towards a complete syntactic analysis following the underlying ideas
of the dependency-based framework of Functional Generative Description -
FGD ([5]). Compared to FGD and other usual formal systems describing the
syntax of natural languages, the framework introduced by dependency gram-
mars takes a serious account for the freedom of word order in a sentence and
assign the same importance to linear precedence (LP) rules as to immediate
dominance (ID) rules.

As the freedom of word order is not total, even in so-called free-word-
order languages, one needs to constrain the formalism in order to not over-
generate the actual language.

In [4], a measure for the freedom of the word order was studied, based on
the number of gaps issued in a sentence by the order of their words (node-
gaps-complezity). Both global and local constraints on the maximal number of
gaps at some node in the structure underlying the sentence were studied. In
the view of node-gaps-complexity, word order relaxation means to stepwisely
relax the constraints in order to obtain more complex language constructions.
In this paper, we work only with global constraints.

Two types of syntactic structures are used in the relationship with depen-
dency grammars, DR-trees (Delete Rewrite trees) and D-trees (Dependency
trees). If D-trees concern the dependency structure of the sentence, DR-
trees rather concern the generation/parsing of the sentence. The two types
of structures are related by the fact that any DR-tree can be transformed
in an uniform way into a D-tree. The measure for the number of gaps in
a sentence computed in the nodes of the structure is introduced for both
DR-trees and D-tree. A DR-tree (D-tree) with no gaps is called projective,
while a DR-tree (D-tree) with at least one gap is called non-projective. In
this paper, we work only with dependency grammars which possibly create
non-projective DR-trees, but cannot create non-projective D-trees (D-trivial
dependency grammars).

The main result of this paper presents an infinite sequence of incom-



parable classes of semilinear languages generated by a particular type of
dependency grammar, called D-trivial left dependency grammar (Section 4).
Moreover, all these classes of languages are strictly contained between the
class of regular languages and the class of context-sensitive languages, each
of them containing context-free and non-context-free languages (Section 5).

We prove by the results we obtain in this paper that there is a significant
difference between the projectivity of DR-trees and respectively D-trees. We
also try to argue in this way the importance of the non-projective genera-
tion/parsing of the sentence, which is represented by the DR-tree compared
to the non-projectivity of the sentence itself which is represented by the D-
tree. In other word, even if is a sentence is represented by a projective D-tree,
this D-tree can hide some non-projective concurrency phenomena raising in
the generation or the parsing of the sentence.

2 DR-trees and D-trees

In this section, we introduce some basic definitions and results on DR-trees
and D-trees. We start with a general notion of annotated tree which underlies
both DR-trees and D-trees notions.

Let M be a set. Let Tr = (Nod,Ed,Rt,Ann) be a 4-tuple , where Nod
is a set (the set of nodes), Rt € Nod is a special node (the root), Ed :
Nod \ {Rt} — Nod is a function (the set of edges) and Ann : Nod — M is
a function (the annotation function).

We call path in Tr any sequence of nodes from Nod,

p= (TLl,TLQ,...,TLk),

with k& > 1, such that Ed(n;) = n;yq, fori =1,...k — 1. We say that p is a
path of length k — 1 from ny to ng. If k > 1, we denote p by Path(ny, ng).

We say that Tris a M-annotated tree iff there is no path of positive
length in 7Tr from a node n € Nod to itself.

Let n € Nod be a node in Tr. We say that n is a leaf iff n # Ed(n'), for
any n' € Nod.

We say that Tris a finite M-annotated tree iff its set of nodes, Nod, is
finite.

In the sequel, we will work only with finite annotated trees, without
clearly mention it.



Proposition 2.1 Let Tr = (Nod, Ed, Rt, Ann) be an annotated tree. Then
for any node n € Nod there exists exactly one path from n to Rt in Tr.

Proof Let n € Nod be a node. Let no be the total number of nodes in Nod.
We first prove that any path originating in n has the length less than no.
Suppose to a contradiction that there exists a path p = (ny,ng,...,ng) of
length at least equal to no originating in n (k — 1 > no, ny = n). Then p
contains at least no+ 1 nodes. Since the total number of nodes in Nod is no,
there exist two indices 1 < ¢ < j < k such that n; = n;. Then there exists
a path p' = (n;,ni41,...,n;) of positive length from n; to itself. This fact
leads to a contradiction with the hypothesis that 7r is a annotated tree.

It results that any path originating in n has the length less than no.
Consider the longest path p = (ny,ns, ..., n) originating in n. Suppose to a
contradiction that n, # Rt. In this case we consider nyy; = Ed(ng). Then
p' = (n1,n9,...,nk, k1) is a longer path than p and still originating in n,
which leads to a contradiction.

It follows that ny = Rt, hence there exists a path from n to Rt in 1.
The uniqueness comes from the fact that from each node m € Nod there is
exactly one edge in Tr which leads to another node (this relationship is given
by Ed, which is a function).

O

Corollary 2.2 Let Tr = (Nod,Ed,Rt,Ann) be a M-annotated tree. Then for
any two nodes ny,ny € Nod there exists at least one node ny € Nod such
that there exist a path from ny to ng and a path from ns to ns.

Proof Obviously, we can take n3 = Rt.
O

Remark 2.1 Keeping the denotations from Corollary 2.2, we denote by
sup(ny,ng) the first node in Tr which connects ny; and ng, i.e. (n,..., Rt)
and (no, ..., Rt) are the paths from n; respectively ny to Rt, then sup(nq, ns)
is the first node, which belongs to both of these paths. From the definition
of an annotated tree, sup(n;,nsy) is uniquely defined by this property.

Let Try = (Nody, Edy, Rt;, Anny) and Try = (Nody, Edy, Rty, Annsy) be
two M-annotated trees. We say that Try and T'ry are equivalent iff there
is a bijection f : Nod; — Nod, such that:



1. f(Edy(n)) = Edy(f(n)), for any node n € Nod; \ {Rt, };
2. f(Rtl) = Rtg;
3. Annqy(n) = Anny(f(n)), for any node n € Nod;.

We call f an isomorphism between Tr; and T'r,.

Remark 2.2 If f is an isomorphism between two M -annotated trees Try and
Try, then f~' is an isomorphism between Try and Try. Moreover, isomor-
phism functions establish an equivalence relation on the set of trees annotated
by the same set of labels.

Proposition 2.3 Let f : Nod; — Nodsy be an isomorphism between two M -
annotated trees Tri=(Nody, Edy, Rty, Anny), Tro=(Nodsy, Edsy, Rty, Anns).
Then, Try and Try have the same number of leaves and any leaf from Try is
mapped by f in a leaf from Tr,.

Proof We suppose to a contradiction that there is a leaf n € Nod; such that
f(n) = m and m is not a leaf in Nody. Then, there is m' € Nod, such that
Ed(m') = m. Since f is a bijection, there is n' € Nod; such that f(n') = m'.
From the fact that m’ € Nod, \ { Rt} it results that also n’ € Nod, \ {Rt; },
hence there is n” € Nod; such that Ed(n') = n". Obviously, n" # n, because
n is a leaf. It follows that

f(n") = f(Ed(n)) = Ed(f(n')) = Ed(m') = m.

