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1 Introdu
tionThe notion of free-order dependen
y grammar (or simply dependen
y gram-mar) was introdu
ed in [3℄ as a formal system suitable for a dependen
y-based parsing of natural languages. In a 
ertain way this notion enri
hes thetypes of dependen
y grammars des
ribed in [1℄.The proposal of this system was based upon the experien
e a
quired dur-ing the development of a grammar-
he
ker for Cze
h ([2℄) and as a possiblenext step towards a 
omplete synta
ti
 analysis following the underlying ideasof the dependen
y-based framework of Fun
tional Generative Des
ription -FGD ([5℄). Compared to FGD and other usual formal systems des
ribing thesyntax of natural languages, the framework introdu
ed by dependen
y gram-mars takes a serious a

ount for the freedom of word order in a senten
e andassign the same importan
e to linear pre
eden
e (LP) rules as to immediatedominan
e (ID) rules.As the freedom of word order is not total, even in so-
alled free-word-order languages, one needs to 
onstrain the formalism in order to not over-generate the a
tual language.In [4℄, a measure for the freedom of the word order was studied, based onthe number of gaps issued in a senten
e by the order of their words (node-gaps-
omplexity). Both global and lo
al 
onstraints on the maximal number ofgaps at some node in the stru
ture underlying the senten
e were studied. Inthe view of node-gaps-
omplexity, word order relaxation means to stepwiselyrelax the 
onstraints in order to obtain more 
omplex language 
onstru
tions.In this paper, we work only with global 
onstraints.Two types of synta
ti
 stru
tures are used in the relationship with depen-den
y grammars,DR-trees (DeleteRewrite trees) andD-trees (Dependen
ytrees). If D-trees 
on
ern the dependen
y stru
ture of the senten
e, DR-trees rather 
on
ern the generation/parsing of the senten
e. The two typesof stru
tures are related by the fa
t that any DR-tree 
an be transformedin an uniform way into a D-tree. The measure for the number of gaps ina senten
e 
omputed in the nodes of the stru
ture is introdu
ed for bothDR-trees and D-tree. A DR-tree (D-tree) with no gaps is 
alled proje
tive,while a DR-tree (D-tree) with at least one gap is 
alled non-proje
tive. Inthis paper, we work only with dependen
y grammars whi
h possibly 
reatenon-proje
tive DR-trees, but 
annot 
reate non-proje
tive D-trees (D-trivialdependen
y grammars).The main result of this paper presents an in�nite sequen
e of in
om-2



parable 
lasses of semilinear languages generated by a parti
ular type ofdependen
y grammar, 
alled D-trivial left dependen
y grammar (Se
tion 4).Moreover, all these 
lasses of languages are stri
tly 
ontained between the
lass of regular languages and the 
lass of 
ontext-sensitive languages, ea
hof them 
ontaining 
ontext-free and non-
ontext-free languages (Se
tion 5).We prove by the results we obtain in this paper that there is a signi�
antdi�eren
e between the proje
tivity of DR-trees and respe
tively D-trees. Wealso try to argue in this way the importan
e of the non-proje
tive genera-tion/parsing of the senten
e, whi
h is represented by the DR-tree 
omparedto the non-proje
tivity of the senten
e itself whi
h is represented by the D-tree. In other word, even if is a senten
e is represented by a proje
tive D-tree,this D-tree 
an hide some non-proje
tive 
on
urren
y phenomena raising inthe generation or the parsing of the senten
e.2 DR-trees and D-treesIn this se
tion, we introdu
e some basi
 de�nitions and results on DR-treesand D-trees. We start with a general notion of annotated tree whi
h underliesboth DR-trees and D-trees notions.Let M be a set. Let Tr = (Nod,Ed,Rt,Ann) be a 4-tuple , where Nodis a set (the set of nodes), Rt 2 Nod is a spe
ial node (the root), Ed :Nod n fRtg ! Nod is a fun
tion (the set of edges) and Ann : Nod ! M isa fun
tion (the annotation fun
tion).We 
all path in Tr any sequen
e of nodes from Nod,p = (n1; n2; : : : ; nk);with k � 1, su
h that Ed(ni) = ni+1, for i = 1; : : : k � 1. We say that p is apath of length k � 1 from n1 to nk. If k > 1, we denote p by Path(n1; nk).We say that Tr is a M-annotated tree i� there is no path of positivelength in Tr from a node n 2 Nod to itself.Let n 2 Nod be a node in Tr. We say that n is a leaf i� n 6= Ed(n0), forany n0 2 Nod.We say that Tr is a �nite M -annotated tree i� its set of nodes, Nod, is�nite.In the sequel, we will work only with �nite annotated trees, without
learly mention it. 3



Proposition 2.1 Let Tr = (Nod, Ed, Rt, Ann) be an annotated tree. Thenfor any node n 2 Nod there exists exa
tly one path from n to Rt in Tr.Proof Let n 2 Nod be a node. Let no be the total number of nodes in Nod.We �rst prove that any path originating in n has the length less than no.Suppose to a 
ontradi
tion that there exists a path p = (n1; n2; : : : ; nk) oflength at least equal to no originating in n (k � 1 � no, n1 = n). Then p
ontains at least no+1 nodes. Sin
e the total number of nodes in Nod is no,there exist two indi
es 1 � i < j � k su
h that ni = nj. Then there existsa path p0 = (ni; ni+1; : : : ; nj) of positive length from ni to itself. This fa
tleads to a 
ontradi
tion with the hypothesis that Tr is a annotated tree.It results that any path originating in n has the length less than no.Consider the longest path p = (n1; n2; : : : ; nk) originating in n. Suppose to a
ontradi
tion that nk 6= Rt. In this 
ase we 
onsider nk+1 = Ed(nk). Thenp0 = (n1; n2; : : : ; nk; nk+1) is a longer path than p and still originating in n,whi
h leads to a 
ontradi
tion.It follows that nk = Rt, hen
e there exists a path from n to Rt in Tr.The uniqueness 
omes from the fa
t that from ea
h node m 2 Nod there isexa
tly one edge in Tr whi
h leads to another node (this relationship is givenby Ed, whi
h is a fun
tion). utCorollary 2.2 Let Tr = (Nod,Ed,Rt,Ann) be a M-annotated tree. Then forany two nodes n1; n2 2 Nod there exists at least one node n3 2 Nod su
hthat there exist a path from n1 to n3 and a path from n2 to n3.Proof Obviously, we 
an take n3 = Rt. utRemark 2.1 Keeping the denotations from Corollary 2.2, we denote bysup(n1; n2) the �rst node in Tr whi
h 
onne
ts n1 and n2, i.e. (n1; : : : ; Rt)and (n2; : : : ; Rt) are the paths from n1 respe
tively n2 to Rt, then sup(n1; n2)is the �rst node, whi
h belongs to both of these paths. From the de�nitionof an annotated tree, sup(n1; n2) is uniquely de�ned by this property.Let Tr1 = (Nod1; Ed1; Rt1; Ann1) and Tr2 = (Nod2; Ed2; Rt2; Ann2) betwo M -annotated trees. We say that Tr1 and Tr2 are equivalent i� thereis a bije
tion f : Nod1 ! Nod2 su
h that:4



