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1 IntrodutionThe notion of free-order dependeny grammar (or simply dependeny gram-mar) was introdued in [3℄ as a formal system suitable for a dependeny-based parsing of natural languages. In a ertain way this notion enrihes thetypes of dependeny grammars desribed in [1℄.The proposal of this system was based upon the experiene aquired dur-ing the development of a grammar-heker for Czeh ([2℄) and as a possiblenext step towards a omplete syntati analysis following the underlying ideasof the dependeny-based framework of Funtional Generative Desription -FGD ([5℄). Compared to FGD and other usual formal systems desribing thesyntax of natural languages, the framework introdued by dependeny gram-mars takes a serious aount for the freedom of word order in a sentene andassign the same importane to linear preedene (LP) rules as to immediatedominane (ID) rules.As the freedom of word order is not total, even in so-alled free-word-order languages, one needs to onstrain the formalism in order to not over-generate the atual language.In [4℄, a measure for the freedom of the word order was studied, based onthe number of gaps issued in a sentene by the order of their words (node-gaps-omplexity). Both global and loal onstraints on the maximal number ofgaps at some node in the struture underlying the sentene were studied. Inthe view of node-gaps-omplexity, word order relaxation means to stepwiselyrelax the onstraints in order to obtain more omplex language onstrutions.In this paper, we work only with global onstraints.Two types of syntati strutures are used in the relationship with depen-deny grammars,DR-trees (DeleteRewrite trees) andD-trees (Dependenytrees). If D-trees onern the dependeny struture of the sentene, DR-trees rather onern the generation/parsing of the sentene. The two typesof strutures are related by the fat that any DR-tree an be transformedin an uniform way into a D-tree. The measure for the number of gaps ina sentene omputed in the nodes of the struture is introdued for bothDR-trees and D-tree. A DR-tree (D-tree) with no gaps is alled projetive,while a DR-tree (D-tree) with at least one gap is alled non-projetive. Inthis paper, we work only with dependeny grammars whih possibly reatenon-projetive DR-trees, but annot reate non-projetive D-trees (D-trivialdependeny grammars).The main result of this paper presents an in�nite sequene of inom-2



parable lasses of semilinear languages generated by a partiular type ofdependeny grammar, alled D-trivial left dependeny grammar (Setion 4).Moreover, all these lasses of languages are stritly ontained between thelass of regular languages and the lass of ontext-sensitive languages, eahof them ontaining ontext-free and non-ontext-free languages (Setion 5).We prove by the results we obtain in this paper that there is a signi�antdi�erene between the projetivity of DR-trees and respetively D-trees. Wealso try to argue in this way the importane of the non-projetive genera-tion/parsing of the sentene, whih is represented by the DR-tree omparedto the non-projetivity of the sentene itself whih is represented by the D-tree. In other word, even if is a sentene is represented by a projetive D-tree,this D-tree an hide some non-projetive onurreny phenomena raising inthe generation or the parsing of the sentene.2 DR-trees and D-treesIn this setion, we introdue some basi de�nitions and results on DR-treesand D-trees. We start with a general notion of annotated tree whih underliesboth DR-trees and D-trees notions.Let M be a set. Let Tr = (Nod,Ed,Rt,Ann) be a 4-tuple , where Nodis a set (the set of nodes), Rt 2 Nod is a speial node (the root), Ed :Nod n fRtg ! Nod is a funtion (the set of edges) and Ann : Nod ! M isa funtion (the annotation funtion).We all path in Tr any sequene of nodes from Nod,p = (n1; n2; : : : ; nk);with k � 1, suh that Ed(ni) = ni+1, for i = 1; : : : k � 1. We say that p is apath of length k � 1 from n1 to nk. If k > 1, we denote p by Path(n1; nk).We say that Tr is a M-annotated tree i� there is no path of positivelength in Tr from a node n 2 Nod to itself.Let n 2 Nod be a node in Tr. We say that n is a leaf i� n 6= Ed(n0), forany n0 2 Nod.We say that Tr is a �nite M -annotated tree i� its set of nodes, Nod, is�nite.In the sequel, we will work only with �nite annotated trees, withoutlearly mention it. 3



Proposition 2.1 Let Tr = (Nod, Ed, Rt, Ann) be an annotated tree. Thenfor any node n 2 Nod there exists exatly one path from n to Rt in Tr.Proof Let n 2 Nod be a node. Let no be the total number of nodes in Nod.We �rst prove that any path originating in n has the length less than no.Suppose to a ontradition that there exists a path p = (n1; n2; : : : ; nk) oflength at least equal to no originating in n (k � 1 � no, n1 = n). Then pontains at least no+1 nodes. Sine the total number of nodes in Nod is no,there exist two indies 1 � i < j � k suh that ni = nj. Then there existsa path p0 = (ni; ni+1; : : : ; nj) of positive length from ni to itself. This fatleads to a ontradition with the hypothesis that Tr is a annotated tree.It results that any path originating in n has the length less than no.Consider the longest path p = (n1; n2; : : : ; nk) originating in n. Suppose to aontradition that nk 6= Rt. In this ase we onsider nk+1 = Ed(nk). Thenp0 = (n1; n2; : : : ; nk; nk+1) is a longer path than p and still originating in n,whih leads to a ontradition.It follows that nk = Rt, hene there exists a path from n to Rt in Tr.The uniqueness omes from the fat that from eah node m 2 Nod there isexatly one edge in Tr whih leads to another node (this relationship is givenby Ed, whih is a funtion). utCorollary 2.2 Let Tr = (Nod,Ed,Rt,Ann) be a M-annotated tree. Then forany two nodes n1; n2 2 Nod there exists at least one node n3 2 Nod suhthat there exist a path from n1 to n3 and a path from n2 to n3.Proof Obviously, we an take n3 = Rt. utRemark 2.1 Keeping the denotations from Corollary 2.2, we denote bysup(n1; n2) the �rst node in Tr whih onnets n1 and n2, i.e. (n1; : : : ; Rt)and (n2; : : : ; Rt) are the paths from n1 respetively n2 to Rt, then sup(n1; n2)is the �rst node, whih belongs to both of these paths. From the de�nitionof an annotated tree, sup(n1; n2) is uniquely de�ned by this property.Let Tr1 = (Nod1; Ed1; Rt1; Ann1) and Tr2 = (Nod2; Ed2; Rt2; Ann2) betwo M -annotated trees. We say that Tr1 and Tr2 are equivalent i� thereis a bijetion f : Nod1 ! Nod2 suh that:4



