
A Grammar-Checker for CzechVladislav Kubo�n, Tom�a�s Holan, and Martin Pl�atek

Table of Contents
1 Introduction 32 Parsing and grammar checking 41 Basic di�erences between parsing and grammar checking 42 Problems to be solved . 53 Formal Description 71 Lexical analysis . 72 Robust Free-Order Dependency Grammars . 82.1 Measures and restrictions on trees . 122.2 Free parsing and grammar-checking analysis 132.3 The �rst variant of the grammar-checking analysis 152.4 The second version of the grammar-checking analysis 152.5 The third version of the grammar-checking analysis 162.6 Components of syntactic inconsistencies 172.7 Evaluation . 183 Implementation of the evaluating module . 194 Complex sentences vs. long phrases 215 The Preprocessing Module 256 The implementation 261 Speeding up the performance . 277 Processing in layers 301 Suppression of variants . 318 Conclusion 352

3Bibliography 36

Chapter 1Introduction
One of the major problems of current computational linguistics is the lack of really practicalapplications. Among main reasons of this situation is the fact that there are many �elds ofnatural language processing, where the e�ort spent on basic research is not justi�ed by successfulindustrial applications. In most �elds it is possible to achieve a dramatic improvement of speed,e�ciency and quality of NLP systems with very simple means. Any additional e�orts to improvethe systems further are expensive with respect to funds, manpower and time.One of the ways how to overcome this obstacle is to focus the linguistic research on those�elds where simple means do not provide satisfactory results. Automatic grammar checking isone of these �elds. This statement is even more true with respect to free word order languages.With growing degree of word order freedom the usability of simple pattern matching techniquesdecreases. In languages with such a high degree of word order freedom as in most Slavic languages(Czech, Polish, Russian Slovak etc.) the set of syntactic errors which may be detected by meansof simple pattern matching methods is almost negligible.The automatic grammar checking is also one of the areas in which the recent developmentof modern industrial products (text editors) created the demand from the side of the industryto get applications which will increase the usability of these products. The spelling checkers arealready core parts of all text editors and the step towards grammar checkers or proof readersseems to be inevitable.This technical report contains an overview of methods, tools and theories used in developmentof a pivot implementation of a grammar-based grammar checker of Czech. During the wholetimespan of this project there were three main goals:� linguistic research concerning the word-order properties of languages under considerationand also typical erroneous constructions which may be recognized by an automatic gram-mar checker;� development of a method how to implement an e�cient grammar checker; and� pivot implementation of such a grammar checker proving that the method being developedmay serve as a base for further, commercial exploitation.All these main tasks were very closely related. In this report we would like to summarisethe main ideas of our approach to the problem by concentrating on the second task, i.e. thedescription of a method how to build a practically oriented grammar checker for free-word orderlanguages. We will not address the �rst task which had been already described in reports onlinguistic problems of Czech. 4

Chapter 2Parsing and grammar checking
It is quite common that some of the researchers working in the �eld of natural language parsingexpress the opinion that there is not a substantial di�erence between (robust) parsing andgrammar checking. During our work in the last three years we have come to the conclusionthat the nature of both tasks, although similar, contains also many di�erent features and thatit is necessary to develop special methods and tools in order to solve the problem of reliable,adequate, e�cient and user-friendly grammar checker. The traditional methods of grammarchecking (for example pattern matching or constraint relaxation techniques) and parsing do notprovide a su�cient base for this task, especially when applied to languages with a high degreeof word order freedom. That does not mean that they are not useful, it only means that theyare too weak if they are used as the only means. Constraint relaxation technique is for examplesuitable for checking of agreement errors, patterThe most important part of our work on pivot implementation of a grammar checker is ageneral method how to build a grammar checker for free-word order languages. The core ofour approach is a strategy to try to �lter out unproblematic clauses or sentences with means assimple as possible in order to save the time and resources for more complicated cases.1 Basic di�erences between parsing and grammar checkingThe scope of natural language parsing is very broad. It covers the area from experimental smallscale parsers developed as a support for some very sophisticated high-level linguistic theory topractically oriented systems with a stress on e�ciency and speed, as for example in some systemsdesigned for (machine aided) machine translation. On the other hand, grammar checking is avery particular �eld, where speed and e�ciency are always among the criteria for the usefulnessof the system.Natural language parser is usually a system that either is completely hidden from the user oris designed to be used by a very specialized user - mostly a computational linguist, who needs ascomplex and precise results as possible and usually does not care about the speed or e�ciencyof the computation. The linguist also prefers a certain way of expressing results in the standardform which is common among the community of specialists (for example feature structures,dependency trees etc.). Such a form is usually very complex and contains also redundant data(copying information into heads of constituents in constituent trees) or data which are notrelevant for a given purpose.Grammar checkers are being developed in order to provide an ordinary user of some texteditor with fast and reliable information about the type and location of grammatical (and/orstylistic) errors in the text. This information must be given in a form acceptable to the user.5

6 Chapter 2. Parsing and grammar checkingThe user should not be buried under a heap of messages - sometimes there are more possiblesources of an error (either one violation of a syntactic rule causes more inconsistencies on thesurface level or one surface syntax inconsistency may be caused by the violation of di�erentsyntactic rules). The checker should be able to order the messages (according to some formalcriteria) to give the user only some messages.Another basic di�erence between a parser and grammar checker consists in the size of re-sources used in both systems. While it is quite common to restrict the area of a parser to sometask speci�c domain, which also leads to the use of a restricted domain speci�c dictionary, agrammar checker is always supposed to be able to cover unrestricted text. Similar observationholds with respect to the grammar coverage, but in this case the di�erence might not be socrucial as in the case of lexical coverage. Many of experimental natural language parsers have abroad coverage of the syntax of a given language, but very few of them cover a substantial partof the lexicon of that language.Last but not least is the di�erence in what we expect to get from a parser and from agrammar checker. A syntactic parser is considered to work correctly only when it is able toprovide the user with a complete set of syntactic structures representing all possible readings ofa particular sentence, or just with a subset not containing readings which are inappropriate inthe given context. On the other hand, the grammar checker should issue a reliable informationabout the type and location of a grammatical error(s). That means that for correct sentences wedo not need a complete syntactic parsing, we do need only the result of a syntactic recognition.We think that the above-mentioned di�erences justify the opinion that grammar based gram-mar checking must be handled by special means developed for that purpose.2 Problems to be solvedEvery attempt to create a working prototype of a grammar checker is confronted with a numberof general problems of syntactic parsing, but also with a set of task-speci�c problems.The crucial problem of any grammar checker is the decision about the strategy of identi�ca-tion and localisation of grammatical errors in a text. We have met in principle two strategies,one using the results of unsuccessful parsing (for example in a form of all edges of a chart parser)and trying to guess where the error might be, while the other strategy tries to locate the syn-tactic inconsistencies (syntactic inconsistency is a term used for the surface manifestation of anunderlying error - one error may cause many syntactic inconsistencies) already in the course ofthe parsing process. We have chosen the second strategy because we think that it has certainadvantages especially for free word order languages.The second major problem is a formalism that would be able to provide adequate meansfor syntactic constructions typical for a given language, not only the correct ones, but alsothose describing the most frequent error types. It is of course possible to use one formalism forparsing and then to apply a special formalism for error localization to the (partial) results of theparsing. However, it seems obvious that having two di�erent formalisms for syntactic parsingand for error checking in one system might be ine�cient both from the point of view of buildingand debugging the grammar checker and also from the point of view of its overall performanceand speed.Another big challenge of grammar checking (and also of syntactic parsing in general) is thedevelopment, testing, debugging and maintaining of a large grammar. Many of natural language

2. Problems to be solved 7parsing systems use di�erent kinds of preprocessing. The main work must nevertheless still bedone by one large grammar, in order to capture all possible parses, which might get lost if thegrammar is divided into parts with no overlap of rules between them. This is also one of thereasons why building a large scale grammar is usually a one-man task. There is also anothersource of troubles hidden in a large scale grammar with broad coverage of syntactic phenomenaof a given language, and that is the number of di�erent correct parses. It unavoidably growswith the size of a grammar - when every new rule, covering some marginal phenomenon of agiven language, is added to the grammar, the probability that this new rule will interact withother rules and create new readings of some sentences grows. This might be useful for puresyntactic parsing, but, as we have already mentioned above, for grammar checking it is enoughto get just one parse for a syntactically correct sentence.Building a large scale syntactic dictionary is also a very di�cult task to solve. It mightprobably be easy for pattern matching based approaches to grammar checking, but for theapproaches based on the lexical and syntactic information, the process of providing the dictionaryof the system (used for example for spell-checking) with a reliable set of lexically syntactic datais very long and costly. Especially verbs with their rich valency frames are a real pain. It isclear that a large part of the work on syntactic dictionary of the system must be carried outby hand, but nevertheless it might be possible to automate the process by means of di�erentkinds of machine-readable resources (tagged text corpora etc.) which would provide a basisfor subsequent manual correction of results obtained by the (semi)automatic procedure. Theproblem of creating a large scale syntactic dictionary exceeds the frame of this project and asour experience with previous large scale natural language systems which were being developedin our institute (e.g. RUSLAN - Czech-to-Russian MT system by K.Oliva, see [4]) shows, it isclear that if we wanted to get a reasonable coverage of the lexicon of a particular language, wewould have to join our e�orts with an industrial partner.The reliability of error messages is also one of the areas which might be problematic. Thefact that grammar checker targets the broadest community of text editor users also means thatit should be very carefull in error messages and warnings. We think that the user is moretolerant of errors in complicated sentences which were not discovered by the grammar checker(sometimes even the user is not able to �nd an error in such a sentence) than to error messagesand warnings issued by mistake for simple correct sentences.

