
Converting Latin Treebank Data into an SQL Database for
�ery Purposes

Christophe Onambélé
CIRCSE Research Centre

Università Ca�olica del Sacro Cuore
Largo Gemelli, 1

20123, Milan, Italy
christophe.onambele@unica�.it

Matyáš Kopp
Charles University in Prague

Institute of Formal and Applied Linguistics
Malostranské náměstı́ 25

118 00, Prague, Czech Republic
kopp@ufal.m�.cuni.cz

Marco Passaro�i
CIRCSE Research Centre

Università Ca�olica del Sacro Cuore
Largo Gemelli, 1

20123, Milan, Italy
marco.passaro�i@unica�.it

Jiřı́ Mı́rovský
Charles University in Prague

Institute of Formal and Applied Linguistics
Malostranské náměstı́ 25

118 00, Prague, Czech Republic
mirovsky@ufal.m�.cuni.cz

ABSTRACT
�is paper describes how to turn a Latin dependency treebank into
queryable information so that it can be browsed online using a tree
query engine and its web interface. �e annotation layers of the
treebank are �rst introduced, then the query system architecture
is detailed, and �nally the way the treebank is converted into a
relational database architecture is described.

CCS CONCEPTS
•Information systems→ Database query processing; �ery lan-
guages; •Computing methodologies→ Language resources;

KEYWORDS
Latin, Treebank Data Conversion, Tree �ery System, Natural
Language Processing
ACM Reference format:
Christophe Onambélé, Matyáš Kopp, Marco Passaro�i, and Jiřı́ Mı́rovský.
2017. Converting Latin Treebank Data into an SQL Database for �ery
Purposes. In Proceedings of DATeCH2017, Gö�ingen, Germany, June 01-02,
2017, 6 pages.
DOI: h�p://dx.doi.org/10.1145/3078081.3078087

1 INTRODUCTION
Research works on building dependency treebanks have largely in-
creased over the past decade resulting in the current availability of
several such resources. For instance, the last release of Universal De-
pendencies (UD)1 consists of 64 dependency treebanks representing
1Version 1.4 released on November 15, 2016. h�p://universaldependencies.org/.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
DATeCH2017, Gö�ingen, Germany
© 2017 ACM. 978-1-4503-5265-9/17/06. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3078081.3078087

47 languages. Among them there is a number of treebanks for an-
cient languages, namely the Ancient Greek Dependency Treebank
(AGDT [2]) and the subset of Ancient Greek texts in the PROIEL
corpus [6], the Index �omisticus Treebank (IT-TB [12], and the
Latin Dependency Treebank (LDT [1]). �e research areas using
such resources range from computational linguistics and NLP to
theoretical linguistics and (digital) humanities.

While computational linguists are more prone to use treebanks
for NLP purposes, digital classicists and theoretical linguists are
interested in browsing data by running queries on them. Mak-
ing linguistic resources queryable through user-friendly tools is a
desideratum, as it is shown by the current availability of a number
of query languages and tools speci�cally built for such purpose. In
order to enable researchers to make existing resources accessible
for the community in a friendly and easy-to-use interface, this pa-
per describes the main steps to convert a multi-layer dependency
treebank (IT-TB) available in a speci�c format, into a relational
database so that it can be browsed online using a generic system
for searching annotated corpora. Using a relational database stems
from the fact that it allows for faster processing of data than tools
relying on XML data.

�e paper is organized as follows. Section 2 discusses related
work on searching tools for dependency treebanks. Section 3
presents the layers of the treebank. Section 4 provides an overview
of the PML-TQ system and so�ware libraries. Section 5 describes
the transformation of the IT-TB data into a relational database ar-
chitecture. Section 6 details and discusses some queries run on
di�erent layers of annotation. Finally, Section 7 concludes the
paper.