But also f(n) = m, which leads to a contradiction with the fact that f is an
injective function.

It results that any leaf from T'r; is mapped by f in a leaf from Tr,. Since
f is injective, it follows that the number of leaves in Try is at least equal to
the number of leaves in T'ry.

The other part of the proof can be done in the same way considering the
isomorphism f~! between Try and Tr;.

O

In [3], (free-order) dependency grammars were introduced, as a rewriting
device over two alphabets, of non-terminals and, respectively, terminals. In
its general form, a dependency grammar is able to rewrite both non-terminals
and terminals, by a finite set of rules (productions). Through out this paper,
we will work with dependency grammars, which rewrite only non-terminals
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(in a similar way to the context-free grammars), therefore, we will not use
terminals on the lefthand-sides of the rules.

We call dependency grammar a structure G = (N, T, S, P) such that
N and T are non-empty, finite sets, called the set of nonterminals and re-
spectively the set of terminals, S € N is the start symbol and P is a finite
set, called the set of productions such that

PC(NxVV x{L R})U(N xT),
where V = N UT. Sometimes, we will write:

A —, BC instead of (A, BC, L)
A —p BC instead of (A, BC, R)
A —a instead of (A, a)

for any production of the appropriate form.

Denote by Nat the set of natural numbers not equal to 0 and by Naty, =
Nat U {0}.

Let G = (T, N, S, P) be a dependency grammar and denote V=T U N.
A DR-tree created by G is a V-annotated tree Tr = (Nod,Ed,Rt,Ann)
such that:

1. Nod C Nat x Nat.

2. It Bd(i,j) = (k,1) then j < I.

3. Rt = (i,max{k | 37, (j, k) € Nod}).

4. A node (i,j) € Nod is a leaf if and only if j = 1 and Ann(i,j) € T.

5. If (i, 7) € Nod, with j # 1 and Ann(i,j) = A, then one of the following
cases necessarily occurs:

a. j = 2 and there is exactly one node n € Nod such that Ed(n) =
(,7); in this case n = (4,1) and if Ann(n) = a, the production
A — a belongs to P.
b. There are exactly two nodes ny,ny € Nod such that Ed(n,) =
Ed(ny) = (4,7); in this case either:
bl. ny = (i, k) and ny = (I, m) with [ > i, max(k, m) = j — 1 and
if Ann(ny) = B and Ann(ny) = C, the production A —; BC
belongs to P, or



a. DR-tree T'r

b
by
b
by
a;  a; a aé/
b. D-tree d1'r

Figure 1: Examples of a DR-tree, respectively, a D-tree

b2. ny = (I, k) and ny = (i, m) with [ < i, max(k,m) =j— 1 and
if Ann(n,) = B and Ann(ny) = C, the production A —r BC

belongs to P.

Let n, € Nod,n, = (i,7). We say that i is the horizontal position of n,
and j is the vertical position of n, (see an example of a DR~tree in Figure 1).
We say that a DR-tree Tr = (Nod, Ed, Rt, Ann) is complete iff for any
leaf (i,1) € Nod, if i > 1 then also (i — 1,1) € Nod.
For any complete DR-tree Tr = (Nod, Ed, Rt, Ann) created by a depen-
dency grammar G = (N, T, S, P), we define the sentence associated with Tr
by s(Tr) = aias .. .a,, where n = max{i | (i,1) € Nod} and Ann(i,1) = a,,
for any i € [n]. Obviously, s(Tr) C T*.

Let G = (N, T, S, P) be a dependency grammar. We denote by:

e T(G) the set of complete DR-trees created by G and rooted by S;



e DR-L(G) = {s(Tr) | Tr € T(G)} the language generated by G,
through the set of DR-trees.

Let Try = (Nody, Edy, Rt;, Anny) and Try = (Nody, Edy, Rty, Annsy) be
two DR- trees created by the grammar G = (N, T, S, P). We say that Try
and Try are DR-equivalent iff there is an isomorphism f : Nod; — Nods
between Tr; and Try as V-annotated trees and:

1. f(i,7) = (s,j), for any node (i,j) € Nod;.
2. If (4,j) € Nody, with j # 1 and f(4,j) = (s,7), then:

a. if there is exactly one node n € Nod; such that Ed(n) = (i, j)
then f(n) = (s,7 —1).

b. if there are exactly two nodes ny,ny € Nod such that Ed(n,) =
Ed(ng) = (i, j) then either:

bl. if ny = (i, k) and ny = (I,m) with [ > i, then f(n) = (s, k)
and f(ng) = (t,m) with ¢ > s or

b2. if ny = (I, k) and ny = (i, m) with [ < i, then f(ny) = (¢,k)
and f(ng) = (s,m) with t < s.

We say that f is a DR-isomorphism between Tr; and Tr,.

Let T be an alphabet and Tr = (Nod, Ed, Rt, Ann) be a T-annotated
tree such that Nod C Nat. We call Tr a D-tree over T (see an example of
D-tree in Figure 1).

We say that Tris complete iff for any leaf : € Nod, if © > 1 then also
1 —1¢€ Nod.

For any complete D-tree dTr = (dNod, dEd, dRt, dAnn) over T, we de-
fine the sentence associated with dTr by s(dTr) = ajay...a,, where n =
max{i | i € dNod} and dAnn(i) = a;, for any i € [n]. Obviously, s(Tr) C
T+,

Let T’I“l = (NOdl, Edl, Rtl, Annl) and TT‘Q = (NOdQ, Edg, RtQ, ATLTLQ) be
two D-trees over an alphabet T. We say that T'r; and T'ry are D-equivalent
iff there is an isomorphism f : Nod; — Nody between Try and Try as T-
annotated trees such that if i, j € Nod; are two nodes with Ed;(j) =i then
(i —7)(f(7) — f(j)) > 0. We say that f is a D-isomorphism between 7ry
and T'rs.

Let Tr = (Nod, Ed, Rt, Ann) be a DR-tree. We may transform 77 in a
D-tree dTr = (dNod, dEd, dRt, dAnn) in the following way:
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1. dNod = {i| (i,1) € Nod}.
2. dRt =i iff Rt = (i, ), for some j € Nat.

3. Let i € dNod be a node in dTrand (i,1) € Nod the corresponding leaf
in Tr. We consider the path p = (ny,ns,...,ng) in Tr from n; = (i, 1)
to ny = Rt (cf. Proposition 2.1). We also consider the natural number
r = max{l | oy = (i,7),j € Nat}. Then one of the following cases
necessarily occurs:

a. If r = k then dRt = 1.
b. If r < k and n,1 = (s,t) then dEd(i) = s.

4. dAnn(i) = Ann(i, 1), for any i € dNod.

We say that d7ris the D-tree corresponding to 7r. The D-tree dT'r repre-
sented in Figure 1 is corresponding to the DR-tree T'r from the same figure.

Remark 2.3 If Tr is a complete DR-tree, then the corresponding D-tree dTr
18 also complete.

Let G = (N, T, S, P) be a dependency grammar. We denote by:
e dT(G) the set of D-trees corresponding to T(G);

e D-L(G) = {s(dTr) | dTr € dT(G)} the language generated by G,
through the set of D-trees.

