
Proceedings of the Second International Conference on Dependency Linguistics (DepLing 2013), pages 88–97,
Prague, August 27–30, 2013. c© 2013 Charles University in Prague, Matfyzpress, Prague, Czech Republic

Collaborative Dependency Annotation

Kim Gerdes
Sorbonne Nouvelle

ILPGA, LPP (CNRS)
Paris, France

kim@gerdes.fr

Abstract

This paper presents the Arborator, an online
tool for collaborative dependency annotation
together with a case study of crowdsourcing in
a pedagogical university context. In greater
detail, we explore what generally distinguishes
dependency annotation tools from phrase
structure annotation tools and we introduce ex-
isting tools for dependency annotation as well
as the distinctive features and design choices
of our tool. Finally we show how to setup a
crowdsourced dependency annotation experi-
ment as an exercise for university students.
We explore constraints, results, and conclu-
sions to draw.

1 Introduction

The importance of treebanks in today's data-
driven linguistics cannot be overrated. All data-
driven approaches to syntax require gold-stan-
dard annotations, and the need for (possibly ma-
chine-aided) hand annotation tools is more ur-
gent than ever, as researchers want to go beyond
the eternal Penn Treebank derivatives, because
of interests in different languages, annotation
levels, and theoretical backgrounds underlying
the research.

In recent years, dependency treebanks have
become the near-standard representation of anno-
tation schemes in computational linguistics.
However, the inherently non-local structure of
dependencies make graphical annotation tools
more difficult to develop and commonly less in-
tuitive to use.

This paper presents an online annotation tool
named Arborator, its features, and how it can be
used in an educational surrounding at the same
time for pedagogical purposes as well as with the
goal to develop high-quality dependency tree-
banks.

2 Context

Even though a vast majority of dependency links
are projective, even in so-called free word order
languages, one of the major advantages of depen-
dencies is not to presuppose the structure to have
certain properties, like being projective. Phrase
structure, on the contrary, is based on the under-
lying assumption of a coincidence between word
order and government; contrary cases have to be
taken care of by means of “traces” and “move-
ments” (Gerdes 2005). Dependencies can thus
represent more abstract relations, closer to se-
mantics, which is arguably the main reason for
today's success of dependency in NLP.

On the annotation level, however, dependency
is a notably harder notion to handle than con-
stituency. This holds for the file format because
phrases can very easily be represented by simple
bracketing or elaborated versions of bracketing
like XML; dependency needs to separate tokens
and links, the links referring back to the token
objects. But this also holds for the manual anno-
tation process as many tools exist for the explo-
ration and editing of “tree”-like structures similar
to “file/folder structures” – and dependency is
somehow orthogonal to this kind of structure.

2.1 Existing tools

Still today, most dependency treebanks are de-
rived from phrase structures by means of rule-
based or statistical transformation of phrase
structure. The manual quality control occurred
on the phrase structure level with appropriate
tools. For very small treebanks, some hand-wo-
ven approaches are still around (Chen et al.
2011), using for example a simple spreadsheet
for annotation.

Only few dependency treebanks are directly
constructed as such by use of well-adapted tools,
in this section we will give a short overview over
the existing graphical tools:

88

The first tool that included dependency anno-
tation was probably Annotate (Plaehn & Brants
2000), used for the development of the Tiger cor-
pus. It applies Tiger's mixed syntactic structure:
Labeled constituents with functionally labeled
edges and crossing branches for non-projective
structures.

At about the same time appeared the StrEd
(Structure Editor, Boguslavsky et al. 2000), also
an offline tool meant to facilitate the manual cor-
rection of already pre-annotated data. Its graphic
representation has the particularity that each to-
ken is on a separate line, similar to the common
CoNLL format, and the dependency tree is con-
structed on these tokens, thus turned by 90 de-
grees compared to more common representations
with the root on top. To our knowledge, this is
the first tool to use drag-and-drop creation of de-
pendency links.

