Introduction to Natural Language Processing

a course taught as B4M36NLP at Open Informatics

by members of the Institute of Formal and Applied Linguistics

Today:	Week 3, lecture
Today's topic:	Markov Models
Foday's teacher:	Jan Hajič
E-mail:	hajic@ufal.mff.cuni.cz

WWW: http://ufal.mff.cuni.cz/jan-hajic

_

イロト イヨト イヨト

Review: Markov Process

• Bayes formula (chain rule):

 $P(W) = P(w_1, w_2, ..., w_T) = \prod_{i=1..T} p(w_i | w_1, w_2, ..., w_{i-n+1}, ..., w_{i-1})$

n-gram language models: – Markov process (chain) of the order n-1: $P(W) = P(w_1, w_2, ..., w_T) = \prod_{i=1..T} p(w_i | w_{i-n+1}, w_{i-n+2}, ..., w_{i-1})$ n-gram language models: Using just <u>one</u> distribution (Ex.: trigram model: $p(w_i|w_{i-2},w_{i-1})$): Positions: 3 4 5 6 8 2 7 9 10 11 12 13 14 15 16 My car broke down, and within hours Bob 's car broke down, too Words: $p(|broke down) = p(w_5|_{W_3,W_4}) = p(w_{14}|_{W_{12},W_{13}})$

2016/7

Markov Properties

- Generalize to any process (not just words/LM):
 - Sequence of random variables: $X = (X_1, X_2, ..., X_T)$
 - Sample space S (*states*), size N: S = $\{s_0, s_1, s_2, ..., s_N\}$
 - 1. Limited History (Context, Horizon):

Long History Possible

- What if we want trigrams: 1 7 3 7 9 0 6 7 3 4 5...
- Formally, use transformation:

Define new variables Q_i , such that $X_i = \{Q_{i-1}, Q_i\}$:

Then

$$\begin{split} P(X_{i}|X_{i-1}) &= P(Q_{i-1},Q_{i}|Q_{i-2},Q_{i-1}) = P(Q_{i}|Q_{i-2},Q_{i-1}) \\ Predicting (X_{i}): & 1 & 7 & 3 & 7 & 9 & 6 & 7 & 3 & 4 & 5 \dots \\ & 1 & 7 & 3 & 7 & 9 & 6 & 7 & 3 & 4 & 5 \dots \\ & 1 & 7 & 3 & \dots & 9 & 6 & 7 & 3 & 4 & 5 \dots \\ History (X_{i-1} &= \{Q_{i-2},Q_{i-1}\}) & \dots & 1 & 7 & \dots & 9 & 6 & 7 & 3 & 4 & 5 \dots \\ \end{split}$$

Graph Representation: State Diagram

- $S = {s_0, s_1, s_2, ..., s_N}$: states
- Distribution P(X_i|X_{i-1}):

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

2 2 C

12

The Trigram Case

- $S = {s_0, s_1, s_2, ..., s_N}$: states: pairs $s_i = (x, y)$
- Distribution P(X_i|X_{i-1}): (r.v. X: generates pairs s_i)

2016/7

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

6 1

・ロト ・(部)ト ・(語)ト ・(語)ト

Finite State Automaton

- States ~ symbols of the [input/output] alphabet ~
 pairs (or more): last element of the n-tuple
- Arcs ~ transitions (sequence of states)
- [Classical FSA: alphabet symbols on arcs:
 transformation: arcs ↔ nodes]
- Possible thanks to the "limited history" M'ov Property
- So far: *Visible* Markov Models (VMM)

Hidden Markov Models

• The simplest HMM: states generate [observable] output (using the "data" alphabet) but remain "invisible":

Added Flexibility

• So far, no change; but different states may generate the same output (why not?):

Output from Arcs...

• Added flexibility: Generate output from arcs, not states:

... and Finally, Add Output Probabilities

• Maximum flexibility: [Unigram] distribution (sample space: output alphabet) at each output arc:

Slightly Different View

• Allow for multiple arcs from $s_i \rightarrow s_j$, mark them by output symbols, get rid of output distributions:

In the future, we will use the view more convenient for the problem at hand.

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 12

æ

Formalization

- HMM (the most general case):
 - five-tuple (S, s_0 , Y, P_S , P_Y), where:
 - $S = \{s_0, s_1, s_2, ..., s_T\}$ is the set of states, s_0 is the initial state,
 - $Y = {y_1, y_2, ..., y_V}$ is the output alphabet,
 - P_s(s_j|s_i) is the set of prob. distributions of transitions,

- size of P_S : $|S|^2$.

