
Deep Learning for Natural Language
processing
Jindřich Libovický

March 1, 2017

Introduction to Natural Language Processing

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics unless otherwise stated

Outline

Neural Networks Basics
Representing Words
Representing Sequences

Recurrent Networks
Convolutional Networks
Self-attentive Networks

Classification and Labeling
Generating Sequences
Pre-training Representations

Word2Vec
ELMo
BERT

Deep Learning for Natural Language processing 1/90

Deep Learning in NLP

• NLP tasks learn end-to-end using deep learning — the number-one approach in current
research

• State of the art in POS tagging, parsing, named-entity recognition, machine translation,
…

• Good news: training without almost any linguistic insight
• Bad news: requires enormous amount of training data and really big computational

power

Deep Learning for Natural Language processing 2/90

What is deep learning?

• Buzzword for machine learning using neural networks with many layers using
back-propagation

• Learning of a real-valued function with millions of parameters that solves a particular
problem

• Learning more and more abstract representation of the input data until we reach such a
suitable representation for our problem

Deep Learning for Natural Language processing 3/90

Neural Networks Basics

Neural Networks Basics

Neural Networks Basics
Representing Words
Representing Sequences

Recurrent Networks
Convolutional Networks
Self-attentive Networks

Classification and Labeling
Generating Sequences
Pre-training Representations

Word2Vec
ELMo
BERT

Deep Learning for Natural Language processing 4/90

Single Neuron

activation
function

input x
weights w

output

∑ ⋅ is > 0?𝑥𝑖 ⋅𝑤𝑖

𝑥1

⋅𝑤1𝑥2 ⋅𝑤2��

�

𝑥𝑛

⋅𝑤𝑛

Deep Learning for Natural Language processing 5/90

Neural Network

𝑥
↓ ↑ ↓ ↑

ℎ1 = 𝑓(𝑊1𝑥 + 𝑏1)
↓ ↑ ↓ ↑

ℎ2 = 𝑓(𝑊2ℎ1 + 𝑏2)
↓ ↑ ↓ ↑
⋮ ⋮

↓ ↑ ↓ ↑
ℎ𝑛 = 𝑓(𝑊𝑛ℎ𝑛−1 + 𝑏𝑛)

↓ ↑ ↓ ↑
𝑜 = 𝑔(𝑊𝑜ℎ𝑛 + 𝑏𝑜) ∂𝐸

∂𝑊𝑜
= ∂𝐸

∂𝑜 ⋅ ∂𝑜
∂𝑊𝑜

↓ ↓ ↑
𝐸 = 𝑒(𝑜, 𝑡) → ∂𝐸

∂𝑜

Deep Learning for Natural Language processing 6/90

Implementation

Logistic regression:

𝑦 = 𝜎 (𝑊𝑥 + 𝑏) (1)

Computation graph:

𝑥

𝑊
×

𝑏

+ 𝜎ℎ

forward graph

loss

𝑦∗

𝑜 𝜎′𝑜′
+

𝑏′

ℎ′
×

𝑊 ′

backward graph

Deep Learning for Natural Language processing 7/90

Frameworks for Deep Learning

research and prototyping in Python

• graph statically constructed,
symbolic computation

• computation happens in a session
• allows graph export and running as a

binary

• computations written dynamically as
normal procedural code

• easy debugging: inspecting variables
at any time of the computation

Deep Learning for Natural Language processing 8/90

Representing Words

Representing Words

Neural Networks Basics
Representing Words
Representing Sequences

Recurrent Networks
Convolutional Networks
Self-attentive Networks

Classification and Labeling
Generating Sequences
Pre-training Representations

Word2Vec
ELMo
BERT

Deep Learning for Natural Language processing 9/90

Language Modeling

• estimate probability of a next word in a text

P(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, … , 𝑤1)
• standard approach: 𝑛-gram models with Markov assumption

≈ P(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, … , 𝑤𝑖−𝑛) ≈
𝑛

∑
𝑗=0

𝜆𝑗
𝑐(𝑤𝑖|𝑤𝑖−1, … , 𝑤𝑖−𝑗)

𝑐(𝑤𝑖|𝑤𝑖−1, … , 𝑤𝑖−𝑗+1)
• Let’s simulate it with a neural network:

… ≈ 𝐹(𝑤𝑖−1, … , 𝑤𝑖−𝑛|𝜃)
𝜃 is a set of trainable parameters.