If dTris a D-tree corresponding to a DR-tree created by a dependency gram-
mar G, we say that dTr is created by G as well. Obviously, DR-L(G)=D-
L(G), for any dependency grammar G.

Proposition 2.4 Let Try and Try be two DR-equivalent DR-trees. Let dTry
and respectively dT'ry the two corresponding D-trees. Then dTry and dTr
are D-equivalent.

Proof We consider f : Nod; — Nods; a DR-isomorphism between Tr; =
(NOdl, Edl, Rtl, ATLTLl) and T’I“Q = (NOdQ, Edg, Rtg, ATL’I’LQ) We take the two
D-trees corresponding to Try and Try, dT'ry = (dNody, dEd,, dRt,, dAnn,),
respectively dTry = (dNody, dEdy, dRty, dAnny).



We define f': dNod; — dNody by
') =1 <= f(@,1)= (1),

for any i € dNod;. From the construction of the D-trees dTr; and dTry and
from Proposition 2.3, it follows that the definition of f’ is correct and also
that f’is a bijection from dNod; to dNods. We will check the conditions in
which f’ would establish an equivalence between d1'r; and dT'rs.

1. Let i € dNod; be a node. If i # Rt there is a node s € dNod; such
that dEd;(i) = s. From the construction of dT'r; it results that there
are two nodes (i,7), (s,t) € Nod; such that Edy(i,5) = (s,t). We have
that

flls) =5 <= [f(5,1)=(5,1)

and

fli) =i < f(i,1) = (i, 1).
Since f is a bijection it follows that i’ # s'. It results that dEdy(i') = s'.
We have that

(s',8) = f(s,t) = f(Edi(i, j)) = Edz(f (i, 7)) = Eda(7', 5)
hence

fI(dEdy (i) = f'(s) = s = dEdy(i') = dEdy(f'(i)).

2. We have dRt; = i iff there exists j € Nat such that Rt; = (i,7). We
also have f(Rt1) = Rty. Then

fidRty) =i <= [f(i,1) = (1) <= f(i,j) = (,)) —

<= Rty = (i',j) <= dRty =1

It results that f'(dRt,) = dRts.
O
Let Tr = (Nod, Ed, Rt, Ann) be an annotated tree, n € Nod be a node.
We define the covering subtree of n in T'r by the following annotated tree,
Tr, = (Nody, Ed,, Rt,, Ann,) such that

e Nod, = {n’ | there is a path from n’ to n in Tr}.
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e Ed,(n') = Ed(n'), for any n' € Nod,, \ {n}.
e Rt, =n;
e Ann,(n') = Ann(n’), for any n’ € Nod,.

Let Tr = (Nod, Ed, Rt, Ann) be a complete DR-tree, n € Nod be a node
and Tr, = (Nod,, Ed,, Rt,, Ann,) be the covering subtree of n in Tr. We
define the coverage of n in Tr by the set:

Cov(n,Tr) = {i € Nat | there is a node (i,1) € Nod,}.

Let n € Nod be a node in Tr such that Cov(n,Tr) = {i1,is,...,im},
with 4; <9 < ... <y and 441 —i; > 1 for some j € Nat, j < m. We say
that the pair (i;,4;41) is a gap in T at the node n.

Let Tr = (Nod, Ed, Rt, Ann) be a complete DR-tree, n € Nod be a
node and Cov(n,Tr) be its coverage. The symbol DR-Ng(n,Tr) represents
the number of gaps in Tr at the node n. The symbol DR-Ng(Tr) is the
maximum number of gaps in T'r at any node n € Nod:

DR-Ng(Tr) = max{DR-Ng(n,Tr) | n € Nod}.

We say that DR-Ng(Tr) is the DR-node-gaps complexity) of T'r.

We say that Tr is projectively parsed (or simply projective) iff DR-
Ng(Tr)=0.

Let G = (N, T, S, P) be a dependency grammar. We denote by:

e T(G,i) C T(G) the set of complete and rooted by S DR-trees Tr
created by G with at most i gaps, DR-Ng(Tr) < i;

e DR-L(G,i) = {s(Tr) | Tr € T(G,i)} the language generated by G,
through DR-trees with at most ¢ gaps.

We mention the following obvious claim.

Claim 1 Let G be a dependency grammar. Then the following inclusions
hold.

i) T(G,i) CT(G,i+1) CT(G), for any i € Nat,.
ii) DR-L(G,i) C DR-L(G,i+1) C DR-L(G), for any i € Nat.
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Proposition 2.5 For any complete DR-tree Try created by a dependency
grammar G there exists a DR-equivalent projective complete DR-tree Tre
created by the same grammar G.

Proof Let Try = (Nod;, Edy, Rt;, Anny) be a DR-tree and let us suppose
that DR-Ng(Try) > 0. Let n; = (i,j) be a node in Nod;, such that
DR-Ng(ny,Try) > 0 and for all the nodes n' = (¢/,j') € Nod, such that
i' € Cov(ny,Try), we have DR-Ng(n',Try) = 0.

It results that there are two nodes ny = (k,[) and n3 = (i, m) such that
Edi(ng) = Edi(n3) = ny. Let us suppose that k£ < i (the case i < k can be
solved analogously). Let us denote

Cov(ny,, Try) = {si,s5,...,5, },

for p = {1,2,3}. We have that ¢; = t + t3 and since DR-Ng(ns,Tr1) =
DR-Ng(n3,Try) = 0 we have
L s2, if t <t
St T sh,, ift>t
t—t2 2
It follows that T'r; has only one gap at the node n;, which is between 3%2 and
Si,11, i-e. DR-Ng(ny,Try) = 1.
Denote by s = s} — s7, — 1 the number of nodes, which are between the

coverage of ny and the coverage of n3 and are not in the coverage of n;.
We define an application f : Nod; — Nat X Nat by:

(p,7) if p<sjorp> s,
fp,r) =9 (p+s,r) ifsi<p<si,
(p—to,r) if 832 <p< s,

We observe that the co-restriction of f to f(Nod;) is a bijection between
Nod; and f(Nod;). We define a DR-tree Try = (Nody, Edy, Rty, Annsy) such
that

NOdQ = f(NOdl)

e Edy(f(n)) = f(FEd(n)), for any n € Nod;.
o Rty = f(Rt);
e Anny(f(n)) = Ann(n), for any n € Nod;.
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It is easy to see that:

e the definition of T'ry is correct,
e Try is also a complete DR-tree created by the grammar G and

e f is a DR-isomorphism between T'ry and T'rs.

Moreover, we observe that DR-Ng(f(ny),Trs) = 0, while the node-gaps-
complexity of T'r; was preserved under the isomorphism in all other nodes,
excepting n;.

It results that, under this isomorphism, the number of nodes with gaps
decreased at least by one. By repeating the transformation for a finite number
of times, we obtain a projective complete DR-tree created by G and DR-
equivalent with the initial DR-tree.

O

Now, let us consider the same node-gaps-complexity measure for D-trees.