2 RELATEDWORK ON SEARCH TOOLS
Several tools exist today that enable researchers to query linguistic
resources. �ese tools di�er in complexity of use and expressiv-
ity. ICARUS [4] enables users to search dependency treebanks by
building queries either graphically or in a text-based mode. INESS
[11] provides an open treebanking environment for visualizing and

117

DATeCH2017, June 01-02, 2017, Gö�ingen, Germany C. Onambélé et al.

querying data from (also parallel) treebanks. TüNDRA2 is a web-
based treebank search and visualization application partly based on
TIGERSearch [13]. It provides users with the possibility to query
dependency treebanks with non-projective dependencies.3 ANNIS
[8] provides the means for searching and visualizing multi-layer an-
notated linguistic corpora via a web interface. SETS treebank search
[9] is a simple query language and tool for searching dependency
treebanks.

3 THE INDEX THOMISTICUS TREEBANK
�e Index �omisticus Treebank (IT-TB) is a dependency annotated
corpus which includes texts of �omas Aquinas (Medieval Latin).
Its annotation scheme is based on the Prague Dependency Tree-
bank 2.0 (PDT).4 At the morphological layer (m-layer), each word
of a given sentence is annotated with its lemma (base form of the
word) and its part-of-speech tag (keeping the morphological infor-
mation). Prior to that, the word layer (w-layer) simply represents
the sequence of words of the input sentence. �e analytical layer
(a-layer) represents the surface syntax of sentences. In analytical
trees, every word and punctuation mark of the sentence corre-
sponds to a node of a rooted dependency tree. �e edges of the tree
represent dependency relations that are labelled with (surface) syn-
tactic functions called “analytical functions” (like Subject, A�ribute,
etc.). Currently, the a-layer of the IT-TB contains approximately
300,000 a-nodes (around 16,000 sentences). �e tectogrammatical
layer (t-layer), which represents the underlying structure of the
sentence, is conceived as the semantically relevant counterpart of
the grammatical means of expression (described by a-trees). Only
nodes for autosemantic words occur in tectogrammatical trees;
function words and punctuation marks are le� out. �e t-nodes
are labeled with semantic role tags called “functors” indicating the
semantic dependency relation between a head and its dependent.
Furthermore, t-trees also include ellipsis resolution, coreferential
analysis and annotation of information structure (called “topic-
focus articulation”). Currently, the the t-layer of the IT-TB features
approximately 28,000 nodes (approx. 2,000 sentences).

4 PML-TREE QUERY
PML-TQ [5] is a powerful, generic and open system enabling to
search and explore linguistically annotated corpora. �e Prague
Markup Language5 (PML [5]) that underpins PML-TQ is an abstract
XML-based format applicable to any type of annotation purpose,
and in particular to multi-layered treebanks annotations. It follows
the stand-o� principles [7]. Figure 1 shows the query system archi-
tecture and the data �ow. Users can access and query data in two
ways.

Local Data �erying. �is consists of evaluating a PML-TQ
query on PML data stored on the user’s local hard drive. �e evalu-
ation is performed by the TrEd6 extension “PML Tree �ery Inter-
face”, which provides a graphical interface for querying the data.
2Some of its features are available in h�p://weblicht.sfs.uni-tuebingen.de/weblichtwiki/
index.php/Tundra.
3[10] describes the integration of the IT-TB into TüNDRA.
4h�p://ufal.m�.cuni.cz/pdt2.0/.
5h�p://ufal.m�.cuni.cz/jazz/PML/.
6TrEd is one of the client applications to the PML-TQ system, compatible with data
in the PML format. Conversion scripts from other formats to PML are provided (e.g.,
from CoNLL 2009: h�ps://ufal.m�.cuni.cz/conll2009-st/task-description.html).

In this case, the evaluator PMLTQ::BtredEvaluator7 transforms
the query to a Perl code and runs it directly on the PML data. �e
tree structures (representations of the resulting trees) are rendered
by TrEd; the appearance of a tree is speci�ed by a stylesheet that
is part of the TrEd extension belonging to the queried treebank or
can be speci�ed by the user.

Remote Data �erying. �e data �ow in the client–server
and SQL evaluation approach shown in Figure 1 can be divided
into three groups. Do�ed lines represent both tools and data �ow
that �lter queries by featuring statistical information on a given
query. Dashed lines are for tools and data �ow helping to select
the relevant tree structure matching a speci�c query. Finally, tools
and data �ow, represented by solid lines, are coping with both
of the aforementioned tasks. �ere are two user interfaces (the
PML-TQ Web and the PML Tree �ery Interface for TrEd) which
communicate with the PML-TQ Server8 through a REST API.