Chapter 3Formal DescriptionOf the function and structure of the pivot implementation of agrammar-checkerIn this section we introduce a class of formal grammars and some derived notions capableto describe typical surface syntactic inconsistencies (errors) in free word order languages. Bymeans of these notions we characterize the tasks and the logical structure of the our pilotimplementation of the grammar-checker for Czech.The form of our explication will be as is usual in the theory of formal languages and grammarsand we will try not to be too formal.Direct paradigms for our grammars which we call robust free-order dependency grammars(RFODG) are the (commutative) CF-grammars (see [3]), dependency grammars (see [2]), andcategorial grammars (see [1]).RFODG is to serve for the description of surface syntax; it provides the base of the parsingwith subsequent localization and evaluation of syntactic inconsistencies (errors). We assumethat RFODG follows up with the lexical and morphological analysis being completed. TakingRFODG as the base we formulate the task of individual components of the grammar-checkerand their mutual interaction.The grammar-checker is composed of the following components:a) lexical analysisb) grammar-checking analysis by RFODGc) evaluationComponent b) corresponds in principle an extended and sophisticated parsing. A new deno-tation was chosen so that we could talk about the usual (free) parsing and about the grammar-checking analysis at the same time.Component c) corresponds an evaluation of the results of the grammar-checking analysis inorder to estimate the localization of the relevant syntactic inconsistencies and to estimate thedegree of their relevance.1 Lexical analysisWe assume that the result of the lexical and morphological analysis for each word form is a�nite set of symbols representing lexical and morphological properties of the word form. Wefurther assume that formal syntax is connected with the lexical analysis in that the terminalsymbols of the formal grammar accounting for syntax are the symbols representing lexical andmorphological properties of the word forms. 8

2. Robust Free-Order Dependency Grammars 9Formally: Let us have a �nite set of lexical categories (terminals) T and a set of word formsA. We say that we have a lexical analysis La on A and T , if we have a function La : A! P(T).P(T) means the set of subsets of T .Lexical analysis La (La-analysis) of the word form b 2 A is de�ned as the pair (b; La(b)).La-analysis of the string w of word forms a1a2 : : : an 2 A� is de�ned as the string of pairsLa(w) = (a1; B1)(a2; B2) : : : (an; Bn), where La(ai) = Bi.2 Robust Free-Order Dependency GrammarsThe notion of RFODG is an enhancement of a free-order dependency grammar (see [11]). Wesuppose that RFOD-grammar is de�ned simultaneously with the corresponding lexical analysis.There are the following types of classi�cation of the set of symbols which are used byRFODG:a) terminals and the other symbols (nonterminals)b) deletable and nondeletable symbolsc) positive and negative symbols.The sets under a) have the usual meaning and, furthermore, a) speci�es the relation ofRFODG to the given lexical analysis La. The terminals of RFODG are the lexical categories ofLa.The sets under b) and c) serve for the classi�cation and localization of syntactic inconsis-tencies.De�nition. Let La be a lexical analysis on A and T . Robust free-order dependency grammar(RFODG) is a 5-tuple (Nd;Dl; T; St; P), where Nd is the set of nondeletable symbols, Dl is theset of deletable symbols, and the union of Nd and Dl is denoted as V . T is the set of terminals(T � V), V �T is the set of nonterminals, St � V is the set of root-symbols (starting symbols),and P is the set of rewriting rules of two types of the form:a) A !X BC, where A;B;C 2 V , X is denoted as the subscript of the rule, X 2fL;R;LP;RPg, and if X 2 fL;LPg, then C 2 Dl, and if X 2 fR;RPg, then B 2 Dl;b) A! B, where A;B 2 V .We suppose that V = Vp [Vn, where Vp is the set of positive (correct) symbols, and Vn isthe set of negative symbols (negative symbols serve also as error messages).In the following explanation the RFODG is considered to be an analytic (recognition) gram-mar.The occurrence of the letter L in the subscripts of the rules means that the �rst symbol onthe right-hand side of the rule is considered dominant, and the other dependent.The occurrence of the letter R in the subscripts means that the second symbol on the right-hand side of the rule is considered dominant, and the �rst one dependent.If a rule has only one symbol on its right-hand side, we consider the symbol as dominant.

10 Chapter 3. Formal DescriptionApplying such a rule we rewrite an occurence of the right-hand side symbol by the left-handside symbol.We work with the following restriction: If the dominant symbol of a rule is deletable, thenalso the symbol on the left-hand side of the rule is deletable.A rule whose right-hand side contains two symbols is applied (for a reduction) in the followingway:The dependent symbol is deleted, and the dominant one is rewritten (replaced) by the symbolstanding on the left-hand side of the rule.The rules A !L BC, A !R BC, can be applied for a reduction of a string z to any of theoccurrences of symbols B;C in z, where B precedes C in z.The rules A !LP BC, A !RP BC can be applied for a reduction of a string z to anyneighbouring occurrences of symbols B;C in z, where B precedes C in z.We introduce a notion of Tree by G. The Tree should map the essential part of a history ofdeleting dependent symbols and rewriting dominant symbols, performed by the rules applied. Bymeans of Tree we can introduce another relevant notion of dependency tree and some (relevant)types of restrictions of applications of rules of G.There are some di�erences between Tree and a standard derivation tree of CFG:� A nonterminal (constituent) of a Tree may cover a discontinuous subset of the inputsentence.� The terminals can be used to create any type of nodes, not only the leaves.� Each node has a �xed horizontal position, which is shared by exactly one leaf of the Tree.This property of Trees is used for the localization of syntactic inconsistencies in analyzedsentences.A Tree will be a tree with a root which has two types of edges:a) vertical: these edges correspond to the rewriting of a dominant symbol by the symbolwhich is on the left-hand side of the rule used. The vertical edge links the node containingthe original dominant symbol with the node containing the symbol from the left-hand sideof the rule used.b) oblique: these edges correspond to the deletion of a dependent symbol. The node with thedependent deleted symbol and the node containing the symbol from the left-hand side ofthe rule used are linked by this edge. The oblique edges describe, in fact, the dependenciesbetween the corresponding terminals.The degree of branching of a Tree is not greater than 2.The nodes of Trees are introduced in such a way that the set of nodes of a Tree Tr is su�cientto represent the dependences in Tr.a) A node U of a Tree Tr is a 4-tuple [A; i; j; k], where A 2 V is the symbol in U , i; j arenatural numbers, k is a natural number or 0. Number i is called horizontal index of U ,

2. Robust Free-Order Dependency Grammars 11

[a,1,1,1] [a,2,1,2] [b,3,1,3] [b,4,1,4] [c,5,1,3] [c,6,1,4][T,4,2,1][T,3,2,2][S,2,2,1][S,1,2,1][S,1,3,0]

Figure 3.1: A Tree Tr1 generated by the grammar G1j is called vertical index, k is called domination-index. The horizontal index expresesthe correspondence of U with the i-th input symbol, the vertical index corresponds tothe length of the path leading bottom-up from the leaf with the horizontal index i to U .The domination-index either represents the fact that any edge does not start in U , or itrepresents an edge starting in U .b) Let U = [A; i; j; k] , U being a Tree Tr. If j > 1, then there is in Tr exactly one node U1of the form [B; i; j � 1; i]. The pair (U1; U) creates a vertical edge of Tr.c) U = [a; i; j; k] is a leaf of a Tree Tr, if and only if a 2 T and j = 1.d) Let U = [A; i; 1; k] , U being a leaf of a Tree Tr. If i > 1, then in Tr there is exactly oneleaf of the form [c; i � 1; 1;m].e) The root of Tr is the single node with the domination-index equal to 0.f) If 0 6= k 6= i and a node U of the form [A; i; j; k] is in Tr, then an oblique edge leads(bottom up) from U (dependent node) to its mother (dominant) node with the horizontalindex k.g) If a node U of the form [A; i; j; i] is in Tr, then a vertical edge leads (bottom up) from Uto its mother node with the same horizontal index i.Example. Let the following grammar G1 be a RFODG. G1 = (N1;Dl1; T1; fSg; P),T1 = fa; b; cg, N1 = fa; bg, Dl1 = fc; T; Sg, P = fS !L aT jSS; T !L bcg. For the sakeof simplicity we suppose that the corresponding lexical analysis is given in the following way:f(a; fag); (b; fbg); (c; fcg)g:Conventions. T R(G) denotes the set of Trees rooted in a symbol from St, created by G.If Tr 2 T R(G), we can say that Tr is parsed by G.If Tr 2 T R(G), and Tr contains only positive symbols (from Vp), we say that Tr is positivelyparsed by G. The set of positively parsed trees by G is denoted by T Rp(G).If Tr 2 T R(G) , but Tr =2 T Rp(G) , we say that Tr is robustly parsed by G.