- $P_{Y}(y_k|s_i,s_j)$ is the set of output (emission) probability distributions. - size of P_Y : $|S|^2 \ge |Y|$
- Example:

$$- S = \{x, 1, 2, 3, 4\}, s_0 = x$$
$$- Y = \{t, 0, e\}$$

2016/7

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

13

Formalization - Example

• Example:

$$- S = \{x, 1, 2, 3, 4\}, s_0 = x$$

$$-Y = \{ e, o, t \}$$

 $-P_s$:

Using the HMM

- The generation algorithm (of limited value :-)):
 - 1. Start in $s = s_0$.
 - 2. Move from s to s' with probability $P_s(s'|s)$.
 - 3. Output (emit) symbol y_k with probability $P_s(y_k|s,s')$.
 - 4. Repeat from step 2 (until somebody says enough).
- More interesting usage:
 - Given an output sequence $Y = \{y_1, y_2, ..., y_k\}$, compute its probability.
 - Given an output sequence Y = {y₁,y₂,...,y_k}, compute the most likely sequence of states which has generated it.
 - ...plus variations: e.g., n best state sequences

HMM Algorithms: Trellis and Viterbi

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

HMM: The Two Tasks

- HMM (the general case):
 - five-tuple (S, S_0 , Y, P_S , P_Y), where:
 - $S = \{s_1, s_2, ..., s_T\}$ is the set of states, S_0 is the initial state,
 - $Y = \{y_1, y_2, ..., y_V\}$ is the output alphabet,
 - $P_{s}(s_{j}|s_{i})$ is the set of prob. distributions of transitions,
 - $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions.
- Given an HMM & an output sequence Y = {y₁,y₂,...,y_k}: (Task 1) compute the probability of Y;
 (Task 2) compute the most likely sequence of states which has generated Y.

2016/7

Trellis - Deterministic Output

Trellis:

- trellis state: (HMM state, position)
- each state: holds <u>one</u> number (prob): α
- probability or Y: $\Sigma \alpha$ in the last state

8

2016/7

HMM:

Creating the Trellis: The Start

- Start in the start state (.),
 set its α(.,0) to 1.
- Create the first stage:
 - get the first "output" symbol y₁
 - create the first stage (column)
 - but only those trellis states which generate y_1
 - set their $\alpha(state, 1)$ to the P_s(state|.) $\alpha(., 0)$
- ...and forget about the *0*-th stage

t

æ

 y_1 :

2016/7

Trellis: The Next Step

- Suppose we are in stage *i*
- Creating the next stage:
 - create all trellis states in the next stage which generate y_{i+1}, but only those reachable from any of the stage-*i* states
 - set their $\alpha(state,i+1)$ to:

 $P_s(state|prev.state)$. $\alpha(prev.state, i)$ (add up all such numbers on arcs going to a common trellis state)

...and forget about stage i

Trellis: The Last Step

- Continue until "output" exhausted
 |Y| = 3: until stage 3
- Add together all the $\alpha(state, |Y|)$
- That's the $\underline{P(Y)}$.
- Observation (pleasant):
 - memory usage max: 2|S|
 - multiplications max: |S|2|Y|

P(Y) = .568

æ

2016/7

Trellis: The General Case (still, bigrams)

• Start as usual:

- start state (.), set its $\alpha(., 0)$ to 1.

・ロト ・(部)ト ・(語)ト ・(語)ト

2016/7

General Trellis: The Next Step

- We are in stage *i* :
 - Generate the next stage *i*+1 as before (except now <u>arcs</u> generate output, thus use only those arcs marked by the output symbol y_{i+1})

= $\sum_{incoming arcs} P_{Y}(y_{i+1}|state, prev.state)$. $\alpha(prev.state, i)$

...and forget about stage *i* as usual.

Trellis: The Complete Example

Stage:

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

24

The Case of Trigrams

- Like before, but:
 - states correspond to bigrams,
 - output function always emits the second output symbol of the pair (state) to which the arc goes:

Trigrams with Classes

• More interesting:

- n-gram class LM: $p(w_i|w_{i-2},w_{i-1}) = p(w_i|c_i) p(c_i|c_{i-2},c_{i-1})$

 \rightarrow states are pairs of classes (c_{i-1},c_i), and emit "words":

2016/7

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

26

Class Trigrams: the Trellis

2016/7

Overlapping Classes

- Imagine that classes may overlap
 - e.g. 'r' is sometimes vowel sometimes consonant, belongs to V as well as C:

2016/7

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

28

Overlapping Classes: Trellis Example

2016/7

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

29

Trellis: Remarks

- So far, we went left to right (computing α)
- Same result: going right to left (computing β)
 supposed we know where to start (finite data)
- In fact, we might start in the middle going left and right
- Important for parameter estimation (Forward-Backward Algortihm alias Baum-Welch)
- Implementation issues:
 - scaling/normalizing probabilities, to avoid too small numbers & addition problems with many transitions