SQLEvaluator SVG Controller

PML-TQ Server

REST API

TrEdPML-TQ Web

PostgreSQL

Print Server

bTrEd

PML Data PML Schema

QUERY

RESULT

SVG
REQUEST

SVG
IM

AGE QU
ER

Y

Tr
ee

RE
SU

LT
NO

DE
IN

FO
PM

L d
ata

�l
es

Fi
lte

r R
ES

UL
T

SQ
L

qu
er

y

re
su

lt
SVG REQUEST

SVG IMAGE

Figure 1: PML-TQ Server Architecture and Data Flow.

Treebank data are stored in two formats: (1) a relational database
PostgreSQL used for evaluating the queries, and (2) a PML format
used by the Print Server9 for visualizing the resulting tree structures.
�e Print Server is a TrEd macro that implements a simple HTTP
server using TrEd’s tree visualization functionality and provides
tree structures of the queries’ results in the SVG format.

5 CONVERSION PROCESS
�e conversion process is performed through the steps presented
below.

�eA-layer PML Format. Dependency treebanks in CoNLL-X
[3] or CoNLL-U format10, and Penn like constituency treebanks
7�e query evaluation parses each query and determines which nodes satisfy its
conditions; then it returns the resulting (tree) nodes or a table of statistics. �ere are
two types of data storage, each with its own query evaluator implemented. �e �rst
is the PML data format and its evaluator (PMLTQ::BtredEvaluator); the second one
is a relational database PostgreSQL and its evaluator (PMLTQ::SQLEvaluator) which
transforms a PML-TQ query into a SQL query and evaluates it on the database.
8�e PMLTQ::Server is a Perl module wri�en in Mojolicious web framework.
9h�ps://github.com/ufal/pmltq-print-server.
10h�p://universaldependencies.org/format.html.

118

Converting Latin Treebank Data into an SQL Database for �ery Purposes DATeCH2017, June 01-02, 2017, Gö�ingen, Germany

can be automatically converted into PML. Here, we describe the
PML schema for the a-layer which formalizes two things: (i) the
dependency relation between head and dependent, and (ii) the list
of analytical functions. Figure 2 shows an instance of PML in the
analytical dependency annotation of the sentence quod sit o�cium
sapientis “(What is) the o�ce of the wise man”. �e annotation �le
consists of a header, meta data specifying the type of annotation,
and the list of trees. In PML, a tree structure is represented by the
tree ID stored in the a�ribute ID of the element LM under trees. �e
identi�er of the sentence is in the element s.rf under trees. Nodes
bear an ID linking to the word form stored in the morphological �le
(m.rf), and the analytical function (afun). �ese nodes also have
two technical members: (i) an XML element ord referring to the
order of the word in sentence (counted from 1, 0 is for root), and
(ii) a list of child-nodes represented by the element children.

Following this PML schema, one can �gure out the dependency
structure of the sentence. You start with the root represented by
the sentence ID a-005.SCG*LB1.CP-++1.N.-.1-1.1-411. �is root
has two dependents (or children): a nested tree representing the
sentence, and the punctuation mark labeled AuxK. �e root of the
nested tree is the second word (W2) of the sentence whose analytical
function is Pred, and it heads two dependents: the �rst word of
the sentence (W1) which is a predicate nominal (PNom), and a nested
subtree whose head is the third word of the sentence (W3), which
is the subject (Sb). �is node heads that for the fourth word of
the sentence (W4), which is an a�ribute (Atr). �e corresponding
dependency tree is shown in �gure 3.

From PML Data to SQL Database. �e conversion uses infor-
mation on relevant data types provided by the PML schema (see
Figure 4). PML elements are stored in SQL tables, and each record
has a unique identi�er a�ribute. �e PML format contains roles12

(#TREES, #NODES, #CHILDNODES) enabling users to traverse a tree
with various node types (e. g. a-node, a-root). Mapping a tree into
a table (although trees and tables are two di�erent topological ob-
jects) is well performed, as a tree structure is basically a special
case of relation easily representable in a table without any loss of
information.