12 Chapter 3. Formal Description

a a b b c c[c,6,4][c,5,3][b,4,1][b,3,2][a,2,1][a,1,0]

Figure 3.2: The dependency tree corresponding to the Tr1Now we introduce contracted trees and dependency trees parsed from a string of word forms.In fact, we get a dependency tree by the contraction of all the vertical edges of some Tree andby the substitution of symbols in the nodes by the related word form.De�nition. Let Tr 2 T R(G). Cn(Tr), the contracted tree of Tr, is de�ned as follows: Theset of nodes of Cn(Tr) is the set of 4-tuples [a; b; i; k] for which there is a leaf u of Tr of theform [a; i; 1; j], and the top node of the vertical path starting in u has the form [b; i;m; k], wherei 6= k. The edges of Cn(Tr) correspond (one to one) to the oblique edges of Tr. They are fullyrepresented by the domination-indices of nodes of Cn(Tr).We write Cn(G) = fCn(Tr);Tr 2 T R(G)g.Let La be the corresponding lexical analysis to G, La : A ! P(T). Let Cn(Tr) containexactly n nodes, and w = a1a2 : : : an, w 2 A�, and La(ai) = Bi, bi 2 Bi, and let [bi; ci; i; ki]denote the i-th node of Cn(Tr) for i = 1; : : : ; n. In such a case we say that the string w isparsed into a dependency tree dT (w; Tr) by G. We write w 2 L(G). Thus L(G) means the setof strings (sentences) parsed into some dependency tree by G.It remains to de�ne the dependency tree dT (w; Tr) corresponding to the above assumptions.The set of nodes of the dT (w; Tr) is the set of triplets [ai; i; ki], where [bi; ci; i; ki] is a node ofCn(Tr). The edges of the dT (w; Tr) correspond (one to one) to the edges of the Cn(Tr). Thatmeans if ki 6= 0 (i.e. if the node is not the root) then there is an edge leading from the node[ai; i; ki] to the node [aki ; ki; kki].We denote as dT (w;G) the set of dT (w; Tr), where w is parsed into dT (w; Tr) by G. ThedT (G) denotes the union of all dT (w;G) for w 2 L(G).We can also write T R(w;G) = fTr; dT (w; Tr) 2 dT (w;G)g. We say that T R(w;G) is theset of trees parsed from w. Similarly Cn(w;G) = fCn(Tr);Tr 2 dT (w;G)g.We say that w is positively parsed by G if there is a positively parsed Tree in T R(w;G).Lp(G) denotes the subset of L(G) formed by the sentences positively parsed by G.We say that a sentence w is robustly parsed if it is parsed, but not positively parsed.We say that two trees (Trees, dependency trees, contracted trees) Tr1, Tr2 are structurallyequivalent if it is possible to apply on the set of their nodes a one-to-one mapping f such that

2. Robust Free-Order Dependency Grammars 13from the f(u) = v follows that the indices of u and v are identical. Thus u and v may di�eronly in the symbols they contain.In the following subsections we are going to de�ne several types of measures and limitationsin order to be able to distinguish the free parsing from the grammar-checking analysis and tocharacterize di�erent designs of the grammar-checking analysis.2.1 Measures and restrictions on treesIn the following de�nition we introduce the notion of the coverage of a node of a Tree.De�nition. Let Tr be from T R(G). Let u be a node of Tr.We denote as Cov(u; Tr) the set of horizontal indices of nodes from which a path (bottomup) leads to u (Cov(u; Tr) always contains the horizontal index of u). We say that Cov(u; Tr)is the coverage of u (by Tr).Example. The coverages of the nodes of Tr1 from Figure 1 are shown in the followingexample:Cov([a; 1; 1; 1]; T r1) = f1g,Cov([a; 2; 1; 2]; T r1) = f2g,Cov([b; 3; 1; 3]; T r1) = f3g,Cov([b; 4; 1; 4]; T r1) = f4g,Cov([c; 5; 1; 3]; T r1) = f5g,Cov([c; 6; 1; 4]; T r1) = f6g
Cov([T; 4; 2; 1]; T r1) = f4; 6g,Cov([T; 3; 2; 2]; T r1) = f3; 5g,Cov([S; 2; 2; 1]; T r1) = f2; 3; 5g,Cov([S; 1; 2; 1]; T r1) = f1; 4; 6g,Cov([S; 1; 3; 0]; T r1) = f1; 2; 3; 4; 5; 6gNow we are going to de�ne three (complexity) measures of non-projectivity, using the notionof coverage.De�nition. Let Tr be from T R(G). Let u be a node of Tr, Cov(u; Tr) = fi1; i2; : : : ; ing,and i1 < i2; : : : ; in�1 < in. We say that the pair (ij ; ij+1) forms a gap if 1 � j < n, andij+1 � ij > 1. As Ng(u; Tr) we denote the number of gaps in Cov(u; Tr). Ng(Tr) denotes themaximum from fNg(u; Tr);u 2 Trg. We say that Ng(Tr) is the local number of gaps of Tr.Let (i; j),(k; l) be gaps of some nodes. If i � k < l � j or k � i < j � l holds, we say that(i; j), and (k; l) are dependent. The number of the maximal set of independent gaps of the nodesof the Tr is denoted as Tng(Tr). We say that Tng(Tr) is the global number of gaps of Tr.We can easily see that Tng(Tr) � Ng(Tr) for any Tr.De�nition. Let Tr be from T R(G). Let u be a node of Tr, Cov(u; Tr) = fi1; i2; : : : ; ing,and i1 < i2; : : : ; in�1 < in. As Sng(u; Tr) we denote the maximal number from the set fij+1 �(ij + 1); 1 � j < ng. Sng(Tr) denotes the maximum from fSng(u; Tr);u 2 Trg. We say thatSng(Tr) is the size of gaps of Tr.Example. Let us take again the Tree Tr1 from previous examples. The following coveragescontain a gap:Cov([T; 4; 2; 1]; T r1) = f4; 6gCov([T; 3; 2; 2]; T r1) = f3; 5gCov([S; 2; 2; 1]; T r1) = f2; 3; 5gCov([S; 1; 2; 1]; T r1) = f1; 4; 6g has one gap (4,6),has one gap (3,5),has one gap (3,5),has two gaps (1,4) and (4,6).We can see that Tr1 has three gaps (1,4),(3,5),(4,6), and Ng(Tr1) = 2, Tng(Tr1) = 3, and

14 Chapter 3. Formal Description

[a,1,1,1] [b,2,1,2] [c,3,1,2] [a,4,1,4] [b,5,1,5] [c,6,1,5]
[S,1,2,1][S,1,3,0]

[T,2,2,1] [T,5,2,4][S,4,2,1]
Figure 3.3: A projective Tree Tr2 parsed by the grammar G1Sng(Tr1) = 2.Convention. If Sng(Tr) = Tng(Tr) = Ng(Tr) = 0, we say that Tr is projective. In theopposite case we say that Tr is non-projective.De�nition. Let Tr 2 T R(G). We say that a node of Tr is negative, if it contains a negativesymbol. As Rob(Tr) we denote the number of negative nodes in Tr. We say that Rob(Tr) isthe degree of robustness of Tr.De�nition. Let us denote as TR(w;G; i; j; k) the set of trees from T R(w;G) such that theirvalue of the Ng function does not exceed i, the value of the Rob function does not exceed j, andthe value of the Tng function does not exceed k.2.2 Free parsing and grammar-checking analysisAn important idea of our approach to grammar-checking analysis may be demonstrated usingan example of a Czech sentence. Let us take the sentence"Kter dvata chtla dostat ovoce?"(Word-for-word translation: Which girls wanted [to] get fruit?)Some of the native speakers consider this sentence to be correct, some say that it is incorrectand most of them are uncertain, but they usually say that this sentence is neither correct norincorrect, it is simply weird. The problem is that the sentence has at least two readings. One iscorrect (but non-projective), with the pronoun "Kter" [Which] depending on the noun "ovoce"[fruit]. The other reading contains a syntactic inconsistency between the pronoun "Kter" [Which]and the noun "dvata" [girls] - these two words disagree in gender.A typical syntactic parser will prefer one of the possible readings of the above-mentionedsentence - probably the reading not containing an error. This behaviour is natural - if thereis a correct parse, the parser should be able to �nd it and if it really �nds it, then there is noreason to provide any other solution. A grammar checker, on the other hand, has to take intoaccount that sometimes a sentence which is considered to be syntactically incorrect by mostof native speakers may have a more or less obscure reading which is correct from the point of