Let dT'r = (dNod,dEd,dRt,dAnn) be a complete D-tree, n € dNod be
a node and dTr, = (dNod,,dEd,,dRt,,dAnn,) be the covering subtree of
n in dTr. We define the coverage of n in dTr by the set:

Cov(n,dTr) = dNod,,.

Let n € dNod be a node in dTr such that Cov(n,dTr) = {i1,is,...,im},
with ¢y < iy < ... <y and 4;41 —¢; > 1 for some j € Nat, j < m. We say
that the pair (i;,¢,41) is a gap in dTr at the node n.

Let dTr = (dNod,dEd,dRt,dAnn) be a complete D-tree, n € dNod be
a node and denote by Cov(n,dT'r) its coverage. The symbol D-Ng(n,dTr)
represents the number of gaps in d7r at the node n. The symbol D-Ng(dT'r)
is the maximum number of gaps in d7'r at any node n € dNod:

D-Ng(dTr) = max{D-Ng(n,dTr) | n € dNod}.

We say that D-Ng(dT'r) is the D-node-gaps complexity of d7Tr.
We say that dT'r is projective iff D-Ng(dTr) = 0.
Let G = (N, T, S, P) be a dependency grammar. We denote by:

e dT(G,i)x ={dTr | Tr € T(G), D-Ng(dTr) < i} the set of D-trees dT'r
created by G with at most 7 gaps;

e D-L(G,i) = {s(dTr) | dTr € dT(G,i)} the language generated by G,
through D-trees with at most ¢ gaps.
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We can establish the following result between the node-gaps-complexity
of a DR- tree and the same measure of the corresponding D-tree.

Lemma 2.6 Let Tr be a complete DR-tree and dTr be the corresponding
D-tree. If n is a node in dT'r, then there exists n' a node in Tr such that

Cov(n,dTr) = Cov(n',Tr).

Proof Let Tr = (Nod, Ed, Rt, Ann) be a complete DR-tree and dTr =
(dNod,dEd,dRt,dAnn) be the corresponding D-tree. Let n = i € Nat be
a node in d7Tr. From the construction of d1'r from T'r it follows that there
is at least one node (7,j) in Tr, with j € Nat. Let us consider n’ = (i, j'),

where
J'=max{j | (i,7) € Nod}.

We will prove that Cov(n,dTr) = Cov(n',Tr).

It is easy to prove, following the construction of d7T'R from T'r that if there
is a path between two nodes (p,r) and (s,t) in Tr then there is also a path
between the nodes p and s in dTr. Conversely, if there is a path between
two nodes p and s in dT'r then there exists a node (s,¢) in Tr (which can be
taken as (s,t") with ¢ = max{t | (s,t) € Nod}) such that for any node (p,r)
in T'r, there is a path from (p,r) to (s,1).

It follows that for any k € dNod (equivalent with: for any (k,1) € Nod)
there is a path from k to ¢ in dT'r if and only if there is a path from (k, 1) to
(,7') in T'r, which completes the proof.

O

Proposition 2.7 If Tr is a complete DR-tree with DR-Ng(Tr) = k, then
dTr, the corresponding D-tree has D-Ng(dTr) < k.

Proof It follows from Lemma 2.6. If dTr has a node n with j gaps, then T'r
has also a node n’ with j gaps. This implies that

D-Ng(dTr) < DR-Ng(Tr).
O

Corollary 2.8 If Tr is a projective complete DR-tree, then dT'r, the corre-
sponding D-tree is also projective.

Proof It follows immediately from Proposition 2.7.

14



A

B |

| b a c b a C
a. DR-tree T'r b. D-tree d1I'r

Figure 2: Projective D-tree corresponding to a non-projective DR-tree cre-
ated by the dependency grammar in Example 2.1

Remark 2.4 The reverse statement is not true as we may see in the below
example.

Example 2.1 Let us consider G = (N, T, S, P) a dependency grammar, with
N ={AB,C,S}, T ={a,b,c,l}, P={S — Aa,S - [,A = Bb, B =
Ce,B—plc,C—p Aa}. We can easily define a non-projectively parsed DR-
tree for which the corresponding D-tree is projectively parsed (see Figure 2).

Moreover, we can establish the following results between the languages
generated by a dependency grammar through DR-trees and D-trees with the
same maximal number of gaps.

Corollary 2.9 Let G be a dependency grammar and i € Naty be a natural
number. Then DR-L(G,i) C D-L(G,i).
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Proof It results from the definitions of DR-L(G,i), D-L(G,i) and from
Proposition 2.7.
O

3 D-trivial left dependency grammars

In this section, we will define and study several particular forms of DR-trees
and dependency grammars.

Definition 1 Let G be a dependency grammar. We say that G is a D-
trivial dependency grammar if G creates only projectively-parsed D-trees,
i.e. D-Ng(dTr) =0, for any D-tree dT'r created by G.

Definition 2 Let G = (N, T, S, P) be a dependency grammar and let us
denote V= N UT. We say that G is a left dependency grammar if G does
not contain productions of the form A —r BC,ie. P C (N x (V\{S}H(V'\

{5} x{LH) U ({S} x T).

Remark 3.1 Considering the notations from the above definition, let us re-
mark that productions of the form S — a, with a € T, may appear only in
DR-trees created by G that have the form Tr = (Nod, Ed, Rt, Ann) with:

o Nod={(1,1),(1,2)}.

o Bd(1,1) = (1,2).

o Rt =(1,2);

o Ann(1,2) = S and Ann(1,1) = a.

Let us also observe that the dependency grammar defined in Example 2.1 is
a D-trivial left dependency grammar.

The following result characterizes the form of DR-trees created by a D-
trivial left dependency grammar.

Lemma 3.1 Let Tr = (Nod, Ed, Rt, Ann) be a complete DR-tree created
by a D-trivial left dependency grammar G = (N,T,S,P). The following
properties hold:

a) Let ny = (i,j) € Nod be a node in Tr. Let Tr,, be the covering subtree
of ny in Tr. Then (k,l) € Tr,, implies i < k.
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b) Denote k = max{i | 3j > 1,(i,j) € Nod}. If (k,l) € Nod then

(k,j) € Nod, for any 1 < j <.

c) Denote | = max{j | (k,j) € Nod}. Then for any node (i,j) € Nod,

with 1 < k, 5 > 1 implies j =k —1i+1.

d) Rt=(1,k+1-1).

e) Denote m = max{i | 3j € Nat, (i,j) € Nod}. Then m =k +1— 1.

Proof

a)

Suppose to a contradiction that there exists ny = (k,1) € T'r,, such that
i > k. Let us consider the path Path(ng, ni) which exists because of the
definition of a covering subtree. It is easy to see that this path should
contain at least two consecutive nodes ng = (p,r) and ny = (s,t) such
that p < r. We also have that Ed(n3) = ny4, hence it should exists a
production A —r BC € P such that Ann(ns) = A and Ann(ns) = B.
Contradiction, since G does not contain such productions.

For [ < 2 the property is D-trivial. Let ny = (k,l) € Nod, with [ > 2
be a node. From the definition of a DR-tree, it follows that there exists
at least a node ny = (m,l—1) € Nod such that Ed(ny) = ny. From the
property a) of this lemma, it follows that m > k. Since (i,j) € Nod,
t > k implies j = 1 and since m > k and [ — 1 > 1, we obtain m = k.
We proved that (k,l) € Nod implies (k,l — 1) € Nod, hence also the
property b) is true.

