
CURRENT STATUS OF THE PDEV PROJECT

Outline of the presentation

Prague, Dec 7, 2010

by Martin Holub and Lenka Smejkalova

Institute of Formal and Applied Linguistics Charles University in Prague

*** 1) Prerequisites

We aim at building PDEV as an NLP-applicable source. To check if PDEV can be useful for NLP we need a resonable sample of PDEV data that is

- * consistent in all main components, i.e.
 - pattern database
 - manually tagged reference samples of corpus data
 - system of semantic types
- * representative in the sense of corpus coverage
- * clear enough so that trained humans are able to achieve a reasonable degree of inter-annotator agreement on corpus data
- !!! This is what we need to show that "PDEV can work well"!
 Such a test should be "statistically significant"!

*** 2) Verbs in BNC50 and the current PDEV

* Basic BNC50 statistics

- The total number of lexical verb tokens is 4,673,003.

BNC50 frequency at least	54,872	8,723	610	246	186	136	90	48	28	1
number of verb types	7	120	918	1,519	1,737	2,030	2,452	3,151	3,780	5,757
BNC50 verb tokens coverage	11%	50%	90%	95%	96%	97%	98%	99%	99.5%	100%

Table 1. The coverage of BNC50 verb tokens. For example, 918 most frequent verbs, each of which occurs at least 610 times in BNC50, cover more than 90% of all BNC50 lexical verb tokens.

Table 1 shows, among other things, the fact that verbs with f < 250 cover only about 5% of all lexical verb tokens in BNC50 corpus.

* Existing complete PDEV entries and the corpus coverage

Table 2 shows the number of existing PDEV entries with status "complete" (checked by Hanks) and the corresponding number of patterns created.

all	verb entries 695	patterns 2,662
f ≥ 50	419	2,136
$f \ge 100$	266	1,679
$f \ge 150$	213	1,464
$f \ge 200$	179	1,324
f ≥ 250	165	1,247
f ≥ 300	147	1,170
f ≥ 350	135	1,076

Table 2. The set of current complete verbs and their frequency in BNC50.

all	tokens 495,553	BNC50 coverage 10.61%
f < 250 f < 300 f < 350	32,206 37,148 41,056	0.69% 0.80% 0.88%
$f \ge 250$ $f \ge 300$ $f \ge 350$	463,347 458,405 454,497	9.92% 9.81% 9.73%

Table 3. How the current set of complete verbs covers BNC50 corpus.

^{*} Conclusion: In the current PDEV there are (only) 100-200 complete verb entries that are applicable for our experiments designed for PDEV validation.

*** 3) Inconsistencies in the current PDEV data

* A) Inconsistencies in the current pattern database

- Several types of inconsistency have been detected
 - data written in fields designed for different kind of data
 - inconsistent coding separators, etc. (..., "|", ",")
 - chaoticly written data, for which there were no systematic fields
- Some mistakes are "systematic", and those can be corrected easily.
- Some mistakes were done "intentionally", because the PDEV form did not provide options to encode the needed data systematically.
- Conclusion: Thorough manual revision of all patterns is necessary for serious experiments. The revision will go hand in hand with copying the entries into the PDEV2 format (see below).

* B) Inconsistencies in manually tagged reference corpus data

- significant disagreement in tagging between Patrick and "historical Patrick" on a sample of complete verbs (in the beginning of 2010)
- In our opinion the main (natural) sources of inconsistency in tagged data are
 - the historical development (changes) of the CPA method
 - occasional (minor) shifts in the interpretion of PDEV patterns
 - (mainly:) missing written rules for tagging
- Conclusion: Thorough revision of the existing reference sample data is necessary. The revision should be based on
 - the currently already existing "guidelines for annotators"
 - revised patterns in the PDEV2 form (see A))

* C) Inconsistencies in using sematic types

- have not been explored/mapped yet

*** 4) Steps towards further systematic development

* A) Documentation of both PDEV components and the related procedures

- is necessary for consistent work (especially in a team)
- should consist of
 - * "Guidelines for PDEV Lexicographers" to improve the consistency of patterns two parts:
 - procedural part = how lexicographers should work when they create a PDEV entry
 - technical part = how lexicographers should use the PDEV form to write PDEV patterns properly, vcetne definic lingvistickych kategorii a prikladu
 - * Documentation/definitions of Semantic Types
 - * "Guidelines for PDEV Annotators" to improve the consistency of both pattern interpretation and the manually tagged data
 - * Technical report on PDEV validation = the description and the results of performed experiments, especially
 - the degree of inter-annotator agreement
 - analysis of both frequency and sources of disagreement
 - * Technical specification of PDEV forms (describes even the implementation of the pattern database, including dtd schema)

* B) Validation and correction

- Each PDEV entry in the test sample should be validated using the IAA test.
- In case of significant amount of disagreement (if better pattern definitions do not help):
 - -> Analyse the types/sources of disagreement and modify the method. Then repeat the test.
 - * The method can be modified by
 - a) a change in the pattern structure (PDEV patterns form), or
 - b) a change of the metody of pattern writing (Guidelines for Lexicographers), or
 - c) a change in the interpretation of existing patterns (Guidelines for Annotators)
- Currently we are training two anotators. Our experience shows that the training is demanding and time consuming, but without that the "good" IAA seems to be impossible.

* Conclusion: Documentation and validation of the PDEV data is our current goal. First "pilot validation test" is planned to be done in January.

Without a serious empirical test, the NLP community cannot recognize and will not believe that PDEV is a valuable source for NLP. To perform such a test we need a "reasonable" sample of consistent PDEV data, which, however, is not available yet (in the existing PDEV database stored in Brno).

*** 5) The design of PDEV2 form

- * the current specification
 - the layout
 - the XML specification: includes the technical part of Guidelines for Lexicographer
- * the current implementation
- * examples of some differences between the "original PDEV" and PDEV2

*** 6) What has been done since last year

- * We have written **Guidelines for Annotators**. Silvie and Patrick agreed on the final version that has already been published on the "official" CPA web pages.
- * We have designed and implemented a **new PDEV web form** that provides lexicographers with all they need to consistently describe PDEV patterns. As the number of changes/improvements is quite big, we call it "PDEV2". Currently we are testing the implementation.
- * We have hired and are training **two qualified annotators**. In January they should be ready to perform IAA test on a sample of test verbs.
- * We have designed and implemented infrastructure tools for **generating and storing random samples** of corpus verb occurrences. Those tools are necessary to make serious experiments and to have possibility to analyse the causes of disagreement.
- * We have developed a **tool for analysing verb arguments** in manually tagged sentences (where the verb was assigned a pattern). Its output is a sketch of nouns that are likely to form a semantic type.
- * We have developed a **simple pattern recognizer** just to have a baseline for further experiments.

*** 7) Future work

* A) The nearest future: First validation attempt:

- in January 2011
- 10-20 "representative" sample verbs
- PDEV data with revised consistency
- revised patterns in the PDEV2 form
 - revised random reference samples
- 2 annotators, 50 random occurrences per verb

* B) Directions of further research in 2011

- integration of PDEV data with existing resources at UFAL
- evaluation in the machine translation framework