1. f(Ed1(n)) = Ed2(f(n)), for any node n 2 Nod1 n fRt1g;2. f(Rt1) = Rt2;3. Ann1(n) = Ann2(f(n)), for any node n 2 Nod1.We 
all f an isomorphism between Tr1 and Tr2.Remark 2.2 If f is an isomorphism between twoM-annotated trees Tr1 andTr2, then f�1 is an isomorphism between Tr2 and Tr1. Moreover, isomor-phism fun
tions establish an equivalen
e relation on the set of trees annotatedby the same set of labels.Proposition 2.3 Let f : Nod1 ! Nod2 be an isomorphism between two M-annotated trees Tr1=(Nod1; Ed1; Rt1; Ann1), Tr2=(Nod2; Ed2; Rt2; Ann2).Then, Tr1 and Tr2 have the same number of leaves and any leaf from Tr1 ismapped by f in a leaf from Tr2.Proof We suppose to a 
ontradi
tion that there is a leaf n 2 Nod1 su
h thatf(n) = m and m is not a leaf in Nod2. Then, there is m0 2 Nod2 su
h thatEd(m0) = m. Sin
e f is a bije
tion, there is n0 2 Nod1 su
h that f(n0) = m0.From the fa
t that m0 2 Nod2 n fRt2g it results that also n0 2 Nod1 n fRt1g,hen
e there is n00 2 Nod1 su
h that Ed(n0) = n00. Obviously, n00 6= n, be
ausen is a leaf. It follows thatf(n00) = f(Ed(n0)) = Ed(f(n0)) = Ed(m0) = m:But also f(n) = m, whi
h leads to a 
ontradi
tion with the fa
t that f is aninje
tive fun
tion.It results that any leaf from Tr1 is mapped by f in a leaf from Tr2. Sin
ef is inje
tive, it follows that the number of leaves in Tr2 is at least equal tothe number of leaves in Tr1.The other part of the proof 
an be done in the same way 
onsidering theisomorphism f�1 between Tr2 and Tr1. utIn [3℄, (free-order) dependen
y grammars were introdu
ed, as a rewritingdevi
e over two alphabets, of non-terminals and, respe
tively, terminals. Inits general form, a dependen
y grammar is able to rewrite both non-terminalsand terminals, by a �nite set of rules (produ
tions). Through out this paper,we will work with dependen
y grammars, whi
h rewrite only non-terminals5



(in a similar way to the 
ontext-free grammars), therefore, we will not useterminals on the lefthand-sides of the rules.We 
all dependen
y grammar a stru
ture G = (N; T; S; P ) su
h thatN and T are non-empty, �nite sets, 
alled the set of nonterminals and re-spe
tively the set of terminals, S 2 N is the start symbol and P is a �niteset, 
alled the set of produ
tions su
h thatP � (N � V V � fL;Rg) [ (N � T );where V = N [ T . Sometimes, we will write:A!L BC instead of (A;BC; L)A!R BC instead of (A;BC;R)A! a instead of (A; a)for any produ
tion of the appropriate form.Denote by Nat the set of natural numbers not equal to 0 and by Nat0 =Nat [ f0g.Let G = (T;N; S; P ) be a dependen
y grammar and denote V = T [N .A DR-tree 
reated by G is a V -annotated tree Tr = (Nod,Ed,Rt,Ann)su
h that:1. Nod � Nat�Nat.2. If Ed(i; j) = (k; l) then j < l.3. Rt = (i;maxfk j 9j; (j; k) 2 Nodg).4. A node (i; j) 2 Nod is a leaf if and only if j = 1 and Ann(i; j) 2 T .5. If (i; j) 2 Nod, with j 6= 1 and Ann(i; j) = A, then one of the following
ases ne
essarily o

urs:a. j = 2 and there is exa
tly one node n 2 Nod su
h that Ed(n) =(i; j); in this 
ase n = (i; 1) and if Ann(n) = a, the produ
tionA! a belongs to P .b. There are exa
tly two nodes n1; n2 2 Nod su
h that Ed(n1) =Ed(n2) = (i; j); in this 
ase either:b1. n1 = (i; k) and n2 = (l; m) with l > i, max(k;m) = j � 1 andif Ann(n1) = B and Ann(n2) = C, the produ
tion A!L BCbelongs to P , or 6



a1 a1 a2 a2 b1 b2 b1 b2B2A2B1A1B2A2B1A1

a1 a1 a2 a2 b2b1b2b1
a. DR-tree Tr b. D-tree dTrFigure 1: Examples of a DR-tree, respe
tively, a D-treeb2. n1 = (l; k) and n2 = (i;m) with l < i, max(k;m) = j � 1 andif Ann(n1) = B and Ann(n2) = C, the produ
tion A!R BCbelongs to P .Let no 2 Nod; no = (i; j). We say that i is the horizontal position of noand j is the verti
al position of no (see an example of a DR-tree in Figure 1).We say that a DR-tree Tr = (Nod, Ed, Rt, Ann) is 
omplete i� for anyleaf (i; 1) 2 Nod, if i > 1 then also (i� 1; 1) 2 Nod.For any 
omplete DR-tree Tr = (Nod, Ed, Rt, Ann) 
reated by a depen-den
y grammar G = (N; T; S; P ), we de�ne the senten
e asso
iated with Trby s(Tr) = a1a2 : : : an, where n = maxfi j (i; 1) 2 Nodg and Ann(i; 1) = ai,for any i 2 [n℄. Obviously, s(Tr) � T+.Let G = (N; T; S; P ) be a dependen
y grammar. We denote by:� T (G) the set of 
omplete DR-trees 
reated by G and rooted by S;7



� DR-L(G) = fs(Tr) j Tr 2 T (G)g the language generated by G,through the set of DR-trees.Let Tr1 = (Nod1; Ed1; Rt1; Ann1) and Tr2 = (Nod2; Ed2; Rt2; Ann2) betwo DR- trees 
reated by the grammar G = (N; T; S; P ). We say that Tr1and Tr2 are DR-equivalent i� there is an isomorphism f : Nod1 ! Nod2between Tr1 and Tr2 as V -annotated trees and:1. f(i; j) = (s; j), for any node (i; j) 2 Nod1.2. If (i; j) 2 Nod1, with j 6= 1 and f(i; j) = (s; j), then:a. if there is exa
tly one node n 2 Nod1 su
h that Ed(n) = (i; j)then f(n) = (s; j � 1).b. if there are exa
tly two nodes n1; n2 2 Nod su
h that Ed(n1) =Ed(n2) = (i; j) then either:b1. if n1 = (i; k) and n2 = (l; m) with l > i, then f(n1) = (s; k)and f(n2) = (t;m) with t > s orb2. if n1 = (l; k) and n2 = (i;m) with l < i, then f(n1) = (t; k)and f(n2) = (s;m) with t < s.We say that f is a DR-isomorphism between Tr1 and Tr2.Let T be an alphabet and Tr = (Nod, Ed, Rt, Ann) be a T -annotatedtree su
h that Nod � Nat. We 
all Tr a D-tree over T (see an example ofD-tree in Figure 1).We say that Tr is 
omplete i� for any leaf i 2 Nod, if i > 1 then alsoi� 1 2 Nod.For any 
omplete D-tree dTr = (dNod, dEd, dRt, dAnn) over T , we de-�ne the senten
e asso
iated with dTr by s(dTr) = a1a2 : : : an, where n =maxfi j i 2 dNodg and dAnn(i) = ai, for any i 2 [n℄. Obviously, s(Tr) �T+.Let Tr1 = (Nod1; Ed1; Rt1; Ann1) and Tr2 = (Nod2; Ed2; Rt2; Ann2) betwo D-trees over an alphabet T . We say that Tr1 and Tr2 are D-equivalenti� there is an isomorphism f : Nod1 ! Nod2 between Tr1 and Tr2 as T -annotated trees su
h that if i; j 2 Nod1 are two nodes with Ed1(j) = i then(i � j)(f(i)� f(j)) > 0. We say that f is a D-isomorphism between Tr1and Tr2.Let Tr = (Nod, Ed, Rt, Ann) be a DR-tree. We may transform Tr in aD-tree dTr = (dNod, dEd, dRt, dAnn) in the following way:8