TrEd, the Tree Editor from Prague is an off-
line tool written in perl that helped to create and
correct the Prague Dependency Treebank (Hajič
et al. 2001, Hajič 2005) as well as other tree-
banks for other languages like English (Rambow
et al. 2002) or more recently Persian (Seraji &
Nivre 2012) . It includes an interface with a va-
lency lexicon in order to keep the annotations co-
herent and scripting possibility for batch process-
ing. Moreover, it was probably the first tool that
includes visual comparisons between two anno-
tators' trees, including the possibility to choose
the correct structure.

NotaBene, developed by Mazziotta (2010) is
an open-source (GPL) off-line tool written in
Python that presents the above-mentioned file
manager type interface. Elements are tokenized
when entering data in the tool, but all other forms
of automization are explicitely excluded. The
tool includes sophisticasted feature handling, tree
comparison and it follows RDF standards to cap-
ture multi-layer annotations. NotaBene is princi-
pally used in an ongoing annotation project of
Ancient French.

DepAnn, written by Tuomo Kakkonen 2006 is
another offline dependency annotation tool writ-
ten in java. It can represent and modify the de-
pendency representation of Tiger-XML. It in-
cludes a consistency checker and comparison of
trees.

Other dependency treebank like the Danish
Dependency Treebank, the Alpino Treebank
(Van der Beek et al. 2002) or the Turin Univer-
sity Treebank have been elaborated with the help
of bootstrapping approaches in a command line
interfaces and special dependency tree viewers

that allow for faster choices between different
automatic parses of the same sentence.

More recently, MATE, a graph transduction
workbench (Bohnet et al. 2000; Bohnet, 2006)
has been used for the development of multi-
stratal corpora in Meaning-Text style (Mel'cuk
1986) of Spanish and, with smaller scope, other
European languages (Mille et al. 2009). MATE
is written in java and includes a graphical editor
for graph structures.

The most sophisticated tool and the closest in
design to the Arborator is without any doubt the
very recently presented tool “Brat” (Stenetorp, et
al. 2012). Like the Arborator, Brat is a web-
based application using SVG that allows for
graphic drag-and-drop dependency-centric multi-
user annotation of text corpora. It also has com-
parable user management, annotation compari-
son, Unicode support, and import and export ca-
pacities. Contrarily to the Arborator, it is not sen-
tence-based, text appears continuously in multi-
line representation, and Brat thus allows for the
annotation of intra-phrase relations like co-refer-
ence and discourse annotation. Also the seg-
ments are not fixed and any continuous chain of
letters can be marked and then linked to other
parts. Moreover it contains a constraint language
that allows for on the fly checking of annota-
tions. The Arborator's search and concordancer
features seem to be slightly more developed as a
search for specific feature is possible and Brat
only includes plain text search. Also the Arbora-
tor's corpus distribution and user management
seems to be more adapted to “uncooperative”
surroundings like the classroom where it is im-
portant that the annotators and validators access
only the texts that have been assigned to them.
These features will be exposed in greater detail
in the subsequent sections.

The only other web-based tool that we are
aware of is EasyRef (De La Clergerie 2008).
EasyRef has a constituent based representation
even for dependencies: They are represented as
(continuous) segments with a function label. This
tool is designed for human evaluation of parser
performance which makes it the only other tool
including techniques for voting systems (see sec-
tion 4).

3 Design of the Arborator

The Arborator has been developed over several
years in a two-fold perspective: It was needed for
the annotation of transcribed spoken language in
the Rhapsodie treebank project (Gerdes et. al.

89

2012), and it is today used as a pedagogical and
crowdsourcing tool in various universities. A de-
scription of such an experiment constitutes sec-
tion 4 of the present paper.

This implies the following different design
choices:

• Zero setup: The tool must run on any
computer without any difficult adapta-
tion or installation procedure.

• Central storage of texts and annotations.
• Multi-audience interface: For profes-

sional annotators, it needs to include nu-
merous keyboard short cuts for all com-
mon annotation tasks, and for starters,
the annotation process has to be graphi-
cal and self-explanatory.