2. Robust Free-Order Dependency Grammars 15view of formal syntax. Native speakers of a particular language usually take into account notonly the formal syntax of the sentence when they decide about the grammatical correctness orincorrectness. Even in some grammar books syntactic rules are described by means of semantics,pragmatics or extralinguistic knowledge.One of the problems of grammar checking lies in identi�cation of improper combinationsof verbs and prepositional phrases. A number of verbs requires one of its participants to be aprepositional phrase with a particular obligatory preposition. Since every preposition may servealso for prepositional cases of free modi�ers (adjuncts), which are acceptable with any verb, itis impossible to check incorrect prepositional cases of participants on a purely syntactic basis.Almost every participant may be omitted in Czech (with respect to given context), so without asemantic or even pragmatic information it is not clear whether the particular sentence is corrector not. Let us illustrate these facts on the following examples (word-for-word translation):Karel mu[dat.] pedstavil Milenu[acc.].(Karel him introduced Milena - Karel introduced Milena to him)Karel ho[acc.] pedstavil Milen[dat.].(Karel him introduced [to] Milena - Karel introduced him to Milena)*Karel ho[acc.] pedstavil Milenu[acc.].(Karel him introduced Milena - Karel introduced him Milena)In this case the grammar checker is able to issue an error message that the sentence containsone extra object or one of the objects is in a wrong case. On the other hand, no such result ispossible in the second example:Shodli jsme se jen na[loc.] jedinm een.[Agreed we ourselves only on one solution. - We agreed only on one solution]Shodli jsme se jen na[acc.] chvli.[Agreed we ourselves only for [a] while - We agreed only for a while]*Shodli jsme se jen na[acc.] sestru.[Agreed we ourselves only for sister - We agreed only on a sister]The third variant of this example cannot be distinguished from the second one by means ofsurface syntax only.For us the only way how to solve this problem is to stay in the �eld of (surface) syntax andto try to use approaches slightly di�erent from classical syntactic parsing in order to provideas much information about a particular input sentence as possible. By means of the de�nedcomplexity measures for Trees we are able to use a variety of settings in the course of grammar-checker analysis in order to capture the subtle di�erences between correct, incorrect and "weird"sentences.Convention. As free parsing of a given string of word forms w we consider the computationof the set T R(w;G).The experiments done with free parsing and with the grammar being developed have led usto the formulation of the following limitation:

16 Chapter 3. Formal DescriptionIn any alternative of the grammar-checking analysis we can con�ne ourselves to those com-putations of a tree for which the value of the Ng function is not greater than 1.We give below three variants of the grammar-checking analysis. The three variants werecreated as the result of an endeavour to decrease the inadequate ambiguity of the free parsingand to formulate reasonable limitations for the degree of free word order in Czech and as theresult of an endeavour to speed up the grammar-checking analysis.The second phase in all three types of the grammar-checking analysis is formulated in sucha way that we could account for the fact stressed in the previous section: it is often the casethat the agreement errors in Czech sentences can manifest themselves as correct non-projectiveconstructions. The major di�erence between the single variants consists in the formulation oftheir second phase, and third phase. We hope that the proposed experiments with the variantswill show that the variants create an improving sequence regarding the adequatness and thespeed of computation.2.3 The �rst variant of the grammar-checking analysisThe �rst variant of the grammar-checking analysis is divided into three phases:a) Positive projectiveb) Positive nonprojective, negative projectivec) Negative nonprojectiveIn the �rst phase (a) , the given string w being analysed is tested whether the setTR(w;G; 0; 0; 0), or, in other words the set of projective positively parsed trees, is empty. Ifthis set is non-empty, the grammar-checking analysis ends, w is considered correct and thegrammar-checker is no more preoccupied with w.If the set TR(w;G; 0; 0; 0) is empty, the second phase of the grammar-checking analysisstarts.In the second phase (b) , it is tested whether the set TR2, which means the union of the setsTR(w;G; 1; 0; j) and TR(w;G; 1; i; 0) over all natural numbers i and j, is nonempty. If TR2 isnonempty, it is handed over to be evaluated. In case that TR2 is empty, the third phase of thegrammar-checking analysis starts.In the third phase (c) , it is tested whether the set TR3 = Tr(w;G) is nonempty. If TR3is nonempty, it is handed over to be evaluated. If TR3 is empty, the message is handed overinforming that the grammar-checking analysis failed.The �rst variant of the grammar-checking analysis was implemented almost two years ago.We have a lot of experience with it. It allowed us to design the next two variants. We will seethat they take over some tasks which according to the �rst variant should be done in the courseof the evaluation.2.4 The second version of the grammar-checking analysisThe second variant of the grammar-checking analysis is again divided into three phases a),b),c).The only di�erence from the previous variant lies in the second and third phase. Therefore we

2. Robust Free-Order Dependency Grammars 17omit here the description of the �rst phase.The second phase b): Let min be the smallest number j such that TR(w;G; 1; j; 0) is non-empty. If min exists, then in the second phase the set of trees TR2, is computed and handedover to the evaluation. In this case TR2 means the union of the set TR(w;G; 1;min; 0) and ofthe sets of the form TR(w;G; 1; 0; i) without any limitation on i. In case min does not exist,the third phase of the grammar-checking analysis starts.Let m3 be the smallest number i such that TR(w;G; 1; i; j) is non-empty for some j. Thenin the third phase the set of trees TR3 is computed and handed over for the evaluation. In thiscase TR3 means the union of the sets of the form TR(w;G; 1;m3; j).If Tr(w;G) is empty, the message is handed over that the grammar-checking analysis failed.The second version uses the measure Rob for the formulation of its limitations. In the thirdversion the measure Tng will be also used.
2.5 The third version of the grammar-checking analysisThe third variant of the grammar-checking analysis is again divided into three phases a),b),c),and the only di�erences from the previous variant are in the second and the third phases. Despitethis fact we describe all three phases here.In the �rst phase it is tested whether for the given analysed string w the set TR(w;G; 0; 0; 0),or, in other words, the set of projective, positive trees, is empty. If this set is non-empty, thegrammar-checking analysis ends, w is considered correct and the grammar-checker is no morepreoccupied with w.If the set TR(w;G; 0; 0; 0) is empty, the second phase of the grammar-checking analysisstarts.Let min be the smallest number j such that TR(w;G; 1; 0; j) is non-empty. If min exists,then in the second phase the set of trees TR2 = TR(w;G; 1; i; j), where i+j � min, is computedand handed over to be evaluated. In case min does not exist, the third phase of the grammar-checking analysis starts.Formulating the goals of the third phase we shall consider the lexicographical ordering onthe pairs of numbers: Let (i; j) and (k; l) be the pairs of numbers. We shall write (i; j) < (k; l),if i < k, or i = k; j < l.Let (im; jm) be the minimum pair such that TR(w;G; 1; im; jm) is non-empty. Then in thethird phase the set of trees TR3 = TR(w;G; 1; im; jm) is computed and handed over to beevaluated. If the minimum pair does not exist, the message is handed over that the grammar-checking analysis failed.We omit here the versions of grammar-checking analysis which used the meassure Sng.However, we want to realize some such versions in the future.The disscussion in the next subsection serves to introduce concepts which are used to for-mulate the tasks of the evaluation module.

18 Chapter 3. Formal Description2.6 Components of syntactic inconsistenciesWe assume that together with any RFOD-grammar G there is given a certain classi�cation ofits negative symbols. The following description of the classi�cation is not formal. It shouldshow the motivation for the design of the negative rules, and also its impact on the localizationof the corresponding inconsistencies. We mainly want to stress a di�erent nature of agreementinconsistencies compared to the other types of inconsistencies. We consider the agreement errorsto be typical violations of the rules of grammar of Czech. That is why agreement errors are paiddue attention even at this quite general level.Classi�cation of negative nonterminalsa) A negative nonterminal signals the assumption that no positive rule can be applied thatwould rewrite the nondeletable symbol (from Nd) which is dominated (being rewritten) by thisnegative nonterminal to some deletable symbol (from Dl). It is further assumed (to distinguishthis case from the case c)) that the nonterminal does not signal an agreement error or an errorin morphology. The expected correction is an addition of a dependent word form to the stringbeing analyzed. In this case, one source of inconsistency is directly determined (i.e. the symbolwhich cannot be rewritten). Because of the free word order in Czech we consider the localizationof the missing dependent word form as ungrounded.b) A negative nonterminal signals the assumption that no positive rule can be applied thatwould delete a deletable symbol (from Dl) dominated by this negative nonterminal. It is againassumed (to distinguish this from the case c)) that this fact cannot be corrected by a merechange of morphology of the word forms in the sentence. The expected correction is a deletionof the subtree whose governing node is the positively deletable symbol.c) A negative nonterminal signals an agreement inconsistency or some other inconsistencythat can be corrected only by morphological changes of the word forms in the analysed string.We denote such a nonterminal as mf-symbol.In the present section we deal only with the case c). We assume that we have such agrammar that uses morphological information as an integrating attribute, and that the resultof the integration of the morphological information from various branches is their conjunction.On this assumption, the syntactic inconsistencies will be manifested by the mf-symbol whichwill appear, due to the stepwise integration of morphological features, in the node which willmanifest itself as inconsistent with the node to which an edge leads. This node does not needto correspond at all to the word form which would contribute to this inconsistency. However,there is one certainty. Out of all nodes which contribute to the signalled inconsistency, there isa path leading up to the node which is assigned the pertaining mf-symbol.The previous observation leads us to the following requirement which serves for the localiza-tion of the source of the signalled agreement inconsistencies. We assume that the set of rules isdivided into two subsets: the rules that transfer and those that do not transfer the agreementinformation.For the sake of a more exact characterization of our suggestions for localizing the sources ofagreement inconsistencies we are going to introduce the following concepts.De�nition. We assume that the set of rules of the grammar G is divided into two sub-sets: morphologically sensitive (mf-sensitive) rules and morphologically non-sensitive (mf-non-sensitive) rules. The rules which delete negative symbols are classi�ed as mf-non-sensitive rules.