1. dNod = fi j (i; 1) 2 Nodg.2. dRt = i i� Rt = (i; j), for some j 2 Nat.3. Let i 2 dNod be a node in dTr and (i; 1) 2 Nod the 
orresponding leafin Tr. We 
onsider the path p = (n1; n2; : : : ; nk) in Tr from n1 = (i; 1)to nk = Rt (
f. Proposition 2.1). We also 
onsider the natural numberr = maxfl j nl = (i; j); j 2 Natg. Then one of the following 
asesne
essarily o

urs:a. If r = k then dRt = i.b. If r < k and nr+1 = (s; t) then dEd(i) = s.4. dAnn(i) = Ann(i; 1), for any i 2 dNod.We say that dTr is the D-tree 
orresponding to Tr. The D-tree dTr repre-sented in Figure 1 is 
orresponding to the DR-tree Tr from the same �gure.Remark 2.3 If Tr is a 
omplete DR-tree, then the 
orresponding D-tree dTris also 
omplete.Let G = (N; T; S; P ) be a dependen
y grammar. We denote by:� dT(G) the set of D-trees 
orresponding to T (G);� D-L(G) = fs(dTr) j dTr 2 dT (G)g the language generated by G,through the set of D-trees.If dTr is a D-tree 
orresponding to a DR-tree 
reated by a dependen
y gram-mar G, we say that dTr is 
reated by G as well. Obviously, DR-L(G)=D-L(G), for any dependen
y grammar G.Proposition 2.4 Let Tr1 and Tr2 be two DR-equivalent DR-trees. Let dTr1and respe
tively dTr2 the two 
orresponding D-trees. Then dTr1 and dTr2are D-equivalent.Proof We 
onsider f : Nod1 ! Nod2 a DR-isomorphism between Tr1 =(Nod1; Ed1; Rt1; Ann1) and Tr2 = (Nod2; Ed2; Rt2; Ann2). We take the twoD-trees 
orresponding to Tr1 and Tr2, dTr1 = (dNod1; dEd1; dRt1; dAnn1),respe
tively dTr2 = (dNod2; dEd2; dRt2; dAnn2).9



We de�ne f 0 : dNod1 ! dNod2 byf 0(i) = i0 () f(i; 1) = (i0; 1);for any i 2 dNod1. From the 
onstru
tion of the D-trees dTr1 and dTr2 andfrom Proposition 2.3, it follows that the de�nition of f 0 is 
orre
t and alsothat f 0 is a bije
tion from dNod1 to dNod2. We will 
he
k the 
onditions inwhi
h f 0 would establish an equivalen
e between dTr1 and dTr2.1. Let i 2 dNod1 be a node. If i 6= Rt there is a node s 2 dNod1 su
hthat dEd1(i) = s. From the 
onstru
tion of dTr1 it results that thereare two nodes (i; j); (s; t) 2 Nod1 su
h that Ed1(i; j) = (s; t). We havethat f 0(s) = s0 () f(s; 1) = (s0; 1)and f 0(i) = i0 () f(i; 1) = (i0; 1):Sin
e f is a bije
tion it follows that i0 6= s0. It results that dEd2(i0) = s0.We have that(s0; t) = f(s; t) = f(Ed1(i; j)) = Ed2(f(i; j)) = Ed2(i0; j)hen
e f 0(dEd1(i)) = f 0(s) = s0 = dEd2(i0) = dEd2(f 0(i)):2. We have dRt1 = i i� there exists j 2 Nat su
h that Rt1 = (i; j). Wealso have f(Rt1) = Rt2. Thenf 0(dRt1) = i0 () f(i; 1) = (i0; 1) () f(i; j) = (i0; j) ()() Rt2 = (i0; j) () dRt2 = i0:It results that f 0(dRt1) = dRt2. utLet Tr = (Nod;Ed;Rt; Ann) be an annotated tree, n 2 Nod be a node.We de�ne the 
overing subtree of n in Tr by the following annotated tree,Trn = (Nodn; Edn; Rtn; Annn) su
h that� Nodn = fn0 j there is a path from n0 to n in Trg.10



� Edn(n0) = Ed(n0), for any n0 2 Nodn n fng.� Rtn = n;� Annn(n0) = Ann(n0), for any n0 2 Nodn.Let Tr = (Nod;Ed;Rt; Ann) be a 
omplete DR-tree, n 2 Nod be a nodeand Trn = (Nodn; Edn; Rtn; Annn) be the 
overing subtree of n in Tr. Wede�ne the 
overage of n in Tr by the set:Cov(n; Tr) = fi 2 Nat j there is a node (i; 1) 2 Nodng:Let n 2 Nod be a node in Tr su
h that Cov(n; Tr) = fi1; i2; : : : ; img,with i1 < i2 < : : : < im and ij+1 � ij > 1 for some j 2 Nat, j < m. We saythat the pair (ij; ij+1) is a gap in Tr at the node n.Let Tr = (Nod;Ed;Rt; Ann) be a 
omplete DR-tree, n 2 Nod be anode and Cov(n; Tr) be its 
overage. The symbol DR-Ng(n,Tr) representsthe number of gaps in Tr at the node n. The symbol DR-Ng(Tr) is themaximum number of gaps in Tr at any node n 2 Nod:DR-Ng(Tr) = maxfDR-Ng(n,Tr) j n 2 Nodg:We say that DR-Ng(Tr) is the DR-node-gaps 
omplexity) of Tr.We say that Tr is proje
tively parsed (or simply proje
tive) i� DR-Ng(Tr)=0.Let G = (N; T; S; P ) be a dependen
y grammar. We denote by:� T (G; i) � T (G) the set of 
omplete and rooted by S DR-trees Tr
reated by G with at most i gaps, DR-Ng(Tr) � i;� DR-L(G,i) = fs(Tr) j Tr 2 T (G; i)g the language generated by G,through DR-trees with at most i gaps.We mention the following obvious 
laim.Claim 1 Let G be a dependen
y grammar. Then the following in
lusionshold.i) T (G; i) � T (G; i+ 1) � T (G), for any i 2 Nat0.ii) DR-L(G,i) � DR-L(G,i+1) � DR-L(G), for any i 2 Nat0.11



Proposition 2.5 For any 
omplete DR-tree Tr1 
reated by a dependen
ygrammar G there exists a DR-equivalent proje
tive 
omplete DR-tree Tr2
reated by the same grammar G.Proof Let Tr1 = (Nod1; Ed1; Rt1; Ann1) be a DR-tree and let us supposethat DR-Ng(Tr1) > 0. Let n1 = (i; j) be a node in Nod1, su
h thatDR-Ng(n1; T r1) > 0 and for all the nodes n0 = (i0; j 0) 2 Nod1 su
h thati0 2 Cov(n1; T r1), we have DR-Ng(n0; T r1) = 0.It results that there are two nodes n2 = (k; l) and n3 = (i;m) su
h thatEd1(n2) = Ed1(n3) = n1. Let us suppose that k < i (the 
ase i < k 
an besolved analogously). Let us denoteCov(np; T r1) = fsp1; sp2; : : : ; sptpg;for p = f1; 2; 3g. We have that t1 = t2 + t3 and sin
e DR-Ng(n2; T r1) =DR-Ng(n3; T r1) = 0 we haves1t = ( s2t ; if t � t2s3t�t2 ; if t > t2It follows that Tr1 has only one gap at the node n1, whi
h is between s1t2 ands1t2+1, i.e. DR-Ng(n1; T r1) = 1.Denote by s = s31 � s2t2 � 1 the number of nodes, whi
h are between the
overage of n2 and the 
overage of n3 and are not in the 
overage of n1.We de�ne an appli
ation f : Nod1 ! Nat�Nat by:f(p; r) = 8><>: (p; r) if p < s11 or p � s31;(p+ s; r) if s21 � p � s2t2 ;(p� t2; r) if s2t2 < p < s31;We observe that the 
o-restri
tion of f to f(Nod1) is a bije
tion betweenNod1 and f(Nod1). We de�ne a DR-tree Tr2 = (Nod2; Ed2; Rt2; Ann2) su
hthat� Nod2 = f(Nod1).� Ed2(f(n)) = f(Ed(n)), for any n 2 Nod1.� Rt2 = f(Rt1);� Ann2(f(n)) = Ann(n), for any n 2 Nod1.12