These points exclude most existing tools and im-
ply the development of a web-based application
that does not use any plugins but runs directly in
a standard-compliant browser. The graphical na-
ture of the data including arrows forces us be-
yond simple HTML to an SVG representation of
the corpus.

The Arborator can be used for the correction
of automatically (or, less commonly, manually)
pre-annotated corpora or for the creation of tree
structures from scratch. Every token can depend
on one (or more) governors and can have simple
features attached to them. The choice of features
to be shown (and to be modifiable) directly under
the token is configurable, the most common ones
being of course the syntactic category (POS) and
the token's lemma.

Other technical design choices of the Arbora-
tor include:

• Development in Python with an underly-
ing Sqlite database with client-side inter-
actions in Javascript (Jquery).

• Runs on any Python-CGI capable
Apache webserver.

• Optimized for the Firefox browser but
runs reasonably well in other SVG capa-
ble browsers.

• Multi-level user hierarchy: site adminis-
trator, corpus administrator, validator,
assigned annotator, visitor.

• The appearance of the dependency struc-
tures is highly configurable in simple
configuration files.

• Of course, the Arborator is fully Unicode
capable with non-ASCII characters being
allowed in sentences, annotation
schemes, and login names:

• The design choice of keeping the sen-
tences “readable” with tokens being jux-
taposed horizontally is debatable. The al-
ternative, stemma-like structures like
those used in the TrEd from Prague,
makes the hierarchical structure of the
trees more visible, whereas our choice
emphasizes the linear sentence structure.
We believe that this makes it easier for
the annotator to understand the sentence
and then to capture the sentence's syntac-
tic structure. But of course, in this mat-
ter, beauty is in the eye of the beholder.

The Arborator is employed in different univer-
sities for annotation tasks, the main site being
http://arborator.ilpga.fr – the main page also pro-
vides links to tutorial pages and the source code
on Launchpad. The Arborator is distributed un-
der the APGL license, the standard open-source
license for server software.

90

3.1 The user experience

Before using the Arborator, the user has to
create an account with email verification. The
log-on brings him to the project page containing
different option depending on the user level of
the user. The normal annotator finds on top of
the page the texts that have been assigned to him
either as a validator or as an annotator1. Each text
(and also each sentence) has a changeable status,
which allows the annotator to indicate to the val-
idator that the annotation process is terminated
The center part of the project page contains a ta-
ble with all the texts of the project. The adminis-
trator of the project can

• attribute any text to a user's annotation or

validation tasks,
• export the data in multiple formats and

configurations
• add whole texts to the project, plain texts

or pre-parsed data in CoNLL or Rhap-
sodie-XML format.

• Check the consistency of the annotation
by obtaining tables of frequency distri-
bution of features and 2-node connected
sub-graphs of the dependency graph.

• Obtain an overview of each annotator's
progress.

1 There are various setup options available to con-
trol the visibility of different annotations, but in
the most basic configuration, the annotator only
sees his own trees and the validator can see the
trees of all annotators of the given text which al-
lows her to compare between annotations and
choose the correct tree.

A click on the text name brings the user to the
online editor. Depending on his role and the cho-
sen setup of the annotation project, he will see
only the words with his own annotation (if
present), the standard annotation (for example
the pre-parsed structures), or a list of all possible
trees for each sentence.

Each token can be dragged and dropped on an-
other token, thus creating a link in this direction.
A context menu opens and the user has to choose
the corresponding function name (the list of
functions is set in the project configuration).
When holding the shift key down when choosing
the function name, the governor is added to the
existing governor, allowing thus for the creation
of cyclic graph structures.2

Equally, the shown features can be modified by
means of a context menu that opens when the
features are clicked upon. A double-click opens a
table of other features, including, for administra-
tors, the possibility to modify, add, or erase to-
kens.

