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• Find most likely word sequence uttered by a speaker given the acoustics.

Automatic Speech Recognition (ASR)

• Assumption: words belongs to a finite vocabulary.

• Even with a large vocabulary, ASR systems will encounter words not 
seen during training: Out-Of-Vocabulary (OOV) words.
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Why are OOVs important?

• OOVs are an important source of error in ASR systems:

‣ They can never be recognized by the basic system, even if repeated.

‣ They contribute to recognition errors in surrounding words.

‣ Causes error-propagation for downstream applications.

‣ OOVs are often information-rich nouns: named-entities, foreign words.
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vocabulary (Rastrow et. al. 2009).
‣ Fragments are variable-length phone sequences (data-driven).
‣ Fragments are used to represent OOVs in the Language Model text.

Previous Work: Hybrid System

 word:        n. b. c.’s  jim miklaszewski has the latest on ...
 hybrid:      n. b. c.’s jim m_ik_k l_ax sh_eh_f s_k iy has the latest on ...

• Output Confusion Networks include words and fragments.
• To detect OOVs: combines probability of fragments and other confidence 

measures. 
• Achieves state-of-the-art performance using only a few features.
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• Treat OOV detection as binary-classification task on each confusion region/bin.

• Features used:

• Combines features using Maximum Entropy classifier.

• This approach classifies each region independently using local information.
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∑
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• Discriminative classifier: predicts hidden labels given observed sequence.
• Assigns a label to each region independently.
• Often used for OOV and error detection (Burget et al 08, Rastrow et al. 09, White et 

al 07, Hazen and Bassi 2001)
• Problems:
‣ OOVs tend to be recognized as two or more words - OOV regions tend to 

co-occur (47% - 1 word, 40% - 2 words, 9% - 3 words, 4% - 4 or more).
‣ Context can be helpful identifying OOVs. Perhaps they have specific 

distributional similarities (tend to be name-entities, rare nouns).
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• OOV Detection data-set: designed to emphasize OOVs (Can et. al. 2009)
‣ 100 Hours (English Broadcast News)
‣ 1290 unique OOVs, at least 5 instances per word, short OOVs excluded.
‣ Divide 100 hrs into 5 hrs development set (used to train OOV-detector) 

and 95 hrs for testing.
‣ 2% OOV rate on both development and test.

• Training set LVCSR system:
‣ IBM Speech Recognition Toolkit (Saltau et al. 2005)
‣ Train on 300 Hours of English Broadcast News.
‣ Language model 400M words, 83K word vocabulary.

• Hybrid System:
‣ 83K words and 20K fragments.
‣ 1290 unique words are OOVs for both word and hybrid system.

Experimental SetupExperimental Setup
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• The ASR transcript is aligned to the reference at the confusion bin level.

• Each bin is assigned a score obtained form the MaxEnt or CRF.

• A threshold for the scored is varied to generate IV and OOV tags.

• Present results in terms of false-alarms and miss probabilities using 
detection error tradeoff (DET) curve. 

• Present results on un-observed OOVs (not on vocabulary of ASR or 
training set for OOV-detector).
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• 5% absolute improvement with same 
features, at 10% FA rate.

Result: MaxEnt vs CRF model

           Didn’t help: 
• Higher Order CRF
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Result: local lexical context

• Features used:
‣ Current-Word
‣ Context Bigrams: bigrams from       

5-word window (ignore current-bin)      
‣ Current-Trigrams: trigrams 

including current bin in   5-word 
window

‣ All Words: All above features
‣ All Words Stemmed.

                         Didn’t help: 
• Adding substrings from current and context.
• Baseline features from neighboring bins.

• 4.2% absolute improvement over 
previous result (9.3% over baseline)   
at 10% FA rate.

• Combining context and current bin 
achieves most of the gain.

• Indicates OOVs tend to occur with 
certain distributional characteristics.
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• We include information from entire utterance using LM and POS tagging.

‣ The probability of an utterance as given by an Language Model is a 
measure of its fluency.

‣ OOVs tend to take specific syntactic roles (over 50% are proper nouns).

• Use features derived from N-gram and syntactic Language Models.

Incorporating Global Context

P (wm
1 ) =

m∏

i=1

P (wi|wi−1
1 )

≈
m∏

i=1

P (wi|wi−N+1 . . . wi−1)

N-gram Language Model
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Syntactic Language Model

• Tags are extracted from parse trees and include: word POS-tag, label of 
immediate parent, and relative position of word among its siblings.

• Hidden states carry global information since it estimates most likely tag 
sequence for entire utterance.
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• A Joint Language Model with Fine-Grained Syntactic tags (Filimonov and Harper 2009)

• Estimates joint probability of word and its syntactic tag .
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Result: global context (LMs)

• Features used:
‣ Likelihood ratio:

‣ Probability of utterance:

‣ POS Tags in 5-tag window

log
p(utt)

p(utt|wi = unknown)

log p(utt)
length(utt)

• 4.9% absolute improvement over 
previous best result (14.2% over 
baseline) at 10% FA rate.

• Most of the additional gain achieved 
by N-gram Language model.
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Final System

• Un-observed OOVs, at 10% FA rate, reduce miss OOV rate from 42.6% to 28.3%, 
33.3% relative improvement.

• Un-observed vs observed OOVs identical performance for baseline system. We 
achieve 55.6% relative when considering all OOVs.

• Baseline system flattens out at 26% FA rate, while CRF continues to decrease: 
useful if misses are more heavily penalized.
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• Context helps detect OOVs! (submitted NAACL HLT 2010)

‣ Integrating local lexical and global information helps.

‣ Using sequence models (such as CRF) improves over a MaxEnt model, 
which treats problem as sequence of independent binary classification 
problems.

• At 10% FAs, reduced missed OOV rate from 42.6% to 28.4%, a 33% relative 
improvement.

• Approach can be easily integrated with other proposed confidence 
measures, to enhance performance.

Conclusions



• Include features from other hypothesis output by the recognizer (with 
associated confidence).

• Evaluate effect of OOV detector improvement in downstream 
applications such as Spoken Term Detection of OOVs. 

• Context helps detect an OOV! Can we use it for detecting type of OOV? 
e.g. [person], [location], [organization], [other].

Future Work



• Collaborators: Mark Dredze, Denis Filimonov, Fred Jelinek.

• Ariya Rastrow and Chris White (supplying code for baseline).

• Abhinav Sethy and Bhuvana Ramabhadran (IBM) provided data 
and comments.

Thank you



Questions?





Experimental SetupMaximum Entropy vs CRF

p(yi|x) =
exp

(∑F
i=1 λifi(x, yi)

)

∑
y′ exp

(∑F
i=1 λifi(x, y′)

)

p(yi|x) =
1

Z(x)
exp

{
K∑

k=1

λkfk(yt, yt−1, x)

}

MaxEnt

CRF-linear
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• Find most likely word sequence uttered by a speaker given the acoustics.

Automatic Speech Recognition (ASR)

• Assumptions: w belongs to a finite vocabulary (typically ~85K).

• Even with a large vocabulary, ASR systems will encounter words not 
seen during training: Out-Of-Vocabulary (OOV).

Ŵ = arg max
W

P (W |A)

acoustic 
model

language 
model

search

= arg max
W

P (W )P (A|W )