2. Robust Free-Order Dependency Grammars 19The rule which has a mf-symbol on the left-hand side is classi�ed as a mf-sensitive rule.We call the edges of the tree which come into being by the application of the mf-sensitive rulesmf-sensitive edges, the other edges are mf-non-sensitive.Let w 2 A�, and Tr 2 T R(w;G). Let Tr be parsed robustly. Let u be the node Trcontaining a mf-symbol. The mf-component of the Tree Tr corresponding to u will denote thesubtree of Tr having the following properties:a) it contains u and the edge which is incident to it (if it is not the root),b) it contains all nodes from which a path leads to u via the mf-sensitive edges.The mf-component of the Cn(Tr) resp. dT (w; Tr) is the subtree of the Cn(Tr) resp.dT (w; Tr) corresponding to the mf-component of the Tr.We will say that G with the speci�ed mf-symbols and mf-rules is mf-consistent, if for everyTr 2 T R(w;G) and its mf-component mfc there exists w1 2 A� such that there exists Tr1 2dT (w1; G) that is structurally equivalent to Tr, where Tr1 di�ers from Tr in the symbols of themfc component only. Tr1 has only positive symbols in the nodes corresponding to mfc. Also w1and w di�er only in the word forms corresponding to the nodes from mfc and, moreover, theseword forms di�er only in their morphology.Remark. Our goal is a construction and debugging of an adequate mf-consistent grammarG (RFODG) for Czech with a special emphasis laid on an adequate agreement checking.2.7 EvaluationEvaluation is a part of the system following the grammar-checking analysis. In this subsectionwe describe a version of evaluation which would �t together with the second and third variant ofthe grammar-checking analysis. The implementation of a version �tting together with the �rstvariant of the grammar-checking analysis is described in the next section.The function of the evaluation module depends on which phase of the grammar-checkinganalysis it followed by.If the grammar-checking analysis ends up after the �rst phase, the evaluation module is notinvoked at all because the analysed string is considered correct.If the grammar-checking analysis ends up after the second phase, then the analysis providesthe sets of trees TR2. In this case, the �rst task of the evaluation module is to check whether itis possible for the non-projective positive trees be also considered as an expression of an error inagreement in the projective readings of the analysed string w. The evaluation selects from theset TR2 a subset of those trees which do not contain negative symbols other than mf-symbols.This set is denoted as TR-mf. The dependency trees corresponding to TR-mf with markedmf-components will be enumerated (so that they could be drawn). These trees contain possibleagreement errors. In case TR-mf is empty, the evaluation will not return any warning, whichmeans that the analysed string is considered to be correct.If the grammar-checking analysis ends in its third phase, it provides at the output theset of trees TR3 for evaluation. If the set TR3 is not empty and is su�ciently small, theevaluation enumerates dependency trees containing marked negative nodes (the relevant nodeof the contracted tree carries the negative symbol) and marked mf-components. The set TR3 isconsidered small if its cardinality is not greater than e.g. 5.

20 Chapter 3. Formal DescriptionIf the cardinality of the set TR3 is greater, it is necessary to reduce the number of messagesabout possible grammatical inconsistencies and to order them in an adequate manner in orderto provide the user with most probable error message �rst.There are certain cases when the reduction of the number of error messages is quite safe. Thisis for example the case of possible compression of the information about the mf-components. Forthe dependency trees with the same structure (i.e. the same dependency trees which resultedfrom di�erent Trees) it is possible to present integrated mf-components.De�nition. An edge of a dependency tree from dT (w;G) is a mf-marked edge, if it is anedge of some mf-component of a dependency tree with the same structure (the requirement forthe same structure can be omitted in another, less re�ned variant of integrated components).For a dependency tree dT , its integrated mf-components are the maximal contiguous subtreesformed by mf-marked edges.In case that the set TR3 or TR2 is big, the evaluation gives the sequence of dependency treeswith integrated mf-components and with marked nodes, that do not belong to any integratedmf-component and therefore corresponds to some negative symbol other than a mf-symbol. Thesequence of presented dependency trees is ordered according to the following rules. The priorityof rule applications is given as follows:a) The smaller the number of negative nodes not belonging to some integrated mf-componentcontained in Tr , the better is the position of Tr in the list.b) The smaller number of integrated mf-components Tr contains, the better is the positionof Tr in the list.For the ordering of dependency trees we can consider even more sophisticated criteria. How-ever, we have not speci�ed them so far.If the grammar-checking analysis ends up unsuccessfully, no tasks are performed by theevaluation module and the user receives a warning that the analysis failed. The evaluation ofpartial results is not yet implemented. Such an evaluation is sensible only with a lot of experiencewith a stabilized grammar tested on a representative, su�ciently large samples of texts. Theevaluation of partial results without that experience may lead to incorrect conclusions.It is, however, questionable whether after having a lot of experience it is not easier tocomplete the grammar so that it would cover all (theoretically possible) alternatives of inputstrings. However, this approach may be dubious because in this case the grammar will probablybe too large and ambiguous. This would mean that the third phase of the grammar-checkinganalysis driven by such a grammar would be probably too lengthy.3 Implementation of the evaluating moduleThe current implementation of a prototype of the module for error evaluation is realised as anindependent Prolog program, which gets its input �les in o�-line mode from the previous phaseof computation, i.e. from the �rst or the second version of the grammar-checking analysis.The input: The results of the analysis of a single sentence are recorded in a �le, which isthe output of the grammar-checking analysis phase. The �le contains all the items which havebeen derived for the given sentence. The items contain all usable information, especially theinformation about error edges with the identi�cation (i.e. number) of the error.

3. Implementation of the evaluating module 21The output: The error evaluation can end up with three di�erent results:a) No errors: The whole sentence was successfully parsed and there is at least one treecontaining no error sign (negative symbol).b) No complete derivation: If no tree for the whole sentence can be derived despite theapplication of negative rules, i.e. the analysis failed, the prototype does not issue any speci�cinformation about errors.c) List of errors: Some derivation trees for the whole sentence were found, but each of themcontains at least one error.The cases a) and b) give no speci�c information and can be identi�ed in the course of theprevious phase of processing. Therefore it is not necessary to start the error evaluation.Evaluation procedure:From the set of complete trees found by the analysis, the trees with the minimal numberof error edges are selected and the error edges are assigned the following information: kind oferror, superordinate and subordinate words.Observations, advantages and disadvantages:{ If the same error edge occurs in more trees which have a di�erent structure, the edge islisted only once.{ In some cases, e.g. in coordination, techniques used in the prototype appeared to be tooweak, the description of errors was too imprecise. From this it follows that stronger methodslike a concept of the error component are necessary (see the previous section).The �rst tests showed that the obtained descriptions of errors are relatively precise andenable the user a good localisation and identi�cation of errors. In some cases more messagesabout one error are given.Possible improvements of the prototype:{ The insertion of modules which should decrease the ambiguity of results by simulating thethird version of the grammar-checking analysis.{ Despite the fact that the analysis failed as a whole in case b) it is sometimes possible toidentify certain types of errors, i.e. the applications of the negative rules, in "su�ciently big"subtrees.{ The concept of an error component is not implemented in the prototype.

Chapter 4Complex sentences vs. long phrases
Whenever we leave the ground of arti�cial examples of the type "John loves Mary" when writinggrammars and building syntactic parsers of natural languages and whenever we start using theinput data for example from some text corpora, we cannot avoid a wide range of problemswhich are not present in favourite "linguistic" examples. The speci�c type of problems dependson the type of the chosen text. It is clear that in technical texts there are speci�c syntacticproblems di�erent from those encountered in newspaper articles. Nevertheless there is oneproblem probably common to all types of text - sentences from the real text are substantiallylonger than hand-crafted examples often used by linguists.With the growing length of sentences parsing will be more complex with respect both to thelength of the processing and to the number of resulting syntactic structures. Let us demonstratethe problem on a sample sentence from the corpus of Czech newspaper texts from the newspaperLidov noviny. Let us take the sentence:"KDS nepedpokld spoluprci se stranou pana Sldka a nen pravdou, e pedseda kesanskchdemokrat pan Benda v telefonickm rozhovoru s Petrem Pithartem prosazoval ing. Dejmala dofunkce ministra ivotnho prosted."(Word for word translation: "CDP [does] not suppose cooperation with party [of] MisterSldek and [it] isn't true, that chairman [of] Christian democrats Mister Benda in telephone dis-cussion with Petr Pithart enforced ing. Dejmal to function [of] minister [of] life environment.")In this basic form of the sentence, which is an exact transcription of the text from thecorpus, the processing takes 13,07s by the positive projective phase of our parser and it provides26 di�erent variants of syntactic trees. During the processing there were 2272 items derived.The testing of this sentence and also of all the following ones was performed on Pentium 75MHzwith 16MB RAM (this data concern experiments with an older implementation of our parser).Such a relatively large number of variants is caused by the fact that our syntactic analysisuses only purely syntactic means - we do not take into account semantics or textual or sententialcontext. This is clear especially when adding free modi�ers into the tree of computation, wherefor instance free modi�ers at the end of our sample sentence create a great number of variantsof syntactic structures and thus make the processing longer and more complicated. In order todemonstrate this problem we will take this sentence and modify it trying to �nd out what themain source of ine�ectiveness of its parsing is.If we look more closely at the number of ambiguities present with individual words, we noticethat the most ambiguous word is the word (abbreviation) "ing." This word form is the same inall cases, genders and numbers. If we substitute this abbreviation by the full form of the word("inenra" [engineer - [gen.]]) we get the following results: the sentence is processed 8,95s, thenumber of variants decreases by four (22) and the number of derived items is, of course, also22