2 Some analyses of coordination or of relative
phrases suppose double governors (for example
because the relative pronoun is thought to play the
role of the pronoun inside the relative clause and
of the complementizer heading the relative
phrase). Similarly, cycles have been proposed for
the syntactic analysis of collocations and under-
specified PP-attachment (Gerdes & Kahane 2011)

91

All modifications are undoable (during the an-
notation session – the Arborator does not yet pro-
vide automatic versioning) and the whole annota-
tion (or correction) process can be done exclu-
sively by means of keyboard shortcuts, without
touching the mouse, which is often faster for ex-
perienced users.

If there is more than one tree visible to a user,
he can graphically compare any set
of annotations. The resulting graph
shows in color the differences and
grays out what is in common be-
tween the chosen analyses:

Each tree can individually be exported in the fol-
lowing formats. This allows for an easy integra-
tion of high-quality vectorial images for publica-
tions: SVG (Scalable Vector Graphics), PDF, PS,
ODG, JPG, PNG, TIFF, CONLL (tab-separated
text table), and XML (an idiosyncratic stand-up
format that allows for the linking of the syntactic
transcription to sound files)

4 The experiment

The second part of this paper addresses the ques-
tion of how good the dependency annotation of
non-professional annotators can become, if we
use a rover, i.e. a voting system (Fiscus 1997), to
establish the best annotation among a series of
annotations produced by semi-trained students.

This is interesting as many linguistic depart-
ments lack resources to train and pay profes-
sional annotators, but don't lack students with the
desire to learn syntactic analysis.

4.1 Gaudium ex cathedra

Also from a pedagogical point of view, the use of
a collaborative online annotation tool has many
advantages:

First, the students are often taught in quite
large classes and it is impossible for the teachers
to systematically correct exercises composed of
any larger amount of annotations. The Arborator
allows for different types of exercises:

1. the gold-standard annotation is com-
pletely visible to the students – they can
discover the structures.

2. an incomplete structure is left visible,
but the gold-standard remains invisible.
The teacher can thus oblige the student
to complete parts of an analysis that was
the subject of the current class.

3. The annotation is invisible to students,
but scoring is public (so students can up-
date their annotation until they hit
100%).

4. equal to mode 2 but the location of the
errors are indicated on the sentence
which guides the student more quickly to
the right annotation.

Jusqu'

prép

Jusqu'

ici

adv

ici

tout

pro

tout

va

verbe

aller

bien

adv

bien

aj-temp

prép suj

racine

objd

92

The teacher, on the other hand can, with little ef-
fort, create interactive playful syntactic training
sessions, and obtain, for free, a completely auto-
matic list with student evaluations, thus forcing
the students to work regularly. Of course, any
e-learning environment allows for the creation of
multiple choice tests, but it is difficult to make
them as interesting and well-adapted to linguistic
analysis.
 Secondly, the task of annotation of raw data
forces teacher and student to abandon easy hand-
crafted example sentences and allows them to
face the cruel realities of language. When collab-
orative corpus annotation is taken as the main
goal of a class, the questions and debates that
come up in the classroom are of much more exit-
ing and motivated nature than conventional
teaching of syntax.

4.2 Context

The experiment was carried out with a class on
corpus linguistics taught to about 60 3rd year lin-
guistics majors in a French university, about 75%
of which have French as their mother tongue.
Only 3 main classes and 3 tutorial session in
smaller groups were held on the subject of this
project. Nearly all those students had have other
classes on syntax, one of which was taught one
year earlier by the same teacher specifically on
dependency syntax, using very similar notational
conventions as those used in the annotation guide
for the experiment. The annotation guide was on-
line and contained many concrete examples, also
including the supposed analysis of language idio-
syncrasies such as dates, numbers and punctua-
tion, that are frequently encountered in
Wikipedia and journalistic examples making up
the essential parts of the texts to be analyzed.