Deep Learning for Natural Language processing 10/90

Simple Neural Language Model

1𝑤𝑛−3

⋅𝑊𝑒

1𝑤𝑛−2

⋅𝑊𝑒

1𝑤𝑛−1

⋅𝑊𝑒

tanh

⋅𝑉3 ⋅𝑉2 ⋅𝑉1 + 𝑏ℎ

softmax

⋅𝑊 + 𝑏

P(𝑤𝑛|𝑤𝑛−1, 𝑤𝑛−2, 𝑤𝑛−3)

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language model. The Journal of Machine Learning Research, 3
(Feb):1137–1155, 2003. ISSN 1532-4435

Deep Learning for Natural Language processing 11/90

Neural LM: Word Representation

• limited vocabulary (hundred thousands words): indexed set of words
• words are initially represented as one-hot-vectors 1𝑤 = (0, … , 0, 1, 0, … 0)
• projection 1𝑤 ⋅ 𝑉 corresponds to selecting one row from matrix 𝑉
• 𝑉 : is a table of learned word vector representations

so-called word embeddings
• dimension typically 100 — 300

The first hidden layer is then:

ℎ1 = 𝑉𝑤𝑖−𝑛
⊕ 𝑉𝑤𝑖−𝑛+1

⊕ … ⊕ 𝑉𝑤𝑖−1

Matrix 𝑉 is shared for all words.

Deep Learning for Natural Language processing 12/90

Neural LM: Next Word Estimation

• optionally add extra hidden layer:

ℎ2 = 𝑓(ℎ1𝑊1 + 𝑏1)

• last layer: probability distribution over vocabulary

𝑦 = softmax(ℎ2𝑊2 + 𝑏2) = exp(ℎ2𝑊2 + 𝑏2)
∑ exp(ℎ2𝑊2 + 𝑏2)

• training objective: cross-entropy between the true (i.e., one-hot) distribution and
estimated distribution

𝐸 = − ∑
𝑖

𝑝true(𝑤𝑖) log 𝑦(𝑤𝑖) = ∑
𝑖

− log 𝑦(𝑤𝑖)

• learned by error back-propagation

Deep Learning for Natural Language processing 13/90

Learned Representations
• word embeddings from LMs have interesting properties
• cluster according to POS & meaning similarity

Table taken from Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing

(almost) from scratch. Journal of Machine Learning Research, 12(Aug):2493–2537, 2011. ISSN 1533-7928

• in IR: query expansion by nearest neighbors
• in deep learning models: embeddings initialization speeds up training / allows complex

model with less data
Deep Learning for Natural Language processing 14/90

Implementation in PyTorch I

import torch
import torch.nn as nn

class LanguageModel(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim):

super().__init__()

self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.hidden_layer = nn.Linear(3 * embedding_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, vocab_size)
self.loss_function = nn.CrossEntropyLoss()

def forward(self, word_1, word_2, word_3, target=None):
embedded_1 = self.embedding(word_1)
embedded_2 = self.embedding(word_2)
embedded_3 = self.embedding(word_3)

Deep Learning for Natural Language processing 15/90

Implementation in PyTorch II

hidden = torch.tanh(self.hidden_layer(
torch.cat(embedded_1, embedded_2, embedded_3)))

logits = self.output_layer(hidden)

loss = None
if target is not None:

loss = self.loss_function(logits, targets)

return logits, loss

Deep Learning for Natural Language processing 16/90

Implementation in TensorFlow I

import tensorfow as tf

input_words = [tf.placeholder(tf.int32, shape=[None]) for _ in range(3)]
target_word = tf.placeholder(tf.int32, shape[None])

embeddings = tf.get_variable(tf.float32, shape=[vocab_size, emb_dim])
embedded_words = tf.concat([tf.nn.embedding_lookup(w) for w in input_words])

hidden_layer = tf.layers.dense(embedded_words, hidden_size, activation=tf.tanh)
output_layer = tf.layers.dense(hidden_layer, vocab_size, activation=None)
output_probabilities = tf.nn.softmax(output_layer)

loss = tf.nn.cross_entropy_with_logits(output_layer, target_words)

optimizer = tf.optimizers.AdamOptimizers()
train_op = optimizer.minimize(loss)

Deep Learning for Natural Language processing 17/90

Implementation in TensorFlow II

session = tf.Session()
initialize variables

Training given batch

_, loss_value = session.run([train_op, loss], feed_dict={
input_words[0]: ..., input_words[1]: ..., input_words[2]: ...,
target_word: ...

})

Inference given batch

probs = session.run(output_probabilities, feed_dict={
input_words[0]: ..., input_words[1]: ..., input_words[2]: ...,

})

Deep Learning for Natural Language processing 18/90

Representing Sequences

Representing Sequences

Neural Networks Basics
Representing Words
Representing Sequences

Recurrent Networks
Convolutional Networks
Self-attentive Networks

Classification and Labeling
Generating Sequences
Pre-training Representations

Word2Vec
ELMo
BERT

Deep Learning for Natural Language processing 19/90

Representing Sequences

Recurrent Networks

Recurrent Networks (RNNs)

…the default choice for sequence labeling

• inputs: 𝑥, … , 𝑥𝑇
• initial state ℎ0 = 0, a result of previous

computation, trainable parameter
• recurrent computation: ℎ𝑡 = 𝐴(ℎ𝑡−1, 𝑥𝑡)