�e use of a relational database13 is motivated by the fact that it
is much faster than XML format (stored in text �les). For example,
we were not able to open 60 MB IT-TB in one �le on PC with 4
GB RAM, because it was not able to parse such a large XML �le.
Spli�ing it into multiple �les would increase the speed slightly but
it would not solve the fact that a huge amount of XML data need
to be parsed while executing every single query.

�e conversion process is motivated by the fact that there were
no be�er possibilities at the time PML-TQ was implemented. Nowa-
days we believe that using some document database (such as Mon-
goDB) should have been be�er14 since it respects tree structure, or
11Textual reference: a- (analytical layer), 005 (��h text registered in the Index �omisti-
cus), SCG (Summa contra Gentiles), LB1 (Book 1), CP-++1 (Chapter 1), N.- (no numbered
section), 1-1 (sentence starts at line 1, word 1), 1-4 (sentence ends at line 1, word 4).
�e root node is assigned by default afun AuxS.
12PML roles are pre-de�ned sets of labels indicating which data refer to the nodes
trees, how the nested tree structure are built, data structures carrying unique ID, or
links to other layers of annotation.
13�e database structure is optimized for build-in relations. Every query with a relation
needs a JOIN in its SQL form. Reducing the number of database JOIN increases
performance.
14be�er=faster.

<?xml version="1.0" encoding="UTF-8"?>

<adata xmlns=”h�p://ufal.m�.cuni.cz/pdt/pml/”>
<head>

<schema href=”adata it schema.xml” />

<references>

<reffile id=”m” name=”mdata” href=”005-SCG.DATI.1.l.m” />

<reffile id=”w” name=”wdata” href=”005-SCG.DATI.1.l.w” />

</references>

</head>

<meta>

<annotation_info>

<desc>Manual annotation</desc>

</annotation_info>

</meta>

<trees>

<LM id=”a-005.SCG∗LB1.CP-++1.N.-.1-1.1-4”>
<s.rf>m#m-005.SCG*LB1.CP-++1.N.-.1-1.1-4</s.rf>

<ord>0</ord>

<children>

<LM id=”a-005.SCG∗LB1.CP-++1.N.-.1-1.1-4W2”>
<m.rf>m#m-005.SCG*LB1.CP-++1.N.-.1-1.1-4W2</m.rf>

<ord>2</ord>

<children>

<LM id=”a-005.SCG∗LB1.CP-++1.N.-.1-1.1-4W1”>
<m.rf>m#m-005.SCG*LB1.CP-++1.N.-.1-1.1-4W1</m.rf>

<ord>1</ord>

<afun>Pnom</afun>

</LM>

<LM id=”a-005.SCG∗LB1.CP-++1.N.-.1-1.1-4W3”>
<m.rf>m#m-005.SCG*LB1.CP-++1.N.-.1-1.1-4W3</m.rf>

<ord>3</ord>

<children id=”a-005.SCG∗LB1.CP-++1.N.-.1-1.1-4W4”>
<m.rf>m#m-005.SCG*LB1.CP-++1.N.-.1-1.1-4W4</m.rf>

<ord>4</ord>

<afun>Atr</afun>

</children>

<afun>Sb</afun>

</LM>

</children>

<afun>Pred</afun>

</LM>

<LM id=”a-005.SCG∗LB1.CP-++1.N.-.1-1.1-4W5”>
<m.rf>m#m-005.SCG*LB1.CP-++1.N.-.1-1.1-4W5</m.rf>

<ord>5</ord>

<afun>AuxK</afun>

</LM>

</children>

</LM>

...

</trees>

</adata>

Figure 2: Sample Instance of the Sentence “quod sit o�cium
sapientis.” encoded in PML Format on Analytical Layer.

Figure 3: A-tree of the Sentence “quod sit o�cium sapientis.”

119

DATeCH2017, June 01-02, 2017, Gö�ingen, Germany C. Onambélé et al.