4.3 Annotation task distribution

We have two sets of sentences:

• the mini gold-standard annotated by the
researcher

• the non-annotated sentences, considered
as unlimited

The goal is to distribute the sentence to the stu-
dents in a just and reasonable manner. As online
annotation does not provide the possibility to
control the context in which the student annotate,
it is important to make it difficult to blindly copy
annotations from one student to the other (al-
though theoretically cooperation of students dur-

ing the annotation process could be useful to ob-
tain better analyses of the syntactic structure).
The system can distribute the sentences of the
texts into task sets using the following parame-
ters:

• t, total number of tokens per student to
annotate (rounding up or down in order
to distribute complete sentences)

• g, number of sentences from the pre-an-
notated mini gold-standard to mix into
the student's task (to allow for evalua-
tion)

• n, number of annotations per sentence
(taken from the non-annotated sentences)

• p, percentage of sentences that can be
equal from one task set to the other.3

The Arborator comes with a script that optimizes
this distribution.

4.4 Setup

The students were presented with 48 sentences,
mostly taken from two French Wikipedia articles
and some constructed sentences that contain phe-
nomena discussed in the class. The average
length of 24.7 tokens per sentence reflects the
“real world origin” of most sentences, very dif-
ferent from common example sentences from
syntax classes or textbooks.

The tokenization is simply sign-based and was
done automatically.4 All sentences were also an-
notated by the teachers of the class. This is, of
course, only necessary for this experimental

3 If p=100%, n students receive equal tasks. When p
decreases, for example to 50%, the first student
will share 50% of her sentences with the second
student, and another 50% with the third student,
and so on.
Note that the total number of students is not part
of these parameters, because in the natural setting
of a class taught to a large number of students,
many inscribed students will drop the class, and
new students appear. Only when a student creates
her account on the Arborator, her task is prepared.
This minimizes the number of sentences that do
not obtain n annotations in the end of the project.

4 A more sophisticated tokenization would have
been of use for a few special cases of French syn-
tax. The most problematic case is the token des
that can be the contraction of de 'of' and les 'the',or
it can just be the plural article des. Other problem-
atic cases include parce que 'because' and c'est-à-
dire 'which means'. A production environment
would in any case start of with the output of a
parser that should do better on tokenization.

93

setup, and if the tool is to be used in an produc-
tion environment, only a small number of sen-
tences need to be annotated by the researchers,
the rest will be done by the “crowd” of students.

This experiment is only concerned with simple
dependency structures. The labels, i.e. the syn-
tactic functions, are left aside for future research.
One reason for this is that the results on func-
tions appear, on a quick glance, much worse than
the government structure. This is partly due to
the fact that the students were told that the gov-
ernment structure is more central to the exercise
than the choice of function; and the government
structure was discussed in greater detail in the
classes. Another reason is that the set of syntactic
functions was unnecessarily (and uncommonly)
large, including distinctions like locative, man-
ner, temporal, and other adjuncts, etc.

We only kept annotations when 80% of the
words were annotated (i.e. had a governor) and,
in order to get reasonably good evaluations, we
only kept the annotation of students who at least
annotated 5 sentences. This left us with 42 stu-
dent annotators. Using the evaluation based on
all sentences, the quality of the dependency an-
notators ranges from 64% to 90% of correct gov-
ernment relations (F-score), the average being
79%. How many sentences do we have to take
into account in the evaluation if we want to keep
similarly precise evaluation scores of the student,
needed for the rover? Interestingly, the student
evaluation varies very little if we base it on the
first half of the corpus only (less than 1% in av-
erage), the quality of the annotation is better
(80%) on the first half, probably due to symp-
toms of fatigue of the annotators and discussions
in class of problems the students encountered. If
we decrease further the number of sentences that
we base our evaluation on, the evaluation aver-
ages continue to grow, but the students' F-score
decreases quickly.