23
pedsedademokratkesanskch

panBenda
prosadilv rozhovorutelefonickm

s
PetremPitharteminenra

Dejmaladofunkceministra
ivotnhoprosted����

@@@@����������� ����LLLLHHHHHHH@@@@���� ����LLLL
@@@@ LLLLLLLL@@@@�����

XXXXXXXXXXXXX```````````````̀

Figure 4.1:smaller (1817). This speeding up would be even greater would we have worked with a negativeor a nonprojective variant of the parser.The next step is to delete another groups of words from the input sentence. Among thesuitable candidates there is, for example, the prepositional phrase "v telefonickm rozhovoru"(in [the] telephone discussion). This phrase can be easily checked for grammatical correctnesslocally, because it has clear left and right borders (prepositions "v"and "s", respectively). We caneasily solve here the usual problem of nominal groups, namely the problem where the nominalgroup ends on the right hand side. In general, we need to parse the whole sentence in order toget this information, but in some speci�c cases we can rely only on the surface word order.After we had deleted this phrase, the processing time went down to 8,79s, the same numberof syntactic representations as in the previous case was derived (22) and the number of items wasslightly lower (1789). This phrase is therefore certainly not the main source of ine�ectivenessin parsing. In order to speed up the processing even more we have to use another type ofsimpli�cation.The �rst step of simplifying the original input sentence represented almost 50a cosmeticchange from abbreviation to full word form. From the point of view of localization of grammaticalinconsistencies we can proceed even farther - the group title+surname in fact represents onlyone item; if we remove titles preceding surnames we do not change syntactic structure of thesentence. It is locally only a tiny bit simpler. When we look more closely at the resultingsyntactic representation of the previous variants of the input sentence we may notice that theword "inenra" [engineer[gen.]] �gures (inadequately, of course, in this case) also as a right-handattribute to the word "Pithartem[instr.]", as it is shown in the �gures 4,5 and 6 (for the sake ofsimplicity we demonstrate only the relevant part of derivation trees).Let us remove the word "inenra" from the input sentence altogether. This time the processingtime is only 3,74s, only 10 structures are created and 1021 items are derived. Another logical