It is easy to see that:� the de�nition of Tr2 is 
orre
t,� Tr2 is also a 
omplete DR-tree 
reated by the grammar G and� f is a DR-isomorphism between Tr1 and Tr2.Moreover, we observe that DR-Ng(f(n1); T r2) = 0, while the node-gaps-
omplexity of Tr1 was preserved under the isomorphism in all other nodes,ex
epting n1.It results that, under this isomorphism, the number of nodes with gapsde
reased at least by one. By repeating the transformation for a �nite numberof times, we obtain a proje
tive 
omplete DR-tree 
reated by G and DR-equivalent with the initial DR-tree. utNow, let us 
onsider the same node-gaps-
omplexity measure for D-trees.Let dTr = (dNod; dEd; dRt; dAnn) be a 
omplete D-tree, n 2 dNod bea node and dTrn = (dNodn; dEdn; dRtn; dAnnn) be the 
overing subtree ofn in dTr. We de�ne the 
overage of n in dTr by the set:Cov(n; dTr) = dNodn:Let n 2 dNod be a node in dTr su
h that Cov(n; dTr) = fi1; i2; : : : ; img,with i1 < i2 < : : : < im and ij+1 � ij > 1 for some j 2 Nat, j < m. We saythat the pair (ij; ij+1) is a gap in dTr at the node n.Let dTr = (dNod; dEd; dRt; dAnn) be a 
omplete D-tree, n 2 dNod bea node and denote by Cov(n; dTr) its 
overage. The symbol D-Ng(n; dTr)represents the number of gaps in dTr at the node n. The symbol D-Ng(dTr)is the maximum number of gaps in dTr at any node n 2 dNod:D-Ng(dTr) = maxfD-Ng(n; dTr) j n 2 dNodg:We say that D-Ng(dTr) is the D-node-gaps 
omplexity of dTr.We say that dTr is proje
tive i� D-Ng(dTr) = 0.Let G = (N; T; S; P ) be a dependen
y grammar. We denote by:� dT (G; i)x = fdTr j Tr 2 T (G);D-Ng(dTr) � ig the set of D-trees dTr
reated by G with at most i gaps;� D-L(G; i) = fs(dTr) j dTr 2 dT (G; i)g the language generated by G,through D-trees with at most i gaps.13



We 
an establish the following result between the node-gaps-
omplexityof a DR- tree and the same measure of the 
orresponding D-tree.Lemma 2.6 Let Tr be a 
omplete DR-tree and dTr be the 
orrespondingD-tree. If n is a node in dTr, then there exists n0 a node in Tr su
h thatCov(n; dTr) = Cov(n0; T r).Proof Let Tr = (Nod;Ed;Rt; Ann) be a 
omplete DR-tree and dTr =(dNod; dEd; dRt; dAnn) be the 
orresponding D-tree. Let n = i 2 Nat bea node in dTr. From the 
onstru
tion of dTr from Tr it follows that thereis at least one node (i; j) in Tr, with j 2 Nat. Let us 
onsider n0 = (i; j 0),where j 0 = maxfj j (i; j) 2 Nodg:We will prove that Cov(n; dTr) = Cov(n0; T r).It is easy to prove, following the 
onstru
tion of dTR from Tr that if thereis a path between two nodes (p; r) and (s; t) in Tr then there is also a pathbetween the nodes p and s in dTr. Conversely, if there is a path betweentwo nodes p and s in dTr then there exists a node (s; t) in Tr (whi
h 
an betaken as (s; t0) with t0 = maxft j (s; t) 2 Nodg) su
h that for any node (p; r)in Tr, there is a path from (p; r) to (s; t).It follows that for any k 2 dNod (equivalent with: for any (k; 1) 2 Nod)there is a path from k to i in dTr if and only if there is a path from (k; 1) to(i; j 0) in Tr, whi
h 
ompletes the proof. utProposition 2.7 If Tr is a 
omplete DR-tree with DR-Ng(Tr) = k, thendTr, the 
orresponding D-tree has D-Ng(dTr) � k.Proof It follows from Lemma 2.6. If dTr has a node n with j gaps, then Trhas also a node n0 with j gaps. This implies thatD-Ng(dTr) � DR-Ng(Tr): utCorollary 2.8 If Tr is a proje
tive 
omplete DR-tree, then dTr, the 
orre-sponding D-tree is also proje
tive.Proof It follows immediately from Proposition 2.7. ut14
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a. DR-tree Tr b. D-tree dTrFigure 2: Proje
tive D-tree 
orresponding to a non-proje
tive DR-tree 
re-ated by the dependen
y grammar in Example 2.1Remark 2.4 The reverse statement is not true as we may see in the belowexample.Example 2.1 Let us 
onsider G = (N; T; S; P ) a dependen
y grammar, withN = fA;B;C; Sg, T = fa; b; 
; lg, P = fS ! Aa; S ! l; A !L Bb;B !LC
;B!L l
; C!LAag. We 
an easily de�ne a non-proje
tively parsed DR-tree for whi
h the 
orresponding D-tree is proje
tively parsed (see Figure 2).Moreover, we 
an establish the following results between the languagesgenerated by a dependen
y grammar through DR-trees and D-trees with thesame maximal number of gaps.Corollary 2.9 Let G be a dependen
y grammar and i 2 Nat0 be a naturalnumber. Then DR-L(G; i) � D-L(G,i).15



Proof It results from the de�nitions of DR-L(G,i), D-L(G; i) and fromProposition 2.7. ut3 D-trivial left dependen
y grammarsIn this se
tion, we will de�ne and study several parti
ular forms of DR-treesand dependen
y grammars.De�nition 1 Let G be a dependen
y grammar. We say that G is a D-trivial dependen
y grammar if G 
reates only proje
tively-parsed D-trees,i.e. D-Ng(dTr) = 0, for any D-tree dTr 
reated by G.De�nition 2 Let G = (N; T; S; P ) be a dependen
y grammar and let usdenote V = N [ T . We say that G is a left dependen
y grammar if G doesnot 
ontain produ
tions of the form A!R BC, i.e. P � (N � (V n fSg)(V nfSg)� fLg) [ (fSg � T ).Remark 3.1 Considering the notations from the above de�nition, let us re-mark that produ
tions of the form S ! a, with a 2 T , may appear only inDR-trees 
reated by G that have the form Tr = (Nod;Ed;Rt; Ann) with:� Nod = f(1; 1); (1; 2)g.� Ed(1; 1) = (1; 2).� Rt = (1; 2);� Ann(1; 2) = S and Ann(1; 1) = a.Let us also observe that the dependen
y grammar de�ned in Example 2.1 isa D-trivial left dependen
y grammar.The following result 
hara
terizes the form of DR-trees 
reated by a D-trivial left dependen
y grammar.Lemma 3.1 Let Tr = (Nod;Ed;Rt; Ann) be a 
omplete DR-tree 
reatedby a D-trivial left dependen
y grammar G = (N; T; S; P ). The followingproperties hold:a) Let n1 = (i; j) 2 Nod be a node in Tr. Let Trn1 be the 
overing subtreeof n1 in Tr. Then (k; l) 2 Trn1 implies i � k.16



b) Denote k = maxfi j 9j > 1; (i; j) 2 Nodg. If (k; l) 2 Nod then(k; j) 2 Nod, for any 1 � j � l.
) Denote l = maxfj j (k; j) 2 Nodg. Then for any node (i; j) 2 Nod,with i < k, j > 1 implies j = k � i + l.d) Rt = (1; k + l � 1).e) Denote m = maxfi j 9j 2 Nat; (i; j) 2 Nodg. Then m = k + l � 1.Proofa) Suppose to a 
ontradi
tion that there exists n2 = (k; l) 2 Trn1 su
h thati > k. Let us 
onsider the path Path(n2; n1) whi
h exists be
ause of thede�nition of a 
overing subtree. It is easy to see that this path should
ontain at least two 
onse
utive nodes n3 = (p; r) and n4 = (s; t) su
hthat p < r. We also have that Ed(n3) = n4, hen
e it should exists aprodu
tion A!R BC 2 P su
h that Ann(n4) = A and Ann(n3) = B.Contradi
tion, sin
e G does not 
ontain su
h produ
tions.b) For l � 2 the property is D-trivial. Let n1 = (k; l) 2 Nod, with l > 2be a node. From the de�nition of a DR-tree, it follows that there existsat least a node n2 = (m; l�1) 2 Nod su
h that Ed(n2) = n1. From theproperty a) of this lemma, it follows that m � k. Sin
e (i; j) 2 Nod,i > k implies j = 1 and sin
e m � k and l � 1 > 1, we obtain m = k.We proved that (k; l) 2 Nod implies (k; l � 1) 2 Nod, hen
e also theproperty b) is true.
) Let us 
onsider a node n1 = (k � 1; j) 2 Nod, with j > 1. Supposeto a 
ontradi
tion that j � l. From the de�nition of a left dependen
ygrammar, it results that this node should have two daughters, n2 =(k � 1; r) and n3 = (s; t). From property a), it follows that s > k � 1.But s 6= k, be
ause the node (k; l) 
annot be a daughter of the noden1 (sin
e j � l). It results that s > k, hen
e t = 1. The node(k; l) also should have a daughter n4 = (u; 1), with u > k. Let ussuppose that s < u (if this is not true, we 
an permute nodes n3and n4, keeping the DR-isomorphism through out the transformationand we obtain still a 
omplete DR-tree 
reated by G). Transformingthe DR-tree in a D-tree dTr = (dNod; dEd; dRt; dAnn) we observe17