<?xml version="1.0" encoding="UTF-8"?>

� <pml_schema xmlns=”h�p://ufal.m�.cuni.cz/pdt/pml/schema/” version=”1.1”>
<revision>1.0.4</revision>

<description>PDT 2.0 analytical trees</description>

<reference readas=”dom” name=”mdata”/>
<reference readas=”dom” name=”wdata”/>
<import minimal_revision=”1.0.2” type=”m-node.type” schema=”mdata schema.xml”/>
<import type=”bool.type” schema=”mdata schema.xml”/>
� <derive type=”m-node.type”>
<root name=”adata” type=”a-adata.type”/>
� <type name=”a-adata.type”>
� <structure>

<member name=”meta” type=”a-meta.type” required=”0”/>
� <member role=”#TREES” name=”trees” required=”1”>

</structure>

</type>

� <type name=”a-meta.type”>
� <type name=”a-root.type”>
� <structure role=”#NODE” name=”a-root”>
� <member role=”#ID” name=”id” required=”1” as_attribute=”1”>
� <member name=”s.rf”>
� <member name=”afun”>
� <member role=”#ORDER” name=”ord” required=”1”>
� <member role=”#CHILDNODES” name=”children”>

</structure>

</type>

� <type name=”a-node.type”>
� <structure role=”#NODE” name=”a-node”>

</type>

� <type name=”a-afun.type”>
� <choice>

</type>

</pml_schema>

Figure 4: Sample PML Schema for Analytical Trees Repre-
sentation.

some native XML database (no conversion will be needed). But the
most time consuming part of the query are the �lters; so if we want
to have faster query evaluation, we have to improve the evaluation
of aggregation functions. However one can question whether such
converted data structures are queryable, since the task may not be
quite a�ordable in a declarative paradigm as the one of SQL. In fact,
the PML-TQ language is also a declarative language, so users only
need to declare the conditions which the target should satisfy and
don’t need to care about how it is reached.

6 QUERYING THE DATA
PML-TQ and its extension to TrEd give users the possibility to write
and run complex queries on multi-layered annotated resources like
ours. For instance, we can compute a “core vocabulary” of the
IT-TB. We will start with a simple solution and then proceed to
more elaborate ones.

�e �rst and very simple solution is demonstrated by the follow-
ing query:
a-node $a := [];
>> for $a.m/lemma give $1, count() sort by $2 desc

In its selective part (a-node $a := []), the query searches for all
nodes on the analytical layer. a-node is the type of nodes to search
for, the node is named by $a := for later reference (as $a), and the
properties of the node are de�ned in squared brackets ([]), i.e.
in this case we have no requirements on the nodes. �e part of
the query a�er >> is called an output �lter. In this case, it counts
a distribution of morphological lemmas of the selected nodes (i.e.
all a-nodes in the data). �e output �lter takes all di�erent lemmas

in the results (for $a.m/lemma), prints the lemma along with its
number of occurrences (give $1, count(); $1 refers to the �rst
expression a�er for, i.e. $a.m/lemma) and sorts the resulting list in
the descending order by the number of occurrences (sort by $2

desc; $2 refers to the second expression a�er give, i.e. count()). A
sample of the result is given in Table 1.

Table 1: A sample of the Distribution of Lemmas in the Data

Lemma Count
sum 9354
qui 3878
in 3805
non 3554
et 3448

�e query just lists the most frequent lemmas in the treebank (we
excluded punctuation from the resulting table). Instead, we might
want to compute the “core syntactic vocabulary” of the treebank,
i.e. those words that show the highest number of connections (both
as governor and dependent) in the analytical layer of annotation.

�e following query demonstrates a solution to the task of com-
puting the “core syntactic vocabulary”. �e idea is to extract the
most connected lemmas in the treebank in terms of dependants
and governors:
a-node $n1 :=
[same-tree-as a-node $n2 :=

[(parent $n1 or child $n1)]];
>> give distinct $n1.m/lemma,$n2.m/lemma
>> give distinct $1,count(over $1),

concat($2, ', ' over $1 sort by $2) sort by $2 desc

�e graphical representation of the query is given in Figure 5.

a-node $n2
(parent $n1
or child $n1)

a-node $n1

Tree Query
Output filters:
>> give distinct $n1.m/lemma,$n2.m/lemma
>> give distinct $1,count(over $1),concat($2, ', ' over $1 sort by $2)
sort by $2 desc

same-tree-as

Figure 5: A Graphical �ery on the Analytical Data.