Let us consider a node ny = (k — 1,j) € Nod, with j > 1. Suppose
to a contradiction that 5 < [. From the definition of a left dependency
grammar, it results that this node should have two daughters, ny, =
(k —1,r) and ng = (s,t). From property a), it follows that s > k — 1.
But s # k, because the node (k,[) cannot be a daughter of the node
ny (since j < [). Tt results that s > k, hence ¢ = 1. The node
(k,l) also should have a daughter ny = (u,1), with u > k. Let us
suppose that s < wu (if this is not true, we can permute nodes ns
and ny, keeping the DR-isomorphism through out the transformation
and we obtain still a complete DR-tree created by G). Transforming
the DR-tree in a D-tree dTr = (dNod,dEd,dRt,dAnn) we observe
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that £ < s < u, k,u € Cov(k,dTR), while s ¢ Cov(k,dTR), thus
D-Ng(k,dTr) > 1, hence D-Ng(dTr) > 1, which is a contradiction
with the initial assumption that G creates only projective D-trees.

It results that j > [. Denote v = min{j | (k — 1,j) € Nod,j > [}
and let (k — 1,v) be a node. Again it results that n; should have two
daughters, (k — 1,7) and (s,t), with s > & — 1. It results that r = 1.
From the fact that [ = max{j | 3i > k, (i,j) € Nod}, we obtain that
t < [. Than, from the definition of a DR-tree, it results that t = [,
v=1+1and Ed(k,1)=(k— 1,1+ 1).

Now, suppose to contradiction that there exists another node (k —
1,7) € Nod, with j > [+ 1. We take y = min{j | (k —1,j) € Nod, j >
[ 4+ 1} and it follows as above that y = [ + 2. Following a similar
reasoning as for the case 7 < [ (now the node (k,[) cannot be the
daughter of the node (k—1,[+2), because it already is the daughter of
the node (kK — 1,1+ 1)) we obtain a contradiction with the assumption
that G creates only projective D-trees. It results that the only possible
node (k —1,7) € Nod with j > 1is (k — 1,1+ 1). But for this node
the condition | +1 =k — (k — 1) + [ is satisfied.

We can apply the same reasoning decreasing by step 1 from £ —1 to 1,
for any i between 1 and k£ — 1 and prove in this way the property c).

It follows from properties a) and c).

From the above properties, it results that for any node (i,1) with i > k
there is exactly one node (k,j) with 1 < j < [ such that Ed(i,1) =
(k,7). As there are [ — 1 nodes (k,j) with j > 1, it results that there
are also exactly [ — 1 nodes (i,1) with ¢ > k, thus m =k +1— 1.

O

We say that a DR-tree created by a D-trivial left dependency grammar

is a D-trivial left DR-tree. Using notations from Lemma 3.1, we say that
a D-trivial left DR-tree Tr is a DR left bush if £ = 1 and a DR left path
if [ = 2. Let us note that these notations are derived from the shape of

corresponding D-trees (see Figure 3).

Lemma 3.2 Let Tr be a complete D-trivial left DR-tree with m leaves. Then
the longest path in Tr has exactly m nodes.
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a. Left path b. Left bush

Figure 3: D-trees created by a DR left path, respectively a DR left bush

Proof Using notations from Lemma 3.1, it is easy to see that the longest
path in T'r starts from the node (k,[) and ends with the root Rt of T'r. This
path includes [ + k£ — 1 nodes. But m = [+ k — 1 (property e) from the same
lemma.
O
The following result characterizes the form of D-trivial left dependency
grammars.

Proposition 3.3 Let G = (N, T, S, P) be a D-trivial left dependency gram-
mar. Then there exists a partition of the set of nonterminals N = NyUNyUN;
such that N;N\N; =0, for any 1 <i < j <3 and the set of productions:

P C ((NyUNy) xT(N\{S}) x{L})U
(No UN3) x (N3 \ {SHT x {L})U
N xTT x {L})U

{S} x T).

A~~~ /N
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Proof We define the decomposition of N in the following way:

N = {A|3(A,aB,L) € P, A(A,Ba,L) € P,A,B€ N,aeT}
N, = {A|3(A,aB,L) € P,3(A,Ba,L) € PA,B€ N,aeT}
Ny = {A|A(A,aB,L) e PA/Be N,acT}

Obviously, Ny, Ny, N3 form a partition of N (they are disjoint and their union
is exactly N). From the above definitions, we observe that G' cannot have
productions of the form:

e A—;aB,with A€ N3, BE N,aeT,
e A—; Ba,with Ae N;, BEN,aeT.
From Lemma 3.1, we observe that GG cannot have productions of the form:
e A— BC, with A,B,C € N,
e A—y Ba,with A€ NyUN;3, BE NyUNy,a €T,

because such types of productions would create non-D-trivial left DR-trees.
These observations complete the proof.
O

4 An infinite sequence of classes of languages

In the beginning of this section, we introduce the main classes of languages
which we address in our paper. We denote by:

e DR-L the class of languages generated by all dependency grammars
through the set of DR-trees;

e DR-L(i) the class of languages generated by all dependency grammars
through DR-trees with at most ¢ gaps;

e tIDR-L the class of languages generated by all D-trivial left dependency
grammars through the set of DR-trees;
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e tIDR-L(7) the class of languages generated by all D-trivial left depen-
dency grammars through DR-trees with at most ¢ gaps.

We also introduce two types of languages of a particular kind. Let n €
Nat be a natural number, V' = {by,...,b,} be an alphabet and [ ¢ V" be a
distinct symbol. Denote Ly, . 5, and Ljp™, two languages over V U {I} by:

Lip,.n, = {l(b)™...(bn)™ | m € Naty},
Ly, = {lwe V™ [|wl, =...=wl,},

where |w|, denotes the number of occurrences of the symbol b in the string
w.

Let us observe that the grammar G in Example 2.1 generates the language

total
L labc *

Proposition 4.1 Let i € Naty be a natural number, V.= {by, ..., by1} be
an alphabet and | ¢ V' be a distinct symbol. Then there exists a language L
over V.U {l} such that Ly, ,,,, € L C L and L € tIDR — L(i).

lbl...b2i+1

Proof Consider G = (N, VU{l}, Byi.1, P) a D-trivial left dependency gram-
mar such that N = {B; | j € [2i+1]}, P ={Bj1 — B;b; | j € [2i]}U{B; —
By i1boiy1, Bojy1 — U}. We take L = DR-L(G, i), hence L € tiDR — L(3).

It is easy to observe that L C L', .

Let m € Natgy be a natural number and Try,, = (Nod,,, Ed,,, Rty,, Anny,)
be a D-trivial left Dr-tree such that

e Nody, ={(1,t+1) |t € [(2i+1)m+1]}U{(s,1) | s € [(2i+1)m+1]}.