Deep Learning for Natural Language processing 20/90

RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:
new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output

Deep Learning for Natural Language processing 21/90

RNN as a Fancy Image

Deep Learning for Natural Language processing 22/90

Vanilla RNN

ℎ𝑡 = tanh (𝑊[ℎ𝑡−1; 𝑥𝑡] + 𝑏)

• cannot propagate long-distance relations
• vanishing gradient problem

Deep Learning for Natural Language processing 23/90

Vanishing Gradient Problem (1)

tanh𝑥 = 1 − 𝑒−2𝑥

1 + 𝑒−2𝑥

-1.0

-0.5

0.0

0.5

1.0

−6 −4 −2 0 2 4 6

𝑦

𝑥

dtanh𝑥
d𝑥 = 1 − tanh2 𝑥 ∈ (0, 1]

0.0
0.2
0.4
0.6
0.8
1.0

−6 −4 −2 0 2 4 6

𝑦

𝑥
Weight initialized ∼ 𝒩(0, 1) to have gradients further from zero.

Deep Learning for Natural Language processing 24/90

Vanishing Gradient Problem (2)

∂𝐸𝑡+1
∂𝑏 = ∂𝐸𝑡+1

∂ℎ𝑡+1
⋅ ∂ℎ𝑡+1

∂𝑏 (chain rule)

Deep Learning for Natural Language processing 25/90

Vanishing Gradient Problem (3)

∂ℎ𝑡
∂𝑏 = ∂ tanh

=𝑧𝑡 (activation)
⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏)

∂𝑏 (tanh′ is derivative of tanh)

= tanh′(𝑧𝑡) ⋅ ⎛⎜⎜
⎝

∂𝑊ℎℎ𝑡−1
∂𝑏 + ∂𝑊𝑥𝑥𝑡

∂𝑏⏟
=0

+ ∂𝑏
∂𝑏⏟
=1

⎞⎟⎟
⎠

= 𝑊ℎ⏟
∼𝒩(0,1)

tanh′(𝑧𝑡)⏟
∈(0;1]

∂ℎ𝑡−1
∂𝑏 + tanh′(𝑧𝑡)

Deep Learning for Natural Language processing 26/90

Long Short-Term Memory Networks

LSTM = Long short-term memory
Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997. ISSN 0899-7667

Control the gradient flow by explicitly gating:
• what to use from input,
• what to use from hidden state,
• what to put on output

Deep Learning for Natural Language processing 27/90

LMST: Hidden State

• two types of hidden states
• ℎ𝑡 — “public” hidden state, used an output
• 𝑐𝑡 — “private” memory, no non-linearities on the way
• direct flow of gradients (without multiplying by ≤ 1 derivatives)

Deep Learning for Natural Language processing 28/90

LSTM: Forget Gate

𝑓𝑡 = 𝜎 (𝑊𝑓 [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)

• based on input and previous state, decide what to forget from the memory

Deep Learning for Natural Language processing 29/90

LSTM: Input Gate

𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)

• ̃𝐶 — candidate what may want to add to the memory
• 𝑖𝑡 — decide how much of the information we want to store

Deep Learning for Natural Language processing 30/90

LMST: Cell State Update

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡

Deep Learning for Natural Language processing 31/90

LSTM: Output Gate

𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh𝐶𝑡

Deep Learning for Natural Language processing 32/90

Here we are, LSTM!

𝑓𝑡 = 𝜎 (𝑊𝑓 [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh𝐶𝑡

Question How would you implement it efficiently?
Compute all gates in a single matrix multiplication.

Deep Learning for Natural Language processing 33/90

Gated Recurrent Units
update gate 𝑧𝑡 = 𝜎(𝑥𝑡𝑊𝑧 + ℎ𝑡−1𝑈𝑧 + 𝑏𝑧) ∈ (0, 1)
remember gate 𝑟𝑡 = 𝜎(𝑥𝑡𝑊𝑟 + ℎ𝑡−1𝑈𝑟 + 𝑏𝑟) ∈ (0, 1)
candidate hidden state ̃ℎ𝑡 = tanh (𝑥𝑡𝑊ℎ + (𝑟𝑡 ⊙ ℎ𝑡−1)𝑈ℎ) ∈ (−1, 1)
hidden state ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⋅ ℎ̃𝑡

Deep Learning for Natural Language processing 34/90

LSTM vs. GRU

• GRU is smaller and therefore faster
• performance similar, task dependent
• theoretical limitation: GRU accepts regular languages, LSTM can simulate counter

machine

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555, 2014. ISSN 2331-8422; Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite precision rnns for language
recognition. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 740–745, Melbourne,
Australia, July 2018. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P18-2117