In its selective part, the query searches for all pairs of analytical
nodes that are connected via the parent or child relations, i.e. it
searches for all pairs $n1, $n2 of nodes where $n2 is either the parent
or child of $n1. For technical reasons given by the syntax of the
query language, we �rst use only a general relation between the
two nodes (same-tree-as) and then specify it further (parent $n1

or child $n1). �e �rst line of the output �lter lists all distinct
pairs of connected lemmas found by the selective part of the query.
�e second line of the output �lter is applied on the output of

120

Converting Latin Treebank Data into an SQL Database for �ery Purposes DATeCH2017, June 01-02, 2017, Gö�ingen, Germany

the �rst line and for each lemma prints the lemma (give distinct

$1), number of di�erent lemmas it was connected to (count(over
$1)), and a list of all di�erent lemmas it was connected to, sorted
alphabetically and separated by commas (concat($2, ’, ’ over $1

sort by $2)); the whole resulting list is sorted in descending order
by number of connected lemmas (sort by $2 desc). A sample of
the result is given in Table 2.

Table 2: A Sample of the Connectiveness of Lemmas in the
Data

Lemma Count Connections
et 1179 a, abduco, aboleo, …
sum 1113 a, abeo, abjicio, …
in 716 abeo, abstractio, …
possum 505 a, absque, accidens, …
ad 487 accedo, accidens, …
…

For each lemma, Table 2 reports the number of its connections
and a small selection of the lemmas it is connected to (again, we
excluded punctuation from the lists). If we compare Table 1 with
Table 2, we notice that some lemmas are ranked higher in Table 2
than in Table 1. Among them, the coordinating conjunction et “and”
moves to the �rst position in Table 2, as the most connected lemma
in the treebank. Also, beside the verb sum “to be”, the verb possum
“can” occurs in the highest positions of Table 2, while it is not among
those ranked highest in Table 1.

In a-trees, prepositions and conjunctions act as bridge nodes
linking the e�ective heads of phrases and clauses standing in gov-
erning/subordinate relation. For instance, in the a-tree for the sen-
tence ex hoc dicitur quod. . . (literaly, “from this [it] is said that. . . ”),
the node for the preposition ex “from” links that for the head verb
dicitur “is said” with that for the pronoun hoc “this”. Although in
the a-tree ex depends on dicitur and hoc depends on ex, the e�ec-
tive dependency relation holds between the head of the governing
clause (dicitur) and that of the prepositional phrase (hoc). Such
e�ective dependencies are not considered by the previous query.
In order to face this issue, PML-TQ features two speci�c relations
for searching for e�ective dependencies. �e following query is
identical to the previous one with one exception – instead of parent
and child relations, it uses relations eparent and echild (standing
for e�ective parent and e�ective child):
a-node $n1 :=
[same-tree-as a-node $n2 :=

[(eparent $n1 or echild $n1)]];
>> give distinct $n1.m/lemma,$n2.m/lemma
>> give distinct $1,count(over $1),

concat($2, ', ' over $1 sort by $2) sort by $2 desc

A sample of the result is given in Table 3. It reports the results
for e�ective relations in the IT-TB. It is worth noticing that only
content words occur in the list, while function words are skipped.
Only the conjunction et still occurs in the highest positions of the
list: this re�ects the use of et as adverb, with the meaning of also.
As a ma�er of fact, the number of connections of et in Table 2 is
much higher than in Table 3 (1,179 vs 335), because Table 2 includes

Table 3: A Sample of the Connectiveness of Lemmas in the
Data Using E�ective Relations eparent and echild

Lemma Count Connections
sum 1387 abduco, abeo, abjicio, …
possum 597 absolutus, absum, …
dico 566 abscessus, absolutus, …
…
hic 427 abstraho, accidens, …
facio 393 absolutus, abstraho, …
et 335 accidens, actio, actus, …
…

both the use of et as coordinating conjunction and as adverb, while
only the la�er is considered in Table 3.

t-node $n1
t_lemma = $n2.t_lemma
functor = $n2.functor
is_generated = 1
is_member = 1

t-node $n0
nodetype = 'coap'

t-node $n2
functor = 'PRED'
gram/sempos = 'v'
is_member = 1

Tree Query

child
order-follows

Figure 6: A Graphical�ery on the Tectogrammatical Data.