that k < s < u, k; u 2 Cov(k; dTR), while s 62 Cov(k; dTR), thusD-Ng(k; dTr) � 1, hen
e D-Ng(dTr) � 1, whi
h is a 
ontradi
tionwith the initial assumption that G 
reates only proje
tive D-trees.It results that j > l. Denote v = minfj j (k � 1; j) 2 Nod; j > lgand let (k � 1; v) be a node. Again it results that n1 should have twodaughters, (k � 1; r) and (s; t), with s > k � 1. It results that r = 1.From the fa
t that l = maxfj j 9i � k; (i; j) 2 Nodg, we obtain thatt � l. Than, from the de�nition of a DR-tree, it results that t = l,v = l + 1 and Ed(k; l) = (k � 1; l + 1).Now, suppose to 
ontradi
tion that there exists another node (k �1; j) 2 Nod, with j > l+ 1. We take y = minfj j (k� 1; j) 2 Nod; j >l + 1g and it follows as above that y = l + 2. Following a similarreasoning as for the 
ase j � l (now the node (k; l) 
annot be thedaughter of the node (k�1; l+2), be
ause it already is the daughter ofthe node (k� 1; l+ 1)) we obtain a 
ontradi
tion with the assumptionthat G 
reates only proje
tive D-trees. It results that the only possiblenode (k � 1; j) 2 Nod with j > 1 is (k � 1; l + 1). But for this nodethe 
ondition l + 1 = k � (k � 1) + l is satis�ed.We 
an apply the same reasoning de
reasing by step 1 from k� 1 to 1,for any i between 1 and k � 1 and prove in this way the property 
).d) It follows from properties a) and 
).e) From the above properties, it results that for any node (i; 1) with i > kthere is exa
tly one node (k; j) with 1 < j � l su
h that Ed(i; 1) =(k; j). As there are l � 1 nodes (k; j) with j > 1, it results that thereare also exa
tly l � 1 nodes (i; 1) with i > k, thus m = k + l � 1. utWe say that a DR-tree 
reated by a D-trivial left dependen
y grammaris a D-trivial left DR-tree. Using notations from Lemma 3.1, we say thata D-trivial left DR-tree Tr is a DR left bush if k = 1 and a DR left pathif l = 2. Let us note that these notations are derived from the shape of
orresponding D-trees (see Figure 3).Lemma 3.2 Let Tr be a 
omplete D-trivial left DR-tree with m leaves. Thenthe longest path in Tr has exa
tly m nodes.18
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a. Left path b. Left bushFigure 3: D-trees 
reated by a DR left path, respe
tively a DR left bushProof Using notations from Lemma 3.1, it is easy to see that the longestpath in Tr starts from the node (k; l) and ends with the root Rt of Tr. Thispath in
ludes l+ k� 1 nodes. But m = l+ k� 1 (property e) from the samelemma. utThe following result 
hara
terizes the form of D-trivial left dependen
ygrammars.Proposition 3.3 Let G = (N; T; S; P ) be a D-trivial left dependen
y gram-mar. Then there exists a partition of the set of nonterminals N = N1[N2[N3su
h that Ni \Nj = ;, for any 1 � i < j � 3 and the set of produ
tions:P � ((N1 [N2)� T (N n fSg)� fLg) [((N2 [N3)� (N3 n fSg)T � fLg) [(N � TT � fLg) [(fSg � T ): 19



Proof We de�ne the de
omposition of N in the following way:N1 = fA j 9(A; aB; L) 2 P; 6 9(A;Ba; L) 2 P;A;B 2 N; a 2 TgN2 = fA j 9(A; aB; L) 2 P; 9(A;Ba; L) 2 P;A;B 2 N; a 2 TgN3 = fA j6 9(A; aB; L) 2 P;A;B 2 N; a 2 TgObviously, N1; N2; N3 form a partition of N (they are disjoint and their unionis exa
tly N). From the above de�nitions, we observe that G 
annot haveprodu
tions of the form:� A!L aB, with A 2 N3, B 2 N , a 2 T ,� A!L Ba, with A 2 N1, B 2 N , a 2 T .From Lemma 3.1, we observe that G 
annot have produ
tions of the form:� A!L BC, with A;B;C 2 N ,� A!L Ba, with A 2 N2 [N3, B 2 N1 [N2, a 2 T ,be
ause su
h types of produ
tions would 
reate non-D-trivial left DR-trees.These observations 
omplete the proof. ut4 An in�nite sequen
e of 
lasses of languagesIn the beginning of this se
tion, we introdu
e the main 
lasses of languageswhi
h we address in our paper. We denote by:� DR-L the 
lass of languages generated by all dependen
y grammarsthrough the set of DR-trees;� DR-L(i) the 
lass of languages generated by all dependen
y grammarsthrough DR-trees with at most i gaps;� tlDR-L the 
lass of languages generated by all D-trivial left dependen
ygrammars through the set of DR-trees;20



� tlDR-L(i) the 
lass of languages generated by all D-trivial left depen-den
y grammars through DR-trees with at most i gaps.We also introdu
e two types of languages of a parti
ular kind. Let n 2Nat be a natural number, V = fb1; : : : ; bng be an alphabet and l 62 V be adistin
t symbol. Denote Llb1:::bn and Ltotallb1:::bn two languages over V [ flg by:Llb1:::bn = fl(b1)m : : : (bn)m j m 2 Nat0g;Ltotallb1:::bn = flw 2 V + j jwjb1 = : : : = jwjbng;where jwjb denotes the number of o

urren
es of the symbol b in the stringw. Let us observe that the grammarG in Example 2.1 generates the languageLtotallab
 .Proposition 4.1 Let i 2 Nat0 be a natural number, V = fb1; : : : ; b2i+1g bean alphabet and l 62 V be a distin
t symbol. Then there exists a language Lover V [ flg su
h that Llb1:::b2i+1 � L � Ltotallb1:::b2i+1 and L 2 tlDR � L(i).Proof Consider G = (N; V [flg; B2i+1; P ) a D-trivial left dependen
y gram-mar su
h that N = fBj j j 2 [2i+1℄g, P = fBj+1 ! Bjbj j j 2 [2i℄g[fB1 !B2i+1b2i+1; B2i+1 ! lg. We take L = DR-L(G; i), hen
e L 2 tlDR� L(i).It is easy to observe that L � Ltotallb1:::b2i+1 .Let m 2 Nat0 be a natural number and Trm = (Nodm; Edm; Rtm; Annm)be a D-trivial left Dr-tree su
h that� Nodm = f(1; t+1) j t 2 [(2i+1)m+1℄g[f(s; 1) j s 2 [(2i+1)m+1℄g.�
Edm(s; t) = 8>>>>>>>>>>><>>>>>>>>>>>:

(1; t+ 1); if s = 1;(x + (2i+ 1)(y � 1) + 2; 1) if s = (x� 1)m+ y + 1;t = 1; x = 2(z � 1) + 1;z 2 [i+ 1℄; y 2 [m℄;(x + (2i+ 1)(m� y) + 2; 1) if s = (x� 1)m+ y + 1;t = 1; x = 2z;z 2 [i+ 1℄; y 2 [m℄;for any (s; t) 2 Nodm.� Rtm = (1; (2i+ 1)m+ 2); 21