Deep Learning for Natural Language processing 35/90

http://www.aclweb.org/anthology/P18-2117

RNN in PyTorch

rnn = nn.LSTM(input_dim, hidden_dim=512, num_layers=1,
bidirectional=True, dropout=0.8)

output, (hidden, cell) = self.rnn(x)

https://pytorch.org/docs/stable/nn.html?highlight=lstm#torch.nn.LSTM

Deep Learning for Natural Language processing 36/90

https://pytorch.org/docs/stable/nn.html?highlight=lstm#torch.nn.LSTM

RNN in TensorFlow

inputs = ... # float tf.Tensor of shape [batch, length, dim]
lengths = ... # int tf.Tensor of shape [batch]

Cell objects are templates
fw_cell = tf.nn.rnn_cell.LSTMCell(512, name="fw_cell")
bw_cell = tf.nn.rnn_cell.LSTMCell(512, name="bw_cell")

outputs, states = tf.nn.bidirectional_dynamic_rnn(
cell_fw, cell_bw, inputs, sequence_length=lengths)

https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn

Deep Learning for Natural Language processing 37/90

https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn

Bidirectional Networks

• simple trick to improve performance
• run one RNN forward, second one backward and concatenate outputs

Image from: http://colah.github.io/posts/2015-09-NN-Types-FP/

• state of the art in tagging, crucial for neural machine translation

Deep Learning for Natural Language processing 38/90

http://colah.github.io/posts/2015-09-NN-Types-FP/

Representing Sequences

Convolutional Networks

1-D Convolution

≈ sliding window over the sequence

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

ℎ1 = 𝑓 (𝑊[𝑥0; 𝑥1.𝑥2] + 𝑏)
ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏)

pad with 0s if we want to keep sequence length

Deep Learning for Natural Language processing 39/90

1-D Convolution: Pseudocode

xs = ... # input sequnce

kernel_size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size

W = trained_parameter(xs.shape[2] * kernel_size, filters)
b = trained_parameter(filters)
window = kernel_size // 2

outputs = []
for i in range(window, xs.shape[1] - window):

h = np.mul(W, xs[i - window:i + window]) + b
outputs.append(h)

return np.array(h)

Deep Learning for Natural Language processing 40/90

1-D Convolution: Frameworks

TensorFlow

h = tf.layers.conv1d(x, filters=300 kernel_size=3,
strides=1, padding='same')

https://www.tensorflow.org/api_docs/python/tf/layers/conv1d

PyTorch

conv = nn.Conv1d(in_channels, out_channels=300, kernel_size=3, stride=1,
padding=0, dilation=1, groups=1, bias=True)

h = conv(x)

https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d

Deep Learning for Natural Language processing 41/90

https://www.tensorflow.org/api_docs/python/tf/layers/conv1d
https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d

Rectified Linear Units

ReLU:

0.0
1.0
2.0
3.0
4.0
5.0
6.0

−6 −4 −2 0 2 4 6

𝑦

𝑥

Derivative of ReLU:

0.0
0.2
0.4
0.6
0.8
1.0

−6 −4 −2 0 2 4 6

𝑦

𝑥
faster, suffer less with vanishing gradient

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, TODO, TODO 2010. TODO

Deep Learning for Natural Language processing 42/90

Residual Connections

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏) + 𝑥𝑖

Allows training deeper networks.
Why do you it helps?

Better gradient flow – the same as in RNNs.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, TODO, TODO 2016. IEEE Computer Society

Deep Learning for Natural Language processing 43/90

Residual Connections: Numerical Stability
Numerically unstable, we need activation to be in similar scale ⇒ layer normalization.
Activation before non-linearity is normalized:

𝑎𝑖 = 𝑔𝑖
𝜎𝑖

(𝑎𝑖 − 𝜇𝑖)

…𝑔 is a trainable parameter, 𝜇, 𝜎 estimated from data.

𝜇 = 1
𝐻

𝐻
∑
𝑖=1

𝑎𝑖

𝜎 =
√√√
⎷

1
𝐻

𝐻
∑
𝑖=1

(𝑎𝑖 − 𝜇)2

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450, 2016. ISSN 2331-8422

Deep Learning for Natural Language processing 44/90

Receptive Field

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0
Can be enlarged by dilated convolutions.

Deep Learning for Natural Language processing 45/90

Convolutional architectures

+
• extremely computationally efficient

–
• limited context
• by default no aware of 𝑛-gram order

• max-pooling over the hidden states = element-wise maximum over sequence
• can be understood as an ∃ operator over the feature extractors

Deep Learning for Natural Language processing 46/90

Representing Sequences

Self-attentive Networks

Self-attentive Networks

• In some layers: states are linear combination of previous layer states
• Originally for the Transformer model for machine translation

• similarity matrix between all pairs of states
• 𝑂(𝑛2) memory, 𝑂(1) time (when paralelized)
• next layer: sum by rows

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems 30, pages 6000–6010, Long Beach, CA, USA, December 2017. Curran Associates, Inc