Nr of sen-
tences used

for evaluation
48

24
(½)

12
(¼)

6
(1/8)

1
(1/48)

Min F-score 64% 67% 70% 73% 63%

Max F-score 90% 90% 90% 90% 100%

Average
F-score

79% 80% 81% 83% 87%

Average dif-
ference from

complete
F-scores

0 1.2% 1.8% 3.5% 9.1%

Note that these F-scores are computed in the
Arborator and can be exported and thus used di-
rectly for grading students. Let's now see how
these scores are used in the voting system.

4.5 How many sentences for student evalua-
tion?

When using one part of the trees for evaluation
of the students, and constructing an optimal tree
on the remaining sentences we obtain the follow-
ing results. At the present state we always split
into a first part for computing the students' scores
and a second part which are the remaining sen-
tences. Successive studies will try different jack-
knifing techniques.

The construction of an optimal tree is slightly
complicated by the graph structure of the analy-
sis, i.e. the possibility of double governors, as ex-
plained above. So the first step of the different
voting systems is to decide on the number of
governors, 1 most of the time, but sometimes 0
(errors in segmentation) or 2 (only relative pro-
nouns with our annotation guidelines for
French).

The Scoring voting system works as follows:
For every node, every proposal of a governor

node gets the score the annotator obtained in the
evaluation. Then the governor (or the two gover-
nors, if the first vote decided on two governors)
with the highest score is chosen for the tree. Note
that this does not include explicit coherence tests
(like non-circularity etc.) but we have not discov-
ered any circular tree with our data.

In this first version, only students can take part
in the vote that have annotated ¼ of the trees that
are used for evaluation.

Looking on these numbers, the first astonish-
ing fact is the stability of the results indepen-
dently of the number of sentences that are used
for evaluation. Put differently: With only one
tree to annotate, we already get a reasonable esti-
mate of the student's capacities.

¼ have to be annotated

Scoring
algorithm

part of sen-
tences used:

Nr of
students

in

Precision Recall F-score

 ½ (24) 31 0.9465 0.9419 0.9439

¼ (12) 31 0.9472 0.9379 0.9421

1/8 (6) 39 0.9505 0.937 0.9433

1/48 (1) 42 0.9512 0.9405 0.9454

94

We also checked whether the threshold (of tak-
ing only evaluations into account that are based
on a reasonable number of annotated sentences)
has an impact on the results, but in fact the dif-
ferences are very slight. This is astonishing when
looking at the annotation quality seen in section
4.4, but can be explained by the stabilizing factor
that most students try to do a good job.

½ have to be annotated

Adding
algorithm

part of sen-
tences used:

Nr of
students

in

Precision Recall F-score

 ½ (24) 19 0.945 0.9371 0.9408

¼ (12) 24 0.9495 0.94 0.9444

1/8 (6) 28 0.948 0.9357 0.9414

1/48(1) 42 0.9512 0.9405 0.9454

1/10 have to be annotated

Adding
algorithm

part of sen-
tences used:

Nr of
students

in

Precision Recall F-score

 ½ (24) 45 0.9464 0.9409 0.9434

¼ (12) 40 0.9476 0.9333 0.9399

1/8 (6) 50 0.9476 0.9333 0.9399

1/48(1) 42 0.9512 0.9405 0.9455

Unsurprisingly, not voting but just taking the
best student for each tree gives quite unstable re-
sults, depending on the number of sentences an-
notated by the best students. The results are
partly better, partly worse than the previous re-
sults.

1/10 have to be annotated

Meritocracy
algorithm

part of sen-
tences used:

Nr of
students

in

Precision Recall F-score

 ½ (24) 1 of 45 0.9702 0.9409 0.9749

¼ (12) 1 of 40 0.9704 0.9634 0.9668

1/8 (6) 1 of 50 0.8778 0.8538 0.8647

1/48(1) 1 of 42 0.8407 0.8403 0.8396

Of course it is unrealistic to have this many an-
notations per sentence. This leads us naturally to

the exploration of how many annotations we ac-
tually need to keep up reasonable results.

4.6 Students to Quality

For a real-world annotation setting, we need to
test systematically how many annotations we
need for the required annotation quality.