1. f(Ed1(n)) = Ed2(f(n)), for any node n 2 Nod1 n fRt1g;2. f(Rt1) = Rt2;3. Ann1(n) = Ann2(f(n)), for any node n 2 Nod1.We all f an isomorphism between Tr1 and Tr2.Remark 2.2 If f is an isomorphism between twoM-annotated trees Tr1 andTr2, then f�1 is an isomorphism between Tr2 and Tr1. Moreover, isomor-phism funtions establish an equivalene relation on the set of trees annotatedby the same set of labels.Proposition 2.3 Let f : Nod1 ! Nod2 be an isomorphism between two M-annotated trees Tr1=(Nod1; Ed1; Rt1; Ann1), Tr2=(Nod2; Ed2; Rt2; Ann2).Then, Tr1 and Tr2 have the same number of leaves and any leaf from Tr1 ismapped by f in a leaf from Tr2.Proof We suppose to a ontradition that there is a leaf n 2 Nod1 suh thatf(n) = m and m is not a leaf in Nod2. Then, there is m0 2 Nod2 suh thatEd(m0) = m. Sine f is a bijetion, there is n0 2 Nod1 suh that f(n0) = m0.From the fat that m0 2 Nod2 n fRt2g it results that also n0 2 Nod1 n fRt1g,hene there is n00 2 Nod1 suh that Ed(n0) = n00. Obviously, n00 6= n, beausen is a leaf. It follows thatf(n00) = f(Ed(n0)) = Ed(f(n0)) = Ed(m0) = m:But also f(n) = m, whih leads to a ontradition with the fat that f is aninjetive funtion.It results that any leaf from Tr1 is mapped by f in a leaf from Tr2. Sinef is injetive, it follows that the number of leaves in Tr2 is at least equal tothe number of leaves in Tr1.The other part of the proof an be done in the same way onsidering theisomorphism f�1 between Tr2 and Tr1. utIn [3℄, (free-order) dependeny grammars were introdued, as a rewritingdevie over two alphabets, of non-terminals and, respetively, terminals. Inits general form, a dependeny grammar is able to rewrite both non-terminalsand terminals, by a �nite set of rules (produtions). Through out this paper,we will work with dependeny grammars, whih rewrite only non-terminals5



(in a similar way to the ontext-free grammars), therefore, we will not useterminals on the lefthand-sides of the rules.We all dependeny grammar a struture G = (N; T; S; P ) suh thatN and T are non-empty, �nite sets, alled the set of nonterminals and re-spetively the set of terminals, S 2 N is the start symbol and P is a �niteset, alled the set of produtions suh thatP � (N � V V � fL;Rg) [ (N � T );where V = N [ T . Sometimes, we will write:A!L BC instead of (A;BC; L)A!R BC instead of (A;BC;R)A! a instead of (A; a)for any prodution of the appropriate form.Denote by Nat the set of natural numbers not equal to 0 and by Nat0 =Nat [ f0g.Let G = (T;N; S; P ) be a dependeny grammar and denote V = T [N .A DR-tree reated by G is a V -annotated tree Tr = (Nod,Ed,Rt,Ann)suh that:1. Nod � Nat�Nat.2. If Ed(i; j) = (k; l) then j < l.3. Rt = (i;maxfk j 9j; (j; k) 2 Nodg).4. A node (i; j) 2 Nod is a leaf if and only if j = 1 and Ann(i; j) 2 T .5. If (i; j) 2 Nod, with j 6= 1 and Ann(i; j) = A, then one of the followingases neessarily ours:a. j = 2 and there is exatly one node n 2 Nod suh that Ed(n) =(i; j); in this ase n = (i; 1) and if Ann(n) = a, the produtionA! a belongs to P .b. There are exatly two nodes n1; n2 2 Nod suh that Ed(n1) =Ed(n2) = (i; j); in this ase either:b1. n1 = (i; k) and n2 = (l; m) with l > i, max(k;m) = j � 1 andif Ann(n1) = B and Ann(n2) = C, the prodution A!L BCbelongs to P , or 6
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a. DR-tree Tr b. D-tree dTrFigure 1: Examples of a DR-tree, respetively, a D-treeb2. n1 = (l; k) and n2 = (i;m) with l < i, max(k;m) = j � 1 andif Ann(n1) = B and Ann(n2) = C, the prodution A!R BCbelongs to P .Let no 2 Nod; no = (i; j). We say that i is the horizontal position of noand j is the vertial position of no (see an example of a DR-tree in Figure 1).We say that a DR-tree Tr = (Nod, Ed, Rt, Ann) is omplete i� for anyleaf (i; 1) 2 Nod, if i > 1 then also (i� 1; 1) 2 Nod.For any omplete DR-tree Tr = (Nod, Ed, Rt, Ann) reated by a depen-deny grammar G = (N; T; S; P ), we de�ne the sentene assoiated with Trby s(Tr) = a1a2 : : : an, where n = maxfi j (i; 1) 2 Nodg and Ann(i; 1) = ai,for any i 2 [n℄. Obviously, s(Tr) � T+.Let G = (N; T; S; P ) be a dependeny grammar. We denote by:� T (G) the set of omplete DR-trees reated by G and rooted by S;7



� DR-L(G) = fs(Tr) j Tr 2 T (G)g the language generated by G,through the set of DR-trees.Let Tr1 = (Nod1; Ed1; Rt1; Ann1) and Tr2 = (Nod2; Ed2; Rt2; Ann2) betwo DR- trees reated by the grammar G = (N; T; S; P ). We say that Tr1and Tr2 are DR-equivalent i� there is an isomorphism f : Nod1 ! Nod2between Tr1 and Tr2 as V -annotated trees and:1. f(i; j) = (s; j), for any node (i; j) 2 Nod1.2. If (i; j) 2 Nod1, with j 6= 1 and f(i; j) = (s; j), then:a. if there is exatly one node n 2 Nod1 suh that Ed(n) = (i; j)then f(n) = (s; j � 1).b. if there are exatly two nodes n1; n2 2 Nod suh that Ed(n1) =Ed(n2) = (i; j) then either:b1. if n1 = (i; k) and n2 = (l; m) with l > i, then f(n1) = (s; k)and f(n2) = (t;m) with t > s orb2. if n1 = (l; k) and n2 = (i;m) with l < i, then f(n1) = (t; k)and f(n2) = (s;m) with t < s.We say that f is a DR-isomorphism between Tr1 and Tr2.Let T be an alphabet and Tr = (Nod, Ed, Rt, Ann) be a T -annotatedtree suh that Nod � Nat. We all Tr a D-tree over T (see an example ofD-tree in Figure 1).We say that Tr is omplete i� for any leaf i 2 Nod, if i > 1 then alsoi� 1 2 Nod.For any omplete D-tree dTr = (dNod, dEd, dRt, dAnn) over T , we de-�ne the sentene assoiated with dTr by s(dTr) = a1a2 : : : an, where n =maxfi j i 2 dNodg and dAnn(i) = ai, for any i 2 [n℄. Obviously, s(Tr) �T+.Let Tr1 = (Nod1; Ed1; Rt1; Ann1) and Tr2 = (Nod2; Ed2; Rt2; Ann2) betwo D-trees over an alphabet T . We say that Tr1 and Tr2 are D-equivalenti� there is an isomorphism f : Nod1 ! Nod2 between Tr1 and Tr2 as T -annotated trees suh that if i; j 2 Nod1 are two nodes with Ed1(j) = i then(i � j)(f(i)� f(j)) > 0. We say that f is a D-isomorphism between Tr1and Tr2.Let Tr = (Nod, Ed, Rt, Ann) be a DR-tree. We may transform Tr in aD-tree dTr = (dNod, dEd, dRt, dAnn) in the following way:8