� Annm(s; t) = 8>>>>>>>><>>>>>>>>:
l; if s = 1; t = 1;B2i+1 if s = 1; t = 2;Bx if s = 1; t = x+ (2i+ 1)(y � 1) + 2;x 2 [2i + 1℄; y 2 [m℄;bx if s = (x� 1)m+ y + 1; t = 1;x 2 [2i + 1℄; y 2 [m℄;for any (s; t) 2 Nodm.We 
an 
ount the number of gaps of any node (s; t) in Trm in the followingway:DR-Ng((s; t); T rm) = 8>>>>>><>>>>>>: z; if s = 1; t = 2z + 2 or t = 2z + 3; z 2 [i℄;i; if s = 1; 2i+ 4 � t � (2i+ 1)(m� 1) + 3;i� z; ifs = 1; t = (2i+ 1)(m� 1) + 2z + 2 ort = (2i+ 1)(m� 1) + 2z + 3; z 2 [i� 1℄;0 otherwise:We have that DR-Ng(Trm) = maxfDR-Ng(no; T rm) j no 2 Nodmg = i,whi
h proves that Trm is D-trivial left DR-tree with at most i gaps, 
reatedby G. Thus l(b1)m : : : (bn)m = s(Trm) 2 L, for any m 2 Nat [ f0g, hen
eLlb1:::b2i+1 � L. utLemma 4.2 (pumping lemma) Let L 2 tlDR-L(i) be a language. Then,there exist two natural 
onstants p; r 2 Nat su
h that for any senten
e w 2 Lwith jwj > p, there exists a de
omposition of w in w = �1a1�2 : : : �rar�r+1su
h that the following 
onditions hold:i) jahj > 0, for any h 2 [r℄;ii) ja1 : : : arj < p;iii) �1(a1)j�2 : : : �r(ar)j�r+1 2 L, for any j 2 Nat0.iv) If r > i+1 there are at most i distin
t indi
es h su
h that 1 < h < r+1and j�hj > p.
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Proof Let G = (N; T; S; P ) be a D-trivial left dependen
y grammar su
hthat L = DR-L(G,i). Let n be the number of nonterminals in G. Denotep = n + 1. Let us 
onsider a senten
e w 2 L with jwj > p and a leftD-trivial DR-tree Tr 
reated by G su
h that s(Tr) = w. Sin
e Tr hasexa
tly jwj leaves, from Lemma 3.2, we have that there exists at least apath (n1; n2; : : : ; njwj) in Tr (the longest path in Tr). Sin
e jwj > n + 1,nodes on this path are annotated by more than n nonterminals, thus in thesequen
e Ann(n2); : : : ; Ann(njwj) there exist at least two equal nonterminals.Let us 
onsider the �rst two equal nonterminals in this sequen
e, i.e. let us
onsider two indi
es 1 < s < t � jwj su
h that Ann(ns) = Ann(nt) and allnonterminals in the sequen
e Ann(n2); : : : ; Ann(nt�1) are distin
t.In the following, we will use for Tr notations from Lemma 3.1. There arethree possible 
ases:1. 1 < s < t � l. We 
onsider the sequen
e of nodes nt = (k; t); nt�1 =(k; t � 1); : : : ; ns+1 = (k; s + 1). Ea
h of these nodes has a left dom-inated daughter, whi
h is a leaf. Consider this sequen
e of leaves,(no1; 1); : : : ; (not�s; 1) su
h that Ed(noi; 1) = ns+i, for any 1 � i � t�s.We denote by ah, with h from 1 to a 
ertain r, a sequen
e of terminalsAnn(nox; 1)Ann(nox+1; 1) : : :Ann(nox+y; 1), where nox; nox+1; : : : ; noyis a maximal sequen
e of 
onse
utive natural numbers. Consider thede
omposition w = �1a1�2 : : : �rar�r+1. We have ja1 : : : arj = r. Sin
ethe path from ns+1 to nt has at least one node and at most n nodes(as all nonterminals on this path are distin
t), we obtain r < p, whi
h,together with jahj > 0, for any h 2 [r℄ ful�lls 
onditions i) and ii) of thepumping lemma. We may repla
e the 
overing subtree Trnt with the
overing subtree Trns (preserving the 
ompleteness under the transfor-mation) and the resulted DR-tree Tr0 is still a 
omplete DR-tree 
re-ated by G. Obviously the transformation will not in
rease the numberof gaps. It results s(Tr0) = �1�2 : : : �r+1 2 L, whi
h proves 
onditioniii) of the lemma for j = 0. For j = 1, �1a1�2 : : : �rar�r+1 = w, whi
hobviously belongs to L. Moreover, we may repla
e the 
overing subtreeTrns with the 
overing subtree Trnt in su
h a way that new introdu
edleaves 
orresponding to a string ah, h 2 [r℄ will sti
k immediately afterthe leaves from the initial 
overing subtree Trns 
orresponding to thesame sequen
e ah. The resulted DR-tree Tr2 is still a 
omplete DR-tree
reated by G. Again the transformation will not in
rease the numberof gaps. We 
an repeat this transformation for an unlimited number23



of times, obtaining in this way an in�nite sequen
e Trj, with j � 2, of
omplete DR-trees 
reated by G with at most i gaps. It results thats(Trj) = �1(a1)j�2 : : : �r(ar)j�r+1 2 L, for any j � 2 whi
h 
ompletes
ondition iii) of the lemma.Finally, if r > i + 1, suppose towards a 
ontradi
tion that there existi + 1 distin
t indi
es hj su
h that 1 < hj < r + 1 and j�hj j > p, forall j 2 [i + 1℄. We observe that none of the gaps indu
ed by �hj , withj 2 [i + 1℄ in the 
overage of nt in Tr 
an be ful�lled by the 
overageof ns in Tr, sin
e the latest one has at most p elements. It follows thatDR-Ng(nt; T r) � i + 1 whi
h is a 
ontradi
tion with the assumptionthat Tr 2 T (G; i). This means that also the 
ondition iv) of the lemmais true.2. 1 < s < l < t. If we repla
e the 
overing subtree Trns with the 
overingsubtree Trnt in a similar way as above, we obtain a DR-tree 
reated byG, but whi
h is not a D-trivial left DR-tree. This 
ontradi
ts the fa
tthat G is a D-trivial left dependen
y grammar, whi
h 
reates only D-trivial left DR-trees. Thus, this 
ase is not possible under the pumpinglemma's assumptions.3. l � s < t � jwj. We pro
eed in a similar way as for the �rst 
ase, bytaking r = 1. Condition iv) of the lemma does not apply in this 
ase.utProposition 4.3 Let i; k 2 Nat0 be two natural numbers su
h that i < k,V = fb1; : : : ; b2k+1g be an alphabet, l 62 V be a distin
t symbol and L bea language over V [ flg su
h that Llb1:::b2k+1 � L � Ltotallb1:::b2k+1. Then L 62tlDR-L(i).Proof Suppose towards a 
ontradi
tion that L 2 tlDR�L(i). It follows thatthe pumping lemma holds for L and. Consider p and r the two 
onstantsfrom the pumping lemma, a natural number n su
h that n > 2p and thesenten
e w = l(b1)n : : : (b2k+1)n. We have jwj = (2k + 1)n + 1 > p, hen
e,from the pumping lemma, it should exists a de
omposition of w in w =�1a1�2 : : : �rar�r+1 su
h that 
onditions i)-iv) of the lemma hold. Take j =0 in 
ondition iii). It results that w0 = �1a1�2 : : : �rar�r+1 2 L. Sin
eL � Ltotallb1:::b2k+1 , it follows that jw0jb1 = : : : = jw0jb2k+1 and further that alsoja1 : : : arjb1 = : : : = ja1 : : : arjb2k+1 . Sin
e ja1 : : : arj < p and n > 2p, it results24