[ (1,t+1), if s = 1;
(z+2i+1)(y—1)+2,1) ifs=(@x—-1)m+y+1,
t=1Lzx=2(z—1)+1,

Edp(s,t) = < z € i+ 1],y € [m];
(z+@2i+)(m—-y)+2,1) fs=(@—-1)m+y+1,
t=1x =2z,

\ z€li+ 1],y € [m],

for any (s,t) € Nod,,.

o Rtp=(1,(2i+ 1)m+2);
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(1, ifs=1,t=1;
B2i+1 if s = ]_,t:2,
B, ifs=1lt=z+2i+1)(y—1)+2,
r € [2i+ 1],y € [m];
b, ifs=@x—-1)m+y+1,t=1,
\ x € 20+ 1],y € [m],

Anng,(s,t) =

for any (s,t) € Nod,,.

We can count, the number of gaps of any node (s, t) in Tr,, in the following
way:

2, ifs=1,t=2z4+2o0rt=22+43,2€li];
i, ifs=1,2i+4<t<(2i+1)(m—1)+3;
DR-Ny((s,t),Trm) =% i—2z, ifs=1,t=(2i+1)(m—1)+22+2or
t=2i+1)(m—-1)+22+3,z€[i —1];
0 otherwise.

We have that DR-Ng(T'r,,) = max{DR-Ng(no,Try) | no € Nody,} = i,
which proves that Tr,, is D-trivial left DR-tree with at most ¢ gaps, created
by G. Thus I(b))™ ... (b,)™ = s(Try) € L, for any m € Nat U {0}, hence
Ly, ..boien € L.

O

Lemma 4.2 (pumping lemma) Let L € t!DR-L(i) be a language. Then,
there exist two natural constants p,r € Nat such that for any sentence w € L
with |w| > p, there exists a decomposition of w in w = a1y ... 0EGQL4
such that the following conditions hold:

i) |lan| > 0, for any h € [r];
i) lay...ar| <p;
i) ay(a) ay. ..o (a ) a1 € L, for any j € Naty.

i) Ifr > i+1 there are at most i distinct indices h such that 1 < h < r+1
and |ay| > p.
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Proof Let G = (N,T,S, P) be a D-trivial left dependency grammar such
that L = DR-L(G,i). Let n be the number of nonterminals in G. Denote
p = n+ 1. Let us consider a sentence w € L with |w| > p and a left
D-trivial DR-tree Tr created by G such that s(Tr) = w. Since Tr has
exactly |w| leaves, from Lemma 3.2, we have that there exists at least a
path (ni,n9,...,np) in Tr (the longest path in 7). Since |w| > n + 1,
nodes on this path are annotated by more than n nonterminals, thus in the
sequence Ann(nsy), ..., Ann(nj,|) there exist at least two equal nonterminals.
Let us consider the first two equal nonterminals in this sequence, i.e. let us
consider two indices 1 < s < ¢t < |w| such that Ann(ns) = Ann(n;) and all
nonterminals in the sequence Ann(ny),..., Ann(n,_;) are distinct.

In the following, we will use for 7'r notations from Lemma 3.1. There are
three possible cases:

1. 1 < s <t <1l Weconsider the sequence of nodes n, = (k,t),n; 1 =
(k,t —1),...,n511 = (k,s +1). Each of these nodes has a left dom-
inated daughter, which is a leaf. Consider this sequence of leaves,
(no1, 1), ..., (nos_s, 1) such that Ed(no;, 1) = ngy;, forany 1 < i < t—s.
We denote by a;, with h from 1 to a certain r, a sequence of terminals
Ann(nog, 1)Ann(nozy1, 1) ... Ann(nog4y, 1), where no,, nog11, ..., no,
is a maximal sequence of consecutive natural numbers. Consider the
decomposition w = a1 . .. apa,a, 1. We have |a; ...a,| = r. Since
the path from ng,; to n; has at least one node and at most n nodes
(as all nonterminals on this path are distinct), we obtain r < p, which,
together with |ay| > 0, for any h € [r] fulfills conditions i) and ii) of the
pumping lemma. We may replace the covering subtree T'r,, with the
covering subtree Tr,,_ (preserving the completeness under the transfor-
mation) and the resulted DR-tree T'ry is still a complete DR~tree cre-
ated by GG. Obviously the transformation will not increase the number
of gaps. It results s(Trg) = ajay...a,41 € L, which proves condition
iii) of the lemma for j = 0. For j =1, a3 ... .0, 41 = w, which
obviously belongs to L. Moreover, we may replace the covering subtree
Try, with the covering subtree 7'r,, in such a way that new introduced
leaves corresponding to a string ay, h € [r] will stick immediately after
the leaves from the initial covering subtree T'r, corresponding to the
same sequence ay. The resulted DR-tree T'ry is still a complete DR-tree
created by GG. Again the transformation will not increase the number
of gaps. We can repeat this transformation for an unlimited number
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of times, obtaining in this way an infinite sequence T'r;, with j > 2, of
complete DR-trees created by G with at most ¢ gaps. It results that
s(Tr;) = ai(a1)az. .. ar(a,) a4y € L, for any j > 2 which completes
condition iii) of the lemma.

Finally, if » > 7 + 1, suppose towards a contradiction that there exist
i + 1 distinct indices h; such that 1 < h; < r+ 1 and |ay;| > p, for
all j € [i +1]. We observe that none of the gaps induced by ay,, with
J € [t + 1] in the coverage of n; in Tr can be fulfilled by the coverage
of ng in T'r, since the latest one has at most p elements. It follows that
DR-Ng(ny, Tr) > i+ 1 which is a contradiction with the assumption
that Tr € T(G, ). This means that also the condition iv) of the lemma
is true.

2. 1 < s <l <t If wereplace the covering subtree T'r,, with the covering
subtree T'r,, in a similar way as above, we obtain a DR-tree created by
G, but which is not a D-trivial left DR-tree. This contradicts the fact
that G is a D-trivial left dependency grammar, which creates only D-
trivial left DR-trees. Thus, this case is not possible under the pumping
lemma’s assumptions.

3. 1 <s<t<|w]. We proceed in a similar way as for the first case, by
taking r = 1. Condition iv) of the lemma does not apply in this case.
O

Proposition 4.3 Let i,k € Naty be two natural numbers such that i < k,
Vo= {by,...,boy1} be an alphabet, | ¢ V be a distinct symbol and L be
a language over VU {l} such that Ly, . 4., € L C Lfgf{%%b%ﬂ. Then L ¢
tIDR-L(i).

Proof Suppose towards a contradiction that L € t{DR— L(i). It follows that
the pumping lemma holds for L and. Consider p and r the two constants
from the pumping lemma, a natural number n such that n > 2p and the
sentence w = [(by)™ ... (bag+1)". We have |w| = (2k + 1)n + 1 > p, hence,
from the pumping lemma, it should exists a decomposition of w in w =
113 . . . Qpa,p0p 4 Such that conditions i)-iv) of the lemma hold. Take j =

0 in condition iii). It results that wy = ajajay...qa,0011 € L. Since
L C L™, .. it follows that |wols, = ... = |wo|ny,,, and further that also
lay .. arlp, = ... =|a1...a|py,,,- Since |a;...a,| < pand n > 2p, it results
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that ay, for some h € [r] cannot include more than two distinct symbols from
w, hence r > k+1 > i+ 1 and there are at least £ > ¢ distinct indices h such
that 1 < h <r+1 and |ay| > p, which yields a contradiction with condition
iv) from the pumping lemma.
It results that L & t{DR-L(7).
O

Corollary 4.4 t{DR-L(k)\ t{DR-L(i) # 0, for any i,k € Naty, with i < k.