1. dNod = fi j (i; 1) 2 Nodg.2. dRt = i i� Rt = (i; j), for some j 2 Nat.3. Let i 2 dNod be a node in dTr and (i; 1) 2 Nod the orresponding leafin Tr. We onsider the path p = (n1; n2; : : : ; nk) in Tr from n1 = (i; 1)to nk = Rt (f. Proposition 2.1). We also onsider the natural numberr = maxfl j nl = (i; j); j 2 Natg. Then one of the following asesneessarily ours:a. If r = k then dRt = i.b. If r < k and nr+1 = (s; t) then dEd(i) = s.4. dAnn(i) = Ann(i; 1), for any i 2 dNod.We say that dTr is the D-tree orresponding to Tr. The D-tree dTr repre-sented in Figure 1 is orresponding to the DR-tree Tr from the same �gure.Remark 2.3 If Tr is a omplete DR-tree, then the orresponding D-tree dTris also omplete.Let G = (N; T; S; P ) be a dependeny grammar. We denote by:� dT(G) the set of D-trees orresponding to T (G);� D-L(G) = fs(dTr) j dTr 2 dT (G)g the language generated by G,through the set of D-trees.If dTr is a D-tree orresponding to a DR-tree reated by a dependeny gram-mar G, we say that dTr is reated by G as well. Obviously, DR-L(G)=D-L(G), for any dependeny grammar G.Proposition 2.4 Let Tr1 and Tr2 be two DR-equivalent DR-trees. Let dTr1and respetively dTr2 the two orresponding D-trees. Then dTr1 and dTr2are D-equivalent.Proof We onsider f : Nod1 ! Nod2 a DR-isomorphism between Tr1 =(Nod1; Ed1; Rt1; Ann1) and Tr2 = (Nod2; Ed2; Rt2; Ann2). We take the twoD-trees orresponding to Tr1 and Tr2, dTr1 = (dNod1; dEd1; dRt1; dAnn1),respetively dTr2 = (dNod2; dEd2; dRt2; dAnn2).9



We de�ne f 0 : dNod1 ! dNod2 byf 0(i) = i0 () f(i; 1) = (i0; 1);for any i 2 dNod1. From the onstrution of the D-trees dTr1 and dTr2 andfrom Proposition 2.3, it follows that the de�nition of f 0 is orret and alsothat f 0 is a bijetion from dNod1 to dNod2. We will hek the onditions inwhih f 0 would establish an equivalene between dTr1 and dTr2.1. Let i 2 dNod1 be a node. If i 6= Rt there is a node s 2 dNod1 suhthat dEd1(i) = s. From the onstrution of dTr1 it results that thereare two nodes (i; j); (s; t) 2 Nod1 suh that Ed1(i; j) = (s; t). We havethat f 0(s) = s0 () f(s; 1) = (s0; 1)and f 0(i) = i0 () f(i; 1) = (i0; 1):Sine f is a bijetion it follows that i0 6= s0. It results that dEd2(i0) = s0.We have that(s0; t) = f(s; t) = f(Ed1(i; j)) = Ed2(f(i; j)) = Ed2(i0; j)hene f 0(dEd1(i)) = f 0(s) = s0 = dEd2(i0) = dEd2(f 0(i)):2. We have dRt1 = i i� there exists j 2 Nat suh that Rt1 = (i; j). Wealso have f(Rt1) = Rt2. Thenf 0(dRt1) = i0 () f(i; 1) = (i0; 1) () f(i; j) = (i0; j) ()() Rt2 = (i0; j) () dRt2 = i0:It results that f 0(dRt1) = dRt2. utLet Tr = (Nod;Ed;Rt; Ann) be an annotated tree, n 2 Nod be a node.We de�ne the overing subtree of n in Tr by the following annotated tree,Trn = (Nodn; Edn; Rtn; Annn) suh that� Nodn = fn0 j there is a path from n0 to n in Trg.10



� Edn(n0) = Ed(n0), for any n0 2 Nodn n fng.� Rtn = n;� Annn(n0) = Ann(n0), for any n0 2 Nodn.Let Tr = (Nod;Ed;Rt; Ann) be a omplete DR-tree, n 2 Nod be a nodeand Trn = (Nodn; Edn; Rtn; Annn) be the overing subtree of n in Tr. Wede�ne the overage of n in Tr by the set:Cov(n; Tr) = fi 2 Nat j there is a node (i; 1) 2 Nodng:Let n 2 Nod be a node in Tr suh that Cov(n; Tr) = fi1; i2; : : : ; img,with i1 < i2 < : : : < im and ij+1 � ij > 1 for some j 2 Nat, j < m. We saythat the pair (ij; ij+1) is a gap in Tr at the node n.Let Tr = (Nod;Ed;Rt; Ann) be a omplete DR-tree, n 2 Nod be anode and Cov(n; Tr) be its overage. The symbol DR-Ng(n,Tr) representsthe number of gaps in Tr at the node n. The symbol DR-Ng(Tr) is themaximum number of gaps in Tr at any node n 2 Nod:DR-Ng(Tr) = maxfDR-Ng(n,Tr) j n 2 Nodg:We say that DR-Ng(Tr) is the DR-node-gaps omplexity) of Tr.We say that Tr is projetively parsed (or simply projetive) i� DR-Ng(Tr)=0.Let G = (N; T; S; P ) be a dependeny grammar. We denote by:� T (G; i) � T (G) the set of omplete and rooted by S DR-trees Trreated by G with at most i gaps, DR-Ng(Tr) � i;� DR-L(G,i) = fs(Tr) j Tr 2 T (G; i)g the language generated by G,through DR-trees with at most i gaps.We mention the following obvious laim.Claim 1 Let G be a dependeny grammar. Then the following inlusionshold.i) T (G; i) � T (G; i+ 1) � T (G), for any i 2 Nat0.ii) DR-L(G,i) � DR-L(G,i+1) � DR-L(G), for any i 2 Nat0.11



Proposition 2.5 For any omplete DR-tree Tr1 reated by a dependenygrammar G there exists a DR-equivalent projetive omplete DR-tree Tr2reated by the same grammar G.Proof Let Tr1 = (Nod1; Ed1; Rt1; Ann1) be a DR-tree and let us supposethat DR-Ng(Tr1) > 0. Let n1 = (i; j) be a node in Nod1, suh thatDR-Ng(n1; T r1) > 0 and for all the nodes n0 = (i0; j 0) 2 Nod1 suh thati0 2 Cov(n1; T r1), we have DR-Ng(n0; T r1) = 0.It results that there are two nodes n2 = (k; l) and n3 = (i;m) suh thatEd1(n2) = Ed1(n3) = n1. Let us suppose that k < i (the ase i < k an besolved analogously). Let us denoteCov(np; T r1) = fsp1; sp2; : : : ; sptpg;for p = f1; 2; 3g. We have that t1 = t2 + t3 and sine DR-Ng(n2; T r1) =DR-Ng(n3; T r1) = 0 we haves1t = ( s2t ; if t � t2s3t�t2 ; if t > t2It follows that Tr1 has only one gap at the node n1, whih is between s1t2 ands1t2+1, i.e. DR-Ng(n1; T r1) = 1.Denote by s = s31 � s2t2 � 1 the number of nodes, whih are between theoverage of n2 and the overage of n3 and are not in the overage of n1.We de�ne an appliation f : Nod1 ! Nat�Nat by:f(p; r) = 8><>: (p; r) if p < s11 or p � s31;(p+ s; r) if s21 � p � s2t2 ;(p� t2; r) if s2t2 < p < s31;We observe that the o-restrition of f to f(Nod1) is a bijetion betweenNod1 and f(Nod1). We de�ne a DR-tree Tr2 = (Nod2; Ed2; Rt2; Ann2) suhthat� Nod2 = f(Nod1).� Ed2(f(n)) = f(Ed(n)), for any n 2 Nod1.� Rt2 = f(Rt1);� Ann2(f(n)) = Ann(n), for any n 2 Nod1.12