24 Chapter 4. Complex sentences vs. long phrases

pedsedademokratkesanskch
panBenda

prosadilv rozhovorutelefonickm
s
PetremPithartem

inenraDejmala
dofunkceministra

ivotnhoprosted����
@@@@����������� ����LLLLHHHHHHH@@@@���� ����

@@@@ LLLLLLLL@@@@�����

```````````````̀
eeee����

Figure 4.2:

pedsedademokratkesanskch
panBenda

prosadilv rozhovorutelefonickm
s
PetremPitharteminenraDejmala dofunkceministra

ivotnhoprosted����
@@@@����������� ����LLLLHHHHHHH@@@@���� ����

@@@@ LLLLLLLL@@@@�����

XXXXXXXXXXXXX```````````````̀����

Figure 4.3:



25step is to remove all other �rst names and titles which are placed immediately in front of theirgoverning words. Those words are "pana" [mister [gen.]], "pan" and "Petrem". The claim thatthe �rst two words are unambiguous is supported by the fact that the form of the word "pn"[mister] is di�erent in Czech in case the word is "independent" and in case it is used as a title(pna vs. pana [gen.,acc.], pn vs. pan[nom.]). When we make this change we gain more than501,71s, also the number of resulting structures is a half of the original number (5) and only 587items are derived. Another change we would like to demonstrate is the deletion of all other freemodi�ers the result of which is a certain "backbone" of the sentence.After having carried out all deletions, we arrive at the following structure:"KDS nepedpokld spoluprci a nen pravdou, e Benda prosadil Dejmala."(Word for word translation: "CDP [does] not-suppose cooperation and [it] isn't true, thatBenda enforced Dejmal.")The result of the processing is a unique structure and 141 items are derived in 0,22s. Thelast variant of the input sentence will serve as a contrast to the previous ones. Let us take thelast clause of the sentence, namely"Pedseda kesanskch demokrat pan Benda v telefonickm rozhovoru s Petrem Pithartemprosazoval inenra Dejmala do funkce ministra ivotnho prosted."["Chairman [of] Christian democrats Mister Benda in telephone discussion with Petr Pithartenforced ing. Dejmal to function [of] minister [of] environment.").If we take into account the results of the previous examples we should not be surprised bythe results. The processing time is 2,25s, 10 structures were created and 722 items were derived.The conclusion of our series of examples is that from the point of view of the processing speedit is more important how many prepositional phrases the sentence contains, how these phrasesare grouped together and whether they are separated by a verb, a relative clause etc. than howcomplex the sentence is. That gives us also a clear hint that the way to a substantial accelerationof processing by our "positive projective" grammar is to go through certain preprocessing ofinput sentences in order to remove those parts which may be involved in a syntactic error onlylocally and which slow down the processing by typical ambiguities.



Chapter 5The Preprocessing Module
It is clear that a certain way of preprocessing of the input sentence may substantially accelerateits processing. One possible approach for deterministic preprocessing of the input was alreadydeveloped in the frame of this project ( see [9]) In this report we will try to look at this problempurely from the point of view of error localisation, because it will allow us to use strategies thatare not "safe" from the point of view of full syntactic parsing.If we take into account that for every grammar checker it is important to provide not onlyreliable error messages, but to issue the information for the user about the error contained insentences in the text very quickly, we should try to comply with both requirements (antagonistic,as they may be, to a certain extent). We should let the user decide if he or she prefers moreprecise messages about errors, their type and location or if it su�ces to perform a kind of"�ltering" of the text which would for example mark sentences which are certainly correct. Thispossibility o�ers itself especially in connection with the fact that a number of typical and frequentgrammatical errors in Czech texts is practically unidenti�able by an automatic grammar checker.In our approach we try to create a certain set of means from the simplest and fastest to morecomplex and slow ones. The system will then be able to process simple and correct sentencesrelatively fast, indeed not at the price of making the processing of more complex sentences slower(for example for the reason that after failure of a simple computation the system would have toprocess the whole sentence by more complex means).

26



Chapter 6The implementation
The implementation of our system was to a big extent in
uenced by the demand of e�ectiveness.For this reason we had to abandon even feature structures as a form of a representation of data.Our data structure is a set of attribute-value pairs with the data about valency frames ofparticular words as the only complex values (embedded attribute-value pairs).An example of the representation of the Czech wordform "informoval" ([he] informed) follows:informovallexf: informovatwcl: vbsyntcl: vv_cl: fullrefl: 0aspect: prfframeset:( [ actant: act case: nom prep: 0 ][ actant: adr case: acc prep: 0 ][ actant: pat clause: z3e ] )neg: nov_form: pastpgender: ? inan , anim !num: sgENDThe grammar of the system is composed of metarules representing whole sets of rules of thebackground formalism caled Robust Free Order Dependency Grammar (RFODG). The limitedspace of this technical note does not allow to present the description of RFODG here. Thede�nition may be found for example in [1]. The metarules express a procedural description ofthe process of checking the applicability of a given metarule to a particular pair of input items Aand B (A stands to the left from B in the input). In case that a particular rule may be appliedto items A and B, a new item X is created. It is posssible to change values of the resulting itemX by means of an assignment operator := . The constraint relaxation technique is implementedin the form of so called "soft constraints" - the constraints with an operator ? accompanied byan error marker may be relaxed in phases 2 and 3 ("hard constraints" with an operator = maynever be relaxed).The error anticipating rules are marked by a keyword NEGATIVE at the beginning of a rule27



28 Chapter 6. The implementationand are applied only in phases 2 and 3. The keyword PROJECTIVE indicates that the rulemay be applied only in projective constructions.An example of a (simpli�ed) metarule describing the atachment of a nominal modi�er ingenitive case from the right hand side of the noun:PROJECTIVEIF A.SYNTCL = n THEN ELSEIF A.SYNTCL = prep2 THEN ELSE FAIL ENDIF ENDIFB.SYNTCL = nB.case = genA.RIGHTGEN = yesIF A.TITUL = yes THENIF A.CASE = gen THENIF A.GENDER = B.GENDER THENIF A.NUM = B.NUM THEN FAIL ELSE ENDIFELSE ENDIFELSE ENDIFELSE ENDIFX:=AX.RIGHTGEN := noOKEND_PThe interpretation of the grammar is performed by means of a slightly modi�ed CYK algo-rithm (a description of this algorithm may be found for example in [6]). The grammar workswith unambiguous input data (ambiguous words are represented as sets of unambiguous items).In order to speed up the checking of correct sentences we perform a syntactic recognition (notparsing) of the input sentence. For incorrect sentences both parsing and recognition of the inputgives the same result, therefore this fact creates no obstacle for the imminent application of "negative" rules (error anticipating rules andrules with relaxed constraints) after the �rst phase. All partial parses from the �rst phase areused in the second and third phases. For the purpose of testing and debugging the system weuse full parsing even in the �rst phase.A technical description of a working demo version of the whole system may be found in anappendix of this report.1 Speeding up the performanceIn nondeterministic parsers it is often the case that the author of a grammar has to preventan unnecessary multiplication of results by means of "tricks" which are not supported by thelinguistic theory - let us take for example the problem of subject - predicate - object construction.If we do not put any additional restriction on the order of application of rules then the rule �llingthe subcategorization slots for subject and object may be applied in two ways, either �lling theslot for the subject �rst and for the object second or vice versa. Both ways create the samesyntactic structure.



1. Speeding up the performance 29In such a case it is necessary to apply some additional constraints in the grammar - forexample the restriction on the order of subcategorization (an item to the left of a verb shouldbe processed �rst). This aproach makes the grammar more complicated than it is necessaryand may also in
uence the quality of results (an error on the left hand side of a verb may alsoprevent an attachment of the items from the right hand side of the verb).The interpreter of our grammar solves these situations itself. Every time a new item iscreated, the interpreter checks, if such an item with the same structure and coverage alreadyexists. If yes, the new item is deleted.This property of the interpreter is used together with other kinds of pruning techniques inall phases of grammar checking. Besides them there are also some techniques used especially inphases 2 and 3. The work with unambiguous input symbols allows fast parsing in the phase 1(CYK is polynomial with respect to the length of the input), but creates some problems in thecontext of constraint relaxations used in subsequent phases. For example, a typical error in freeword order languages is an eror in agreement. Let us suppose that we have the following threeinput words (the actual lexical value of these words may be neglected):Preposition(accusative or locative) Adjective(Animate or inanimate gender, genitive or ac-cusative sing.) Noun(Animate, genitive or accusative sing.)These words represent 2 + 4 + 2 = 8 unambiguous items. If we try to create a prepossitionalphrase without constraint relaxation, we get one resulting item PP(Animate, accusative sing.).On the other hand after the relaxation of constraints there are 16 items created. One of them doesnot contain any syntactic inconsistency, remaining 15 have one or two syntactic inconsistencies.In a nondeterministic parser all 16 variants are used in the subsequent parsing. This causes acombinatorial explosion of mostly incorrect results.There are two ways how to solve this problem. The �rst possible solution is to relax theconstraints in certain order (to apply a hierarchy on constraints). We have chosen the otherpossible way, which prefers the subtrees with minimal number of errors. Every time a newbranch or subtree is created, it is compared with the other branches or subtrees with the samestructure and coverage and if it contains more errors than those already existing, it is not parsedfurther.This technique substantially speeds up the processing of rules with relaxed constraints, butit has also one rather unpleasant side e�ect: the syntactic inconsistencies may be suppressed andappear later in a di�erent location. This makes the task of the evaluating part of our system abit more di�cult, but nevertheless the gain on e�ectivity not accompanied by the loss of recalljusti�es the use of this technique.The grammar of our system is implemented by means of metarules de�ning a set of rulesfor similar symbols, or some special composition of rules. The metarules describing possibleerroneous constructions are treated similarly as those for positive constructions. They are in-corporated into the grammar of the system either in a form of relaxed constraints (this kind ofrules is typically used for capturing disagreement in gender, number and/or case) or in a formof special error handling rules. These metarules contain the keyword "NEGATIVE" and coversuch phenomena as for example a missing comma before a relative pronoun.The metarules containing the keyword "PROJECTIVE" can be applied only in a projectiveway (this corresponds to the rules of RFODG with the subscripts LP;RP ).The metarules are written in the form of a procedure. Such a procedure typically consistsof the veri�cation of all conditions of applicability of the rules, which are represented by this



30 Chapter 6. The implementationmetarule, and of the performance of the �nally chosen single rule ful�lling all the conditions.We adduce here a sample of a metarule implemented in our grammar:;-------------------------------------------------------------; 12.; twelfth rule - incongruent attribute in the genitive case from; the right; PROJEKT TRUEA.SYNTCL = nB.SYNTCL = nB.case = genA.RIGHTGEN = yesIF A.TITUL = yes THENIF A.CASE = gen THEN FAIL ELSE ENDIFELSE ENDIFX:=AX.RIGHTGEN := noOKEND_P



Chapter 7Processing in layers
The layered architecture chosen as the basic means for localization of grammatical errors in ourpart of the project allows us to divide this process not only to three phases mentioned above,but it makes also a �ner treatment of layers possible while the results obtained (items derived)in one layer are used also in the next layers. In this approach we are inspired by the workof Z.Kirschner ([5], [6]). A framework suitable for a formal description of this approach wasdesigned in [10].The basic idea is to divide the metarules of the grammar into certain groups in order tocreate, �rst, subtrees representing for example certain types of prepositional phrases, or moregenerally those parts of the sentence which may be involved only in some local error and thereforeit is enough to check them only locally. It is clear that in this kind of processing we cannotavoid certain exceptions which will create errors in parsing. Thanks to the fact that in case ofan unsuccessful result of parsing in layers there is still a possibility to build missing items in thefollowing phases of syntactic parsing, we are not confronted with the number of problems whichfor example appear in the deterministic preprocessing module described in [9]. That meansthat there is a guarantee that the derived constructions will certainly be correct with respect tothe grammar used; if this analysis does not fail then the result obtained is certainly one of thevariants of the syntactic representation of the given sentence.From the technical point of view we perform the processing of layers of metarules by meansof a special data �le, which contains the description of individual layers. At present we use 5layers with the rules divided among them in the following way:� 1st layer: a metarule for processing titles and abbreviations preceding names� 2nd layer: the metarule from the �rst layer together with metarules for processing preposi-tional and adjectival phrases� 3rd layer: metarules from the previous layer together with metarules �lling the valencyslots and other metarules on the level of one clause� 4th layer: metarules from the previous layer together with those processing complex sen-tences� 5th layer: metarules for processing the left sentinel and the right hand side sententialborder.In order to avoid a situation when at the level of (n+i)th layer suddenly a possibility (or evena necessity) appears to apply a metarule from the n-th layer and this situation in fact blocks theprocess of creating the tree of computation, we have the possibility of connecting certain layers31