Figure 6 shows the graphical form of a query that searches in
tectogrammatical data (t-nodes). �e query includes a node $n0

of type "coap" (nodetype = "coap"), which is the type assigned to
paratactic structure root nodes. $n0 must have (at least) two direct
descendants:

• $n1: a t-node that (a) is member of the paratactic struc-
ture (is member = 1), (b) is newly added in the t-nodes,
as it does not correspond to any word in the sentence
(is generated = 1) and (c) has both t lemma and functor

equal to those of node $n2 (t lemma = $n2.t lemma; functor
= $n2.functor).15

• $n2: a t-node that (a) is member of the paratactic struc-
ture (is member = 1), (b) is assigned functor PRED (main
predicate of the sentence) and (c) is a verb (gram/sempos
= "v").16 Furthermore, $n1 must follow $n2 in the order
of the nodes in t-nodes, as it is represented by the brown
arrow directed from $n2 to $n1.17

�e textual query corresponding to Figure 6 is the following:
15T lemma is the lemma registered at the tectogrammatical layer of annotation.
T lemmas usually correspond to morphological lemmas.
16Gram/sempos refers to the grammateme (gram) called “semantic part of speech”
(sempos). Grammatemes are a�ributes capturing meaning of semantically relevant
morphological categories such as number and gender for nouns. For instance, pluralia
tantum nouns are assigned the singular number grammateme.
17Nodes in t-nodes are ordered according to information structure.

121

DATeCH2017, June 01-02, 2017, Gö�ingen, Germany C. Onambélé et al.

t-node $n0 :=
[nodetype = 'coap', t-node $n1 :=

[t_lemma = $n2.t_lemma, functor = $n2.functor,
is_generated = 1, is_member = 1],

t-node $n2 := [functor = 'PRED', gram/sempos = 'v',
is_member = 1, order-follows $n1]];

Figure 7: A �ery on the Tectogrammatical Data.

005.SCG*LB1.CP-3++2.N.-6.4-2.5-4
root

nam
PREC
atom

#Gen
ACT
qcomplex

species
PAT
n.denot

dico enunc
PRED
v

#PersPron
ACT
n.pron.def.pers

participo
EFF
v

genus
PAT
n.denot

et
CONJ
coap

dico enunc
PRED
v

individuus
ACT
n.denot

#PersPron
ACT
n.pron.def.pers

participo
EFF
v

species
PAT
n.denot

. .

Figure 8: A Tectogrammatical Tree Resulting from a�ery.

Figure 8 shows one of the t-trees retrieved by the query (Figure 7)
in the IT-TB. �e sentence whose t-tree is shown in �gure 8 is
the following: nam species participare dicitur genus, et [participare
dicitur] individuum speciem “for the species is said to participate in
the genus and the individual [is said to participate] in the species.”.18

Since the second occurrence of the word dicitur (t lemma: dico) is
missing in the sentence, it is replaced in t-trees through ellipsis
resolution by adding a new t-node with t lemma dico (in t-trees, it
appears as a white square node). According to the query, this newly
added node is a member of a paratactic construction and has the
same t lemma and functor of another member of the same structure
(see the round yellow node for dico), which is assigned functor

PRED, it is a verb and it precedes the newly added node in the order
of the nodes.

7 CONCLUSION
In this paper, we described our practical experiments in transform-
ing IT-TB data into queryable information. �is led us to sketch
out a query system designed for dealing with di�erent annotation
purposes, and particularly with multi-layer treebanks. We focused
on an ancient language in order to cope with an audience (historical
linguists, classicists and digital humanists) that needs user-friendly
and powerful tools to query annotated corpora and extract empiri-
cal evidence from them. In this respect, the graphical interface of
PML-TQ is meant to address such requirement. Beside the IT-TB,
also part of the Latin Dependency Treebank19 and the Latin Valency

18Textual reference: 005 (��h text registered in the Index �omisticus), SCG (Summa
contra Gentiles), LB1 (Book 1), CP-3++2 (Chapter 32), N.-6 (Number 6), 4-2 (sentence
starts at line 4, word 2), 5-4 (sentence ends at line 5, word 4).
19h�p://itreebank.marginalia.it/ldt/app/form.