It is easy to see that:� the de�nition of Tr2 is orret,� Tr2 is also a omplete DR-tree reated by the grammar G and� f is a DR-isomorphism between Tr1 and Tr2.Moreover, we observe that DR-Ng(f(n1); T r2) = 0, while the node-gaps-omplexity of Tr1 was preserved under the isomorphism in all other nodes,exepting n1.It results that, under this isomorphism, the number of nodes with gapsdereased at least by one. By repeating the transformation for a �nite numberof times, we obtain a projetive omplete DR-tree reated by G and DR-equivalent with the initial DR-tree. utNow, let us onsider the same node-gaps-omplexity measure for D-trees.Let dTr = (dNod; dEd; dRt; dAnn) be a omplete D-tree, n 2 dNod bea node and dTrn = (dNodn; dEdn; dRtn; dAnnn) be the overing subtree ofn in dTr. We de�ne the overage of n in dTr by the set:Cov(n; dTr) = dNodn:Let n 2 dNod be a node in dTr suh that Cov(n; dTr) = fi1; i2; : : : ; img,with i1 < i2 < : : : < im and ij+1 � ij > 1 for some j 2 Nat, j < m. We saythat the pair (ij; ij+1) is a gap in dTr at the node n.Let dTr = (dNod; dEd; dRt; dAnn) be a omplete D-tree, n 2 dNod bea node and denote by Cov(n; dTr) its overage. The symbol D-Ng(n; dTr)represents the number of gaps in dTr at the node n. The symbol D-Ng(dTr)is the maximum number of gaps in dTr at any node n 2 dNod:D-Ng(dTr) = maxfD-Ng(n; dTr) j n 2 dNodg:We say that D-Ng(dTr) is the D-node-gaps omplexity of dTr.We say that dTr is projetive i� D-Ng(dTr) = 0.Let G = (N; T; S; P ) be a dependeny grammar. We denote by:� dT (G; i)x = fdTr j Tr 2 T (G);D-Ng(dTr) � ig the set of D-trees dTrreated by G with at most i gaps;� D-L(G; i) = fs(dTr) j dTr 2 dT (G; i)g the language generated by G,through D-trees with at most i gaps.13



We an establish the following result between the node-gaps-omplexityof a DR- tree and the same measure of the orresponding D-tree.Lemma 2.6 Let Tr be a omplete DR-tree and dTr be the orrespondingD-tree. If n is a node in dTr, then there exists n0 a node in Tr suh thatCov(n; dTr) = Cov(n0; T r).Proof Let Tr = (Nod;Ed;Rt; Ann) be a omplete DR-tree and dTr =(dNod; dEd; dRt; dAnn) be the orresponding D-tree. Let n = i 2 Nat bea node in dTr. From the onstrution of dTr from Tr it follows that thereis at least one node (i; j) in Tr, with j 2 Nat. Let us onsider n0 = (i; j 0),where j 0 = maxfj j (i; j) 2 Nodg:We will prove that Cov(n; dTr) = Cov(n0; T r).It is easy to prove, following the onstrution of dTR from Tr that if thereis a path between two nodes (p; r) and (s; t) in Tr then there is also a pathbetween the nodes p and s in dTr. Conversely, if there is a path betweentwo nodes p and s in dTr then there exists a node (s; t) in Tr (whih an betaken as (s; t0) with t0 = maxft j (s; t) 2 Nodg) suh that for any node (p; r)in Tr, there is a path from (p; r) to (s; t).It follows that for any k 2 dNod (equivalent with: for any (k; 1) 2 Nod)there is a path from k to i in dTr if and only if there is a path from (k; 1) to(i; j 0) in Tr, whih ompletes the proof. utProposition 2.7 If Tr is a omplete DR-tree with DR-Ng(Tr) = k, thendTr, the orresponding D-tree has D-Ng(dTr) � k.Proof It follows from Lemma 2.6. If dTr has a node n with j gaps, then Trhas also a node n0 with j gaps. This implies thatD-Ng(dTr) � DR-Ng(Tr): utCorollary 2.8 If Tr is a projetive omplete DR-tree, then dTr, the orre-sponding D-tree is also projetive.Proof It follows immediately from Proposition 2.7. ut14
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a. DR-tree Tr b. D-tree dTrFigure 2: Projetive D-tree orresponding to a non-projetive DR-tree re-ated by the dependeny grammar in Example 2.1Remark 2.4 The reverse statement is not true as we may see in the belowexample.Example 2.1 Let us onsider G = (N; T; S; P ) a dependeny grammar, withN = fA;B;C; Sg, T = fa; b; ; lg, P = fS ! Aa; S ! l; A !L Bb;B !LC;B!L l; C!LAag. We an easily de�ne a non-projetively parsed DR-tree for whih the orresponding D-tree is projetively parsed (see Figure 2).Moreover, we an establish the following results between the languagesgenerated by a dependeny grammar through DR-trees and D-trees with thesame maximal number of gaps.Corollary 2.9 Let G be a dependeny grammar and i 2 Nat0 be a naturalnumber. Then DR-L(G; i) � D-L(G,i).15



Proof It results from the de�nitions of DR-L(G,i), D-L(G; i) and fromProposition 2.7. ut3 D-trivial left dependeny grammarsIn this setion, we will de�ne and study several partiular forms of DR-treesand dependeny grammars.De�nition 1 Let G be a dependeny grammar. We say that G is a D-trivial dependeny grammar if G reates only projetively-parsed D-trees,i.e. D-Ng(dTr) = 0, for any D-tree dTr reated by G.De�nition 2 Let G = (N; T; S; P ) be a dependeny grammar and let usdenote V = N [ T . We say that G is a left dependeny grammar if G doesnot ontain produtions of the form A!R BC, i.e. P � (N � (V n fSg)(V nfSg)� fLg) [ (fSg � T ).Remark 3.1 Considering the notations from the above de�nition, let us re-mark that produtions of the form S ! a, with a 2 T , may appear only inDR-trees reated by G that have the form Tr = (Nod;Ed;Rt; Ann) with:� Nod = f(1; 1); (1; 2)g.� Ed(1; 1) = (1; 2).� Rt = (1; 2);� Ann(1; 2) = S and Ann(1; 1) = a.Let us also observe that the dependeny grammar de�ned in Example 2.1 isa D-trivial left dependeny grammar.The following result haraterizes the form of DR-trees reated by a D-trivial left dependeny grammar.Lemma 3.1 Let Tr = (Nod;Ed;Rt; Ann) be a omplete DR-tree reatedby a D-trivial left dependeny grammar G = (N; T; S; P ). The followingproperties hold:a) Let n1 = (i; j) 2 Nod be a node in Tr. Let Trn1 be the overing subtreeof n1 in Tr. Then (k; l) 2 Trn1 implies i � k.16



b) Denote k = maxfi j 9j > 1; (i; j) 2 Nodg. If (k; l) 2 Nod then(k; j) 2 Nod, for any 1 � j � l.) Denote l = maxfj j (k; j) 2 Nodg. Then for any node (i; j) 2 Nod,with i < k, j > 1 implies j = k � i + l.d) Rt = (1; k + l � 1).e) Denote m = maxfi j 9j 2 Nat; (i; j) 2 Nodg. Then m = k + l � 1.Proofa) Suppose to a ontradition that there exists n2 = (k; l) 2 Trn1 suh thati > k. Let us onsider the path Path(n2; n1) whih exists beause of thede�nition of a overing subtree. It is easy to see that this path shouldontain at least two onseutive nodes n3 = (p; r) and n4 = (s; t) suhthat p < r. We also have that Ed(n3) = n4, hene it should exists aprodution A!R BC 2 P suh that Ann(n4) = A and Ann(n3) = B.Contradition, sine G does not ontain suh produtions.b) For l � 2 the property is D-trivial. Let n1 = (k; l) 2 Nod, with l > 2be a node. From the de�nition of a DR-tree, it follows that there existsat least a node n2 = (m; l�1) 2 Nod suh that Ed(n2) = n1. From theproperty a) of this lemma, it follows that m � k. Sine (i; j) 2 Nod,i > k implies j = 1 and sine m � k and l � 1 > 1, we obtain m = k.We proved that (k; l) 2 Nod implies (k; l � 1) 2 Nod, hene also theproperty b) is true.) Let us onsider a node n1 = (k � 1; j) 2 Nod, with j > 1. Supposeto a ontradition that j � l. From the de�nition of a left dependenygrammar, it results that this node should have two daughters, n2 =(k � 1; r) and n3 = (s; t). From property a), it follows that s > k � 1.But s 6= k, beause the node (k; l) annot be a daughter of the noden1 (sine j � l). It results that s > k, hene t = 1. The node(k; l) also should have a daughter n4 = (u; 1), with u > k. Let ussuppose that s < u (if this is not true, we an permute nodes n3and n4, keeping the DR-isomorphism through out the transformationand we obtain still a omplete DR-tree reated by G). Transformingthe DR-tree in a D-tree dTr = (dNod; dEd; dRt; dAnn) we observe17