We explored the range from 2 to 10 annota-
tions per sentence by choosing arbitrarily for
each sentence the annotators among the students
that annotated the sentence (i.e. they attributed a
governor to at least 80% of the words). We com-
puted this score for 10 random attributions of
each number of annotators. The results are re-
ported in the diagram below.

On our data, the quality seems to quickly sta-
bilize between 91 and 92% F-score. As we have
seen, with higher numbers of annotators we don't
get much beyond 94%. 4 or 5 annotations per
sentence seems to be a reasonable number to ob-
tain an F-score well-beyond 90%.

Average F-score
over 10 random attributions

5 Conclusion and outlook

In this paper we have presented the different fea-
tures of the Arborator, a state-of-the-art online
tool for collaborative dependency annotation. We
have shown how most design choices were natu-
ral consequences of the annotation requirements.

We then showed that the application of the
rover technique can give surprisingly good re-
sults, even though syntactic annotation is com-
monly considered as a task which is difficult to
crowdsource (Munro et al. 2010). The reason is
probably that the “crowd” is partly trained and
the voting technique only has to pick out the
“trained” good students. However, the data-set is
too small and specific to draw more general con-
clusions.

We must also point out that an f-score of 0.94
and an average length of 25 tokens per sentence

1 2 3 4 5 6 7 8 9 10 11
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

95

means that there are on average 1.5 errors per
sentence, a result which is better than most auto-
matic annotation on out of domain data but noth-
ing we would want to call gold-standard. But
then again, this is before any bootstrapping or
pedagogical improvements taking into account
the typical errors – it is a very good result for a
first try.

While it seems practically impossible to use
the Arborator in a “real” crowdsourcing task à la
Mechanical Turk because the necessary training
time is excessively high, it is possible to imagine
crowd-sourcing of bootstrapping techniques in
dependency syntax, too. It even seems easier
than for phrase structure to find non-ambiguous
paraphrases that Turks could vote on in order to
decide between two equally probable analyses a
parser provides.

The present experiment was carried out on raw
text, i.e. students had to draw all dependency
links, including trivial links for example from a
noun to its determiner. The natural next step is to
try out this “pedagogical crowd-sourcing” in a
complete bootstrapping setup: The speed of the
students and thus the output could probably be
dramatically increased using statistical parsers
that indicate uncertainty. This uncertainty can be
rendered graphically in order to attract the stu-
dents' attention to the problematic dependency
link. And the corrections, after having been
voted on, can then again be used to train the
parser on bigger data. However, it is possible that
the results would be different because detecting
errors in a pre-annotated corpus is a different
task than not making those errors when starting
from scratch.

Another possible improvement of the result
could stem from the application of more general
machine learning techniques, that would, for ex-
ample include lexical information in the predic-
tions – or syntactic functions if they were in-
cluded in the study. In other words, such an im-
provement should result in a system where a stu-
dent that regularly gets the dependency links of
coordinative conjunctions like “and” wrong,
would have less voting rights when deciding on
the best analysis around these words.

References

Bohnet, Bernd, Andreas Langjahr, and Leo Wanner.
"A development environment for an MTT-based
sentence generator." In Proceedings of the first in-
ternational conference on Natural language genera-
tion-Volume 14, pp. 260-263. Association for
Computational Linguistics, 2000.

Bohnet, Bernd, Textgenerierung durch Transduktion
linguistischer Strukturen. DISKI 298. AKA, Berlin
(2006)

Boguslavsky, Igor, Svetlana Grigorieva, Nikolai Grig-
oriev, Leonid Kreidlin, and Nadezhda Frid. "De-
pendency treebank for Russian: Concept, tools,
types of information." In Proceedings of the 18th
conference on Computational linguistics-Volume
2, pp. 987-991. Association for Computational Lin-
guistics, 2000.

Brants, Thorsten, and Oliver Plaehn. "Interactive cor-
pus annotation." In LREC’00. 2000.