2016/7

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

æ

The Viterbi Algorithm

- Solving the task of finding the most likely sequence of states which generated the observed data
- i.e., finding

 $S_{best} = argmax_{s}P(S|Y)$

which is equal to (Y is constant and thus P(Y) is fixed):

$$\begin{split} S_{best} &= argmax_{S}P(S,Y) = \\ &= argmax_{S}P(s_{0},s_{1},s_{2},...,s_{k},y_{1},y_{2},...,y_{k}) = \\ &= argmax_{S}\Pi_{i=1..k} \ p(y_{i}|s_{i},s_{i-1})p(s_{i}|s_{i-1}) \end{split}$$

The Crucial Observation

• Imagine the trellis build as before (but do not compute the αs yet; assume they are o.k.); stage *i*:

Viterbi Example

• 'r' classification (C or V?, sequence?):

Possible state seq.: (.,v)(v,c)(c,v)[VCV], (.,c)(c,v)[CCV], (.,c)(c,v)(v,v)[CVV]

2016/7

Viterbi Computation

2016/7

Pruning

• Sometimes, too many trellis states in a stage:

criteria: (a) α < threshold (b) $\Sigma\pi$ < threshold (c) # of states > threshold (get rid of smallest α)

2016/7

HMM: Parameter Estimation The Baum-Welch Algorithm

- HMM (the general case):
 - five-tuple (S, S_0 , Y, P_S , P_Y), where:
 - $S = \{s_1, s_2, ..., s_T\}$ is the set of states, S_0 is the initial state,
 - $\mathbf{Y} = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_V\}$ is the output alphabet,
 - $P_{s}(s_{j}|s_{i})$ is the set of prob. distributions of transitions,
 - $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions.
- Given an HMM & an output sequence Y = {y₁,y₂,...,y_k}:
 ✓(Task 1) compute the probability of Y;
 - ✓ (Task 2) compute the most likely sequence of states which has generated Y.
 - (Task 3) Estimating the parameters (transition/output distributions) unsupervised (supervised: trivial, use relative frequencies)

A Variant of EM

- Idea (~ EM, for another variant see LM smoothing):
 - Start with (possibly random) estimates of P_s and P_y .
 - Compute (fractional) "counts" of state transitions/emissions taken, from P_s and P_y, given data Y.
 - Adjust the estimates of P_s and P_y from these "counts" (using the MLE, i.e. relative frequency as the estimate).
- Remarks:
 - many more parameters than the simple four-way smoothing
 - no proofs here; see Jelinek, Chapter 9

2016/7

Setting

- HMM (without P_S , P_Y) (S, S₀, Y), and data $T = \{y \in Y\}_{i=1.|T|}$
 - will use $T \sim |T|$
 - HMM structure is given: (S, S₀)
 - Ps:Typically, one wants to allow "fully connected" graph
 - (i.e. no transitions forbidden ~ no transitions set to hard 0)
 - why? → we better leave it on the learning phase, based on the data!
 - sometimes possible to remove some transitions ahead of time
 - P_Y: should be restricted (if not, we will not get anywhere!)
 - restricted ~ hard 0 probabilities of p(y|s,s')
 - "Dictionary": states \leftrightarrow words, "m:n" mapping on S \times Y (in general)s

2

Initialization

- For computing the initial expected "counts"
- Important part
 - EM guaranteed to find a *local* maximum only (albeit a good one in most cases)
- P_Y initialization more important
 - fortunately, often easy to determine
 - together with dictionary \leftrightarrow vocabulary mapping, get counts, then MLE

æ

- P_s initialization less important
 - e.g. uniform distribution for each p(.|s)

2016/7

Data Structures

- Will need storage for:
 - The predetermined structure of the HMM

(unless fully connected \rightarrow need not to keep it!)

- The parameters to be estimated (P_s, P_y)
- The expected counts (same size as P_S , P_Y)
- The training data $T = \{y_i \in Y\}_{i=1..T}$

The Algorithm Part I

- 1. Initialize P_S , P_Y
- 2. Compute "forward" probabilities:
 - follow the procedure for trellis (summing), compute $\alpha(s,i)$
 - use the current values of P_s, P_y (p(s'|s), p(y|s,s')):

 $\alpha(s',i) = \sum_{s \to s'} \alpha(s,i-1) \cdot p(s'|s) \cdot p(y_i|s,s')$

- NB: do not throw away the previous stage!
- 3. Compute "backward" probabilities
 - start at all nodes of the last stage, proceed backwards, $\beta(s,i)$
 - i.e., probability of the "tail" of data from stage *i* to the end of data

 $\beta(s',i) = \sum_{s \leftarrow s'} \beta(s,i+1) \cdot p(s|s') \cdot p(y_{i+1}|s',s)$

- also, keep the $\beta(s,i)$ at all trellis states

з.