Deep Learning for Natural Language processing 47/90

Multi-headed scaled dot-product attention

Single-head setup

Attn(𝑄, 𝐾, 𝑉) = softmax(𝑄𝐾⊤
√

𝑑
) 𝑉

ℎ𝑖+1 = ∑ softmax(ℎ𝑖ℎ⊤
𝑖√

𝑑
)

Multihead-head setup

Multihead(𝑄, 𝑉) = (𝐻1 ⊕ ⋯ ⊕ 𝐻ℎ)𝑊 𝑂

𝐻𝑖 = Attn(𝑄𝑊 𝑄
𝑖 , 𝑉 𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖)

keys & values queries

linear linear linear

split split split

concat

scaled dot-product attentionscaled dot-product attentionscaled dot-product attentionscaled dot-product attentionscaled dot-product attention

Deep Learning for Natural Language processing 48/90

Dot-Product Attention in PyTorch

def attention(query, key, value, mask=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \

/ math.sqrt(d_k)
p_attn = F.softmax(scores, dim = -1)
return torch.matmul(p_attn, value), p_attn

Deep Learning for Natural Language processing 49/90

Dot-Product Attention in TensorFlow

def scaled_dot_product(self, queries, keys, values):
o1 = tf.matmul(queries, keys, transpose_b=True)
o2 = o1 / (dim**0.5)

o3 = tf.nn.softmax(o2)
return tf.matmul(o3, values)

Deep Learning for Natural Language processing 50/90

Position Encoding

Model cannot be aware of the position in the sequence.

pos(𝑖) =
⎧{
⎨{⎩

sin(𝑡
104

𝑖
𝑑) , if 𝑖 mod 2 = 0

cos(𝑡
104

𝑖−1
𝑑) , otherwise

0 20 40 60 80
Text length

0

100

200

300

Di
m

en
sio

n

−0.5

0.0

0.5

1.0

Deep Learning for Natural Language processing 51/90

Stacking self-attentive Layers

input embeddings

⊕position
encoding

self-attentive
sublayer

multihead
attention

keys &
values

queries

⊕

layer normalization

feed-forward
sublayer

non-linear layer

linear layer

⊕

layer normalization

𝑁×

• several layers (original paper 6)
• each layer: 2 sub-layers: self-attention and

feed-forward layer
• everything inter-connected with residual

connections

Deep Learning for Natural Language processing 52/90

Architectures Comparison

computation sequential operations memory
Recurrent 𝑂(𝑛 ⋅ 𝑑2) 𝑂(𝑛) 𝑂(𝑛 ⋅ 𝑑)
Convolutional 𝑂(𝑘 ⋅ 𝑛 ⋅ 𝑑2) 𝑂(1) 𝑂(𝑛 ⋅ 𝑑)
Self-attentive 𝑂(𝑛2 ⋅ 𝑑) 𝑂(1) 𝑂(𝑛2 ⋅ 𝑑)

𝑑 model dimension, 𝑛 sequence length, 𝑘 convolutional kernel

Deep Learning for Natural Language processing 53/90

Classification and Labeling

Classification and Labeling

Neural Networks Basics
Representing Words
Representing Sequences

Recurrent Networks
Convolutional Networks
Self-attentive Networks

Classification and Labeling
Generating Sequences
Pre-training Representations

Word2Vec
ELMo
BERT

Deep Learning for Natural Language processing 54/90

Sequence Clasification

• tasks like sentiment analysis, genre classification
• need to get one vector from sequence → average or max pooling
• optionally hidden layers, at the and softmax for probability distribution over classes

Deep Learning for Natural Language processing 55/90

Softmax & Cross-Entropy

Output layer with softmax (with parameters 𝑊 , 𝑏):

𝑃𝑦 = softmax(x) = P(𝑦 = 𝑗 ∣ x) = exp x⊤𝑊 + 𝑏
∑ exp x⊤𝑊 + 𝑏

Network error = cross-entropy between estimated distribution and one-hot ground-truth
distribution 𝑇 = 1(𝑦∗):

𝐿(𝑃𝑦, 𝑦∗) = 𝐻(𝑃 , 𝑇) = −𝔼𝑖∼𝑇 log𝑃(𝑖)
= − ∑

𝑖
𝑇 (𝑖) log𝑃(𝑖)

= − log𝑃(𝑦∗)

Deep Learning for Natural Language processing 56/90

Derivative of Cross-Entropy

Let 𝑙 = x⊤𝑊 + 𝑏, 𝑙𝑦∗ corresponds to the correct one.

∂𝐿(𝑃𝑦, 𝑦∗)
∂𝑙 = − ∂

∂𝑙 log
exp 𝑙𝑦∗

∑𝑗 exp 𝑙𝑗
= − ∂

∂𝑙𝑙𝑦∗ − log∑ exp 𝑙

= 1𝑦∗ + ∂
∂𝑙 − log∑ exp 𝑙 = 1𝑦∗ − ∑1𝑦∗ exp 𝑙

∑ exp 𝑙 =

= 1𝑦∗ − 𝑃𝑦(𝑦∗)

Interpretation: Reinforce the correct logit, supress the rest.