that k < s < u, k; u 2 Cov(k; dTR), while s 62 Cov(k; dTR), thusD-Ng(k; dTr) � 1, hene D-Ng(dTr) � 1, whih is a ontraditionwith the initial assumption that G reates only projetive D-trees.It results that j > l. Denote v = minfj j (k � 1; j) 2 Nod; j > lgand let (k � 1; v) be a node. Again it results that n1 should have twodaughters, (k � 1; r) and (s; t), with s > k � 1. It results that r = 1.From the fat that l = maxfj j 9i � k; (i; j) 2 Nodg, we obtain thatt � l. Than, from the de�nition of a DR-tree, it results that t = l,v = l + 1 and Ed(k; l) = (k � 1; l + 1).Now, suppose to ontradition that there exists another node (k �1; j) 2 Nod, with j > l+ 1. We take y = minfj j (k� 1; j) 2 Nod; j >l + 1g and it follows as above that y = l + 2. Following a similarreasoning as for the ase j � l (now the node (k; l) annot be thedaughter of the node (k�1; l+2), beause it already is the daughter ofthe node (k� 1; l+ 1)) we obtain a ontradition with the assumptionthat G reates only projetive D-trees. It results that the only possiblenode (k � 1; j) 2 Nod with j > 1 is (k � 1; l + 1). But for this nodethe ondition l + 1 = k � (k � 1) + l is satis�ed.We an apply the same reasoning dereasing by step 1 from k� 1 to 1,for any i between 1 and k � 1 and prove in this way the property ).d) It follows from properties a) and ).e) From the above properties, it results that for any node (i; 1) with i > kthere is exatly one node (k; j) with 1 < j � l suh that Ed(i; 1) =(k; j). As there are l � 1 nodes (k; j) with j > 1, it results that thereare also exatly l � 1 nodes (i; 1) with i > k, thus m = k + l � 1. utWe say that a DR-tree reated by a D-trivial left dependeny grammaris a D-trivial left DR-tree. Using notations from Lemma 3.1, we say thata D-trivial left DR-tree Tr is a DR left bush if k = 1 and a DR left pathif l = 2. Let us note that these notations are derived from the shape oforresponding D-trees (see Figure 3).Lemma 3.2 Let Tr be a omplete D-trivial left DR-tree with m leaves. Thenthe longest path in Tr has exatly m nodes.18
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a. Left path b. Left bushFigure 3: D-trees reated by a DR left path, respetively a DR left bushProof Using notations from Lemma 3.1, it is easy to see that the longestpath in Tr starts from the node (k; l) and ends with the root Rt of Tr. Thispath inludes l+ k� 1 nodes. But m = l+ k� 1 (property e) from the samelemma. utThe following result haraterizes the form of D-trivial left dependenygrammars.Proposition 3.3 Let G = (N; T; S; P ) be a D-trivial left dependeny gram-mar. Then there exists a partition of the set of nonterminals N = N1[N2[N3suh that Ni \Nj = ;, for any 1 � i < j � 3 and the set of produtions:P � ((N1 [N2)� T (N n fSg)� fLg) [((N2 [N3)� (N3 n fSg)T � fLg) [(N � TT � fLg) [(fSg � T ): 19



Proof We de�ne the deomposition of N in the following way:N1 = fA j 9(A; aB; L) 2 P; 6 9(A;Ba; L) 2 P;A;B 2 N; a 2 TgN2 = fA j 9(A; aB; L) 2 P; 9(A;Ba; L) 2 P;A;B 2 N; a 2 TgN3 = fA j6 9(A; aB; L) 2 P;A;B 2 N; a 2 TgObviously, N1; N2; N3 form a partition of N (they are disjoint and their unionis exatly N). From the above de�nitions, we observe that G annot haveprodutions of the form:� A!L aB, with A 2 N3, B 2 N , a 2 T ,� A!L Ba, with A 2 N1, B 2 N , a 2 T .From Lemma 3.1, we observe that G annot have produtions of the form:� A!L BC, with A;B;C 2 N ,� A!L Ba, with A 2 N2 [N3, B 2 N1 [N2, a 2 T ,beause suh types of produtions would reate non-D-trivial left DR-trees.These observations omplete the proof. ut4 An in�nite sequene of lasses of languagesIn the beginning of this setion, we introdue the main lasses of languageswhih we address in our paper. We denote by:� DR-L the lass of languages generated by all dependeny grammarsthrough the set of DR-trees;� DR-L(i) the lass of languages generated by all dependeny grammarsthrough DR-trees with at most i gaps;� tlDR-L the lass of languages generated by all D-trivial left dependenygrammars through the set of DR-trees;20



� tlDR-L(i) the lass of languages generated by all D-trivial left depen-deny grammars through DR-trees with at most i gaps.We also introdue two types of languages of a partiular kind. Let n 2Nat be a natural number, V = fb1; : : : ; bng be an alphabet and l 62 V be adistint symbol. Denote Llb1:::bn and Ltotallb1:::bn two languages over V [ flg by:Llb1:::bn = fl(b1)m : : : (bn)m j m 2 Nat0g;Ltotallb1:::bn = flw 2 V + j jwjb1 = : : : = jwjbng;where jwjb denotes the number of ourrenes of the symbol b in the stringw. Let us observe that the grammarG in Example 2.1 generates the languageLtotallab .Proposition 4.1 Let i 2 Nat0 be a natural number, V = fb1; : : : ; b2i+1g bean alphabet and l 62 V be a distint symbol. Then there exists a language Lover V [ flg suh that Llb1:::b2i+1 � L � Ltotallb1:::b2i+1 and L 2 tlDR � L(i).Proof Consider G = (N; V [flg; B2i+1; P ) a D-trivial left dependeny gram-mar suh that N = fBj j j 2 [2i+1℄g, P = fBj+1 ! Bjbj j j 2 [2i℄g[fB1 !B2i+1b2i+1; B2i+1 ! lg. We take L = DR-L(G; i), hene L 2 tlDR� L(i).It is easy to observe that L � Ltotallb1:::b2i+1 .Let m 2 Nat0 be a natural number and Trm = (Nodm; Edm; Rtm; Annm)be a D-trivial left Dr-tree suh that� Nodm = f(1; t+1) j t 2 [(2i+1)m+1℄g[f(s; 1) j s 2 [(2i+1)m+1℄g.�
Edm(s; t) = 8>>>>>>>>>>><>>>>>>>>>>>:

(1; t+ 1); if s = 1;(x + (2i+ 1)(y � 1) + 2; 1) if s = (x� 1)m+ y + 1;t = 1; x = 2(z � 1) + 1;z 2 [i+ 1℄; y 2 [m℄;(x + (2i+ 1)(m� y) + 2; 1) if s = (x� 1)m+ y + 1;t = 1; x = 2z;z 2 [i+ 1℄; y 2 [m℄;for any (s; t) 2 Nodm.� Rtm = (1; (2i+ 1)m+ 2); 21



� Annm(s; t) = 8>>>>>>>><>>>>>>>>:
l; if s = 1; t = 1;B2i+1 if s = 1; t = 2;Bx if s = 1; t = x+ (2i+ 1)(y � 1) + 2;x 2 [2i + 1℄; y 2 [m℄;bx if s = (x� 1)m+ y + 1; t = 1;x 2 [2i + 1℄; y 2 [m℄;for any (s; t) 2 Nodm.We an ount the number of gaps of any node (s; t) in Trm in the followingway:DR-Ng((s; t); T rm) = 8>>>>>><>>>>>>: z; if s = 1; t = 2z + 2 or t = 2z + 3; z 2 [i℄;i; if s = 1; 2i+ 4 � t � (2i+ 1)(m� 1) + 3;i� z; ifs = 1; t = (2i+ 1)(m� 1) + 2z + 2 ort = (2i+ 1)(m� 1) + 2z + 3; z 2 [i� 1℄;0 otherwise:We have that DR-Ng(Trm) = maxfDR-Ng(no; T rm) j no 2 Nodmg = i,whih proves that Trm is D-trivial left DR-tree with at most i gaps, reatedby G. Thus l(b1)m : : : (bn)m = s(Trm) 2 L, for any m 2 Nat [ f0g, heneLlb1:::b2i+1 � L. utLemma 4.2 (pumping lemma) Let L 2 tlDR-L(i) be a language. Then,there exist two natural onstants p; r 2 Nat suh that for any sentene w 2 Lwith jwj > p, there exists a deomposition of w in w = �1a1�2 : : : �rar�r+1suh that the following onditions hold:i) jahj > 0, for any h 2 [r℄;ii) ja1 : : : arj < p;iii) �1(a1)j�2 : : : �r(ar)j�r+1 2 L, for any j 2 Nat0.iv) If r > i+1 there are at most i distint indies h suh that 1 < h < r+1and j�hj > p.
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Proof Let G = (N; T; S; P ) be a D-trivial left dependeny grammar suhthat L = DR-L(G,i). Let n be the number of nonterminals in G. Denotep = n + 1. Let us onsider a sentene w 2 L with jwj > p and a leftD-trivial DR-tree Tr reated by G suh that s(Tr) = w. Sine Tr hasexatly jwj leaves, from Lemma 3.2, we have that there exists at least apath (n1; n2; : : : ; njwj) in Tr (the longest path in Tr). Sine jwj > n + 1,nodes on this path are annotated by more than n nonterminals, thus in thesequene Ann(n2); : : : ; Ann(njwj) there exist at least two equal nonterminals.Let us onsider the �rst two equal nonterminals in this sequene, i.e. let usonsider two indies 1 < s < t � jwj suh that Ann(ns) = Ann(nt) and allnonterminals in the sequene Ann(n2); : : : ; Ann(nt�1) are distint.In the following, we will use for Tr notations from Lemma 3.1. There arethree possible ases:1. 1 < s < t � l. We onsider the sequene of nodes nt = (k; t); nt�1 =(k; t � 1); : : : ; ns+1 = (k; s + 1). Eah of these nodes has a left dom-inated daughter, whih is a leaf. Consider this sequene of leaves,(no1; 1); : : : ; (not�s; 1) suh that Ed(noi; 1) = ns+i, for any 1 � i � t�s.We denote by ah, with h from 1 to a ertain r, a sequene of terminalsAnn(nox; 1)Ann(nox+1; 1) : : :Ann(nox+y; 1), where nox; nox+1; : : : ; noyis a maximal sequene of onseutive natural numbers. Consider thedeomposition w = �1a1�2 : : : �rar�r+1. We have ja1 : : : arj = r. Sinethe path from ns+1 to nt has at least one node and at most n nodes(as all nonterminals on this path are distint), we obtain r < p, whih,together with jahj > 0, for any h 2 [r℄ ful�lls onditions i) and ii) of thepumping lemma. We may replae the overing subtree Trnt with theovering subtree Trns (preserving the ompleteness under the transfor-mation) and the resulted DR-tree Tr0 is still a omplete DR-tree re-ated by G. Obviously the transformation will not inrease the numberof gaps. It results s(Tr0) = �1�2 : : : �r+1 2 L, whih proves onditioniii) of the lemma for j = 0. For j = 1, �1a1�2 : : : �rar�r+1 = w, whihobviously belongs to L. Moreover, we may replae the overing subtreeTrns with the overing subtree Trnt in suh a way that new introduedleaves orresponding to a string ah, h 2 [r℄ will stik immediately afterthe leaves from the initial overing subtree Trns orresponding to thesame sequene ah. The resulted DR-tree Tr2 is still a omplete DR-treereated by G. Again the transformation will not inrease the numberof gaps. We an repeat this transformation for an unlimited number23



of times, obtaining in this way an in�nite sequene Trj, with j � 2, ofomplete DR-trees reated by G with at most i gaps. It results thats(Trj) = �1(a1)j�2 : : : �r(ar)j�r+1 2 L, for any j � 2 whih ompletesondition iii) of the lemma.Finally, if r > i + 1, suppose towards a ontradition that there existi + 1 distint indies hj suh that 1 < hj < r + 1 and j�hj j > p, forall j 2 [i + 1℄. We observe that none of the gaps indued by �hj , withj 2 [i + 1℄ in the overage of nt in Tr an be ful�lled by the overageof ns in Tr, sine the latest one has at most p elements. It follows thatDR-Ng(nt; T r) � i + 1 whih is a ontradition with the assumptionthat Tr 2 T (G; i). This means that also the ondition iv) of the lemmais true.2. 1 < s < l < t. If we replae the overing subtree Trns with the overingsubtree Trnt in a similar way as above, we obtain a DR-tree reated byG, but whih is not a D-trivial left DR-tree. This ontradits the fatthat G is a D-trivial left dependeny grammar, whih reates only D-trivial left DR-trees. Thus, this ase is not possible under the pumpinglemma's assumptions.3. l � s < t � jwj. We proeed in a similar way as for the �rst ase, bytaking r = 1. Condition iv) of the lemma does not apply in this ase.utProposition 4.3 Let i; k 2 Nat0 be two natural numbers suh that i < k,V = fb1; : : : ; b2k+1g be an alphabet, l 62 V be a distint symbol and L bea language over V [ flg suh that Llb1:::b2k+1 � L � Ltotallb1:::b2k+1. Then L 62tlDR-L(i).Proof Suppose towards a ontradition that L 2 tlDR�L(i). It follows thatthe pumping lemma holds for L and. Consider p and r the two onstantsfrom the pumping lemma, a natural number n suh that n > 2p and thesentene w = l(b1)n : : : (b2k+1)n. We have jwj = (2k + 1)n + 1 > p, hene,from the pumping lemma, it should exists a deomposition of w in w =�1a1�2 : : : �rar�r+1 suh that onditions i)-iv) of the lemma hold. Take j =0 in ondition iii). It results that w0 = �1a1�2 : : : �rar�r+1 2 L. SineL � Ltotallb1:::b2k+1 , it follows that jw0jb1 = : : : = jw0jb2k+1 and further that alsoja1 : : : arjb1 = : : : = ja1 : : : arjb2k+1 . Sine ja1 : : : arj < p and n > 2p, it results24