Lexicon Latin-Vallex20 have been converted into SQL and can thus
be browsed online via PML-TQ.

�e PML-TQ system is available on the LINDAT/CLARIN21

repository.

ACKNOWLEDGMENTS
�e research reported in the present contribution was supported
by the LINDAT/CLARIN project of the Ministry of Education of
the Czech Republic (project LM2015071). �e Index �omisticus
Treebank is partly funded by the Italian Ministry of Education, Uni-
versity and Research (MIUR), FIR-2013 ”Developing and Integrating
Advanced Language Resources for Latin” (ID: RBFR13EWQN).

REFERENCES
[1] David Bamman and Gregory Crane. 2006. �e design and use of a Latin depen-

dency treebank. In Proceedings of the Fi�h Workshop on Treebanks and Linguistic
�eories (TLT2006). 67–78.

[2] David Bamman, Francesco Mambrini, and Gregory Crane. 2009. An ownership
model of annotation: �e Ancient Greek dependency treebank. In Proceedings of
the Eighth International Workshop on Treebanks and Linguistic �eories (TLT 8).
5–15.

[3] Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X shared task on multilingual
dependency parsing. In Proceedings of the Tenth Conference on Computational
Natural Language Learning. 149–164.

[4] Markus Gärtner, Gregor �iele, Wolfgang Seeker, Anders Björkelund, and Jonas
Kuhn. 2013. ICARUS - An Extensible Graphical Search Tool for Dependency
Treebanks. In Proceedings of the 51st Annual Meeting of the Association for Com-
putational Linguistics, August 2013, So�a, Bulgaria. 55–60.

[5] Jirka Hana and Jan Štěpánek. 2012. Prague markup language framework. In
Proceedings of the Sixth Linguistic Annotation Workshop. 12–21.

[6] Dag TT Haug and Marius Jøhndal. 2008. Creating a parallel treebank of the old
Indo-European Bible translations. In Proceedings of the Language Technology for
Cultural Heritage Data Workshop (LaTeCH 2008), Marrakech, Morocco, 1st June
2008. 27–34.

[7] Nancy Ide and Laurent Romary. 2004. International standard for a linguistic
annotation framework. Natural language engineering 10, 3-4 (2004), 211–225.

[8] �omas Krause and Amir Zeldes. 2016. ANNIS3: A new architecture for generic
corpus query and visualization. Digital Scholarship in the Humanities 31, 1 (2016),
118–139.

[9] Juhani Luotolahti, Jenna Kanerva, Sampo Pyysalo, and Filip Ginter. 2015. Sets:
Scalable and e�cient tree search in dependency graphs. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational
Linguistics: Demonstrations. 51–55.

[10] Sco� Martens and Marco Passaro�i. 2014. �omas Aquinas in the TüNDRA:
Integrating the Index �omisticus Treebank into CLARIN-D.. In Proceedings of the
Ninth International Conference on Language Resources and Evaluation. 767–774.

[11] Paul Meurer, Helge Dyvik, Victoria Rosén, Koenraad De Smedt, Gunn Inger Lyse,
Gyri Smørdal Losnegaard, and Martha �unes. 2013. �e INESS treebanking
infrastructure. In Proceedings of the 19th Nordic Conference of Computational
Linguistics (NODALIDA 2013); May 22-24; 2013; Oslo University; Norway. NEALT
Proceedings Series 16. 453–458.

[12] Marco Passaro�i. 2011. Language Resources. �e State of the Art of Latin and
the Index �omisticus Treebank Project. In Corpus anciens et Bases de données.
301–320.

[13] Holger Voormann and Wolfgang Lezius. 2002. TIGERin-Gra�sche Eingabe
von Benutzeranfragen für ein Baumbank-Anfragewerkzeug. In Proceedings of
KONVENS-02), Saarbrücken.

20h�p://itreebank.marginalia.it/vallex/app/form.
21h�ps://lindat.m�.cuni.cz/en.

122