Deep Learning for Natural Language processing 57/90

Sequence Labeling

• assign value / probability distribution to every token in a sequence
• morphological tagging, named-entity recognition, LM with unlimited history, answer

span selection
• every state is classified independently with a classifier
• during training, error babckpropagate form all classifiers

Lab next time: i/y spelling as sequence labeling

Deep Learning for Natural Language processing 58/90

Generating Sequences

Sequence-to-sequence Learning

• target sequence is of different lenght tahn source
• no-trivial (= not monotonic) correspondence of source and target
• taks like: machine translation, text summarization, image captioning

Deep Learning for Natural Language processing 59/90

Neural Language Model

input symbol
one-hot vectors

embedding lookup

RNN cell
(more layers)

RNN state

normalization
distribution for
the next symbol

<s>

embed

RNN

ℎ0

softmax

𝑃(𝑤1|<s>)

𝑤1

embed

RNN

ℎ1

softmax

𝑃(𝑤1| …)

𝑤2

embed

RNN

ℎ2

softmax

𝑃(𝑤2| …)

⋯

• estimate probability of a sentence using the chain rule
• output distributions can be used for sampling

Deep Learning for Natural Language processing 60/90

Sampling from a LM

embed

RNN

ℎ0

softmax

P(𝑤1|<s>)

argmax

embed

RNN

ℎ1

softmax

P(𝑤1| …)

argmax

embed

RNN

ℎ2

softmax

P(𝑤2| …)

argmax

embed

RNN

ℎ3

softmax

P(𝑤3| …)

argmax

<s>

⋯

when conditioned on input → autoregressive decoder
Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,

and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 3104–3112, Montreal, Canada, December 2014. Curran
Associates, Inc

Deep Learning for Natural Language processing 61/90

Autoregressive Decoding: Pseudocode

last_w = "<s>"
while last_w != "</s>":

last_w_embeding = target_embeddings[last_w]
state, dec_output = dec_cell(state,

last_w_embeding)
logits = output_projection(dec_output)
last_w = np.argmax(logits)
yield last_w

Deep Learning for Natural Language processing 62/90

Architectures in the Decoder

• RNN – original sequence-to-sequence learning (2015)
• principle known since 2014 (University of Montreal)
• made usable in 2016 (University of Edinburgh)

• CNN – convolution sequence-to-sequence by Facebook (2017)
• Self-attention (so called Transformer) by Google (2017)

More on the topic in the MT class.

Deep Learning for Natural Language processing 63/90

Implementation: Runtime vs. training

runtime: ̂𝑦𝑗 (decoded) × training: 𝑦𝑗 (ground truth)

<s>

~y1 ~y2 ~y3 ~y4 ~y5

<s> x1 x2 x3 x4

<s>
y1 y2 y3 y4

loss

Deep Learning for Natural Language processing 64/90

Attention Model
<s> x1 x2 x3 x4

~yi ~yi+1

h1h0 h2 h3 h4

...

+

×
α0

×
α1

×
α2

×
α3

×
α4

sisi-1 si+1

+

Deep Learning for Natural Language processing 65/90

Attention Model in Equations (1)

Inputs:
decoder state 𝑠𝑖
encoder states ℎ𝑗 = [⃗⃗⃗ ⃗⃗ ⃗⃗ℎ𝑗; ⃖⃖⃖ ⃖⃖ ⃖⃖ℎ𝑗] ∀𝑖 = 1 … 𝑇𝑥

Attention energies:

𝑒𝑖𝑗 = 𝑣⊤
𝑎 tanh (𝑊𝑎𝑠𝑖−1 + 𝑈𝑎ℎ𝑗 + 𝑏𝑎)

Attention distribution:

𝛼𝑖𝑗 = exp (𝑒𝑖𝑗)
∑𝑇𝑥

𝑘=1 exp (𝑒𝑖𝑘)

Context vector:

𝑐𝑖 =
𝑇𝑥

∑
𝑗=1

𝛼𝑖𝑗ℎ𝑗

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473, 2014.
ISSN 2331-8422

Deep Learning for Natural Language processing 66/90

Attention Model in Equations (2)

Output projection:

𝑡𝑖 = MLP (𝑈𝑜𝑠𝑖−1 + 𝑉𝑜𝐸𝑦𝑖−1 + 𝐶𝑜𝑐𝑖 + 𝑏𝑜)

…attention is mixed with the hidden state

Output distribution:

𝑝 (𝑦𝑖 = 𝑘|𝑠𝑖, 𝑦𝑖−1, 𝑐𝑖) ∝ exp (𝑊𝑜𝑡𝑖)𝑘 + 𝑏𝑘

Deep Learning for Natural Language processing 67/90

Transformer Decoder

input embeddings

⊕position
encoding

self-attentive
sublayer

multihead
attention

keys &
values

queries

⊕

layer normalization

cross-attention
sublayer

multihead
attention

keys &
values

queries

⊕

layer normalization

encoder

feed-forward
sublayer

non-linear layer

linear layer

⊕

layer normalization

𝑁×

linear

softmax

output symbol probabilities

• similar to encoder, additional layer with
attention to the encoder

• in every steps self-attention over
complete history ⇒ 𝑂(𝑛2) complexity

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems 30, pages 6000–6010,
Long Beach, CA, USA, December 2017. Curran Associates, Inc

Deep Learning for Natural Language processing 68/90

Transfomer Decoder: Non-autoregressive training

𝑣1
𝑣2
𝑣3

…

𝑣𝑀

𝑞1 𝑞2 𝑞3

…

𝑞𝑁

…
…
…

… …

Queries 𝑄
Va

lu
es

𝑉

−∞

• analogical to encoder
• target is known at training: don’t need to

wait until it’s generated
• self attention can be parallelized via

matrix multiplication
• prevent attentding the future using a

mask

Question 1: What if the matrix was diagonal?
Question 2: How such a matrix look like for convolutional architecture?

Deep Learning for Natural Language processing 69/90

Pre-training Representations

Pre-training Representations

Neural Networks Basics
Representing Words
Representing Sequences

Recurrent Networks
Convolutional Networks
Self-attentive Networks

Classification and Labeling
Generating Sequences
Pre-training Representations

Word2Vec
ELMo
BERT

Deep Learning for Natural Language processing 70/90

Pre-trained Representations

• representations that emerge in models seem to be carry a lot of information about the
language

• representations pre-trained on large data can be re-used on tasks with smaller training
data

Deep Learning for Natural Language processing 71/90

Pre-training Representations

Word2Vec

Word2Vec
• way to learn word embeddings without training the complete LM

CBOW Skip-gram

∑ 𝑤3

𝑤1

𝑤2

𝑤4

𝑤5

⋮

𝑤3

𝑤1

𝑤2

𝑤4

𝑤5

⋮

• CBOW: minimize cross-entropy of the middle word of a sliding windows
• skip-gram: minimize cross-entropy of a bag of words around a word (LM other way

round)
Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, Georgia, jun 2013.
Association for Computational Linguistics

Deep Learning for Natural Language processing 72/90

Word2Vec: sampling

1. All human beings are born free and equal in dignity … → (All, humans)
(All, beings)

2. All human beings are born free and equal in dignity … →
(human, All)

(human, beings)
(human, are)

3. All human beings are born free and equal in dignity … →
(beings, All)

(beings, human)
(beings, are)

(beings, born)

4. All human beings are born free and equal in dignity … →
(are, human)
(are, beings)
(are, born)
(are, free)

Deep Learning for Natural Language processing 73/90

Word2Vec: Formulas

• Training objective:

1
𝑇

𝑇
∑
𝑡=1

∑
𝑗∼(−𝑐,𝑐)

log 𝑝(𝑤𝑡+𝑐|𝑤𝑡)

• Probability estimation:

𝑝(𝑤𝑂|𝑤𝐼) =
exp (𝑉 ′⊤

𝑤𝑂
𝑉𝑤𝐼

)
∑𝑤 exp (𝑉 ′⊤

𝑤𝑉𝑤𝑖
)

where 𝑉 is input (embedding) matrix, 𝑉 ′ output matrix

Equations 1, 2. Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, Georgia,
jun 2013. Association for Computational Linguistics

Deep Learning for Natural Language processing 74/90

Word2Vec: Training using Negative Sampling

The summation in denominator is slow, use noise contrastive estimation:

log𝜎 (𝑉 ′⊤
𝑤𝑂

𝑉𝑤𝐼
) +

𝑘
∑
𝑖=1

𝐸𝑤𝑖∼𝑃𝑛(𝑤) [log𝜎 (−𝑉 ′⊤
𝑤𝑖

𝑉𝑤𝐼
)]

Main idea: classify independently by logistic regression the positive and few sampled
negative examples.

Equations 1, 3. Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, Georgia,

jun 2013. Association for Computational Linguistics

Deep Learning for Natural Language processing 75/90

Word2Vec: Vector Arithmetics

man

woman

uncle

aunt

king

queen

kings

queens

king

queen

Image originally from Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the

2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta,

Georgia, jun 2013. Association for Computational Linguistics

Deep Learning for Natural Language processing 76/90

Few More Notes on Embeddings

• many method for pre-trained words embeddings (most popluar GloVe)
• embeddings capturing character-level properties
• multilingual embeddings

Deep Learning for Natural Language processing 77/90

Training models

FastText – Word2Vec model implementation by Facebook
https://github.com/facebookresearch/fastText

./fasttext skipgram -input data.txt -output model

Deep Learning for Natural Language processing 78/90

https://github.com/facebookresearch/fastText

Pre-training Representations

ELMo

What is ELMo?