that ah for some h 2 [r℄ annot inlude more than two distint symbols fromw, hene r � k+1 > i+1 and there are at least k > i distint indies h suhthat 1 < h < r+1 and j�hj > p, whih yields a ontradition with onditioniv) from the pumping lemma.It results that L 62 tlDR-L(i). utCorollary 4.4 tlDR-L(k) n tlDR-L(i) 6= ;, for any i; k 2 Nat0, with i < k.Proof Let V = fb1; : : : ; b2k+1g be an alphabet and l 62 V be a distintsymbol. From Proposition 4.1, we have that there exists a language L overV [ flg suh that Llb1:::b2k+1 � L � Ltotallb1:::b2k+1 and L 2 tlDR-L(k). Fromi < k and from Proposition 4.3, we have that L 62 tlDR-L(i). Thus L 2tlDR-L(k) n tlDR-L(i). utProposition 4.5 tlDR-L(i)n tlDR-L(k) 6= ;, for any i; k 2 Nat, with i < k.Proof Let V = fb1; : : : ; b2i+3g be an alphabet and l 62 V be a distint symbol.One an prove in a similar way as we did for Proposition 4.1, that there existsa language L over V [flg suh that fl(b1)m : : : (b2i)m(b2i+1b2i+2b2i+3)m j m 2Nat0g � L � Ltotallb1:::b2i+3 and L1 2 tlDR-L(i). A similar kind of D-trivial leftdependeny grammar should be de�ned and only the left D-trivial DR-treeorresponding to a sentene l(b1)m : : : (b2i)m(b2i+1b2i+2b2i+3)m withm 2 Nat0,must have a slightly di�erent form, but still a maximal number of i gaps.Suppose to a ontradition that L 2 tlDR-L(k). It means that there existsa D-trivial left dependeny grammar G suh that L = DR-L(G,k). Let m 2Nat be a natural number. Sine wm = l(b1)m : : : (b2i)m(b2i+1b2i+2b2i+3)m 2 L,there exists a D-trivial left DR-tree Trm suh that s(Trm) = wm. We ansuppose - without any loss of generality - that Trm is a left bush1.We disregard the manner in whih leaves are distributed in Trm and keep-ing the spine of Trm we build, bottom-up, a left bush Tr0m in the followingway:1Trm may inlude only a bounded "path" pre�x, sine otherwise we would be able to"pump" in wm only a part of the symbols b1; : : : ; b2i+3, keeping the same number of gapsfor the DR-tree, hene either L 6= DR-L(G,k) or L 6� Ltotallb1:::b2i+3 . In this ase, the rest ofproof would be done for a natural number m greater than the longest "path" pre�x insuh a D-trivial left Dr-tree Trm. Still, the �nal onlusion would hold.25



� We onsider all nodes on the spine of Trm, bottom-up, from (1; 3) toRt (the leaf (1; 1) will remain in the same position).� For any node of the spine, we arrange its right daughter (whih isobviously a leaf) annotated with a symbol bx in a sequene boundedto the left by the leaf ((x � 1)m + 2; 1) and to the right by the leaf(xm+ 1; 1).� The leaves will be arranged onseutively on a �rst-met-�rst-arrangedbase, from left to right for leaves annotated with a symbol b2z�1 withz 2 [i+2℄ and from right to left for leaves annotated with a symbol b2zwith z 2 [i + 1℄.After the left bush Tr0m is ompleted, we observe that:� s(Tr0m) = l(b1)m : : : (b2i+3)m.� Tr0m 2 T (G).� Moreover, Tr0m 2 T (G; i+ 1) (it is easy to see that at any moment wehave at most i + 2 islands of natural numbers in the overage of anynode in Tr0m, thus Tr0m annot have more than i+ 1 gaps).Sine i < k, it results that also Tr0m2 T (G; k). Therefore, l(b1)m : : : (b2i+3)m2DR-L(G,k). We obtain that fl(b1)m : : : (b2i+3)m jm 2 Nat0g � L � Ltotallb1:::b2i+3 .But, using this last statement, the fat that i < j and Proposition 4.3, wehave that L 62 tlDR-L(i), whih is a ontradition with the initial assumption.It follows that L 2 tlDR-L(i) n tlDR-L(k). utNow, we a state the main result of this paper.Theorem 4.6 The lasses of languages, generated by D-trivial left depen-deny grammars with a bounded number of gaps, form an in�nite sequene:tlDR-L(1); tlDR-L(2); : : : ; tlDR-L(n); : : :suh that any two di�erent lasses in this sequene annot be ompared.Proof It results from Corollary 4.4 and Proposition 4.5. ut26



5 Other propertiesWe denote with REG, CF and CS the lasses of regular, ontext-free, andrespetively, ontext-sensitive languages.Proposition 5.1 The following property holds: DR-L(0) = CF .Proof If G = (N; T; S; P ) is a dependeny grammar then we an de�nea ontext- free grammar G0 = (N; T; S; P 0) with P 0 = f(u; v) j (u; v; z) 2Pg [ f(u; v) j (u; v) 2 Pg. It results L(G0) = DR-L(G,0). If G is a ontext-free grammar (we an onsider G in Chomsky Normal Form), then we ande�ne a dependeny grammar G0 = (N; T; S; P 0) with P 0 = f(A;BC; L) j(A;BC) 2 Pg [ f(A; a) j (A; a) 2 Pg2. It results DR-L(G0; 0) = L(G). utLet V = fa1; : : : ; ang be an alphabet. We de�ne the Parikh mapping�V : V � ! Natn0 by �V (x) = (jxja1 ; : : : ; jxja2), for any x 2 V �. We extendthe mapping in a natural way to languages. Two languages L1; L2 2 V �suh that �V (L1) = �V (L2) are said to be letter equivalent. Consider theoperations of omponentwise addition and multipliation by a onstant overthe set of natural vetors of a given dimension. A subset M of Natn0 issaid to be linear if there exist the vetors v0; v1; : : : ; vm, m � 0, suh thatM = fv0 +Pmi=1 pivi j pi 2 Nat0; 1 � i � mg. A �nite union of linear sets isalled a semilinear set. A language L � V is alled semilinear if �V (L) is asemilinear set.Proposition 5.2 Let L 2 DR-L(i), for some i 2 Nat. Then L is semilinear.Proof Let G be a dependeny grammar suh that L = DR-L(G,i). DenoteL0 = DR-L(G; 0). From Proposition 2.5, we know that any DR-tree Tr 2T (G; i) is DR-equivalent with a projetive DR-tree Tr0 2 T (G; 0). Then�V (s(Tr)) = �V (s(Tr0)). Sine L0 � L (Claim 1), it results that �V (L) =�V (L0), i.e. L is letter equivalent to L0. But L0 is a ontext-free language(Proposition 5.1) and from the Parikh Theorem it is semilinear. It resultsthat also L is semilinear. ut2G0 an be easily brought to the form of a left dependeny grammar
27