Proof Let V' = {by,...,bos1} be an alphabet and [ ¢ V be a distinct
symbol. From Proposition 4.1, we have that there exists a language L over
VU {I} such that Ly, 4, ,, € L C Lig™,,  and L € tIDR-L(k). From
i < k and from Proposition 4.3, we have that L ¢ t/DR-L(i). Thus L €
tIDR-L(k) \ tIDR-L(7).

O

Proposition 4.5 tIDR-L(i)\ t!IDR-L(k) # 0, for any i,k € Nat, with i < k.

Proof Let V = {by, ..., bsi13} be an alphabet and [ ¢ V be a distinct symbol.
One can prove in a similar way as we did for Proposition 4.1, that there exists
a language L over V U {l} such that {I(b1)™ ... (b)™ (bair1b2itabeir3)™ | m €
Natoy € L C Ligi*,, . and Ly € tIDR-L(i). A similar kind of D-trivial left
dependency grammar should be defined and only the left D-trivial DR-tree
corresponding to a sentence [(by)™ ... (by;)™ (boi+1b2i12b2i13)™ with m € Nat,,
must have a slightly different form, but still a maximal number of ¢ gaps.

Suppose to a contradiction that L € t#{DR-L(k). It means that there exists
a D-trivial left dependency grammar G such that L = DR-L(G,k). Let m €
Nat be a natural number. Since wy,, = [(b1)™ ... (b2;)™ (b2i+1b9i42b9i13)™ € L,
there exists a D-trivial left DR-tree T'r,, such that s(Tr,,) = w,,. We can
suppose - without any loss of generality - that Tr,, is a left bush®.

We disregard the manner in which leaves are distributed in 7', and keep-
ing the spine of T'r,,, we build, bottom-up, a left bush 7] in the following
way:

!Tr,, may include only a bounded ”path” prefix, since otherwise we would be able to

"pump” in w,, only a part of the symbols by, ..., bs; 13, keeping the same number of gaps
for the DR~tree, hence either L # DR-L(G,k) or L ¢ Lfgfffl_bwrg. In this case, the rest of

proof would be done for a natural number m greater than the longest ”path” prefix in
such a D-trivial left Dr-tree T'rp,. Still, the final conclusion would hold.
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e We consider all nodes on the spine of T'r,,, bottom-up, from (1,3) to
Rt (the leaf (1,1) will remain in the same position).

e For any node of the spine, we arrange its right daughter (which is
obviously a leaf) annotated with a symbol b, in a sequence bounded
to the left by the leaf ((x — 1)m + 2,1) and to the right by the leaf
(xm +1,1).

e The leaves will be arranged consecutively on a first-met-first-arranged
base, from left to right for leaves annotated with a symbol by,_; with
z € [i+2] and from right to left for leaves annotated with a symbol b,
with z € [i + 1].

After the left bush T'r! is completed, we observe that:
® S(TT;n) = l(bl)m Ce (b21+3)m.
o Tr, €T(G).

e Moreover, T € T(G,i+ 1) (it is easy to see that at any moment we
have at most ¢ 4+ 2 islands of natural numbers in the coverage of any
node in T'r] , thus Tr] cannot have more than i + 1 gaps).

Since i < k, it results that also T'r, € T'(G, k). Therefore, I[(b))™ ... (bgiy3)™ €

DR-L(G,k). We obtain that {I(b1)™ ... (byiy3)™ |m € Nato} € L C Ligi*, .

But, using this last statement, the fact that : < j and Proposition 4.3, we

have that L ¢ t/DR-L(i), which is a contradiction with the initial assumption.
It follows that L € t!DR-L(i) \ t{DR-L(k).

O

Now, we ca state the main result of this paper.

Theorem 4.6 The classes of languages, generated by D-trivial left depen-
dency grammars with a bounded number of gaps, form an infinite sequence:

tIDR-L(1), tIDR-L(2), ..., tIDR-L(n), ...
such that any two different classes in this sequence cannot be compared.

Proof It results from Corollary 4.4 and Proposition 4.5.
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5 Other properties

We denote with REG, C'F and CS the classes of regular, context-free, and
respectively, context-sensitive languages.

Proposition 5.1 The following property holds: DR-L(0) = CF.

Proof If G = (N, T, S, P) is a dependency grammar then we can define
a context- free grammar G' = (N, T, S, P') with P' = {(u,v) | (u,v,2) €
P} U {(u,v) | (u,v) € P}. It results L(G') = DR-L(G,0). If G is a context-
free grammar (we can consider G in Chomsky Normal Form), then we can
define a dependency grammar G' = (N, T, S, P') with P' = {(A,BC, L) |
(A, BC) € PYU{(A,a) | (A,a) € P}2. Tt results DR-L(G',0) = L(G).

O
Let V = {ay,...,a,} be an alphabet. We define the Parikh mapping
Oy 2 V* — Nat§ by Oy () = (|2]ays-- -, |T|ay), for any z € V*. We extend

the mapping in a natural way to languages. Two languages L, L, € V*
such that ®y (L) = Py (Ls) are said to be letter equivalent. Consider the
operations of componentwise addition and multiplication by a constant over
the set of natural vectors of a given dimension. A subset M of Natj is
said to be linear if there exist the vectors vy, vy, ..., 0,, m > 0, such that
M ={vy+ X2, pivi | pi € Natg,1 > i > m}. A finite union of linear sets is
called a semilinear set. A language L C V is called semilinear if &y (L) is a
semilinear set.

Proposition 5.2 Let L € DR-L(i), for somei € Nat. Then L is semilinear.

Proof Let G be a dependency grammar such that L = DR-L(G,i). Denote
Ly = DR-L(G,0). From Proposition 2.5, we know that any DR-tree Tr €
T(G,i) is DR-equivalent with a projective DR-tree Try € T(G,0). Then
Oy (s(Tr)) = Py (s(Try)). Since Ly C L (Claim 1), it results that ®y (L) =
Oy (L), i.e. L is letter equivalent to Lg. But Ly is a context-free language
(Proposition 5.1) and from the Parikh Theorem it is semilinear. It results
that also L is semilinear.

O

2@G' can be easily brought to the form of a left dependency grammar
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Proposition 5.3 The following properties hold.

i) DR-L(0) = REG.

ii) REG C tIDR-L(1), for any i € Nat (all inclusions are strict).

iii) tIDR-L(i) C CS, for any i € Naty (all inclusions are strict).