32 Chapter 7. Processing in layersinto a cycle, which is being performed till the new items are being derived. By means of thismethod it is possible to reduce drastically the number of resulting syntactic trees and also toshorten the time of computation. Let us demonstrate it on our sample sentence. The originalvariant of the testing sentence from the previous chapter is processed by means of the layersdescribed above in 1.92s with 2 resulting syntactic structures and 455 derived items.The application of layers may slow down the processing of short sentences (it has a �xed costof opening the description �le and consulting it during parsing process), therefore it is appliedonly to sentences longer than certain threshold (currently 15 words).Another important point is the fact that the results of parsing in layers provide only positiveinformation (i.e. the process is able to sort out sentences which are certainly correct, but thefailure of parsing in layers does not necessarily mean that the sentence is incorrect). The sameapproach may not be used for error localization and identi�cation, although the cases whenparsing in layers fails on a correct sentence are quite rare.On the other hand it is necessary to admit that the layers are useful only when applied tolong sentences. If applied to sentences of the type "John loves Mary" the layers do not provideany time reduction. On the contrary, the processing time is a bit longer as a result of smalltime losses connected with the transition between layers. It is possible to solve this obstacleeasily in the commercial version of the grammar checker by means of conditional treatment ofsentences. That means that we would use layers only when processing sentences longer than acertain threshold number and thus the processing of shorter sentences will not be slowed down.1 Suppression of variantsThe division of the grammar into layers may substantially speed up the computation. There areof course other possible ways how to achieve the same goal, too. One of the possible solutionsis to perform certain operations on the input sentence before it is processed according to thegrammar of the system.As was already described in the previous reports (see [12] ), there are certain types of errors,which must be checked immediately after the morphological analysis when the sentence stillis in the original shape, when no words are linked into syntactic structures and therefore it ispossible to formulate conditions, for example, if two words are immediate neighbours. This isthe question of errors in the vocalization of prepositions, but that is not the only case when itis useful to know the original word order.Another area in which it is possible to a certain extent to simplify the processing of thesentence, is a temporary suppression of super
uous word meanings. As is shown for examplein the report [9] , one of the major problems of preprocessing are ambiguous words which areapplied incorrectly.As an example we may use the sentence"Kad vysok smluvn strana me pedloit prostednictvm generlnho tajemnka rady Evropy komisikad dajn poruen ustanoven tto mluvy jinou vysokou smluvn stranou."[Word for word translation - " Each high signatory party may submit through the mediationof general secretary [of] [the] Council [of] Europe each alleged violation [of] enactment [of] thisdeclaration [by] other high signatory party"].



1. Suppression of variants 33In this sentence from a European Union document the nominal group " Kad vysok smluvnstrana" [Each high signatory party] is present twice. The problem is that both the pronoun"kad" [each] and the adjective "vysok" [high] are ambiguous, because they both may also ful�lthe syntactic role of a noun ("high" in the sense "vysok zv" [deer] or "vysok kola" [university]).These nominal readings substantially raise the number of variants of syntactic representationsof the given sentence. On the other hand, if we take into account that there is only one �niteverb in the sentence it is clear that the sentence is not complex. This fact may be used for thereduction of ambiguities - the number of free nominal slots may be compared with the numberof unambiguous nouns not preceded by prepositions and if the numbers agree, it is possible tosuppress the nominal readings of adjectives and pronouns and to try to parse the sentence. Incase we would like to proceed very carefully we can take into account also the possibility of a freemodi�er expressed by a nonprepositional instrumental case. In such a case we would not includenouns in instrumental case into the overall number of nouns unless the verb has a valency slotfor a participant in instrumental case.There is also a wide range of words which are theoretically ambiguous but the probabilityof their occurrence with one of the meanings is negligible. As an example we may present forinstance the noun " ena" [woman], which may also be a transgressive of the verb " hnt" [drive];the verb " li" [(they) went], which is also a dative, accusative or local form of the noun "le"[braces] and the preposition "podle" [according to] which is also an adverb [vilely].From the point of view of preprocessing the most important groups are the groups of wordsstarting with preposition and ending with a noun, between which there are only words withsyntactic properties of an adjective (adjectives, pronouns, numerals). As we have already shownin the previous section, if we remove these words from the sentence successfully, we may sub-stantially speed up the processing. One of the possible problems appears in case the given wordform is ambiguous and may have a completely di�erent roles in the sentence. We have triedto map this situation by analyzing a sample of texts contained in the Czech National Corpus.We have checked a few ambiguous word forms in order to illustrate the assumption that if asuitable context is taken into account, one or more of the readings of a given word form maybe suppressed. We have chosen three word forms for this task: "se" [with/self], "podle" [ac-cording to/vilely] and "msto" [instead of/place]. The assumption that the simplest case is thepreposition/adverb "podle" turned out to be correct. In the sample of 200 randomly chosenoccurrences of this word in the context"podle <succession of attributes> <noun in genitive case>"199 cases were prepositions, only one occurrence was not clear. There was no adverb in thiscontext. It seems that we may suppress the adverbial variant with a very high probability ofsuccess.On the contrary, the word "msto" was chosen as an example of the word form where bothreadings are more balanced than in the previous case. This hypothesis was justi�ed: out of50 occurrences of this word form in the same context as in the previous case there were 17prepositions, 28 nouns and in 5 cases there was a noun followed by another noun in the genitivecase. Even worse, almost in all cases it was possible to decide to which category the wordbelongs only by means of the understanding of the meaning of the whole sentence. Typicaloccurrences of this type were for example the following ones: "Msto konn" [place/instead ofperformance],"...msto vkonu prce...", [place/instead of work], "...msto uren..." [place/instead ofdestination] etc.The preposition/re
exive particle "se" was chosen due to the fact that there is a common



34 Chapter 7. Processing in layersassumption that its syntactic role cannot be identi�ed without a parsing of the full sentence.The results of our investigation were surprising. The assumption of the insolvable ambiguityis not correct, since out of 240 occurrences there were 211 re
exive particles, 23 occurrences inwhich it was possible to identify the word as preposition on the basis of the local context andonly in 6 cases the decision made on the basis of a local context led to a wrong result when theparticle was identi�ed as a preposition (for example in cases "...zkrt se tm..." [it is shortenedby this], "...zabvajc se zahraninmi vztahy..." [preoccupied by international relations] or "...stalijsme se hlavnm dodavatelem..." [we became the main supplier]). As speakers of Czech mayalready have noticed, it would be enough to use simple rules for vocalisation of prepositions torealize that only one occurrence is truly ambiguous - "...zabvajc se zahraninmi vztahy..." but itmay be solved in the context of the whole sentence on the base of the fact that the verb "zabvatse" requires the presence of the re
exive particle in the sentence.The above-mentioned simple rules for preprocessing are only a sample of a wide variety ofpossibilities. We have made only �rst few steps towards the development of a more representativeset of preprocessing rules. The future work should concentrate on two main topics:1. Development of a formalism capable to express preprocessing rules. The formalism usedin the phase of surface syntactic analysis does not provide some of the means required in thepreprocessing phase. For example, it does not have the means for expressing the conditions for abroader context or for the interaction of more than two input elements in one rule. It also seemsto be a good idea to make the preprocessing formalism more deterministic than the formalismfor syntax. It should be able to express such (meta)rules as for example:Check whether any word in the input sentence has a valency slotrequiring the noun to be in the genitive.If not, add the (meta)rule no. 21 to the second layerof rules in the file VRSTVY.DAT.orFind a preposition and check whether it is followedby items with SYNTCL = adj (optional)and an item with SYNTCL = noun.Check the group on the agreement in case of a prepositionand for the agreement in gender and number among the itemsfollowing the preposition.If everything agrees, check whether the group is followedby a full stop, unambiguous verb or preposition, comma,question mark, connective or adverb.If yes, mark the whole groupas correct and remove it from the input.2. Thorough linguistic investigation of the corpus concentrating on the problem of identi-�cation and localization of groups of words which might provide reliable syntactic informationor which might be deleted from the input sentence in order to speed up the processing of thatsentence.Both tasks will require a large amount of work. It opens a whole new area especially forthe linguistic research, which will be useful not only for the development of new versions of a



1. Suppression of variants 35grammar checker, but also for a syntactic parsing as such. The information about "syntacticallyunambiguous islands" in the sentence may lead to a new generation of parsers, which willcombine deterministic and nondeterministic methods in order to get most accurate syntacticrepresentation of the input sentence faster than by means of traditional methods.



Chapter 8Conclusion
In this report we have summarized the results of research carried on in the frame of the projectLanguage Technology for Slavic Languages. We believe that the main goal of the project, whichwas to develop a method for grammar based grammar checking of free word order languagesand to create a pilot implementation of the grammar checker for Czech, has been achieved.The method described in this report provides a base for future research in the �eld ofgrammar checking and opens a number of questions which will require further investigation.Some of the solutions are brie
y sketched here, some will still have to be designed. The numberof interesting problems we have encountered in the course of the work on this project makes usfeel that we have touched a �eld worth investigating and that the e�ort spent on the projecthas brought useful results.

36



Bibliography
[1] Y. Bar-Hillel, C. Gaifman, F. Shamir: On categorial and phrase structure grammars, Bul-letin of the Research Council Israel,F9, 1960, pp. 1-16[2] D. G. Hays : Dependency theory: A formalism and some observation, Language 40, 1964,pp.511-514[3] D.T.Huynh: Commutative Grammars: The complexity of Uniform word Problems, Infor-mation and Control 57, 1983, pp. 21-39[4] K.Oliva : A parser for Czech Implemented in Systems Q, In: Explizite Beschreibung derSprache und automatische Textbearabeitung, MFF UK, Prague, 1989[5] Z. Kirschner: Private communications, 1994[6] Z. Kirschner: CZECKER - a Maquette Grammar-Checker for Czech, The Prague Bulletinof Mathematical Lingistics 62, MFF UK Prague, 1994, pp. 5 - 30[7] J.Panevov : Valency Frames and the Meaning of the Sentence, In: The Prague School ofStuctural and Functional Linguistics, Linguistic and Literary studies in Eastern Europe 41,ed. P.A. Luelsdor�, John Benjamin Publishing Company, 1994, pp. 223 - 244[8] N. Sikkel: Parsing Schemata, Proefschrift, Enschede,1993[9] J.Hric , A.Rosen, M. Strakov: Deterministic machine - report on the deterministic parsingmoduleof the Grammar-Checker , Research Report in Joint Research ProjectPECO 2824,1994[10] M.Pltek : The Architecture of a Grammar Checker, In: Proceedings SOFSEM '94, Milovy,1994, pp. 85-90[11] T.Holan,V.Kubo�n, M.Pltek: An Implementation of Syntactic Analysis of Czech, In: Pro-ceedings of IWPT' 95, Charles University Prague, 1995, pp. 126-135[12] Avgustinova, T., Bmov, A., Hajiov, E., Oliva, K., Panevov, J., Petkevi, V. (ed.), Sgall,P. and Skoumalov, H.: Linguistic Problems of Czech. Final Research Report for the JRPPECO 2824 project. Prague, 1995 (pp. 157 )

37



The �UFAL Technical Report Series
�UFAL�UFAL ( �Ustav Formalni a Aplikovan�e Lingvistiky) is the institute for formal and applied lin-guistics, at the Department of Mathematics and Physics of Charles University, Prague CzechRepublic. . . .Technical ReportsThe �UFAL technical report series has been established with the aim of disseminate topicalresults of research currently pursued by members, cooperators, or visitors of the institute. SinceNovember 1996, the following reports have been published:TR-01 Eva Haji�cov�a, A History of Computational Linguistics in the Czech RepublicJan Haji�c and Barbora Hladk�a, Rule-Based Morphological AnalysisTR-02 Vladislav Kubo�n, Tom�a�s Holan, and Martin Pl�atek, A Robust Grammar-Checker forCzechFurther InformationFurther information concerning the activities of �UFAL should be directed toProf. Eva Haji�cov�a�UFAL MFF UKMalostransk�e n�am�est�� 25CZ-118 00 Praha 1, Czech Republichhajicova@ufal.mff.cuni.czi++420-2-2191-4253 (phone)++420-2-2191-4309 (fax)

38