Chen, Xinying, Xu Chunshan, Li Wenwen. "Extract-
ing Valency Patterns of Word Classes from Syn-
tactic Complex Networks." Proceedings of Depling
2011, Barcelona.

De La Clergerie, Éric Villemonte. "A collaborative in-
frastructure for handling syntactic annotations." In
proc. of The First Workshop on Automated Syntac-
tic Annotations for Interoperable Language Re-
sources. 2008.

Van der Beek, Leonoor, Gosse Bouma, Rob Malouf,
and Gertjan Van Noord. "The Alpino dependency
treebank." Language and Computers 45, no. 1
(2002): 8-22.

Fiscus, Jonathan G. "A post-processing system to
yield reduced word error rates: Recognizer output
voting error reduction (ROVER)." In Automatic
Speech Recognition and Understanding, 1997. Pro-
ceedings., 1997 IEEE Workshop on, pp. 347-354.
IEEE, 1997.

Gerdes, Kim. "Sur la non-équivalence des représenta-
tions syntaxiques: Comment la représentation en
X-barre nous amène au concept du mouvement."
Cahiers de grammaire 30 (2006): 175-192.

Gerdes, Kim, and Sylvain Kahane. "Defining depen-
dencies (and constituents)." In Proceedings of the
International Conference on Dependency Linguis-
tics, Depling 2011, pp. 17-27. 2011.

Gerdes, Kim, Sylvain Kahane, Anne Lacheret, Arthur
Truong, and Paola Pietrandrea. "Intonosyntactic
data structures: the Rhapsodie treebank of spoken
French." In Proceedings of the Sixth Linguistic An-
notation Workshop, pp. 85-94. Association for
Computational Linguistics, 2012.

Hajič, Jan, Barbora Vidová-Hladká, and Petr Pajas.
"The prague dependency treebank: Annotation
structure and support." Proceedings of the IRCS
Workshop on Linguistic Databases. 2001.

Hajič, Jan. 2005. "Complex corpus annotation: The
Prague dependency treebank." Insight into the Slo-
vak and Czech Corpus Linguistics (2005): 54.

Kakkonen, Tuomo. 2006. DepAnn - An Annotation
Tool for Dependency Treebanks. Proceedings of

96

the 11th ESSLLI Student Session at the 18th Euro-
pean Summer School in Logic, Language and In-
formation (ESSLLI 2006), pp. 214-225. Malaga,
Spain

Mel čuk, Igor Aleksandrovič. Dependency syntax:ʹ ʹ
theory and practice. State University of New York
Press, 1988.

Mille, S., Burga, A., Vidal, V., & Wanner, L. (2009).
Towards a rich dependency annotation of Spanish
corpora. Proceedings of SEPLN’09, 325-333.

Munro, R., Bethard, S., Kuperman, V., Lai, V. T.,
Melnick, R., Potts, C., ... & Tily, H. (2010, June).
Crowdsourcing and language studies: the new gen-
eration of linguistic data. Proceedings of the
NAACL HLT 2010 Workshop on Creating Speech
and Language Data with Amazon's Mechanical
Turk (pp. 122-130). Association for Computational
Linguistics.

Mazziotta, Nicolas. "Building the syntactic reference
corpus of medieval French using notabene rdf an-
notation tool." In Proceedings of the Fourth Lin-
guistic Annotation Workshop, pp. 142-146. Asso-
ciation for Computational Linguistics, 2010.

Stenetorp, Pontus, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun'ichi
Tsujii. "BRAT: a web-based tool for NLP-assisted
text annotation." In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguis-
tics, pp. 102-107. Association for Computational
Linguistics, 2012.

Rambow, Owen, et al. "A dependency treebank for
English." Proceedings of LREC. Vol. 2. 2002.

Seraji, Mojgan, and Joakim Nivre. 2012. "Bootstrap-
ping a Persian Dependency Treebank." Linguistic
Issues in Language Technology 7.1.

97