Proof

i) If G is a regular grammar, then we can define a D-trivial left depen-

ii)

dency grammar G' = (N, T, S, P') with P = {(A,aB,L) | (A,aB) €
P} U {(A,a) | (A,a) € P}. Tt results DR-L(G',0) = L(G). Let
G = (N,T,S,P) be a D-trivial left dependency grammar and N =
N; U Ny U N3 be the partition of the set of nonterminals defined in
Proposition 3.3. We can define a non-deterministic finite automaton
M = (Q,T, S, F,d) such that Q = NU{B* | A€ N,, B € N;}U{qF}U
{py| (A,ab,L) € P,Ae N} U{r§, | (A,ab,L) € P,B € N,, A € N3},
F = {qs} and the transition function 0 is defined by:

(aF | (1,0) € PYU{d | (g,00',T) € P}U
U{ps | (¢,ad, L) € P} if g =S,
{d'|(q,aq', L) € P} U{py|(q,ab,L) € P} if g € N\\{S},
{po, 7% | (q,ab, L) € P} if g € No,

0(q,a)=4 {qF} if ¢ = pa,

{B*} if g = rg’a,
{C*](C,Ba,L) € P,C € N3}U
{aF' | (A, Ba,L) € P} if ¢ = B4,

L0 otherwise.

We have L(M)=DR-L(G,0).

Like above, if G is a regular grammar, we can define a D-trivial left de-
pendency grammar G’ = (N, T, S, P') with P' = {(A,aB,L)|(A,aB) €
PYU{(A,a) | (A,a) € P} and we have DR-L(G',0) = L(G). But G cre-
ates only projective DR-trees (T'(G',1) = T(G',0), for any i € Naty),
hence DR-L(G",i) = DR-L(G',0) = L(G), for any i € Naty. If i € Nat,
from the item i) of this proposition and from Corollary 4.4, we obtain
the strictness of the inclusion.
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iii) Let L € DR-L(i), i € Naty be a language, G = (N, T, S, P) be a D-
trivial left dependency grammar such that L = DR-L(G,i) and N =
N7 U Ny U Nj is the partition of N defined in Proposition 3.3. We can
define a linear bounded automaton M = (Q, T, %, $, #, B, q0, F, §) with
a work space of 2n + 3 cells where n is the length of the input word.
Consider the tape alphabet ¥ = TU{B, $, #, &}, where B is a special
symbol marking the cells that are not visited yet, $ and # are the left
(respectively, right) side markers and & is a symbol which will mark
the middle of the tape (none of these four tape symbols is in T'). ¢0
is the initial state of the automaton M, while the set of final states is
defined by F = {¢F'}. The set of states () and the transition function
0 are defined according to the method described in the following.

We define an instant configuration of M as a triple (¢, «,i), where
gEQ, aeX Ja|=2n+3 and 1 <i < 2n+ 3. We will use instant
configurations to describe the behavior of M.

The initial configuration of M is:

(qﬂa $an+1#7 2)7

with w € T", |w| = n. In the first step, the r/w-head goes to the
middle of the tape, marks the middle with & and goes one cell to the
right:

(qs, Sw&B"#,n + 3),

where S is the start symbol of the grammar G. The r/w-head starts to
write on the tape to the right symbols from 7', according to productions
from P:

(qa, Sw&aB" "4 n+k+3) F (gp,Sw&zaB™ * 4 n+k +4),

if (A,aB,L) € P. To some state g4, with A € Ny U N3, M decides
non-deterministically to stop this step and to go to the end of the work
space.

(pa, Sw&aB"*# 2n + 2).

The r/w-head starts writing to the left, again symbols from T, accord-
ing to productions from P:

(pa, Sw&aB" ¥ ly# 2n+2 —1) - (pp, Sw&aB" *"tay#, 2n4+1 1),
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if (A,Ba,L) € P, k+1<n—2. When k+ [ =n — 2, two terminals
a and b from a production A — ab, with a,b € T are written on
the tape, the n + k£ + 2-th symbol is marked with an overline and the
r/w-head goes to the beginning of the work space:

(r, Sw&uay#,2),

where uay € T*, a € T. From this point on, a prefix of the input string
w is compared letter-by-letter to ua. They should be identical. If this
marking procedure succeeds, we reach the configuration:

(s, $uaz&uay#,n + k + 3).

Now, we should find a match between symbols from z and symbols from
y, but these have not to be in the same order. We should memorize
continuously (under the name of the state) an indicator for the number
of gaps induced by this matching. The matching will be carried on in
the following way: take the next unmarked symbol from the second
half of the work space, go with it to the left, find (and mark) an equal
unmarked symbol in the first half of the work space.

We may have three cases:

— If the new marked symbol is not near (to the left or to the right
of) an already marked symbol, then the indicator for the number
of gaps will increase with 1 (a new gap is created). Obviously, the
indicator cannot be ever greater than .

(si,$abacB,m) + (#+1,$abacB,m + 1),

where m = |$abal, a,b € T, c € TU{&} and j < i.

— If the new marked symbol is near an already marked symbol, but
not to the left and to the right in the same time, then the indicator
for the number of gaps will remain unchanged.

(s1, $abacf&y#,m) F (¥, $abacB, m + 1),
where m = |$abal, a,b € T, c € T U{&}, or
(s],$abacB, m) F (¥, $abacs, m+1),

where m = |$abal, a,b,c € T.
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— If the new marked symbol is near an already marked symbol, both
to the left and to the right, then the indicator for the number of
gaps will decrease with 1 (a gap was filled-in).

(s, $abacB,m) = (' $aabcB,m+ 1),
where m = |$abal, a,b,c € T.

If this marking procedure succeeds, then the final transition, which
leads the automaton in an accepting configuration, is described by:

(57, SW&TG#,2n + 3) F  (qF, SW&TG#, 2n + 2).

The detailed definitions of () and § are left to the reader. We have
L(M)=DR-L(G,i). Since all languages in t!/DR-L(i) C DR-L(i) are
semilinear (Proposition 5.2), we can easily find a non- semilinear lan-
guage in C'S \ tIDR-L(7) (like {a®" | n € Naty}).

O

6 Conclusions

The main aim of this contribution was to discuss the fact that there is a sig-
nificant difference between the (non)projectivity of DR-trees and respectively
D-trees. We stressed on the fact that D-trees can hide some concurrency and
word-order freedom phenomena raising in the generation or the parsing of the
sentence. D-trivial left dependency grammars and the global DR-restrictions
of the word-order freedom were used as the possible most simplest combi-
nation of notions useful for this kind od discussion. As outcome an infinite
sequence of incomparable classes of semilinear languages bounded between
the class of regular and respectively context-sensitive languages was obtained.
The massive incomparability achieved trough the global restrictions only is
the main novelty of this contribution. This result strengthens the results
from [4], where some infinite hierarchies of classes of languages were ob-
tained. Those hierarchies were obtained by using stronger combinations of
local and global restrictions applied to free-order dependency grammars.

In the close future, we will study the same types of global word-order re-
strictions as here, but applied on dependency grammars without any further
restrictive condition, like D-triviality. We believe that we will achieve new
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sequences of incomparable classes of languages. Moreover, we believe that to
this aim we can use the sequence of "witness” languages, which we already
used in this paper.

We will study also free-order dependency grammars with several kinds
of topological restrictions in order to understand complex word-order and
concurrency phenomena occurring in the syntax of natural languages. We
believe that the study of free-order dependency grammars can also contribute
to the understanding of concurrency phenomena, in general, as well.
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