Proposition 5.3 The following properties hold.i) tlDR-L(0) = REG.ii) REG � tlDR-L(i), for any i 2 Nat (all inlusions are strit).iii) tlDR-L(i) � CS, for any i 2 Nat0 (all inlusions are strit).Proofi) If G is a regular grammar, then we an de�ne a D-trivial left depen-deny grammar G0 = (N; T; S; P 0) with P 0 = f(A; aB; L) j (A; aB) 2Pg [ f(A; a) j (A; a) 2 Pg. It results DR-L(G0; 0) = L(G). LetG = (N; T; S; P ) be a D-trivial left dependeny grammar and N =N1 [ N2 [ N3 be the partition of the set of nonterminals de�ned inProposition 3.3. We an de�ne a non-deterministi �nite automatonM = (Q; T; S; F; Æ) suh that Q = N[fBA j A 2 N2; B 2 N3g[fqFg[fpb j (A; ab; L) 2 P;A 2 N1g [ frBA;b j (A; ab; L) 2 P;B 2 N2; A 2 N3g,F = fqfg and the transition funtion Æ is de�ned by:
Æ(q; a)=

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
fqF j (q; a) 2 Pg [ fq0 j (q; aq0; L) 2 Pg[[fpb j (q; ab; L) 2 Pg if q = S;fq0 j(q; aq0; L) 2 Pg [ fpb j(q; ab; L) 2 Pg if q 2 N1nfSg;fpb; rqA;b j (q; ab; L) 2 Pg if q 2 N2;fqFg if q = pa;fBAg if q = rAB;a;fCA j (C;Ba; L) 2 P;C 2 N3g[fqF j (A;Ba; L) 2 Pg if q = BA;; otherwise:We have L(M)=DR-L(G,0).ii) Like above, if G is a regular grammar, we an de�ne a D-trivial left de-pendeny grammarG0 = (N; T; S; P 0) with P 0 = f(A; aB; L) j(A; aB) 2Pg[f(A; a) j (A; a) 2 Pg and we have DR-L(G0; 0) = L(G). But G re-ates only projetive DR-trees (T (G0; i) = T (G0; 0), for any i 2 Nat0),hene DR-L(G0; i) = DR-L(G0; 0) = L(G), for any i 2 Nat0. If i 2 Nat,from the item i) of this proposition and from Corollary 4.4, we obtainthe stritness of the inlusion. 28



iii) Let L 2 DR-L(i), i 2 Nat0 be a language, G = (N; T; S; P ) be a D-trivial left dependeny grammar suh that L = DR-L(G,i) and N =N1 [N2 [N3 is the partition of N de�ned in Proposition 3.3. We ande�ne a linear bounded automatonM = (Q; T;�; $;#; B; q0; F; Æ) witha work spae of 2n + 3 ells where n is the length of the input word.Consider the tape alphabet � = T [ fB; $;#;&g, where B is a speialsymbol marking the ells that are not visited yet, $ and # are the left(respetively, right) side markers and & is a symbol whih will markthe middle of the tape (none of these four tape symbols is in T ). q0is the initial state of the automaton M , while the set of �nal states isde�ned by F = fqFg. The set of states Q and the transition funtionÆ are de�ned aording to the method desribed in the following.We de�ne an instant on�guration of M as a triple (q; �; i), whereq 2 Q, � 2 �+, j�j = 2n + 3 and 1 � i � 2n + 3. We will use instanton�gurations to desribe the behavior of M .The initial on�guration of M is:(q0; $wBn+1#; 2);with w 2 T+, jwj = n. In the �rst step, the r/w-head goes to themiddle of the tape, marks the middle with & and goes one ell to theright: (qS; $w&Bn#; n + 3);where S is the start symbol of the grammar G. The r/w-head starts towrite on the tape to the right symbols from T , aording to produtionsfrom P :(qA; $w&xBn�k#; n+ k + 3) ` (qB; $w&xaBn�k�1#; n+ k + 4);if (A; aB; L) 2 P . To some state qA, with A 2 N2 [ N3, M deidesnon-deterministially to stop this step and to go to the end of the workspae. (pA; $w&xBn�k#; 2n + 2):The r/w-head starts writing to the left, again symbols from T , aord-ing to produtions from P :(pA; $w&xBn�k�ly#; 2n+2� l) ` (pB; $w&xBn�k�l�1ay#; 2n+1� l);29



if (A;Ba; L) 2 P , k + l < n � 2. When k + l = n � 2, two terminalsa and b from a prodution A !L ab, with a; b 2 T are written onthe tape, the n + k + 2-th symbol is marked with an overline and ther/w-head goes to the beginning of the work spae:(r; $w&uay#; 2);where uay 2 T+, a 2 T . From this point on, a pre�x of the input stringw is ompared letter-by-letter to ua. They should be idential. If thismarking proedure sueeds, we reah the on�guration:(s; $uaz&uay#; n+ k + 3):Now, we should �nd a math between symbols from z and symbols fromy, but these have not to be in the same order. We should memorizeontinuously (under the name of the state) an indiator for the numberof gaps indued by this mathing. The mathing will be arried on inthe following way: take the next unmarked symbol from the seondhalf of the work spae, go with it to the left, �nd (and mark) an equalunmarked symbol in the �rst half of the work spae.We may have three ases:{ If the new marked symbol is not near (to the left or to the rightof) an already marked symbol, then the indiator for the numberof gaps will inrease with 1 (a new gap is reated). Obviously, theindiator annot be ever greater than i.(sja; $�ba�;m) ` (tj+1; $�ba�;m+ 1);where m = j$�baj, a; b 2 T ,  2 T [ f&g and j < i.{ If the new marked symbol is near an already marked symbol, butnot to the left and to the right in the same time, then the indiatorfor the number of gaps will remain unhanged.(sja; $�ba�&#; m) ` (tj; $�ba�;m+ 1);where m = j$�baj, a; b 2 T ,  2 T [ f&g, or(sja; $�ba�;m) ` (tj; $�ba�;m+ 1);where m = j$�baj, a; b;  2 T .30



{ If the new marked symbol is near an already marked symbol, bothto the left and to the right, then the indiator for the number ofgaps will derease with 1 (a gap was �lled-in).(sja; $�ba�;m) ` (tj�1; $�ab�;m+ 1);where m = j$�baj, a; b;  2 T .If this marking proedure sueeds, then the �nal transition, whihleads the automaton in an aepting on�guration, is desribed by:(sj; $w&xy#; 2n+ 3) ` (qF; $w&xy#; 2n + 2):The detailed de�nitions of Q and Æ are left to the reader. We haveL(M)=DR-L(G,i). Sine all languages in tlDR-L(i) � DR-L(i) aresemilinear (Proposition 5.2), we an easily �nd a non- semilinear lan-guage in CS n tlDR-L(i) (like fa2n j n 2 Nat0g). ut6 ConlusionsThe main aim of this ontribution was to disuss the fat that there is a sig-ni�ant di�erene between the (non)projetivity of DR-trees and respetivelyD-trees. We stressed on the fat that D-trees an hide some onurreny andword-order freedom phenomena raising in the generation or the parsing of thesentene. D-trivial left dependeny grammars and the global DR-restritionsof the word-order freedom were used as the possible most simplest ombi-nation of notions useful for this kind od disussion. As outome an in�nitesequene of inomparable lasses of semilinear languages bounded betweenthe lass of regular and respetively ontext-sensitive languages was obtained.The massive inomparability ahieved trough the global restritions only isthe main novelty of this ontribution. This result strengthens the resultsfrom [4℄, where some in�nite hierarhies of lasses of languages were ob-tained. Those hierarhies were obtained by using stronger ombinations ofloal and global restritions applied to free-order dependeny grammars.In the lose future, we will study the same types of global word-order re-stritions as here, but applied on dependeny grammars without any furtherrestritive ondition, like D-triviality. We believe that we will ahieve new31
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