that ah for some h 2 [r℄ 
annot in
lude more than two distin
t symbols fromw, hen
e r � k+1 > i+1 and there are at least k > i distin
t indi
es h su
hthat 1 < h < r+1 and j�hj > p, whi
h yields a 
ontradi
tion with 
onditioniv) from the pumping lemma.It results that L 62 tlDR-L(i). utCorollary 4.4 tlDR-L(k) n tlDR-L(i) 6= ;, for any i; k 2 Nat0, with i < k.Proof Let V = fb1; : : : ; b2k+1g be an alphabet and l 62 V be a distin
tsymbol. From Proposition 4.1, we have that there exists a language L overV [ flg su
h that Llb1:::b2k+1 � L � Ltotallb1:::b2k+1 and L 2 tlDR-L(k). Fromi < k and from Proposition 4.3, we have that L 62 tlDR-L(i). Thus L 2tlDR-L(k) n tlDR-L(i). utProposition 4.5 tlDR-L(i)n tlDR-L(k) 6= ;, for any i; k 2 Nat, with i < k.Proof Let V = fb1; : : : ; b2i+3g be an alphabet and l 62 V be a distin
t symbol.One 
an prove in a similar way as we did for Proposition 4.1, that there existsa language L over V [flg su
h that fl(b1)m : : : (b2i)m(b2i+1b2i+2b2i+3)m j m 2Nat0g � L � Ltotallb1:::b2i+3 and L1 2 tlDR-L(i). A similar kind of D-trivial leftdependen
y grammar should be de�ned and only the left D-trivial DR-tree
orresponding to a senten
e l(b1)m : : : (b2i)m(b2i+1b2i+2b2i+3)m withm 2 Nat0,must have a slightly di�erent form, but still a maximal number of i gaps.Suppose to a 
ontradi
tion that L 2 tlDR-L(k). It means that there existsa D-trivial left dependen
y grammar G su
h that L = DR-L(G,k). Let m 2Nat be a natural number. Sin
e wm = l(b1)m : : : (b2i)m(b2i+1b2i+2b2i+3)m 2 L,there exists a D-trivial left DR-tree Trm su
h that s(Trm) = wm. We 
ansuppose - without any loss of generality - that Trm is a left bush1.We disregard the manner in whi
h leaves are distributed in Trm and keep-ing the spine of Trm we build, bottom-up, a left bush Tr0m in the followingway:1Trm may in
lude only a bounded "path" pre�x, sin
e otherwise we would be able to"pump" in wm only a part of the symbols b1; : : : ; b2i+3, keeping the same number of gapsfor the DR-tree, hen
e either L 6= DR-L(G,k) or L 6� Ltotallb1:::b2i+3 . In this 
ase, the rest ofproof would be done for a natural number m greater than the longest "path" pre�x insu
h a D-trivial left Dr-tree Trm. Still, the �nal 
on
lusion would hold.25



� We 
onsider all nodes on the spine of Trm, bottom-up, from (1; 3) toRt (the leaf (1; 1) will remain in the same position).� For any node of the spine, we arrange its right daughter (whi
h isobviously a leaf) annotated with a symbol bx in a sequen
e boundedto the left by the leaf ((x � 1)m + 2; 1) and to the right by the leaf(xm+ 1; 1).� The leaves will be arranged 
onse
utively on a �rst-met-�rst-arrangedbase, from left to right for leaves annotated with a symbol b2z�1 withz 2 [i+2℄ and from right to left for leaves annotated with a symbol b2zwith z 2 [i + 1℄.After the left bush Tr0m is 
ompleted, we observe that:� s(Tr0m) = l(b1)m : : : (b2i+3)m.� Tr0m 2 T (G).� Moreover, Tr0m 2 T (G; i+ 1) (it is easy to see that at any moment wehave at most i + 2 islands of natural numbers in the 
overage of anynode in Tr0m, thus Tr0m 
annot have more than i+ 1 gaps).Sin
e i < k, it results that also Tr0m2 T (G; k). Therefore, l(b1)m : : : (b2i+3)m2DR-L(G,k). We obtain that fl(b1)m : : : (b2i+3)m jm 2 Nat0g � L � Ltotallb1:::b2i+3 .But, using this last statement, the fa
t that i < j and Proposition 4.3, wehave that L 62 tlDR-L(i), whi
h is a 
ontradi
tion with the initial assumption.It follows that L 2 tlDR-L(i) n tlDR-L(k). utNow, we 
a state the main result of this paper.Theorem 4.6 The 
lasses of languages, generated by D-trivial left depen-den
y grammars with a bounded number of gaps, form an in�nite sequen
e:tlDR-L(1); tlDR-L(2); : : : ; tlDR-L(n); : : :su
h that any two di�erent 
lasses in this sequen
e 
annot be 
ompared.Proof It results from Corollary 4.4 and Proposition 4.5. ut26



5 Other propertiesWe denote with REG, CF and CS the 
lasses of regular, 
ontext-free, andrespe
tively, 
ontext-sensitive languages.Proposition 5.1 The following property holds: DR-L(0) = CF .Proof If G = (N; T; S; P ) is a dependen
y grammar then we 
an de�nea 
ontext- free grammar G0 = (N; T; S; P 0) with P 0 = f(u; v) j (u; v; z) 2Pg [ f(u; v) j (u; v) 2 Pg. It results L(G0) = DR-L(G,0). If G is a 
ontext-free grammar (we 
an 
onsider G in Chomsky Normal Form), then we 
ande�ne a dependen
y grammar G0 = (N; T; S; P 0) with P 0 = f(A;BC; L) j(A;BC) 2 Pg [ f(A; a) j (A; a) 2 Pg2. It results DR-L(G0; 0) = L(G). utLet V = fa1; : : : ; ang be an alphabet. We de�ne the Parikh mapping�V : V � ! Natn0 by �V (x) = (jxja1 ; : : : ; jxja2), for any x 2 V �. We extendthe mapping in a natural way to languages. Two languages L1; L2 2 V �su
h that �V (L1) = �V (L2) are said to be letter equivalent. Consider theoperations of 
omponentwise addition and multipli
ation by a 
onstant overthe set of natural ve
tors of a given dimension. A subset M of Natn0 issaid to be linear if there exist the ve
tors v0; v1; : : : ; vm, m � 0, su
h thatM = fv0 +Pmi=1 pivi j pi 2 Nat0; 1 � i � mg. A �nite union of linear sets is
alled a semilinear set. A language L � V is 
alled semilinear if �V (L) is asemilinear set.Proposition 5.2 Let L 2 DR-L(i), for some i 2 Nat. Then L is semilinear.Proof Let G be a dependen
y grammar su
h that L = DR-L(G,i). DenoteL0 = DR-L(G; 0). From Proposition 2.5, we know that any DR-tree Tr 2T (G; i) is DR-equivalent with a proje
tive DR-tree Tr0 2 T (G; 0). Then�V (s(Tr)) = �V (s(Tr0)). Sin
e L0 � L (Claim 1), it results that �V (L) =�V (L0), i.e. L is letter equivalent to L0. But L0 is a 
ontext-free language(Proposition 5.1) and from the Parikh Theorem it is semilinear. It resultsthat also L is semilinear. ut2G0 
an be easily brought to the form of a left dependen
y grammar
27



Proposition 5.3 The following properties hold.i) tlDR-L(0) = REG.ii) REG � tlDR-L(i), for any i 2 Nat (all in
lusions are stri
t).iii) tlDR-L(i) � CS, for any i 2 Nat0 (all in
lusions are stri
t).Proofi) If G is a regular grammar, then we 
an de�ne a D-trivial left depen-den
y grammar G0 = (N; T; S; P 0) with P 0 = f(A; aB; L) j (A; aB) 2Pg [ f(A; a) j (A; a) 2 Pg. It results DR-L(G0; 0) = L(G). LetG = (N; T; S; P ) be a D-trivial left dependen
y grammar and N =N1 [ N2 [ N3 be the partition of the set of nonterminals de�ned inProposition 3.3. We 
an de�ne a non-deterministi
 �nite automatonM = (Q; T; S; F; Æ) su
h that Q = N[fBA j A 2 N2; B 2 N3g[fqFg[fpb j (A; ab; L) 2 P;A 2 N1g [ frBA;b j (A; ab; L) 2 P;B 2 N2; A 2 N3g,F = fqfg and the transition fun
tion Æ is de�ned by:
Æ(q; a)=