• pre-trained large language model
• “nothing special” – combines all

known tricks, trained on extremely
large data

• improves almost all NLP tasks
• published in June 2018

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/N18-1202

Deep Learning for Natural Language processing 79/90

http://www.aclweb.org/anthology/N18-1202

ELMo Architecture: Input

character embeddings of size 16

1D-convolution to 2,048 dimensions
+ max-pool

window filters
1 32
2 32
3 64
4 128
5 256
6 512
7 1024

2× highway layer (2,048 dimensions)

linear projection to 512 dimensions
• input tokenized, treated on character

level
• 2,048 𝑛-gram filters + max-pooling

(∼ soft search for learned 𝑛-grams)
• 2 highway layers:

𝑔𝑙+1 = 𝜎 (𝑊𝑔ℎ𝑙 + 𝑏𝑔)
ℎ𝑙+1 = (1 − 𝑔𝑙+1) ⊙ ℎ𝑙+

𝑔𝑙+1 ⊙ ReLu (𝑊ℎ𝑙 + 𝑏)

contain gates that contol if
projection is needed

Deep Learning for Natural Language processing 80/90

ELMo Architecture: Language Models

• token representations input for 2 language models: forward and backward
• both LMs 2 layers with 4,096 dimensions wiht layer normalization and residual

connections
• output classifier shared (only used in training, does hot have to be good)

Learned layer combination for downstream tasks:

ELMotask
𝑘 = 𝛾task ∑

layer𝐿
𝑠task

𝐿 ℎ(𝐿)
𝑘

𝛾task, 𝑠task
𝐿 trainable parameters.

Deep Learning for Natural Language processing 81/90

Task where ELMo helps

Answer Span Selection
Find an answer to a question in a
unstructured text.

Semantic Role Labeling
Detect who did what to whom in
sentences.

Natural Language Inference
Decide whether two sentences are in
agreement, contradict each other, or have
nothing to do with each other.

Named Entity Recognition
Detect and classify names people,
locations, organization, numbers with
units, email addresses, URLs, phone
numbers …

Coreference Resolution
Detect what entities pronouns refer to. I

Semantic Similarity
Measure how similar meaning two
sentences are. (Think of clustering similar
question on StackOverflow or detecting
plagiarism.)

Deep Learning for Natural Language processing 82/90

Improvements by Elmo

Deep Learning for Natural Language processing 83/90

How to use it

• implemetned in AllenNLP
framework (uses PyTorch)

• pre-trained English models
available

from allennlp.modules.elmo import Elmo,
batch_to_ids

options_file = ...
weight_file = ...

elmo = Elmo(options_file, weight_file, 2,
dropout=0)

sentences = [['First', 'sentence', '.'],
['Another', '.']]

character_ids = batch_to_ids(sentences)

embeddings = elmo(character_ids)

https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md

Deep Learning for Natural Language processing 84/90

https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md

Pre-training Representations

BERT

What is BERT

• another way of pretraining sentence
representations

• uses Transformer architecture and
slightly different training objective

• even beeter than ELMo
• done by Google, published in

November 2018

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT:
Pre-training of deep bidirectional transformers for language
understanding. ArXiv e-prints, October 2018

Deep Learning for Natural Language processing 85/90

Achitecture Comparison

Deep Learning for Natural Language processing 86/90

Masked Language Model

All human being are born free free MASK hairy free and equal in dignity and rights

1. Randomly sample a word → free
2. With 80% change replace with special MASK token.
3. With 10% change replace with random token → hairy
4. With 10% change keep asi is → free

Then a classifier should predict the missing/replaced word free

Deep Learning for Natural Language processing 87/90

Additional Objective: Next Sentence Prediction

• trained in the multi-task learning setup
• secondary objective: next sentences prediction
• decide for a pair of consecuitve sentences whether they follow each other

Deep Learning for Natural Language processing 88/90

Performance of BERT

Tables 1 and 2. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. ArXiv
e-prints, October 2018

Deep Learning for Natural Language processing 89/90

Deep Learning for Natural Language processing

Summary
1. Discrete symbols → continuous representation with trained

embeddings
2. Architectures to get suitable representation: recurrent,

convolutional, self-attentive
3. Output: classification, sequence labeling, autoregressive

decoding
4. Representations pretrained on large data helps on downstream

tasks

http://ufal.mff.cuni.cz/~zabokrtsky/fel

http://ufal.mff.cuni.cz/~zabokrtsky/fel

	Neural Networks Basics
	Representing Words
	Representing Sequences
	Recurrent Networks
	Convolutional Networks
	Self-attentive Networks

	Classification and Labeling
	Generating Sequences
	Pre-training Representations
	Word2Vec
	ELMo
	BERT