The Algorithm Part II

4. Collect counts:

- for each output/transition pair compute

$$c(y,s,s') = \sum_{i=0,k-1,y=y} \alpha(s,i) p(s'|s) p(y_{i+1}|s,s') \beta(s',i+1)$$
one pass through data,
only stop at (output) y

$$c(s,s') = \sum_{y \in Y} c(y,s,s') \text{ (assuming all observed } y_i \text{ in } Y)$$

$$c(s) = \sum_{s' \in S} c(s,s')$$

5. Reestimate: $p'(s'|s) = c(s,s')/c(s) \quad p'(y|s,s') = c(y,s,s')/c(s,s')$

6. Repeat 2-5 until desired convergence limit is reached.

2016/7

æ

Baum-Welch: Tips & Tricks

- Normalization badly needed
 - long training data \rightarrow extremely small probabilities
- Normalize α,β using the same norm. factor:

 $N(i) = \sum_{s \in S} \alpha(s, i)$

as follows:

- compute α(s,i) as usual (Step 2 of the algorithm), computing the sum N(i) at the given stage *i* as you go.
- at the end of each stage, recompute all α s (for each state s): α *(s,i) = α (s,i) / N(i)
- use the same N(i) for βs at the end of each backward (Step 3) stage: $\beta^*(s,i) = \beta(s,i) \ / \ N(i)$

2016/7

Example

- Task: pronunciation of "the"
- Solution: build HMM, fully connected, 4 states:
 - S short article, L long article, C,V starting w/consonant, vowel
 - thus, only "the" is ambiguous (a, an, the not members of C,V)
- Output from states only (p(w|s,s') = p(w|s'))
- Data Y: an egg and a piece of the big the end $(\overline{C},\overline{3})$ $(\overline{C},\overline{3})$ Trellis: $(\overline{V},\overline{2})$ $(\overline{V},\overline{3})$ $(\overline{C},\overline{3})$ $(\overline{C},\overline{3})$ $(\overline{C},\overline{3})$ $(\overline{C},\overline{3})$ $(\overline{C},\overline{3})$ $(\overline{C},\overline{3})$ $(\overline{C},\overline{3})$ $(\overline{C},\overline{3})$ $(\overline{C},\overline{3})$ $(\overline{C},\overline{3})$ $(\overline{C},\overline{3})$

2016/7

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

∃ ►

Example: Initialization

• Output probabilities:

 $p_{init}(w|c) = c(c,w) / c(c)$; where c(S,the) = c(L,the) = c(the)/2

(other than that, everything is deterministic)

- Transition probabilities:
 - $p_{init}(c'|c) = 1/4$ (uniform)
- Don't forget:
 - about the space needed
 - initialize $\alpha(X,0) = 1$ (X : the never-occurring front buffer st.)
 - initialize $\beta(s,T) = 1$ for all s (except for s = X)

Fill in alpha, beta

• Left to right, alpha:

 $\alpha(s',i) = \sum_{s \to s'} \alpha(s,i-1) \cdot p(s'|s) \cdot p(w_i|s')$ output from states

- Remember normalization (N(i)).
- Similarly, beta (on the way back from the end).

2016/7

Counts & Reestimation

- One pass through data
- At each position *i*, go through all pairs (s_i,s_{i+1})
- Increment appropriate counters by frac. counts (Step 4):
 - $inc(y_{i+1},s_i,s_{i+1}) = a(s_i,i) p(s_{i+1}|s_i) p(y_{i+1}|s_{i+1}) b(s_{i+1},i+1)$
 - c(y,s_i,s_{i+1}) += inc (for y at pos i+1)
 - $c(s_i,s_{i+1}) \neq inc$ (always)
 - $c(s_i) \neq inc$ (always)
- Reestimate $\mathbf{p}(\mathbf{s}, \mathbf{L}, \mathbf{c}) = \alpha(\mathbf{L}, 7) \mathbf{p}(\mathbf{C}|\mathbf{L}) \mathbf{p}(\mathbf{b}|\mathbf{g}, \mathbf{C}) \beta(\mathbf{C}, 8)$ $\mathbf{p}(\mathbf{V}|\mathbf{S})$
 - and hope for increase in p(C|S) and p(V|S).

2016/7

HMM: Final Remarks

- Parameter "tying":
 - keep certain parameters same (~ just one "counter" for all of them)
 - any combination in principle possible
 - ex.: smoothing (just one set of lambdas)
- Real Numbers Output
 - Y of infinite size (R, Rⁿ):
 - parametric (typically: few) distribution needed (e.g., "Gaussian")
- "Empty" transitions: do not generate output
 - ~ vertical arcs in trellis; do not use in "counting"

2