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
fqF j (q; a) 2 Pg [ fq0 j (q; aq0; L) 2 Pg[[fpb j (q; ab; L) 2 Pg if q = S;fq0 j(q; aq0; L) 2 Pg [ fpb j(q; ab; L) 2 Pg if q 2 N1nfSg;fpb; rqA;b j (q; ab; L) 2 Pg if q 2 N2;fqFg if q = pa;fBAg if q = rAB;a;fCA j (C;Ba; L) 2 P;C 2 N3g[fqF j (A;Ba; L) 2 Pg if q = BA;; otherwise:We have L(M)=DR-L(G,0).ii) Like above, if G is a regular grammar, we 
an de�ne a D-trivial left de-penden
y grammarG0 = (N; T; S; P 0) with P 0 = f(A; aB; L) j(A; aB) 2Pg[f(A; a) j (A; a) 2 Pg and we have DR-L(G0; 0) = L(G). But G 
re-ates only proje
tive DR-trees (T (G0; i) = T (G0; 0), for any i 2 Nat0),hen
e DR-L(G0; i) = DR-L(G0; 0) = L(G), for any i 2 Nat0. If i 2 Nat,from the item i) of this proposition and from Corollary 4.4, we obtainthe stri
tness of the in
lusion. 28



iii) Let L 2 DR-L(i), i 2 Nat0 be a language, G = (N; T; S; P ) be a D-trivial left dependen
y grammar su
h that L = DR-L(G,i) and N =N1 [N2 [N3 is the partition of N de�ned in Proposition 3.3. We 
ande�ne a linear bounded automatonM = (Q; T;�; $;#; B; q0; F; Æ) witha work spa
e of 2n + 3 
ells where n is the length of the input word.Consider the tape alphabet � = T [ fB; $;#;&g, where B is a spe
ialsymbol marking the 
ells that are not visited yet, $ and # are the left(respe
tively, right) side markers and & is a symbol whi
h will markthe middle of the tape (none of these four tape symbols is in T ). q0is the initial state of the automaton M , while the set of �nal states isde�ned by F = fqFg. The set of states Q and the transition fun
tionÆ are de�ned a

ording to the method des
ribed in the following.We de�ne an instant 
on�guration of M as a triple (q; �; i), whereq 2 Q, � 2 �+, j�j = 2n + 3 and 1 � i � 2n + 3. We will use instant
on�gurations to des
ribe the behavior of M .The initial 
on�guration of M is:(q0; $wBn+1#; 2);with w 2 T+, jwj = n. In the �rst step, the r/w-head goes to themiddle of the tape, marks the middle with & and goes one 
ell to theright: (qS; $w&Bn#; n + 3);where S is the start symbol of the grammar G. The r/w-head starts towrite on the tape to the right symbols from T , a

ording to produ
tionsfrom P :(qA; $w&xBn�k#; n+ k + 3) ` (qB; $w&xaBn�k�1#; n+ k + 4);if (A; aB; L) 2 P . To some state qA, with A 2 N2 [ N3, M de
idesnon-deterministi
ally to stop this step and to go to the end of the workspa
e. (pA; $w&xBn�k#; 2n + 2):The r/w-head starts writing to the left, again symbols from T , a

ord-ing to produ
tions from P :(pA; $w&xBn�k�ly#; 2n+2� l) ` (pB; $w&xBn�k�l�1ay#; 2n+1� l);29



if (A;Ba; L) 2 P , k + l < n � 2. When k + l = n � 2, two terminalsa and b from a produ
tion A !L ab, with a; b 2 T are written onthe tape, the n + k + 2-th symbol is marked with an overline and ther/w-head goes to the beginning of the work spa
e:(r; $w&uay#; 2);where uay 2 T+, a 2 T . From this point on, a pre�x of the input stringw is 
ompared letter-by-letter to ua. They should be identi
al. If thismarking pro
edure su

eeds, we rea
h the 
on�guration:(s; $uaz&uay#; n+ k + 3):Now, we should �nd a mat
h between symbols from z and symbols fromy, but these have not to be in the same order. We should memorize
ontinuously (under the name of the state) an indi
ator for the numberof gaps indu
ed by this mat
hing. The mat
hing will be 
arried on inthe following way: take the next unmarked symbol from the se
ondhalf of the work spa
e, go with it to the left, �nd (and mark) an equalunmarked symbol in the �rst half of the work spa
e.We may have three 
ases:{ If the new marked symbol is not near (to the left or to the rightof) an already marked symbol, then the indi
ator for the numberof gaps will in
rease with 1 (a new gap is 
reated). Obviously, theindi
ator 
annot be ever greater than i.(sja; $�ba
�;m) ` (tj+1; $�ba
�;m+ 1);where m = j$�baj, a; b 2 T , 
 2 T [ f&g and j < i.{ If the new marked symbol is near an already marked symbol, butnot to the left and to the right in the same time, then the indi
atorfor the number of gaps will remain un
hanged.(sja; $�ba
�&
#; m) ` (tj; $�ba
�;m+ 1);where m = j$�baj, a; b 2 T , 
 2 T [ f&g, or(sja; $�ba
�;m) ` (tj; $�ba
�;m+ 1);where m = j$�baj, a; b; 
 2 T .30



{ If the new marked symbol is near an already marked symbol, bothto the left and to the right, then the indi
ator for the number ofgaps will de
rease with 1 (a gap was �lled-in).(sja; $�ba
�;m) ` (tj�1; $�ab
�;m+ 1);where m = j$�baj, a; b; 
 2 T .If this marking pro
edure su

eeds, then the �nal transition, whi
hleads the automaton in an a

epting 
on�guration, is des
ribed by:(sj; $w&xy#; 2n+ 3) ` (qF; $w&xy#; 2n + 2):The detailed de�nitions of Q and Æ are left to the reader. We haveL(M)=DR-L(G,i). Sin
e all languages in tlDR-L(i) � DR-L(i) aresemilinear (Proposition 5.2), we 
an easily �nd a non- semilinear lan-guage in CS n tlDR-L(i) (like fa2n j n 2 Nat0g). ut6 Con
lusionsThe main aim of this 
ontribution was to dis
uss the fa
t that there is a sig-ni�
ant di�eren
e between the (non)proje
tivity of DR-trees and respe
tivelyD-trees. We stressed on the fa
t that D-trees 
an hide some 
on
urren
y andword-order freedom phenomena raising in the generation or the parsing of thesenten
e. D-trivial left dependen
y grammars and the global DR-restri
tionsof the word-order freedom were used as the possible most simplest 
ombi-nation of notions useful for this kind od dis
ussion. As out
ome an in�nitesequen
e of in
omparable 
lasses of semilinear languages bounded betweenthe 
lass of regular and respe
tively 
ontext-sensitive languages was obtained.The massive in
omparability a
hieved trough the global restri
tions only isthe main novelty of this 
ontribution. This result strengthens the resultsfrom [4℄, where some in�nite hierar
hies of 
lasses of languages were ob-tained. Those hierar
hies were obtained by using stronger 
ombinations oflo
al and global restri
tions applied to free-order dependen
y grammars.In the 
lose future, we will study the same types of global word-order re-stri
tions as here, but applied on dependen
y grammars without any furtherrestri
tive 
ondition, like D-triviality. We believe that we will a
hieve new31



sequen
es of in
omparable 
lasses of languages. Moreover, we believe that tothis aim we 
an use the sequen
e of "witness" languages, whi
h we alreadyused in this paper.We will study also free-order dependen
y grammars with several kindsof topologi
al restri
tions in order to understand 
omplex word-order and
on
urren
y phenomena o

urring in the syntax of natural languages. Webelieve that the study of free-order dependen
y grammars 
an also 
ontributeto the understanding of 
on
urren
y phenomena, in general, as well.A
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